Topic: New template function, std::abs_diff(a,b)
Author: jeremy8258@gmail.com
Date: Tue, 23 Sep 2014 10:11:54 -0700 (PDT)
Raw View
------=_Part_269_1256366361.1411492314880
Content-Type: multipart/alternative;
boundary="----=_Part_270_1690212023.1411492314880"
------=_Part_270_1690212023.1411492314880
Content-Type: text/plain; charset=UTF-8
A few times now I've encountered the situation where I want to calculate
the difference between two values and then get the absolute value of the
difference. The problem is, abs() takes only one parameter, meaning there's
a good chance the argument to the abs() function will result in a negative
value, and then be passed to abs(). For some data types, negative values
aren't allowed and would lead to exceptional, undefined, or illogical
behavior. This problem is easily avoided.
In short, I propose a new standard template function, std::abs_diff(), and
its overloads, as such:
template <typename T>
inline T abs_diff( const T& a, const T& b )
{ if (a<b) return b-a; return a-b; }
template <typename T, typename Compare>
inline T abs_diff( const T& a, const T& b, const Compare& comp )
{ if (comp(a,b)) return b-a; return a-b; }
template <typename T, typename Compare, typename Difference>
inline T abs_diff( const T& a, const T& b,
const Compare& comp, const Difference& diff )
{ if (comp(a,b)) return diff(b,a); return diff(a,b); }
I actually drafted a proposal before finding this forum, so please see the
attached PDF for a more formal and complete argument. What do you think?
Jeremy
--
---
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
Visit this group at http://groups.google.com/a/isocpp.org/group/std-proposals/.
------=_Part_270_1690212023.1411492314880
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr">A few times now I've encountered the situation where I wan=
t to calculate the difference between two values and then get the absolute =
value of the difference. The problem is, abs() takes only one parameter, me=
aning there's a good chance the argument to the abs() function will result =
in a negative value, and then be passed to abs(). For some data types, nega=
tive values aren't allowed and would lead to exceptional, undefined, or ill=
ogical behavior. This problem is easily avoided.<br><br>In short, I propose=
a new standard template function, std::abs_diff(), and its overloads, as s=
uch:<br><br>template <typename T><br>inline T abs_diff( const T& =
a, const T& b )<br> { if (a<b) return b-a; return a-b; }<br>te=
mplate <typename T, typename Compare><br>inline T abs_diff( const T&a=
mp; a, const T& b, const Compare& comp )<br> { if (comp(a,b))=
return b-a; return a-b; }<br>template <typename T, typename Compare, ty=
pename Difference><br>inline T abs_diff( const T& a, const T& b,=
<br>  =
; c=
onst Compare& comp, const Difference& diff )<br> { if (comp(a=
,b)) return diff(b,a); return diff(a,b); }<br><br>I actually drafted a prop=
osal before finding this forum, so please see the attached PDF for a more f=
ormal and complete argument. What do you think?<br><br>Jeremy<br></div>
<p></p>
-- <br />
<br />
--- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
Visit this group at <a href=3D"http://groups.google.com/a/isocpp.org/group/=
std-proposals/">http://groups.google.com/a/isocpp.org/group/std-proposals/<=
/a>.<br />
------=_Part_270_1690212023.1411492314880--
------=_Part_269_1256366361.1411492314880
Content-Type: application/pdf; name=abs_diff_proposal.pdf
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=abs_diff_proposal.pdf
X-Attachment-Id: fbc9a195-69ba-46b4-ba5f-6d98f5149004
Content-ID: <fbc9a195-69ba-46b4-ba5f-6d98f5149004>
JVBERi0xLjQKJcOkw7zDtsOfCjIgMCBvYmoKPDwvTGVuZ3RoIDMgMCBSL0ZpbHRlci9GbGF0ZURl
Y29kZT4+CnN0cmVhbQp4nO1aS6vsuBHen1/h9UD3lUqSZUHT0D7uHsjukgNZhNnNA7JImJtF/n7q
oZdtWX3OhXBmIDSou21Zqnd9VbI66+E/L78PCj+jhsEHGL798vK3H4Z/xqtq+Pbby/z2opU5431t
z+Pw9vPw5aEHgOHt179flL6e9EUBj+aKg73yr5O5KEc/Rxr89WQvalLhmqZNeOMEF3WjPzeePsnc
mW/zA/z/lQbHk/lJrxb6CnzlLmvxKg+t6BqOOt4Qsu6yKm6htdz66e0vL/e3l69bNpHBaRincDYb
NmXNhckk+mQhIeEhZM2Rh1D4lz8aZFOaO2mjSUA4yF/HFIYsqLmIYywcMHuT5isPlsxruVnmaX/E
mRuJsdEkxmDQRX9ICCTdnTyrTRW9eVIGTgko+Pr+LRF8moicg41BabSZamdTdlYsGKMsrkjKxQW7
5Ntwdm3yFzEZIKpP43Nydiuhfsh8tNaA3wbHO6r87R/HxBh39htiSKkkEQWkVhdFaDJtz6jqLzni
uIgrgAyobvzl0SxIK0HzJjwFr6FU6Sf+EJEEHfTt6i6ajUvPcb6scYtqXLJG9et1Yrv0F71cJ0cm
Muv7dssHrkjUKQuqrzzQ57BhDjRLCBSQ9Vrak7YDJoWZgacyay1r2CbEOuWL1VGxBPZqkHCL9z0y
b5EAuBAVeDGAIzFVGpyjCNMqtMCo7uBhBI5TURziFwvNZTnJqkEsAOKUA3asCqj8PTsXuPXM0Pnp
bFOs0qPYzHT1FD5QdiQH1tidAqrhuMQBEkTA2sSwalnt5OUyu/pzSLIQ4DyOGwXMyHQAki1rEe0D
XlHYhqVYrA7UYbzSMGJyai4e/v/Zfsi0NuORzjDy2YZcL/1o56zd61i0vMT8kdUKd3GBjaI5XsTo
hNYQ4FEgA4A6jv3aj+gZDQo+XeyfquCPqnwjv2cKNwoBX0Pl0bU5RHO8Q9WJukueC0ZJ5EGF0wWj
Uw6KSq8SFZqCJB04jPR6Cm16Pl0tn6j+vrJ30roY6Kpbj+e9hxtUqVGUwULEWZQODUNXdmwEF351
j42Ab1WzyP3x75F23YS0Ngn4dLl/qoa/b+zbxU7Kz+xCQar4sloqq4hQapwq7aOze1Q7gScjNZMu
yIrdn4P9ylac2Ingg4zl32M8kyeY0KDysxX6BzKJ/7VR7aRP1XHHqOw07VCdYSAq2eXqposZc72v
7xhkwHieANcYaeA1VzYuXYt4s2MuXjV3/2xV/+mMqWsQewlfzNQ1CGtKw0VTOuAyhrsrWK4ebMaV
T+9RrDvC1XBvA2u8hQu12LYx3EbhnsPcLW+wMty1TDDiEabJaY6KvoA4JvVQNgYpkU9xFaSwDJxi
bqyS6Q4nSdR8RSP3UqpR4ZnCId4G43bPFD7UGXNyGIftN/IFo0cwbXUYxhH5QQl++2X49YdtbT36
Ne920Jq7JJqliSwqSv2eO1xtzRpjDuQXKc/eyyCSDQsyLqwmBOTV4lZmlxdiTRE7BVt5oBFMqdsh
DbUn8JNX61uD2tejT7soJrpNTpcr44GawV3VpDbNA8HbtjTlntmQusW7IMK1K8lG+zJosA7HuqEX
zddIY1IWjB0/3sYXzBenhvoGsMmLIGJ9ULxiqlormXgxaens0gzpByFdYhuZiMjkUhYKuAbesqDI
v3C/qZJtV58mbDHn9/iUt+hGJih0LE+p8NCtcKIre2afQrNRaIboW3eKU+rR8SptCfA06K5L63dR
jbkQPfM9ZNNM+5xurTp0gzVNqte+XUe5WEDMZBpKxqwbtqqO22yMip0kKLtqTxQoUUVpvgZ6THgU
0ccsvit2ncIx0wHJm54YmW+0rbtevWmyRqdoEFdxUlqok7TqR2n+rtE03KMv8YL3BM45MOSYQG3R
TEJPRUm0t6rRveUCp3XwAsvH+NT23md/6kA+gQAHz4vezJXd+MTnJsDN28R+vBhRALFWmsY3+atd
PuoxxJntnB0JLyqauBu0JariEcVEyuaKyLCIpCXNpOQLPh6kuXKPKKpnTzQ70IxbPBaQh155XOiG
jydeJ50ejQc8cWKeYiP/Ji2+8AmSurr1znxmoKtHQtyab8ixk+HRFhqrBWTFW5zhWmzVBBGFdIyn
44jpaExLj2XpvhpgMruTlJh4PxbZyb5g4vBnOnF9Qgev9tygpU4013r95GFkPEA9i9RHKxRAHrcO
BhDDQSsny0lfiqAJAWAFVoMWvUhhnzO9rds7HCW+J3GaUWMyey5fmgffJWBMOesn3yPgFPJjkGbg
QvE5ifww3cRvm/ogErn3SKQjEke9bhjdOQwO0JIPZSJ2PobU59uJRGsCQ4eWpwKm/Or5HZKYM+Kq
xCCDxHRJizO5NFRwEO7JiGzJnqpOEby8rYqgJzlGJD4TFqRjzeMj6uwCmYG0tjSgZExeEYmtUiAv
VJcfVIOtGMC1IC8cr22ydXQxxqQVj++qL8DZvaFKeVN5fXLEjtQINrWtUcrH1IKbW+ZcVG5zVcYn
NgUxLbVoUv0lNa66pXk5wOQiGc3ElTiyFUg3UqAXO42+oEPPK3AeRZQixsotHuqo1WkmOnVtCv/D
sBpLY6aAaB17qJomQpvUAzItZosDGylkfkCo1ryXVHNE6pFErX1GanaiVPel6q4csavcAODoUpB/
fHLZppqWR9nGuVEFpBtt6nWU2ALp5GUc5gQwb2G0ziTzexHJfZLvzjlcJq1FP4pY2iSIigLYe7UU
Q3n5uW4nibDim0UZ8kMacjD2sZbq0dSkZ4/tc3RMpdDR9lxfpTSQSpq+6qBxJNRSXUh2MbNABLt0
V1awq8ik4bzOIJUQlnavim1DSlEoJSk3lbbwylfwQR4ONHd7mia5QoWYVapeCfe7pfIt/ZHkJ/lY
bm4lCpil8xXPZYMOK0Xte2FcBkrCi4TkunEtoicOwjPm+jnxh1Rw1wDp8Px3ouijEWTvTqLGq3Mf
AWrxpSXhCAmUphhs32oivWS/2qomTlmlUJFelkxBOT573Aoa8fPpj3HRqtEDRysdjwyX8oHYGi8l
4fdE22iU9SU82l1zs2Ylho2NI88pVK1IqU5jNjCKvlNsXdnonhfaadUO6XnMSrVl4+w0XINv8kvV
C1n1YxNT5Z2l5JUR/9KdqLSWu/VelHyiA6cPGpK1GtfEluqOXxHM+GzVZt3Yg29GCShuk9B2pZLU
I2t2jVpkroznnSaz7myzyKl1MEad7ZvcbQ/Y99Daiufjxq5CjN/hB/PK8XSM4dQsFENmc79yv4qV
rA2M2miDQQ3iq6VXyy/edYsAPU2IyPZ7XszjqI7DArf1BFI5IXN3COCZQG1s/wVNqgh3azSSYsoM
uRSsE0mzntDzXm0S00onNToHFwicx+tjijhtfWaSosDJ5bwcY0ZudZS3ZksyrrLM1+H34cv9x7+6
4bd/D1/evtlh+dfw9eW/ASIKogplbmRzdHJlYW0KZW5kb2JqCgozIDAgb2JqCjI1NzAKZW5kb2Jq
Cgo0IDAgb2JqCjw8L1R5cGUvWE9iamVjdAovU3VidHlwZS9Gb3JtCi9CQm94WyAtNzkgMzk1IDY5
MiAzOTUuMSBdCi9Hcm91cDw8L1MvVHJhbnNwYXJlbmN5L0NTL0RldmljZVJHQi9LIHRydWU+Pgov
TGVuZ3RoIDI1Ci9GaWx0ZXIvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnicK1QwUDAE4qJ0LqcQLtcQ
rkAuACnGBAQKZW5kc3RyZWFtCmVuZG9iagoKNSAwIG9iago8PC9DQSAwLjUKICAgL2NhIDAuNQo+
PgplbmRvYmoKCjcgMCBvYmoKPDwvTGVuZ3RoIDggMCBSL0ZpbHRlci9GbGF0ZURlY29kZT4+CnN0
cmVhbQp4nLVaS4skuRG+96+o80L36K1MKAoyq6oNvg1u8MH4Zu+CD1529uC/73hJCuWzZ7xm2Ows
pRT64qGIT9KaN3v5z8tvFwP/knWXPLrLt3++/PWny79fzNto7Jguy7/ffnmJ6S1fsnNvwyWMw1u6
WPcWYeDl55/kmzVvoX0L+lsa89u4My4NERp2xmW/NyoZaN0ZFQbQcWecj/DcGef8m9sbB9oNO+Mi
tO7hjKDduDcue22xfhxYeg9nBCwbONmlBp01f2DPAfyVwBIf/7h8eQ8XC28/X6014HXrbbDRRHO3
ybybZCbjzdM8zN1Ym+1w+/jXy/Pj5eumUOsBxKlQ+JWNNU87nogzFrTpxUVAgwInC09EBLi8meHN
k3DEGu18JDblBE7pxKJIwJMIF74PZoRf90MxyYP/enQJ/kUYjhgn+HsHLKkIR4XJjoDTPuC/5wnO
aMG73zNBhrf3Ih6scyzeb6H3ZgIbP8n37yDEOgeo0bLR4ARob9ABXUqtCOHpPGnleh3BJ47gVVgg
waPME2AQmvEcWmdO003D3+80fTiZzIbVOji2gzVo/okC+kmTv4Om+Au/TiYLNEujt632OTtA+KdP
2IEBDYcWGb/PKnEYVysPpibhT5j8gb52Z0JyWmYDFw8HhAxPGuAgfcGAv13NcHNXD4vy9pquZgRV
AzU5Qy+vkRp9NKPPtwg9bYavxt8svN9eM3ymFh9uf//48/7UbmHp/0PYJ5fdAM/BjW7i90NrQDKN
O6D+uBhMbq6wJnN3dxfcYVIOQyhRWZ3kwTtkYniCO9D45oGPDL8m8B28jvKZftAjQ/iQg8CX1DBD
7+puNQTbRJ6788vs7jy2H4A2hxeMVIoX/Ejud88aQTN1EdHBuVuZASMI22aaAgxc9OEZKfQQwAjR
Br9o/kgDFyBiwesn7MQRSY1BDQKt3W0QINAHQ3kDL7wRHMIZSitAcGY+DOmQzdlqqnMLPmd4mmKq
eLOmQMsmVIO45jGyDa1DFuPQrcVmuXiJv+ViYkAg45yy16sNVyi5w1UFTQ0jQUGInEGpGio1y3tW
8dIDA2PeWS4nDuzC1kZRJRpLulCxDGPJIaTxcJMo7kIQ+gjYEmEcgowS+4h6Nl/JemThYwfGvFxn
xXpJrAKSHjWY1QLDKG2weqe3OQ84PWQSJJkR+Zz3+1wS+ymklU9JTYLZtlOJHfymhhTZsMzY7nU5
kAdGNndA2aKSpH69/qoVSoTDH1dWTx8PxcmrzCQL1NXe9tnHozie5psYa1r4oS1j21ILrFn7XOWT
ujpED5LO444DJLhSIZoBS8BKjAtEWWlsrakaUPRYGfGzUZJgc+ORKhzGCBBlq8F+PkrG1I9UcbLI
MJ/CC+UTt1WEOONjFzP2jJuYJ/AcFlIorbg5gnJqDjRwsBXLOxrsRnqNy+VyX6xkWP0YRVOfCTdK
cCq/dLGR8N5KuBC2juP3XmMRmMFJNNpc9kMtYRnSILZEGsyslhuViqDX33xzAAqgDVdJ1j6W9aEy
2yKZsmZYAzDFOyICrgT9VOxXpZVSu1/KuyLQ1x6VFkipTl6DBmpwnarVdFVKdPmlBAfo32E8Ziom
sPu6Op1UmMWgaY49ZOpep3pIbKuZFuN9FGP/iPkkmDhAkegsalMf+n2NNkCabBKN1wEpgG2S3MU1
l5eAwx08wavxz97qY12RxG7+mq3XHLGpDPAhhiuKg/K64QE/mnL0sMzYYkQKMeGJezzmZCH6lMq5
QZ3Ezbv549Q9TlO7Tda9TanV3uxz2Tkg5/BULcbxIDcH02u5qCehbngGC5tV93DGxt0M7aEabNts
QQU/pYNnxkQ6pKNDOOy4qYTLe0ATnqKugV7dnmocDa5u5ePFBtyRo24WMyxEHfjoTikHd88Yd0R/
XonQ+NKQ6enwabkl3GLp96jD5Rs1WCO9o7yyKNtkS+9ZPtB0EzVB6Hh8+tL90WZjKB47P5vYXp1Y
urFk35BQwuRXr0bTtNaqlhGFzPJhYKDIJO9LgKF9Sxz+NGQUs0x1VsAfUEsGgH0mme9wLUMA+ZX3
RMCMVhiVV2aeRLuhWVo8MinLkCFmCe/SAFLIeva+Fw7aEz8aCDJcoeGgiM38o+ohmMDnR9Zyo11T
kP5s4n+vTzXNGRwoG8Iqf1KbE5ZCRxZ6k1o3EDW/S4FpnPaPZEVtZ9srX8a3fQLNXMX1AE4Km8vD
ilr0hc0VA3Btyzx9xTysdt59iVmYjUfPpZLZEQRgaHt5Vrq1mp2FLGf317K9JOIWlvuw7y+VYvIf
J+KhuqNSZtnRu3rywOdLMrIFz7GrUlhxkM2YLtyrMCi1gwR27Z6FAr8mReZ5v1nPh4SOCYOsG2Wg
cbPmbxzyi7GFQmw4l90B7Guua8v1p0BishOq5Fw9cf5kcdSpVyXGrBLjQxWN0BLZTJWJK0Dt35eE
ml9DV024QZc0KsVc6XRF0fkVK4+kZFUoLZmbqtKTrMutz1tBDzJq/k61voAjQ52ym2a3OMS+IK7q
/jkoj1pPlQBUix461JpSAbRDl/baKWRWURyuhY+VqqoFlFIOiL1O7+ckCllD5/i7em8fmZiUMQrX
InRqIR4aL/BqqOIrj8aR7gpc1BZfwnpsVnCGo4N6VcxbRFSoRy60o99yIYGAdOILntiC5N4WRacx
+dR2NEItqMciyK0iono9txA8oR82+9XViDqt3CrCR0Rjo0DP0J8Wi2RSPlhoKfRzp+RrArLehMsZ
ZZliUlWrUQTuSlhgT1zOvfNR4qZlQfUV1rOPZ5c8kupF5+5KR1WekutPKp+N4+pGxNnuMEDulfa3
97v1Prj1HdiWUSACh2t3BNbFRc+BHixFIOCNDxYmvurUHqmkFBQwcjqxcNaeZXwcYLkp03jZVsJO
GkHvbEYzkogtg6qLh8pRNy/N6EiiXqYgw9d3M92hvASjnInpIzAOwWOvh+WaZLu3c6yyGoG/YNpm
jmVTfxeGrGgdq3QA+EQ2VBeoHEWBj1LAmFzy0LFzHPvHFTPIsdajDxkmXXzS1d9oLAhxW7trGl3U
yKeUtppD7OT0Xe1drzhTeHQzlGphMgut7czu0FHelZOK5qpHf3gqPK/e57UT8Joj6SJzxOyzuf74
5hQPiZozyvmnHKh2nLtoXGhpVpmvi0u9rShCWsoiLGRP2sWRF4tIX21UVoyXA7p6XenqbWXh4mVr
11NoNo0O08VGDnxS9z7x7LjS2mF1KiaWkkQVVfCBf0/o9hhW1yCwPY9RnSHGsuHFRNdvG1R4rS+r
Y7V5vf/tq8Xelqz+7wlxdSG3VbD39HMDXvQ0BX3Lh7dhxARATILjBYlFlJ9Y62Cyp3nH40vuVRQC
ukXKqs5DXQBgF+A2O3AgvGEtbdi7T6zbB/D6OrCrR3S3wpWt5TNldO3+r5ffLl+ef/qLNZdffr98
+fg2Xh6/Xr6+/BctGP+hCmVuZHN0cmVhbQplbmRvYmoKCjggMCBvYmoKMjU3NQplbmRvYmoKCjkg
MCBvYmoKPDwvVHlwZS9YT2JqZWN0Ci9TdWJ0eXBlL0Zvcm0KL0JCb3hbIC03OSAzOTUgNjkyIDM5
NS4xIF0KL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0sgdHJ1ZT4+Ci9MZW5n
dGggMjUKL0ZpbHRlci9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeJwrVDBQMATionQupxAu1xCuQC4A
KcYEBAplbmRzdHJlYW0KZW5kb2JqCgoxMCAwIG9iago8PC9DQSAwLjUKICAgL2NhIDAuNQo+Pgpl
bmRvYmoKCjEyIDAgb2JqCjw8L0xlbmd0aCAxMyAwIFIvRmlsdGVyL0ZsYXRlRGVjb2RlPj4Kc3Ry
ZWFtCnictVpLj+S4Db73r/B5ganR0w+gUYBdrg6Q2yAN5BDsLbsL5JBgJ4f8/VAUJVEPy+7ZXjRQ
XWXrQYrUx4+UxE0O/3v5fRDwN0o1TIsavv/y8vefhn/TUzF8/+1le3+x420eJjnf1PD+z+Hrmxz8
91//8SqX+xflPlX4ut5/fv/ry/P95VsxyjTfTH+UXRgx3uWrlPAh4Bl8zvjmCeOLzf/wL6QSzzu+
h9c2tXf9xXb/Yl7F6n8ocSgSKjbO5ma9SHaQ5jahSELev8zQ+W5fxQNHntxXg19XeuA+XQvpH2/+
tdT4y94NSEkv/BDbfXwVGpXwLUf8vpKmUgQt/JMd2xg3785mHNkAwr1cU7v8nR8qysdeonQ0Hmvt
B1noa5JBUEObi7am/qChLVu778/7FxuX0X5oSqZO137jdBtr+zE5a5Wf/RHNFJxUDdK7qDLgaFo6
icCGi5xQL+tspoRS+AvdzTpXxW/QZPIOCmIEV53cT0XvFvXApkpQD/XQxvu4a+M/3eASXOlxl64L
DqMl9o/DwvpFhcRtEXIZh/I/KKjsctOgnr4tw6Rg1aQC1//+y/DrT8U6uJaGL4QZpISFcLsKvFns
QoonfN/Fm5hh9vd/tVZTa9VcTNBiJ339OlySXlt7UXrX8pL0UnSkN6rtCmLRDzDMBv8tINYEO7q0
brIiNFn6zqaVc9l8BucNehEGB1TPaGzwhYZ3Lf6xkqMXwMljBOLXElAwuJq2vo3vjs73QEVQIXKu
6OUjCUBTUgN67TwdfR8d3D2Zo3QLuDSaeKNXaVukRhuJOLvd4/1biSTXQr6hLNt9sZtXBsXGmFFL
DyJsIJ4AI3hzMG3bZiudsWUuCFpLiQ3OHVCeYPYJHqBWrS0eN/dOdpRj2t0qKZFWCNfYS7niivpX
vh8uofaRzpsEhyeL4WgoluorZhdbqvWGQMyQzn8PFndCJHCaNdjAL2DwORQK25loAbRMpuNVOzkf
CYaCdxM2VcKgOLiqwdXjwk7hh3qoh+/csLf3SFX5D0mTANzZjtR+oFGiSNwqc7kaE46tOHB7414w
bN9ks6zByXsCzkLRKWpauURwHANzb+m1t7Hfk3PThUkztERa1zMPMyYgHQvU8i3jJuhqiesEbhHp
hycKvslGhMFEigNrrqlrJBORRtiMWtmcvqwZg8to1al4jtb5dkow8ZBvJBkT32Ok0nOduc3RpsS3
+Mup7C7Sgy0jX6NbjcAu9UVyqc/okVUGomuXHn029MpxhlDPJtbR31d0SUgH9nuPKsrFQr7TEp2A
I9A6lQe2sYheU4pfYRtQQEWoCcAxvoYtk0VBFj2XgH8enwLe2zkGPr054yhCOhzuGZoZGfHlIEjD
8GzOuEsxJuGPAAESlTMc7ZYUQU62tBSBe8f17KL2IyFp4NAZHKmoInEaWh7fwAgX5jNVvGlcI/nM
Y7D1/RNbiIju14n/qGJAXCHMySiIhXVNVMn14HxKR45m0KSNaNdbnuRJfv19d+SQ+SBdo5jFfRZG
6cUyykXOYlHTYf3AyL78gmd+xGIkmYcRBqcbUrcYQEraAziqGfGVo1t63pyFOYdq0rvuhl2tt1iY
P6jnXS4RztXNcRK5zCgg8ygjl8IyBQPio9RasUDCQkiCZF8xoBbuMQ9eLJpl4G55ZDMplMQWKB+u
d/jU0EXpKh5lESKIl8m0eUBLoekg2+9XPmwWUPXnBOCu3SBXrO0WYrJyk8RYnRMKr4xphGmbGIlf
bG7YXAkcwCYXOK4DyUQAHkm7QHMivajZgSr7cPtk6pCLrkURhjgBk4u/XEm6A58K3kQ+1acNRukC
lIy+L0RLGYz88dyAJR5TnpFgN58wZDh0Le6HGg8mGxQwCbIBmg65NAy/yJUIp3a+bRRum6nK3AJS
xWrSFsNZips5UCNUerD2z9JynqCaTulDXYt9uy/2rJjbHgC2lXK+4KAbC7NvKIsM9dvwPtR53wjC
4lcNLW1fcjOdlGy1AzOOmYhJDKpo+61pSzPKrBgirRFms92Udl/2eEyYjlkJyzxoG6EgZQk3297Y
Yq7CSio3N/a7jkw/00YkOBe0RVMfWSYjYcDwgOB84hXuPQOcOPpEC1SVoIv5+3ittWiVcg9NFR6T
VLj4bLYUvKpadYiux7XqC4h64ANTxHqbCxIw1ZIvkEd4PfrgCYBYpfpG5kWFHyCaM0ca62EEOwTu
WbF1qim4CXOgdET5oOxdoDNlRGGKFR8U8E5iLoDOhJr4CeCH5QJIN6EzbBKjzwo1RG5FoLRF6qlR
ijwEhdXJ2Lwbh4F911oKGHiVZtYB41LVe7awDdSiIXvtF72hYTbzD1XspXXA3pR/4Xb6YK2sUZVK
BxgbT0fp2CPUmjZ2xuG7U4oMJvWODgvJTc3jcVHMjj6vMpf/Mkafb5aRwxlMLIeFhCQkr0HSiSXc
KSXHMfreAmG0LClfT0OJP0zMu2JylpUpqI5QGRGz3o3V5g3qEqsZB+X5+nCjd/A0jUDEFbCGcbAK
dD4+eJqc67ElCW4stVilAnLwlKNS6nl05KQWAMrmki5gj3SIYrgmzM2KHDTVUhKbvKSykbgfUeWx
t29dw6WlMch5dDDlxmrp6PbFxbJR7gisvA+2D8WgE78dpxolsp2b7YbqXCztncDSN17B8Tw9K1/x
kj4W1rG5V7SwbgSmR64oyOeyCdjIZcRhGNPYDxFXuAgTVTD0yiEsaRybt2XjhUPuhg693LCu3HVd
nq6prK7qdJ+1G5LwdCTHsAeDaAiwHG8IW6p1kWV1sjo1iYgX0yzNypz40mFjGd0xYuw+xIT9kOqB
icLsLHFLp6lBGv8fsbdx7hSPWPEQiIwb/csR0LE8xr8WIPRSFfSchPFWAO65H7mXwGEhP7b8hDT8
GmN037OgTCXw7oKIZl2nd2UnHI+wYk1IqAqCzk9N9iL5YyUjVqKTPD1khaqqelKnaVsr7Yw5Uxg3
P6uiEfNak+WSWuLXJ+W6vA5pO2XIVJKq6oH9vEXOZdFHLkdspYS0TygEGdY4IsqaDtk/+T5DwdTo
rL97pIH7jotZlny2gIrhmIcf5ebK9C0xLlUGGa1QYUaCvqJkPufaacswhsKgWNk9gXhYE28JhOOt
eL0gr7zRfDR11rfIMyKsRXS2zkdSktGKHlmWW2Dd3nj255QhM4vjOFPKDa+ZE684FTEhv1BS363J
0nrvjSEP32OmkB/6f+i+EMBKxqvy80xDIIuFwJJaeIOl2zznN0lkbt/8TDOjEHuwfO/oOUeCImQx
zzjKEk/quIU7dE1rZEXWeOoXXbxRYYlz+Mlb1ziyog+OUlq4Vq7tRcXBpOfb/VWuYTSxgAJI+ani
eM920nGSnzZqyfB5uT2S97AfaUBAaiWfmaf3LaWm+qS12sk0c/eoE6nXlmxKvnO2nBRwwDLKVpU3
vcZrOts1/44Nrs/ryGyoI/pJHdM2FnlyhgTzax3YDm4ZfjiqZMlUF83P2baUJa7+mSDfvATY5vYt
xWKujFltQNYqe++VZhYJ/FlKAZ+hwGjapRloyZbnx24Ej+4CTr3EGam4dht4dte+r8jtWk7ncvfv
AuMNgFpu5+x3K141kmFWsWA1wcxrVHUNIt0U9FHr7MLwstzKm5p1pfPjSWDE870Vy92jzYGMVCUx
yPH1qFhIftu5IXs4YATLPPS3a8QRUPu0G7epieezfuKKXO5MEH+p62yjNeyFBfw/dr+7j8bpfkxN
1fO6WXG5GM2Qx2Gmb/9ue2RoPIKje61ZYDsdJsSnLsgqQH+b3DiO1ro2cIkHdC021YXVD4aAau90
/LhzmtBCjvpo/9vw+/D1+Ze/STv89t/h6/t3QKn9P8O3l/8DcAV60wplbmRzdHJlYW0KZW5kb2Jq
CgoxMyAwIG9iagoyODg2CmVuZG9iagoKMTQgMCBvYmoKPDwvVHlwZS9YT2JqZWN0Ci9TdWJ0eXBl
L0Zvcm0KL0JCb3hbIC03OSAzOTUgNjkyIDM5NS4xIF0KL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kv
Q1MvRGV2aWNlUkdCL0sgdHJ1ZT4+Ci9MZW5ndGggMjUKL0ZpbHRlci9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeJwrVDBQMATionQupxAu1xCuQC4AKcYEBAplbmRzdHJlYW0KZW5kb2JqCgoxNSAwIG9i
ago8PC9DQSAwLjUKICAgL2NhIDAuNQo+PgplbmRvYmoKCjE3IDAgb2JqCjw8L0xlbmd0aCAxOCAw
IFIvRmlsdGVyL0ZsYXRlRGVjb2RlPj4Kc3RyZWFtCnicvVhJr9w2DL7Pr/A5wEwkarEFDAyMZwnQ
W5oH9FD01iZA0QVJD/375SJKsj3jeS3S4OF5bC0U+ZEiP8kcbPf37nNn8C9a6PoE3Zdfdj+86f7Y
mUMyNsVu+fvl0y7EQ9+FmA7Q+TQcYmfhEHBi9/GN9HkXDo77hs7DIeU+g5/6r2Jcorll6FCGbq/u
XJ9XH7pAi8k0McXQsOmFRg5dDx6tfPm5e3sDVLR7+fjj0d7GPRxtP8IRriaO9mh6O437/miSswbG
4eh6GsJ9OmQavT3qMDPgZBx7oZ5h3IemjUcnMGYygE9wvso64wrBeNMbV2ayIgawLeGUKO3Y4vGr
z5NVOK8uC+SxeYAHoDmqyokG2vNo8QnjfiArSFcZ5XmmnUzCtWlCICiMdMZxH6UlQyPaCAa0mjW0
AqAdyXjCSu2jedMIaBGgoaxcEOP6bL2AN/708t3u+rJ7f9dh1qA/5w4js6zP9iCkajdrgq4KBJ8g
oGvYqFheFFDsz1IGhkjNaxXN+KFt6DwBIS1tYWjlFVdJskCSwcDRQkAk8TAUFzKKE2LviocB4dqz
Miyjp/BYy7mItTEDzUvjwqwHjiYQZGj2VOKwE3/hZOrR1dgy/q3Biv1izfTEMzFF3KvPPQNPxEQj
QkJnPe5lFmMZByBPogMJC3olFx+t4afHBhsZyTB6NplfafCJnxeaIs08MUuaEDkrDSLPVXk2r1U7
RWDKLUE7T3VIXnMYHY0LVZ625tdLlc2LcTySctdmuVvVwje6EBBZzNTq/sCk3MwAuAaASDo26oZq
v0piI3MT4UrZgtu1nxtVnIje9K53a++GBhCFWX0ljmjxhYw4Nl95O2oYhLkfVlCFYpKOt0sc7LBS
pY6zDV5NpJ2aKQpBicVTGwwbHlqHkaM5p4pGDY9NfAEI1dkm9KK9bOIm2zxJ8KvEUVM8lJw0aRri
lMgjcvmRnJLLIeU0Kp2zase5eV9rYlsfp4WEnGRZkKgpy3NeaFbUlNUW2LYG1Sozr7NQy2xWuaZc
Tf1wLLZDqfqiDEj1PNf6d6m1t8l3z4hLNAEJk0vCmvxj3hLNgMSJ/ew7iwzmI1pnwXp6YpC9/Hov
RDBD+3ZqCRFICNgth3CGmbCAszIaAeE/EIESJnYRJVK9culZVdHZgMKaNsnRCRWj7RVzvVGl5x7N
zGco4Sc1UMv+HeLGUtSXD8NGxAjJmDGJzf0akkeXLIomA4HkKVNQVr+ys1jM0HqeN8rmOj1ocS7x
cjFnc7XBXDBuMCiMNTf2xA2/wBpjncE3i2+AUXA/okS4dxiwj5NOr9ojnPIkaFxlyyeNOnI5Q+9n
eWK5tc8NtS18p5DO1+aBxplKgppwmnkdNWw2dJtGcuyxPqd2ThXHNPDxUrqGYrU0oOWHJSnJriIb
tt0OCZ+LvQ5l9VNOoDWXrhwD7clisRtVY9kneeMHkebaTT7LpVJvMDmAIaFPis7l7lZf1B7dK5qB
Gtxq3pLdlGuHnEXC8IyN+iHDZzs7HMr5MDEneTCxH3BL3504jH1PFdwyqUOciWvLadOW0tlnd1Nr
4L1AlNDlITeyhCnvamIixsCNxpE3Pdn9QMdo6VwdSlJw5fDrcJsQNelp9QezB8BDs49RT2IlpVzN
2fbESTGZ0HvElHLFeEG+iLZa7MM2AATifjoRwcFp0N6rbSwgoolXExz+GOIVDlEKhrIAxo2NmLpO
llqvNBqulMfgcredZKVNdbzVFK3qoKBoybrIm7ukTnyfJ1VOo3ZateekikqEB0uLg0zSxLpwUHyN
g8AtFX+tgwirdbsDRA9n41w054kTrf12Lly2zxWlMdxLhj9xtkvDsk4una2iyO1wIbd/fce7aB7s
zP4VjneD0bD5Pxz/YIzLvjtzcADC9CREXBwO3zRINpUJQQ9OM8f/m79XReAqVu/gxgpnM59GLJIv
+AoRW1AlpFDtdCd665gsZzOSuYBCKhesWAmdMhCkx3QU5hK1l2sJL0SRftMo9yDYMeAZGD9uWPOk
8HnqkYMh5Ndp5DpIw7dPx4AseElUbWrYqdAW37KEcqhZXLXOyc2pkkvIl6iVoecb39kVa3tTe5e2
noVMBrowxWc550562poxrFNzhK530+1ZIbWdkCnrNvlaMVO9TNbzfMoY5UvWS3PZN7+SLpesdUq+
WaUYm52l8nknM5pNb4ZhTW4fgSyGVw6Y/a1qlPM8M3pXGKzXK1gkr/je3usuwsDpZbKsLbMrwb3D
Y1vqKcZ9/06uAWBIeET/fRcwKUH++q37sHvffe7eXt99ANN9+qt7+/LFpu7yZ/d+9w+LL3NaCmVu
ZHN0cmVhbQplbmRvYmoKCjE4IDAgb2JqCjE3MzMKZW5kb2JqCgoxOSAwIG9iago8PC9UeXBlL1hP
YmplY3QKL1N1YnR5cGUvRm9ybQovQkJveFsgLTc5IDM5NSA2OTIgMzk1LjEgXQovR3JvdXA8PC9T
L1RyYW5zcGFyZW5jeS9DUy9EZXZpY2VSR0IvSyB0cnVlPj4KL0xlbmd0aCAyNQovRmlsdGVyL0Zs
YXRlRGVjb2RlCj4+CnN0cmVhbQp4nCtUMFAwBOKidC6nEC7XEK5ALgApxgQECmVuZHN0cmVhbQpl
bmRvYmoKCjIwIDAgb2JqCjw8L0NBIDAuNQogICAvY2EgMC41Cj4+CmVuZG9iagoKMjIgMCBvYmoK
PDwvTGVuZ3RoIDIzIDAgUi9GaWx0ZXIvRmxhdGVEZWNvZGU+PgpzdHJlYW0KeJzlWk2L5DYQvfev
8HlhelSlLxuMYdzTs5DbZBtyWHJLZiHkg50c8vdTKn1YtmW5O7OBhGGht9uSpdKrp/fK8ogjNH8d
vjaC/hnAxnbYvP58+OFD8/tBHDsBnWmW/79+OWhztI0V4igb1bVH0wAeNd3YvHzwbUbqqUXlLZqv
lu/SEo/txn2qM3ShfJ9sO+6xuM8vS7iAx4vr2TYWJa348lNz/wQNyOby8rmHdrDYi/OAPTwOd/RV
0VdhhRnudC+6ITSKdrizodG4D+TOZrqPe039fbsefrx8dzhfDs/FgISkoDkg1QCF9tIjDpdfSjd0
Dh1Daw0rQFosrwDVYEQPpwFsj4KjNANQKAKlps+WopGQX6d4TS/GAXUPRigKEkOb9b3VcAfC93QX
8URfR9/DtdMtI3V1Q9+BSlM7yMxy3niRLim6R8YxwDJIwnJgnW9w0xEAGD66LfA8FlYTA+dYKBe5
G3akGU9AU8K4CsWFrVdRu0VzrzwIpgC1UAeFNCyP3PrL06gebB6Kvo4B39kq/eguKPHgL1oP7kgB
GxdM68izsV6pzHzBkS3igaY7iUcB4kzfH8XTBnuUMEcsQjbP8j8IThk5H3orOBAbwWlE2gbr4Hol
iAO17WAEfdYoIM7/GQp4opcI0O7nH2nbZ6u9GWJCgVRzjVcNYpYoI9tlXiW6JdDEBJQ4VfNDgrvM
z+1yxdKAfEUPpEuEcoacDYLlQXbDiAcCEzSniIeQKRncPFbUaFtzPBoEY7dAQwpDQ1lOwwkQZB0T
3VryqDdigieKmNYntRNx6hNoF0TcLzgOQdmagQE1LNy2uBIMrTVxam6nApItfhOH1NJEw0ucB3wk
26r6pEaIxpqDbG0vraeK3414DlTya+bvD66Jdz8DFpXbg1Vl19R1boCQtCXoAtO4rEUpyTvgq85V
PTNgiHm8L2vAqFaTWM+Bge4b7a4dw1YWVsxXsG04eyVDwPcxETdamUwfDKTHdJYg/hGYkFjgc64W
WQ+pLBU6m3KNTq6z5e4WdxJbV8MWAAprSvEEmELpFtK2Lt8w9/WA16qCm3dcw5BXc8z+enqJl90y
eq/dFMQ5SJRjVZbNh+CwQatan+HNicAwstNMSRSIl8R+tYEvtC1JVSlC7Gg2l1U1KxAKlAgIJivx
RTAzjCqnQOMozFM9G6iZk4qYp5MyLLW9UKyYFIlZyYeN1Pf7VoRJwlQxujmHlpW5j30M7d4b6qlW
uCbq4qliUpTAzbQLA1gpnMgRf4HbKObM0SKDl6K8XJDne8kvMzgmSp729Arbkonc8FTDZSMHRr2n
BxuK0FKnqFkeJJZgpg86W5+KwrCsXBn9nvSTrXf8Neqwt3RQpcLNLT3lzj8hTjy3galhA+Tu5zj9
kOjs1WYHOldoR2to0xK8fEQvvmqgomPBnmGxx8pu+USjfa1Xc1hp21gVTXsDArPfWLLtZE0aFWuC
92Cw2XKvNNgSQP8fg6Vuq9rt3zHY4ky3pQio0JyFvJsi6JyplKZee3QFzfU5VW4huU1jcunk6TNm
zm1ykmbevgzzcgtDLzbOwLZNKHCnSLuCzdcZIvWa37FoCTaD5+kR48QaMOblf9E9CxXCnhQhrEut
9+GdUrSlM9p35p1oTdzH6XAAZTwCuFNu4ekMYORkUIL8NMGu+JygOodey/mCZOGRPj7CRrFop2K6
rsqzDXzTqUvhDHzpivFJu3AqkKUtEnSCovJuRkp3LIDaPUia2gsR13GG4HS8smWhyr2DKWG+csLr
QjXXhmq2Qt10e1sOta+fdSKXFYv3Q5Lyung3xIt0TGayiSdPaOJGlaxCrJ4m3MlLqhLadALldy2M
mTV4NVQhiKTWQS8sKVZWrmWnnQsCBttxupbYtz7jmSfzRuObT6HisjbeiMC4mi95IylPDs0YFj4d
YOK0OZZlJIWaztIWdUrtzSZzEDp7lHVKan4JmaV0t7rR4N7clUiQrCdIR5VF0JqVuUzyFbNYAdLR
JSPZjooDbaGVims2QUd9AB6PRV0N8XD3KaSJhd0pff2IFyRuqjiVJl4vY54DFet2+bZXCI6StxZ7
+Yuf1TE6jMl1fRyOmb4gATs5MhcbyHX8bCfZxSaYb4Bo6pH+hZPkK8mvOk3wd3tqTN2OkCdtn/oC
qG8pzZNALRKd09IP9f3H8HcH0FJh+dvBvXzA8OvX5lP4EwIyE5ka/a/UiBZTk/s+NYDNhvS/UiNo
kZrcd9fw3Hxt7s8fP6FuvvzZ3F9eUTWPfzTPh78Bs28bqQplbmRzdHJlYW0KZW5kb2JqCgoyMyAw
IG9iagoxNjk5CmVuZG9iagoKMjQgMCBvYmoKPDwvVHlwZS9YT2JqZWN0Ci9TdWJ0eXBlL0Zvcm0K
L0JCb3hbIC03OSAzOTUgNjkyIDM5NS4xIF0KL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2
aWNlUkdCL0sgdHJ1ZT4+Ci9MZW5ndGggMjUKL0ZpbHRlci9GbGF0ZURlY29kZQo+PgpzdHJlYW0K
eJwrVDBQMATionQupxAu1xCuQC4AKcYEBAplbmRzdHJlYW0KZW5kb2JqCgoyNSAwIG9iago8PC9D
QSAwLjUKICAgL2NhIDAuNQo+PgplbmRvYmoKCjI3IDAgb2JqCjw8L0xlbmd0aCAyOCAwIFIvRmls
dGVyL0ZsYXRlRGVjb2RlPj4Kc3RyZWFtCnicfVJLa+MwEL77V8y5YGdGkiULjCCO3YXeQg09lN66
21tLs4f9+zsPO3bDdgk48ni+x8wnbAj+VJ+A/IvkIGUHl5/V0x28L1WEy1s1zFUbmw4SdY2D+RUO
9wR2/vXc032hnnKpXU/H8jI/VNNcnW/wRL7J3xA4VxhKzOIiP3AodejRu8RlTMKLk9SPjvSLvNBo
tQFZmP/b74TVeMyJJ1VdB7SoBqb3hLHUsceMo9AF7KzqhNmrOIkPH+So7bS8MEaauTWvKOVINJU6
yWcvI6GOh8FAt6/WhE4RbXFXJ8md2IAJqYxWpZkm5pjQVuXbUne2QXTsN4Z/cvrWJlqNCljn0qK1
Y+ID72I3r4lkOpWuXxbVlbrtN4zQrzOtDddj/n8onW/8TSh7tCiw1WQ+VW+UDyaWLYmjiosl25r9
qUnD8Vg2C10DVaSyLFS86i1WhVFkKm07WZaFEt+50rXLTo5rOKay2L5yDMsN2KLk1JImVK+yRs9K
0UbTG26z2Np3aItx3BYcOLj15gZOZ5/XIFfia0T2CLpMERAOc76Zdru4zvAJh+nHo0d4+w2H+eIy
jB9wrv4CRpbmQgplbmRzdHJlYW0KZW5kb2JqCgoyOCAwIG9iago0NDEKZW5kb2JqCgoyOSAwIG9i
ago8PC9UeXBlL1hPYmplY3QKL1N1YnR5cGUvRm9ybQovQkJveFsgLTc5IDM5NSA2OTIgMzk1LjEg
XQovR3JvdXA8PC9TL1RyYW5zcGFyZW5jeS9DUy9EZXZpY2VSR0IvSyB0cnVlPj4KL0xlbmd0aCAy
NQovRmlsdGVyL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp4nCtUMFAwBOKidC6nEC7XEK5ALgApxgQE
CmVuZHN0cmVhbQplbmRvYmoKCjMwIDAgb2JqCjw8L0NBIDAuNQogICAvY2EgMC41Cj4+CmVuZG9i
agoKMzggMCBvYmoKPDwvTGVuZ3RoIDM5IDAgUi9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoMSAy
ODA4OD4+CnN0cmVhbQp4nNW9CXhb1ZkwfN5z7tW+XG1XlmRZUiR5kWzLsbzGsXzjeFHikCiJnTg2
tuXEdjYSO7aTECiJgSwkgUlaQkoIhZTJUArp4CyloaWN2w+Y4aFAOgWmlFLcTmg7H6RkGMrXj2D5
O+dKzkLbmef5v/95/udXLN2zvGd7zznvdt5zMzq8tR/p0BgiSFqzqXfo4NoV9QihnyIE5jXbRr3T
9ZKXhicRwuLA0NpN+dF3/4gQ+TNCSn7tbTsGXqnaLSCkpUXazq3r7+37XZ2hDKHkOZpQsY4m3J/a
oaTxj2g8sG7T6O0hsZvGe2kZyLptcE3vv/xy868RWp1P8/9uU+/tQ/+u+AlH4+dp3Lu5d1P/4v4n
jtD4LxBSLRoaHBntQ4FphDYGWP7QcP/Qnzq+rqLxBtq/UZoG9B/76GhQweKYcLxCqVJrtDq9wSiY
zBarTbRnOZyubHeOx+ub5Q8Ec/PyC0LhwqLiSMns0mhZeUVlVfWcmrm1sTppXv38hkb0/+MP/wCy
oThfi4xoSP696UNOIQd7Tn90829q0fTn/2/2QpV+PIyeROfQA+gd1JXJaEIJtB5tpSk3fn6MfkZT
2SeBOtDT6MDfqPYUOk/z03BJdAgd+xtwCfR1dBb9002tJNAmdCfty3fROzAbvUKXyiD6BFTobvQS
rfUTmnbLX6sKG+jPgBwcuCH1XXQcH0QL8SUaOcZycAQL6EX0KHTTmkfpOB+4NuK5f1HpPnQX/V2O
1qFtNCx/+NovfonU0/9JR3UXWojuQfPQbTeUeAEeJxo6f63ocYrTH8tpkZlMZZxswM9hPPUgjXwV
raXfXqBjxw+QeaiBNwHdnVLjqva21uXLliaWLL5lUcvCBfHmpsaG+fXzpLpY7dyaOdVVlRXls0si
xUWF+Xm5wYB/ls+TZTUJRoNeq1GrlAqeIxhQYaO/Kekdz02Oc7n+eLyIxf29NKH3hoTkuJcmNd0M
M+5NymDemyElCjnwJUgpDSldgwTBOxfNLSr0Nvq94681+L3noWNpOw0/0OBf5R2/LIdvkcNcrhzR
04jPR0t4G7PWNXjHIeltHG/atu5AY7KB1ndaq5nvn9+vKSpEpzVaGtTS0Hi+f+g05MdADuD8xjmn
MVLpWbPjJNjY2zeeWNre2ODy+VYVFS4YN/gb5Cw0X65yXDF/XClX6V3Puo4Oek8XThy4/7yAVifD
uj5/X++t7eOkl5Y9QBoPHNg3bgqPF/gbxgvuuJRFR94/XuhvaBwPs1pbll1rp+V6kzDOBwW/98Cf
EB2O//JHN6f0ZlIUQeFPiAWbKHoPHGjye5sOJA/0np8eW+33Cv4Dp3W6A0ONFMMo0U5LnZ/+/kHX
eNP9q8aF5DqYkxls07KWccvSzvZxHGzyruulKfSvzu+rcvlMq2ZgEn8rG1FEUHRQnPp8bOAHz0to
NY2Mjy1tT8e9aLXrDJIi4VXjOMlyJmZybG0sZ2wm51rxpJ/OZsvy9gPjXHBBn7+R4vhg7/jYarqe
NrCp8Avjhs9cPv8Bs8lbHVklw3pprxb0rfeO87kULbTUjQXoSmFFDghyxPBZ+nHZRRvINZm91X5a
Daun0d+YzPxtW5dFK/AWFY7Hw+mpb20flxpoQOrNzFHj6ZIILdGbpFO0vkGevvGIf2jc6q+/Np+s
W43rl7fLRTLFxq3zx1FyTabUeKSxgbXsbTyQbEh3gdXlX9r+PIpOT54u87rORlEZWtXAgMX5dF3l
Nh5o7xsY9yRdfXSnDXjbXb5xaRWd4FX+9v5VbKFRDBVM0uZ8covjeH5re8tyf8vSjvaqTEfSGaw6
Ltj4pWr87a50NXTJjauCKm87dpFVFFCgCd4mGvDXz6W/48qgin4FinA5lS3V+rnednChGWjajfEC
b2N/QwaOxW+qlGfLaX58pjYFi9J65sddvlW+9KeoENNsb6ZhWkLFkBqfySJBSgloGqbVyEkMl1ls
zXvb/f3+Vf513nEp0c7GxtAjYzmDDBnnmblqvSl2A7IompCPZs9EGDLHm8KuG5E73izHr0XjX8pe
MJPtPaDytyw/wCr3ZypEtOcLxhFbwlKVySXvfraf/U29dBPTHS3v5wOnJYnt5XVs2x7wL+g74F/e
PleGphTkLtcdrC0zaoGW1vqiQkrM6k/74b6lpyW4b3lH+/MCFanua20/gwHPT9avOh2gee3Peymv
kFMxS2WJLOJlEVbTMhpRyfCu5yWExuRcTk6Q42vOA5LTVDNpgNacx+k0YSYN0zQunSbJaexDZylr
HcUxpd+N3j42P19Zte5AchVb40ikGKF/MA7+GMWOP3YasEI3rvH3149r/fUsvY6l16XTFSxdSVcG
iFBUeMcBodH/p6wimXUjJjv28W1UAlai4tOAInPPKDnV5dLTCv5Xc88QTIPoNGHJPEs+o1Sov5h7
Blh61OQzBX0mXwP2pgLwcGod3/b5Mw3ca3K9NdNf8FupzCWgXHS71LrVAVstoDW4DBsNpItsIria
LCBYS1wEq10Y1PQPgQF1IhHsYj7KhzopH7z5MJR/In8ynyg7Ev5JP/YHehTJXOLv0SVdZlR3+TL9
g0jX5a4tw91dwq+7uy53d80u6erq7pI/UFaMw2DKIdHSGIZSLgdsVgNw/lksubzSlFfOnVx27Bd7
zuU0LWwJ7PruaOXUn78F+h+tbX06NfVs9b57tuadOnUKP3XkX+9vuHonxgRaHvo1KWh67IvvnUz9
YwdgKHdxjznL6XgXT39EzpCXqDLgQfdLc3drjmgwr4GDquMqrFHBQe44h9Uc7MZHMFZgUOniyId8
Xh8WfCW+hG/Sx7GY5CM1vvPTE5I4b2H8cR8M+UDyJX1jvhM+LukDOcsQLI6LcYUpoRZcCSJSLNRR
HFwOUxwMh7vpr/Dry7NLMhigOLBi/6zc8rKKaKmopPjwzzJgmzUHM5SQM2//9s1f/OJXb//ynLO2
b8HCZJUoViUXLuirdcK7H0+j1H/88Yv/9Z+9x9ZXVq4/1rv6kY3V1RsfYesG5PEupuPNQ5ukPJXy
PiVW6e/TY5UawKEAcFsseQWoAGJSwVjBiYKLBVcK+ALWe0+oKN5T8GwBXuEecGN3fIdmvwZrshJW
o5A3aynPhlNaF01Pald4C53V10sjs0tQdxd0s2kNGgibvvKyGB2BaDf584rhxiFVksXO+LJVoTu+
s7ls/u3/sHrpw7HKcHB99bw1jf6cRXevmdU8v8ZebXFbNPPHnt869vz2Kosu9fmTNmek75GNHV8d
qOLVOiUdn4uO7z2qIbjRw9Iqu6QS4jr1XDXWqeaqsMqoaDZqP9Ziq9ZzwgPII3gmPJMerhp5vJ4S
j0TDvORJeoY84x7OKwfGKOC4R4Gaxx1wyPG4A084Ljqwg2HEqtLGHUpnQu02Ksgyo1XUJgw2NqtR
GROlEKFTuyW9xLcIv6JrvFSe3jBYxWhpBVvFPpPd5svLYIbFobqlrer2qr+D6PbUH1XuxMr2QEV7
nf92yAHd8lVGAf/eUfTFI46iRcKsbHNO/foWPOAokuc1jJDCQed1LvmBtIcrh0vln5ZjvtxWHiwn
XBlcKvu0DPNltrJgGdHmwYd5V/Pwhbw38nCeV6WPa/Phw/yr+fhC/hv5OJ+lcLlwKffTXMzn2nKD
uYQLwqXgp0HMB23BYJBo7fCh/aodX7C/Ycd2uQYRPhSviviC+IaIRZaiPD/9z5JWkxMHhUnhUxDh
/PQvpIt0PogJVEQVaC4oqMpqVliOWrDGEmuKbYvhghhYY6CIwZ8vxeBfYnAu9mIMPxGDIzG4Jwaj
MVgdg1YGIMZyaQnukxi8GHszdilGzsTgZAwqYitiA7SiozE+EAMxBlwMPo3B27HfxfCLMTgaey6G
d8dgWwxWxaAs1hDDuTEwy2D//Fm6uTdj5Em5wb0xGI5BXwwSMaiPQSBGF24alEL+NgZvxuDlGMQo
B5Psz56JL4utjuEG1gUKKvcQy3nTJ78VfyJ2JoZvrHJFpr50Dx9m/fssRk7GWAfI0RjsZiDb5Ppy
YxUxjGPmGKYD+V16vPg5BnIkhtl4t8XITIOfsV5diuGXZWQcldHFuk+rKWEtWWOBGFl3JQM1SpvD
EktnfSG0+nep0hCbiOG+2O7YyRhJpHvZECPCDCYvsg7AMzE4LHeyJrYxhr3pqnGVXGsydiKG6RxJ
bCrpEKXOI3RQl2KfxrgxNnmjcptlMXDJddJ5nogBFmKJ2FBsLDYe440xqs5Gm4eqAFVBVXVirtGS
FSiI8lWJPLHCpvL5spfpBVRaWrSMFxjNEV5J/0Sjl+2ljKB2bblcSndZTxfdfPJnmH2ukdWZ1BuS
e/5Kxk1FwnJ6+MbMmwH+snAmV3iTbntTdYRt/Z7urjCiuz9Modk3/XdzDGKEUUf2m4NtjDpQbleW
ywilUvxSPBNjVKMp+5ZlrYHGrW5vR29PLqMYO1Jt97e0ORsb62ymB1L1B9vasmtrys0PpFZs3w4W
khQCOZayanOe15pTv6Fl6qijqMiB25evUmn0XMW863GFSstNOViMeCmlwShB6WsTpTMeFEKjUtF+
KzxM5QPLQQsWXbkurM5yZBVkHcviVLlxj1brKUSFEBsrPFF4pZAUUqp5dv7COHtK9lBxPAjx+0QQ
USIYVHgTDkGx1JRmi2aKMcZJSsMznES4xhrhGsewzbCUCoYtNwBjJz7KKoGz1Q135dTXx5z2eYvb
i7Z+s6/w9Qst966uTn29amm5A75mCsfhHfOCvWtreZVGUWV0iXpp5/d3fPZJfvdj25bBo5EVdy5a
dOeKSJpn0gf5DR2zHz33PFJNT0ohtRDnVKAyCmpd3Cg0a7UfarGoDZ4MAhe0Bl8MXgpy1ScZwQyy
sWaFS+LhIFiDMBEEnAjCUHAseDhIWOZZz6y4DFRkEePI2TxGWRJmnMlLAxcpR1KoPN6E3+gUtJ6E
wW1zIGRNL/2oKcrYTKm86rvZsg9ThtPDpInrHCfM0BaGv7qgblhADdm3tLYGKjrmBYdTG+9a2pYd
m1tu3pXasGUL6NKL5aZl0iMvC8u1ZUFxZJ3+CBdxdyMHWilV4yqVKc4p4FkXTLigzrXEhTWGZpKw
Jq3YalUiIhAvISrC6RJqSW2Iq5Vao820FLHZp4N6Pcy4Z3dXNBrpEi6XdnUNU9kwzFNpyOQvr4Oo
LWrzm9JMlK4BWJzsufOu/rp//deakuACj3F2Tb11eC1+sCjvrbdap3bNq9co5mmsRk1abkZM3uMf
oPJtCB2SBK0fVCpjlhEbCB0jzmFMag5l7Ciu9Nq9WPAWSoWACscKcbVQeLgQS4VJGjlcOF44UThZ
qPTK0YlCzqltfj8EITaRFiojhgyJoOjUaPilbsGUsCJ5Vcu0ikkFdEhMKBiWBV8qI4WZjMQkpYyY
pzTlAB0cMAHBSqMxGhOpBIzZcs/DqWBjb01WZUWpOXRb9MBXpg7uhwgAgaK7F0+8VnbbP2wpWZPs
yIUrAwdXBDm1TjVlV6l+wRVnFaXGLbPLy7P84X//aPuFvXGt2WGU13cBRczDdH1noY1nOQ1ghoSI
2hi3eGAQdtGaQd2MDILBa5gwXDRMGhQqg8fZ48SSE1ZYBizYQrIwGznbDRhnCcaE2ag2JHQ2WSik
AlEkLLwS7YItwxG2JiNdlBrSMdv8eTcvQ0b38MPhOdmSVCN+M1VPSZVZbU90dQXIS6nNKr1ZM1U/
s+a2WmYX5tD5fGL63+BB8mNkoRLtE98rK2goaC0gssSqn98URwVCAZ77ZgGwlOeqauKH00Epp6gk
PlkA5wpeLHizgJQUAGag3gJyomC8AMsgZr0Qt6KjOUOaMc1hDRnXgIbtV19uXCNPs+iKP64BpAGV
xnHcLxiP85aMTM+EvHDXMN2c8oakrEPekmGq4gQzs5iWg3Ow6UtxeNDiLXQ4C70W+nQ60s+b4rc6
Cn0Wi6+QEmWWWIR/fj1Xzkiv8zhd51soXkKoAn1d8m3MBZc9bMcGMSZis1drjLvNRWasM4PeBMAB
OU/JmlttitPZVmVrKpoVVWNV0FMFUhXQwOxma56sBWgM8by8JVaw5ubOCieys1FFdKnGKCoSatus
BBJkBDCqxHgepeKUiLPJZ0LwsPArSqxkciTzVEbKZ2hS3jXlgKuDcnkXKIzgL4+BRWkgNivb6fAz
aXOiaGsqZTFG4z1zGrqqsnIqFrT1lDxg8FWFSlYHZ1XNO/j2vTUrqrIPNawpJT/OmrOmZWqPo6jb
mO/PCrWsnRvrjOWJKuAeDDWWZjttW18z2FI5HLYUJ2Ljniy6DzoonT/EL0Kz0C6pLZgDvOMhB1bp
zNnmueZFZm6/EUIcWK1YPeicNcsZQAEpgKVAMnAiMBngynwNPuwrwRLGWG33HTIDMgtmbDbrRvbZ
wa7Avm2QJW+IrsuUrnWZzNUMO5Tpp/kbxRglBRQpTFsqgPIYX56m0xQRphkKwCl95NAXr/Z/e1//
fN+2vTk1FRGzv37Rgyt+9V44MXrkdB8+82D3Q3dvGzvSdc99aqNFcxKw2fG9by27/+679n69c0bf
5ZchPVVje7/rEehKcJ2fviLV6ozxFbYBGzYJNLRdBzs0cLsCthMwDFLG55f8WPIn/SeoNs9lDUqq
w6oTVIq3jGiV7hHekVn4TKGXtdj0DIepqoMNVM2jlZqjpWbyF2ps+W1PbmGK7Ju/Ou+oWbNgYU+F
zVbRs3DBmhoHPvlU6ovTndAHrXAL9Kb+PvXs4d8eX7r0+G8PH/7g8ba2xz+Qadc5Omd7+DjSoJgU
EnQJHU7ohnTjuis6Dm2WBB4QL/EJ/gQ/zvMqXjmmUSB+hKQnwvmazDidtNd0Z/KUDAVNfHkwikfA
PBUBS+o/YF9ZwlVe7uKaest/Le+rfNreJN9A2zOguyVBVyW64+WKRkWbgqxQgIKh0mxxxgUhIeCE
MCSMC1cETn9++g/SbEow9JxkdcQ5jUYFmw0KhAXspQsmgYfwCTyOVVRF5Q1bESGgVSrYaqmL0k3E
mHyaHdJAJBKOhll/6Q8Kg8lv8pUDFQVs4AcfCZ2aehofGnku9Rif8sIHkJd6B/L2kIe/GD5ESqe6
KL4WwVGcxBFEUK9kxXwJDw38KL+bP8mf4/kjPPCywLKiMz7GU5rIQ/UEf4XHEj/Ej/GEZZ6tkeIy
kNafF99F8YuehxeQPPtUWqNkrqeLmTSE12eXWMp9tkXYCkePHZNxV0/X3im6v/JRFToubarMoitt
fx484oGcfBqsyQGXGBbxBv0d+kf0RJPrzA3lkjLfoGaOMCcxByfmDM0Zn3NlDlc4iKzWQbSLVukr
K5s9qg7sDxwLkECgIHvE5BEjYp1IRNHkKBhR8Hv5ozyhE4/qKOupkwUKitIuxoxl4iSkl2wp23uQ
pkthS5oYg5ntOP+s3LzyqD1ti6pkq5kKmLMU6TVcUUmXdP3coRN9w09uKs9r6h29t7H9UMM8vyUS
LXc07eio5OsfWdV6f38lnLl7h6+us6Z+dyx77mpycu3jGysT30qlTt/96iObGjwm0x8Oqw1avmb3
zx8OlkT7j8L3z3572XCzN9vx4PsPtaRpeg1CnI+vRTq6d09Kd500nTNh3gN7nA85Me/YQ2mVBjsx
NmgYYlFHtt/oj/gH/bv8h/x8xF/nX0Ijj/sv+N/3K43+Hhp5gwan/YoqloQZ8C6ayxn9Hgq8i4I+
61eolIaOhAUsqqReb+KT1h6RGCw9JnOatcu6jSypd6ftHGkjVrg7bcnL2PFkK951Ns+oPmN7pMO/
ZKx79bruXbd4U4vfmnr18VPw+QM/HC6JDH7/ABlPjLYEpvYUtd6ReiZVL2/Cx5zltRsPL1/28GgT
w8f0S6lFsJ+uJwvKhwLpdbuXCW4LN2ru1GCNlOOLt1KWnR1o3mgFrRUs1pA25Arh1JuhSyG8MXRn
6GCIBELwTOjdEH4m9IPQ1RA5EgJtCF4PhzaGcEg68914SPrW0/E+luoKhUPksQ8pFH4x9GYIu0It
rIJOBloWaghhVgHeLVewSQZrCXXKjRwP8SGpsydexvLuDLGm3g19GFLUnAgB9oYAhbyhktB4aCJ0
MaRIhJKhIRrhZFHSSqUUYwhU/HIjF0zkG30Jt8OFKH+VyW23vNF6GNrljce00LTiGQ6no3KMSZlb
pn76JlVjZWETviRyEDkuL3ImUqftUPtNOXmiPS/HRJ92kT414SWb6gulYMTlK62Z+wBEuffFdLYo
5rNn/ueXNnw9WahR/dOm7J33kwnZLkVQe6qJvMO5UBlqRqvgAcm+oxFWzB6YjWd7qZwcn90+e93s
+2Zzs9lw1TQFZ9FJLGUSqEElxAP5NCmPJemZgLJCZYyLrJynSqWPe/MphLJ5Vmmxws+htnhwluRw
x4PsZ1ZwVjBrnwEMTeWSkxLo8pZ4GMEPEHDIirAadbZ2gtQJZZ3g7YROWdpblYyPdcJoJyQ74Vzn
i51YTnbd0ho/0QlcJ9Rxnbs7T3aSkzTvzc5LnRzLPzsvHpef5bXpZzgiPyULXX7XGsDezpJMfcVG
Z7w6tsBdkgVZCn9phAuRRNxdRbmwJx6JkxNaiGvj2vmJREiYn7BkZ7Th6ggVGITXSqmUYJelBiZZ
yoJlOE1z2UpgYib9sOmmyiAVuy53ySXDVP4y26uZBh1OfxCVTpkZAqwKNvFKqm34risYbF1UFpPy
ytyZFWKvtFMYQsURH5PG0swb6FK5gZ+TgZ88V7A8u47EK0B8+MHy7RP3bzzaHXIUxQLmSCj7scfK
ev+uI3tONFf9nv/gLF9BU3PqiM3vMNirVy/suHdFQerspk5bZFFF5S2zRbFkEb73iSfVintNObtH
593VW+OPLSvx1VSWORWuUOWsMwvfWbJjaYFCqSaD4cO5I198v1oyR8rKHYGaUJa/bgWuvmtXXdfc
nJy5XXV1PXUeRjvD9Mcs0wo3elRajhZqNcc1z2jIh5qrGrybEgpHs9YatuIWa6f1uPWqlWOxGusz
1h9YP7QqBKtUXRu3ejiP1YOrP/XAYQ9V5GXb8ISHO0wD2MOmn+5X+Znlkp+SQHUItnmdCbfR6kjY
ZzSiyxCWlXV5f/5Ktv5PvcmmbXbJX2zP61r6nXSXiTfuOs03U44TeyD8F3vx6tIbdXPGN9bJZzqT
koZX2pRYTVRmM7NPliT74gqzaM41N5lXmAfMik/N8DszvGmGAfM285Pm58wvm/lWM7B8/LYZ5ELV
8xrjLBs3mFvNuNQM4DWDlQm8UG01l5n7zEfMb5ovmT81K2kSHjKDZE6Yh8zEzHATzI/LT7ov2VPK
ttjjuCOhm9RhHeh7jETXo0moqFpOkhrGZmSeXccsAl2Xr2MtbbYLZwxvw2Emb/RQFVpp8lGubImS
DNLw9jdAdddjObF55qsfnDqF5/Iq59V1BgXYU7syh0CyHNk6/RH3AV0fYbROsvVng80ddPe7iS0r
mNWfRYJ2CFAZ7qxaz/r8BymPBgQht0gqAmdnCZUwMS9RIsXbejTIBCaThsvN9fQgi9z9tNQhK/6Z
U5GwrALxswLFVNsxVwTkTWb58pFIHUSJgRDFydT06Vu7TgN+svGOwb6Ioj6n6fnk1u/tnF//lbPD
sS29tziD8xSh2+7Ya731H68+dg5U32lVG8ya1Lv/GI5IX738nYd/89BCITto/efUSzq7WZMe7wB6
lfNwe5AWLZIiGgPwBjU8LckiKRNIxzCvIVSU4JS8ASkFpaRMKDmVEnHfUfNnGQcqfZmZM7OE30GE
or3Uebn0knCJrl5ZIPWZoiafDW9dm2qHp9bC03hragU8PQBPp1YMsDOo1EuwC/0c2VHtOfXD6Ouy
OOlTmeI8EkBIshMWxTf4pwbVu9SH1ESdtAxZxizEgpi69Oll6Ip0vRieupxWppVUSaR0iMtYAWGX
b8Ho8s42a44/x9pQnl2WlzW7ZrB7UdYt7tZKs8NidgSzK6ptBbUMBw7Km/5MTqFZ5L7nkWt68izl
LE7GZ/Q0IGblZmHMgYo7P31RKtaa4goAE5Ur7e6cHFgGCFrcOVa3O0eEZdnu7Ga7aLXbRRBVbshx
s0qmqTbtdttz1KgA4QIkuX1xFFgVWB/YESAtAXAECgLVAaINwJ8/DFwN4GOBbwdeCZCDAVgRAJof
kH7/P+MfBuD5ADwTgB1UxMWdgY0BXBu4JYBdgXAAvx34XeCzAPl2AI4H4IEA3BkAVj0WA0Br/eer
AbjMir8SwM+kc/bLDasD8L8DQGt+JwCvztS/LVM2HKgJtASIIwBv07rlTuE7AwcDWM1yH6YF3w18
GMCvBOAcK3Q08GSALAhARQCsgUAAKzLlaJ+OSnsCMBrYHcArAgMBjAPwSQDeDFwK4OcCLwfwfpYJ
Cao949JAfQDPFF8nlz8T+EkAnwzA1zJVDASgNQBNATAHZgVKA4QLwKesqd8F8LnAiwH8pAy6OwDL
AqsDwwFSFmhgeMgN4AAjWInGePzlAJwMnAvgmSoZJJbhclnngbZd9RnrIciN7w4cCZwMkOEAXGu7
lE4K6wGAXKmaEjK58QBbvm2U4ScCIFdIu3YxQOleYCxwODAemAjwxsCSAFZ5dSU6SUd0umxk99qx
ZE/Yk3aC7IIdq+21btC6wVzinnBj5Pa6S9xkgZvVPEuaH+fd0OhuowRpj5sD0U38KDuH2BNeh1FY
qlNkyyIhOwAx2aNUGKTshBJIWbcdphpj18xxSHhLuOevnl+Et/yN84sbzjZuztjy5RLdN0OnZZHM
IcjrtEelpuraSJgpsfuyhPC+8IszD9UEpRrsbESWW9WQNgVlpFFGBJkZ1KZ0yQ9yNPVVb/3SdY3O
vFmzbBGfpzLcVFMiOlOPJOHckdRnD0I32fBF59L719ZgXsG/mrTnNnZXx8kQZYeuqUH8IH2m6R+e
/o1yP+WJVvyGdEZpBLsB7tRDux7CeljHQxYGHkBFeFim1Wk7FLxVoeD1sIwj3K06vVWn02NYZjAa
Ogi2EoIBlglG4VYEVlr3Xh0odXm6St12HadeaVxrxBXGJiNWGu3GPCPR6IiR8jiiQOIrIvxAhG+L
cFyE/SLkiivEbSJ5W/ydiM+JL4r4STn5ThEGRGgVoUkEtegQC0TyW5EtjNve+XX8iHhSxHspCRIh
IJaJDUzxBSzCJyJcEuFtEU6KrCqyQ9wvYlpBAaVQYi5tZq/4nMirRXj638X/LWJR+oen4q+K77LQ
I9+I0ybXs/ZWiDhXrKCQhDV49vCDcbnh4L6DcasIChE+E+FNEVhtL4tklQgtLFWkRciwXGLjYLpE
ZGB9/HkR7hEBhkToY6UuifigeFx8RiRDbHR9IpZEsIpsFHJrUuH8pvhBESQxIWKOplK5i+HrVRaz
ikdEYhVH5cG9KfJygXKrPc4MCC0iURDJnx+PkDqyhBAXAT0BIumy4gX0qdcbDIIWKXrMKmLU6WTh
nwJnNqdVB5j9yR4bhqx4ma6ByiUcXQ6UmUfppyssC94zhy+lkWgkKm+gMLOAZBSwmR01TNWz4XC4
e2ZrhGWAtDn4pvPJ4fCX95vwMpX1ayMRZk1mO/hL2+amR3oHZT5q8NO/9K5RQ1SdDllTC8tTJ1PH
y1MNWzF6CepgfRHcCiU/gxe4P37+n+TRL/p4vbO83PnFEvLEF93kNA2zfZJHZUfmj+2AlZJwr/JB
JV5i7DHiJaiHytMZkcjE2N0xGtDnG0zxGl2LrlNHarQt2k4tcamhTzmqPKIkTITAnLJMifswKJUq
g0FvVBgNdFPpm1VKq0qlNCiVAjyruKB4Q0EUCv2gCgSVV1VCp4mJgy7JlXThEy5ALi8NJ1wTrkmX
olZwjbuw4CqhCUnXRdcVlwLR4JDrME2foAlKF1uIq7ri8vOWtvSzvFp+Spbw7LgRCc1JGyCbYPPa
iMomC6VmW9wmJhxIpReILWFEBiVHtBabAhLEmPZ1oTpV5sg5LJ++lYZl6TRtBXmNzS+jvVFztSm6
T6BK2IsCpXUytZuhulQTk+crM1WyoA83Hsu1w92rYdHW1KfQPpDatSKVurMvtWv7QZgNL8HjrqIi
e+qPU3+0U0kfHtqX+oSJ/DzOKpqRZ/l9VJ4tQO9LxTt4Zs5VmERTrqnJxAWzgXfZXEEXCYrA2232
oJ1QOcsIIaPR34HY+B3MghTODTeFB8LbwtxnYfiXMMBEGMIst31eQzwRBi4cCJeFG8JcNReGdPBI
+Fz4xfCl8KdhlRCmim9YCifDQ+HJMO/oLFFJKqxicrKqINBjzPXkPp5LcnNzrD1aQdByOT1EPkBh
Nrm0iS4tMtPtltZwGQ8Tfh2mEjVzFru24INpm1y5gHx/1bHIJKOX50Y/P/z49Lkk9ELbPR9umO9q
/PFGJkQv3vNs7+zetnrLKfj43qbcspXPfPEPkIQub3Zq8snZ5fO+dvmZ7/z+wBy9NUsLdzkrKpxp
W5wvtYiMk5eQD5Wgw1L/+siOCFa4YbfpiAkrTLBbe0SLiRZUVGhUz4obSqVSQKVjpbiaBhKlQ6WH
Sy+WXinl0wGypBTCIpfdjHyCz+u76OOYo0Mix1WcsIihvKWcWkDpdSc7F6W1IXaUVlraNXOUKB+Q
Z3BiyRymzVjaqJKfQ9yZBZY+XsmcMT68EVTYVl2/MLf9/tXRsnXfWB/dEmUnfidT0nbcN2ted03J
ptzQQHT37WTAUVRpdtt0sTu/u23k+XubtFqdx5etTmVFIllk8cDhzpBJmDKp1O9mbJX8cspfHSgX
/b20QWM5YMEnuXMclj3p9pqOmvC6IDySDeuy78vGvN6mxypHFiyzWR3WrA6b1coCPmOJDWw2Z4cx
X8gHKX8o/2I+8UFHQgEKK0pGfIM+7PMpPEllj5rYQNGTxZll5YSZJmfWEDtuZYdPVAszmaur94UF
9ON9PN2PdCfOrCHU9Zf2SSXDl/pGE+ZTr0699fgpPJ/ZKIsW9VXAxq+mLqT2gSZ36a6OZ07funPx
LLwoxc3YKku7di+/ZcettcLUH1zleBHclbitPnvqf/iaN2fOXAVKV9Von5TPN4cRaBHM6UQb0Z3o
OOJcqBP9AL2KOBZ7BhGkfVELWka56priWplCsdNMLWCkFbQJ7QntuHZCqzhMA1e0RJuxRciAOr0Q
VyTUdD4SJGN/gLQaHQ5TvKQpFtOmrtOdQWZXOAFNTTeQFOZjNv0R/oTOaRb6FtXaVRp9HKkFNVap
qJZEwKfCoAIIZXUoWLO3UgqicBqdHucS5y7nISfvcUacbzinnZyRBg45H3c+63zfqZhb5xx0XnB+
7OQu0FzslJaviJ9wwi4neJ3Q4wTkBMEhJvUec4QdpuktPOrBJE2BZbVaeFnmmOEZ83M47Ski/4XT
pNV0gxmfLvpyeOQU5h6eVbVg8WLfvPXB+hxLU+h+7o8y9/tJ54G++fmCYPj0oN35o/S4g5QH/piO
2w7/IU2zpRrUE43KqcJqowNSRscSR49jl+OQ44Ljfce0Q3Ul7Sr4hoOKnWB0eGg+eYNmfewg4w54
3AFjDvA4IrQQoWz19UHHs7Tkxw4uwaAjjjoHmXbARQdccMAJB9TR4ruYKQd20Uov0GqnHXzSAUsc
UMIKwDc+lqEjjkEK96yDE1jJN2iF0w7usOOEA+9yQJJB1jnwJKtvprO8Vy6/kfb3DbmpQw643uN0
Ku1wD62YjYcrcUgOLO3zOKjmDO+zYYw7cA+LlThwDe3z5EwRhpBDDlLCIpOOKw6SrlmG9VJoVjmt
YELGxpBjzIE96YHTihO6Md24bkLH6XAPVf8vqN9Qc2pbB9YjNajVVpLUEBvuQZkDiFK6CKIQmfpp
l/DTm+Snv9RVvpxyXWu5lt99vYJhxmNonG2J9Gm0ycd4CwkzSgE1b0XvPRN0zecebXCZm7sH58x+
i276r+tUP4Oa1Es/4xQ8ubrRVT5ja/k+5+GOIgUqkVxYodrFAYcUGFCEAyNXxw1yb3DTHM8hR6Rr
SzT62muQRWVK4fVSdoQGNjXYBsjzX/wrKcCHSuGttakdqR1rmW195izXjWajRvS4NLQPYA8BE7Hu
RUcpDR4snTvoscI91q9ZsVAKh0ofL8XWUmupIWdwr+oo5cXNQnOiGSeah5rHm680c/mD+w3HDDhh
AIOJ+EfmzSuqHOEdNkfQscfxkIN3KItG1FqHtkC7X3tMy6u0jvShWpfsr1XNDNPpA2Dm8sZM1lso
XREud9EIOxEGq0KZQ2yyzbm8rKKS2b4yJs4vnwt/Ob5/Y2dFe92st3/79ttjm1Zumr36SF/ya2tK
D37Z+bnAVtoaiy2NWCyRpbFYa6mNfLb5WL5VWjk4/0cTP/zxnmcL8h8eXHJ35+ySjrun/Au2LM7P
X7xlwcIti/LzF23Bb9esbs7Pb15dMzfZEAg0JOW5205xPE73fiHaIc3eg8HopXKuQgU8sZEgIarc
3Hzn4DZ+L4/5YlQsFWOpOFl8oniymMsf8hsYIXTTAoZZnhGEbHnbAgrbiGbIOGbERiMYjRqKQuYM
IGSc3pjI83YGh2bmECALPnADHyczR5EZNwklXZc2nylG4IOhU6M11dvO7uj+9iJtfZE5OlfK6dre
6HTF71pd0+FO4qemzpiLKhuJUNT91f6eRzbPtYngfEFjNaojK25fsHh0cZ6gwseOpVo5lZJnPHxT
6k7FJ3wr6kNfAU66/fhsaLQA12XtOtJFHroVtEvDS2uWblx651J+Q+KOBFbMFediVbkVnMoO5QYl
aQAY/ZcicS7Mrf+X4Ff6+4LGIKiLgkVBzeKfI1EQsU7cadwJ0zsB7RR2Xtw5ufPKTl6Sdp7YiZM7
h3biwzQ0vpPsZEis7uiOG3d6dmJVU8eKjm0dpONf1mqgXQN6DWia/9Xt3v6L0Ia3KyMhCFWGKnn1
clj+lonr63mLR5HL0brMUQjFs3A5ymyxXWyppg/Q0myjO7Nou+lyjUaZ1xk7MJHPhLtnRIQunhkn
ArkU92YmXaXvJXAZJ8RKlimfmVTSzDmQA3Zy7biEy5yVcNfEUsjNCKqyh4ts66jkz1Ts+Ooza7+b
+v2P++bt+M7bV+9/FlSnV1Wt3vvoqZU6u1nHE9eC1luL40ty5rRXl7R3rauzerJdwjCvUnCc0e2c
N9y1YLZz2bF39o69970HeqOLv/npkz3Hdm6cnfqtRq0SFO7G5qZsd1mePT8/0NJcazsfWljl2/pT
MD96CLhff3dX48oTvz249oVv7u4q5XRWY3ZjtitW5t/Uufzvj+wszp3t0gDBU3+0lUZCBp3dpCld
uW3fV+N3v7yvaf7t33713+/a/cnzg9mRmJ+cAvpRmHIczpVD9zQ2LxZ9BeY0Ldw3/W+wA73F/LUk
B6VSzINK0FzRkMxDpck4UqXNV5f/0mUKdli8Rdddoor+0iWKtbOO0lzfDM0dwkDJLqW5lMZG6B7G
dXgQv4GnMY9lmvvaa9Eoo7mU5FKqX1muBkp215ECSnOf//5a2Af71qbCpXL/F9KNsZrSAy36kVSJ
Oqx8gD/Cn+Q5jt9NA0TPD+nH9If1pEHfqu/TE0Hv1WNOD5P6K3p8Tv+i/k090cuKaIIdaU5IKxsW
xJN6Vkgugkv0wOmt+oCe1HD6Mn0DrWRUv1sueEmvvqif1GPMKi3RJ/RJ/Qn9uH5CrxqTHxf1nFbR
oyKI7yEz7BFkj9DutLqZ5nmRL4t7NiU8d2rqD6dO4axTiRnhtTyj5yyk9O/3VE51Uon1K1L5QP62
fPywCtSq/Sr8KAcPcKCj0p8Z+ZvtYRSGZvqVwmPhiTDxUs2PBThZZcwOF8dd8SU81TcTTpslIaK8
hEbwI+RdKt+FiTLnyBkvovS2vOYwdk3N85oy10eKSS1krk9AxhHDxHaTAv+88N5VqV3RDU8MRkfK
MQZ4DBpGU39OeYINyZq5G4KhzdE9u5r8lfCbrT+4t1Gn1YZnlxg/zSr6/HlHEby2/vCqPLuAf69S
v50+N1P8RpZ3vy15IUtniqMsrSluRwBIr1dlGewdJWZ2tEXMTicbpM1ijy9xwhbd3bqv6sh83XLd
Gh3RsQOjCqr16jAmtyZVY5Tx3qP/mh7r9Nl6rFdgUxZR9xh0WkLMdqLqQWAED2AV1WeYMhOlFEn2
bZc93M3VzLDLnChL2RlSmMrvFEnm6tpINMqcZMM+/w2ajBqY9JuOkm5/ynYuVXnqFByFc/ArGDt1
amryHHf31Tdm5vwLjnxR7ry6Wo7PTu9XNP0Rx27cG8Al5XRoNmgOaEgH2oBwm6pfhdtIP8FEwYkc
VivPp09QFJknnJ/+57NqXVzNrEMBGtCkT03UGqtarcGwTKVWNafNp5hKdpAjA5r1prhaTTRa5EJh
RGYhQaCY/V48GUcCNLOwZMpvik8KcE54UXhTICcEkFPL3bPiguAVSgTCCXCSZuIxAXBSGBIw3RMq
DSEJHW+U1MCr+9X4T1SaBCwyBFN5TzaeQ6R0xk6+hRnRw8Lrf9tuTZVHZu/pTt8euMHgJpupn0zt
W5i6KwnPPQRmUDwEt5INX9xD7pCt0NvxQdkKDWg/3Vuf8ovoOvtAesLqCXjKPERrgTDUAHYCaMqc
ZXh3BPYWg624vBjPCwGXZc3CqgILaMyg1RpAp9CIGmzM8eRgISdH1zG7FtVC1WTtlVqMai/W4pJa
iT5IfoeNTqatxCbZEjZOZRvIh9Z8uLcQthVCa2FfIQ4WglgI+wVYKNwhYJ1QmM85lT0VABUWf48T
ecDjcXIorXGlDTT26mv2Stk3TXakkr1NMvYZ1NWdVsLSMLJZ4gbZRfHXboIprjk5H5zntzQsv7Vw
0dCCQO2anXt2rqmdO/rt29acaZnnLxxLLNzYNKt2za49u9bUVo98Z2vs9g0dPlj/3aywz1IQXz0n
3j2vqLhqxa6uxbtWlThNqX8/6Q15K1vC81bUFkZqOu9Ndh3dWK2zOvVpGsdsZSOyb0Aeuk26ZVVw
fRCv8A34sMK1wjXgImr7Kvt6O9EoQaOngh/wJtBqOhFl8Dnsrlydt0AqwKizxCpZsdHqsUasxMr3
+C3GHgc34xnZdXlL5qbjTXf80sLAjCOFksoVkPE8kx0niwFDMDRw6p57Tq0Nhday50DoZyuf/PSx
Y//5dEfH0/957NgnT3fgE/f/9sRKyrrvPzj5jdbWb0wePAP4qUTiqVTqzJnU1aeXL38aeOajT5WG
Dygtz0fjzyM93TNhlRAvsFZbcZYV1OzP1mwUQBRCJ5hbkhCaCE2GuOoToSshnPZHCpfEqYglhCAR
gqHQWOhwiIQylxhkgDC7xOBpHgsACggBb2AicDEwGVCoAsFEPvLYhEDCMsuWw/OOZZq/fYXhpgsM
DFezS2SnJeV/d4uhCah4kp1YufLGmwx1sQrzrlTf9vuhlHxmyA/n6790naE7c8vFcpP9dLUs9y9C
c9H42b2VUMZo0wgl4mEm/99vBg170rWgqpnTMgfPce0th/JBb49r0IV3eQ95caHL63UVErVtcBva
S9dYDMUkdveJXZCajHFedYlaUhP1HNdIdnapgMJCGIfDwZFSpTDCM49zbKSCrYa/QT9I26+oosVW
U1rLslOBVc6lQmtX2rWaufb8NVUhAuWVMZhZaLJPMcncKmC+PePSjtNb1ny/hSkOc+Y3y4pD4S1r
aw4d2nKba07X/JzaqhKzv97ftKh19s/fnRUfXPTcKdjUeWhNWZYlo0QULx9pWLy2zk1Uy9SKsXvm
9UrejAeyWtAqn3iqblNrtdb2LYpb+/RveKZTGUCSnmzWQp9mVLNbQ5o4uIM7QDkJu2G8g+wnuJ/A
fAIElum0ulsxsVIGqtWol2k6eM7KU5lLQzNHtczWSga0wGnLtA3aVi2n1fK6x6mciPdjnMSQhasw
1rC7yoJH6BGwUagTlgi7hGeFjwXF+8K0gJEgya66XM0J+jshEK8wJhwWCBIuCpPMgZdxmLOFkbj8
FKzyUzJqDXHNIJVoeBvV/oyy0S2QLxvdnhPd8YzBTjJRjqYlWKMjfI9BSThm5Y7WpZm57CMtvN7V
VTpzdiC7zqYJhMx66DPaJfOesHAD72FWCnZjDKjwdgPr4ccfnPogOvX+13HOOcrmH6JYLnd+/p+Z
k50geddZnj4bwD8nL6Fy9E0psLD0QCn+iu1+G54jLhTvEA+IHB+1RYNRMte5yPkV5/1OTr4QYqfr
PSeLsvGgJNjiwaClCVV6K6GSDbEkxxdfUtlT+WwlKWrK1mqzLUV8KOEry23Ixbm5PkFI8GxqTmqJ
lyJFy24LZ1Z1xiGXrmmZg4S3yPwjLLvIoDSJzHCEjPGu4kbeYUvzDuaMSyW/vNY93ZHOxXP0RbM9
q+u7+kMNKztXNoToumxsuGduJOTsiC5tCzW239reGAJV3fqWAq1R4H9/b3b+0rbSeYXunNy5HfOl
vga/RffaJntWoqG4piCH0vZbGT2oo4ziaf4J5INnJb1a4VAUKIhK64cpP0NA95+vxg/6oczf4O/z
k93+N/2X/J/6uSE/WGlSK03k2M+o/5ycodD6XX780yt+eFEGJXJZlk9OzpRNw7MgLzehGT8bl4s9
Kkd1Dx+PH/fDqH+3H8sJs/c/EH/GD6zYbj9x+YHzw6d++IEfWD1yUtiPaeJGBnDET+RSh/vXxVtm
YJ/x/8CPj/gh7O9kkFY/Zimv+gkLs2GM+vk5V/1wjvYRn/BDwM8GPCpXpxD8gJEfvP4Sf8I/5j/s
H/dP+q/4VYLfS6MTfi5Lr89uJukTjjF2wpHtS3hsyJkgDqM5QSVgMBjUcE3ISKsvlCuUMmFXdnTN
WOwy1rrwDda7sHyAKvOOGRA5hdFEi7+88ksLxoDdwO6QyazjN088EV66dQFduLOLhNxsf6FT8/nn
r6a4g6R9dl79hm9uqtKqXrtTo/XM62t6tPWLz3xFRb603ED5KX+ejyMjMqN/l+IKE5gMRsGoNoNZ
r1NQqiXoOpQKq1Kp4GEZzUhyvJUqii4qsXqpMiEI3ONKkI9Fo0ogSqvVCpesYGV0pKQ9bpVpDFWb
LlqpGGu9aL1CxQqW5w3IeWedOWmYXMES77FCBUc1R0PSbGQOaKAVWqjcK1CNV6fkjD0ayByMlMoa
BTsbka+oy6eQXT3ywbTwUybLyvLulpuFXWFiArqEfeyXKo7yKVI0fZpEfJQE++C1VPPD8MqP4N2n
p145t2fqyj44+Dv4eTnTI/58VcX0Cbg3dRe3bmpr2vfiI/5HVKewwnuSsJHq5t6CovgGKnk+IrCj
iz9IdoMp3sJ38lTTHubv4ckT/Bn+J/L1g4vSVgr7AP8NHm/g7+BxOw8k1woOXIAX4FWYEw25hibD
CgPHBONcDRGVuUqsABDSuodRsBqNQtp1I6N7pJ06WphTh14Hy7S8tlmhsyoUOoo5g55gMFYYwcjY
v4b2ijlxYBVV6c6fyV7AHpLWtGBUB226fh1zGnhKWqVfENWBQifqsHrG1UNAYkBsEFtFIojAiXBO
/FTEJ0RoEEfF3eIRkSth7huyFwRz6OCQCNWt4iUKRSQR8JgIF0WQHSoKCjMOFS5P/IIIQ+KYeEIk
PSJ4RdAihaDACj0xIK1AMZAwq4yAOZ2RZwTXnuY5VE+ks16aNgjM+FLO2L+F10uvOx2wmxDypjJF
o+m/9Gp4c1/WX/VASIu0M16ZlLNtoVqRdoY7uSCaduHhV6ReWvyHDxamfjAIFx59/99af/vWIzDA
9CN829SRjI60B/dPfR3fLetJGLVTWex/UFksF1WgU1LLPQGwWgPWVmufddTKl2X3ZY9mk/Lyh8ox
R+T7t4Hg7iCnKhxE71vAIumFuMWyly67KlQlVWGpKll1omqyivOUDmrYdZ1CnTFeopE0WOMpLY2M
7p0Fs2blOUeMyCpYvXTLWY3KvJH7eNhBOT0Vx7r+yjWSMLvRSdl4Kd05128qoxnmBbLBEGYIEJHl
VlnQxyCLZ7nMkMucqP9H+bpjfZu/s71u+cHnVrc8Eqv3m+mE2Zu3LItw8WdaW/d1l6ZWS+0V9rVD
DQ8t9DSsgxPrnhias+IZNP30c6B4OmE1/n6/RtApGw5cfCC3JJL8Wqo61Lar9eTXnFmHf31sScam
k1pE3iXvIAcKoXulDq3xoPG4kfQXbC3ATsLuSmgVoAo4kBJ8ymZ8/QZsohDS919PFHLXb77Gbzfd
Z8JLKNXJT1DdQRsIeJYaRKxM8K6MEYpdz7+cOR3IHFZTsj5j2qFois6I9BXyBZvcGXIN187wZTZP
hYt1qS13c4qiPR0vvVC2/pu3RbeXp8L++t5YVlVlqTm0Obp7jLzz+ffZiTTwuStD/pKrH408f3ej
TpsKDny1K8yuw+LLzLrD6JCZ6kO/p3TIBT+SZm2zHrVi3rXHhTc473A+4iS8E+RXW8hvs9hqYa7P
k2dVGW8XPQ1o9Af0dI+DSp3JUbGcEvb2DFaEsB+XBSkMvNKptFqQ3sDrbDoXDVkUNGxotMAeukAZ
wbs/tyC+kIcDlJrxWTRsg2W0TIvOZtXpbJR50CLNBt5qMPC2hU5wOq20Xj2tmJfvM2iQ2y319sU5
t9WNA+4yd4O7z73bfdL9ovtN9yW3mqUHaCJLOkcTL7k/dWuqWWqZe9R9RE5VltGfN2kGx5wOz7p9
cdn5sMxojyfcgAW35MaW1YxHKxHla14dUeksNicxJBR6l5XT2AUj4pVElyAaG6pLG6zSHjKZm9xb
mHElnDmmDQs/ZaYVKvixL81kLjLXqQmEe9hbEbYwlpP+Ms+Za/4zacMLo1+yIzXqStsytWmWpL7R
YZDy1R2bUyvueid1d+ofN0F56sogPH3Xdy/eDctuS/253lZUZIdbUqfpU4CH4auM+KQ+AYE+bamn
M77z/EGqq7jQYalAZQOVFVR6UNFZ14gdnSYoMzWYsEnG+ItukkY+kVE4pzaNwuK8UHySojDhHnKf
cF90c2pHRwJPYoyzkmqqk2hVpEfPE4dowj1Wdq5ZmmbT7PfaixAyuBN+1TXzGhmqF8yYb02+zDO9
i5hZtObUKew4hbczmy6z7U7tPzVj1536D2xkz7SdD5dPvTpzTtmRWoTX8Q8gO2qUsvJsUGqtt+Lb
jXC7Fsr4Bh7n8WBRyl5TGkNciT45pAc9c+fRm5GK7vU62V/np+HS9P1P2bzB2W3FOE3+5Lv6LpW9
aOFtLXtfuleS7n1p75bddBP8sfVbjz9075Zwa/O33oXsH/4QXL98srl13vPvfZa2P+JqvgkRtOh5
GvmDlOfyxqkyx266hfD38f/En2OFGmfRVMTD3CR/gscS0xnPT49/j25AygCZGz7rW4S5xcqX07aE
7X6I9vXBv6628h1o5o7EXXSefWhMWs67bW7Mq2yqrXRuFIOKXQpiVpgVdo9fosLtkHwLljfaOxIw
CRjqmMAlJo0lVHaj4gVnT/pycqDHZzYkOUpDlUrcw5HrFxmi6cu+6XcbRNLW3C7h9fSRKUNdHciv
BsocNvsqozToM/kyNwJ8dGrJH+u93s7uVvu7sMEjSZ7UUVDFNrfXGavrLVd/lp7o1IV3OAWBqU9P
pPqemHqP0MifU4/J9P+JaUTW8ZvQErQGVkl72nr39D7USzp7D/Ye7yWtXbvZ+Z61K9DV0JWOKDau
vHMlXrNyZCWuWd65fOPyO5dz7AffuRgOLji+AN85HzbWw5h0WMLyT6PUJmFFIagK2ZW80bzdeTiU
R/UQCOdAQzZ0uja6cNi50XmnkwzKzggEM9JZQ4Frm0I9LR2oyR5ss4+FIGQP2b2JpqYlpVAqqU1x
Tamm1NvUj/q9/ZP9xNsv9WNvf0k/7qfL8rsma7yjycsWqF+li3tr23rsHD8nQTnoWASMVKqpi5CI
OcFLshKK0lNA2VLGoEmXyOX01VV5LhgrlwNbKImSg/IVKpQxZ7Kr2mH20gY5SB/o2jedFrxRc73J
7MluV92gkJCMBpu2xRB2+p2XPji0xwhZGGrf3x3pWVqrL8ozRqokX/GiCnfRwp7VPQuLgtKK0oKW
ap+s4u6qi/j0+cVljmWtxQt7+noWFuc29lQVLavLvdNfc0sor7nCM6tmUSg/XuFxU+U3pBWM/B92
G7LMWmtBXah00dyy8ppb1tRH2+YVaWzljSsrmCps0P58k9asUyQaIg3lRcXlzbfWVXXFS3TOOS3d
8GH+3Nn5Fuwoqg0WSaVhO58dmcf2Uj2lIwmZjtwildeILWKnSGqoPtIpkEZ7mx0vNHYYMdEjKlHH
keWThIpqjirm6impOJXKgFCamDDb+pRMTlCPjFOLfCmeYTQHpy2k9S23LSyyqyyNu7fseZmRlJdT
i1rDW+596PFvte787L3n57U2P/nL1Ac//GHq0rvfku8j1kx/zn0i36F10z1/WXI+guGg5rgGPyLA
Ha4Drkdc5A7jAeMjRpLHlmScLkmuAh4pBr4YVMVK1FkgUTWgoCCqtHZ4veNeqrtQKtiJokK0JCpF
E9HxqEIXrS2pPVyLh+jPidrx2ou1fC1blfFkXzxS+3EtNtZCOar1Uqhk7UQtP0eoTTCD/eHaK7VE
ouEhWuxi7WStoticPMEoiN+RrDL7ehRJP/H25JhlozL9o2Rky+VqkKWq9C1Q2cLcxUgKzQtTGbWb
mU/Tr1y48TquJR0UZZtKDMPNnm/MTUO2IfrJj/yLv9LxxrtddzS7+4t6jq6/UlwaXhftvmdp4AvK
WXD/Ay8MlxQsGJi78oHV5TU7X75/6Nfd5M817TXuFJ/X3Df1YtPAfN/UT6mOB6FbNqf+KU2bwsu2
Lqhbt6Rcry5bPty08qtrqxVs3awgt4KLzg2Bp59HPHPAvjodf5O/xH/Kk5/IV9PHJPUnn8VX8AM8
ZrGzH30s30U/+/sP03fSNb/9IN7Hw4o08Pd+9X6cqt7vsvBzb/8ynk6eOPuzt9LQulffiMuMbVYa
/uzEi5lqfnAhPsrD25nr8Mu/+3z8RR6e5J/j8REe1vNQwTfxmJ39Ylr/31dTOOn4Y3Feeujh+O/4
z3i8nt/BYzXv4J/nX+G5IV7adU+c1rafP8Z/myfbMvVqVvezep9Lt/7cio74QKaHS9vSHTG0LIkH
eMC8mXK1dB9r6uSs5yrmxC9m6tGVlNHwJH+FJ1gu7gmkizsc7riRf5a/wBMVHCtB7J2VVPvFdB/U
vSZzHqrfhXvY+0nCPRmJKn11gzHJLeHwtWsdlC6GmZElnLazMKsBOyYLzy6xRIl/xUuxhXxtysNs
u1ReepDdq0APS+uJYBH8AlGtp3Ij8/PuyPh5ow6lUpVRsCR21VKkGm9dQkyKWBBL6IMwr/8kVW4P
i+PiFVGp36U6pHqcHeOBSqU3WomqR4kMhDNpCCh6OPONHtny+1fSb9jJHOBFLlenPbBBNgjNHJDe
eGKnJE1vTT30Vqrg67jyHNwNm5+Gcw9iISXJtovv40uy5PQQ3pg+GU/LCwV0nE70G2kh8wgs1xOb
Lqgr1xGHrdHWZsPEZrdTPgMqLdVPd2cfySbJbMr9WrPxpWy4mA2tNPlc9ovZnJQNgeyybDyeDdmy
dBVrjKNsIdubTWo4Wu5kNpHTayrnxCeygcFZmQ/sJFX269h9DpS0ljjA4YhYe6yDTGNVWJJqpAOd
jvnFXkfQ5Wt6603Cxxa2ALpn7lLKZgDmBROJ9lDVX/bcun7GcrNUAk+9P/Xjx28URw56ams9uGPq
s5kz5Rkx5GdMDEn7kPKPUrx50DEpvA6gXN2oxuWqRhWeo1+ox6ps0BLPrZzCqsA6hY/zQV36xSps
WYcicflNmlXeQNzrA85n9eErPsDsRZvjvgnfpI+3dRgQbyXGHmwizc6VTuxMqtgUqCjR1lI5MMzI
Y+a09zLlL/KVjGsHcxmf8mteo9jvDZRnZOuZozpu3zl45VTx6CuPpP6U+l9Mvs5r25dcf7S3KONB
+v6t39m77D/eI2Vy7N1l+5JlZd17l8rv+AfThz93/sMLPca5f0Ke9Pvl37j/A+vMO9CnX0o1Kffz
TyD28nmcSaTllL5UI1p57T3q8KU3sTfhj1AD/0+ohkNoMXkALaZPl6IahWk4QcMRXI2srDqOiX9P
owIaf4LmxWm8g5Wh33P0m0/zFtFnPTeCanD19Es03E5hw9y/oRp+BWrl7kUDOA3vUD6AqGiN8mi7
rfTpo/m0DCogbhk+yGAzdW9XdqNNtNw+mraOtrGQpi1UuuX+ItrW/kwdVvafKNCwndbRSuHqaNhK
v6yddlaGfs1snDSvg7aFWL9o2hM0Xs/ahy1oBSvP+k+fYVp9IToJ2XA/VnFzuef4OF17jypyFbuV
gvJpVbZqt+oFdba6Q/255h5tq+5hvah/yuA1dBueEE6YyyyCZcKasE7a5tieE9+2Y/u5rFLHrY7D
jhecZc4zrjLXb7OfdDvd4zndnhzPee9PfN2ztvlz/E8EzgVDwdHgU7k5eYvzHs3fULCoYCJ0a+iX
mZlrQndR+pu2xAgowt46xGnpbBF5xrNhxbX5TV6ba6CQyUwYIyUayoQJFZW2Z8IchflaJswjA3oi
E1YgIxrPhJXoDnQhE1YhK1RnwmpkgFsyYS3tQ+e1/5GiGGbq16NB+IdM2IBi2EpbB05NYxN4WSYM
yEvMmTCmBLo0EyaogkiZMEdhtmXCPMomRzNhBcohZzJhJfqUXMyEVSifezETVqNs7qNMWIuqeFUm
rEO38jP169Gv+UczYQP6iuKO+YNDO4bXr1036s1fU+AtLSmp9C7r7/PGe0cLvQs2ryn2zrvtNq8M
MOId7h/pH97W31fsXbSgvnHZvNYFSxZ71494e72jw719/Zt6hzd6BwduLr9o/er+4d7R9YObvcv7
h9cPLOtfu/W23uF5I2v6N/f1D3uLvF+G+HJ8Rf/wCIvMLi6pLC67nvtl4P+mI7T3a9ePjPYP08T1
m71txcuLvYne0f7No97ezX3e1msFlwwMrF/TLyeu6R8e7aXAg6PraFc3bB1eP9K3fg1rbaT42gjm
Dw4PDWa6NNq/rd97S+/oaP/I4OZ1o6NDcyKR7du3F/dmgNdQ2OI1g5si/1Xe6I6h/r7+kfVrN9OR
F68b3XTbItqhzSO041vlFmlvbsRa0+BmOjm3pWEKvSP9/V5W/Qitf6C/j3ZtaHhwQ/+a0eLB4bWR
7es3ro+k61u/eW3kejWslkw7/3el0Xw0SPfgDjSM1qO1aB0aRV6Uj9agAvosRSX0XyUNLUP9qI8+
46iXQhTS0AK0mUIV0xD7nzFuo8/rNYzIsX767KfPbXJZBrmIlqpHjbS2eaiVhpegxTR1vQzfS7+j
FLqXwvajTfQ5jDbStEE08F+2v4iWXy23w3LWU/jNNHe5nLKelmUl16KttIesxnm0rTU0ZbPcyjCF
LJL79V/X8d/lr5BDI9dyZtN+MbwVo7K/Wva/q/n/DiNp3K+VaxmV605DrpfrbqMQy2WohFyS4WJU
bm2zDNX6V1pcQlscoOUZ5q5DrpHrHqXxdM2DNLwug9UNFOPDcg/65HIzYxuhLf/lHLA1OExX4eCX
sMR6t01u8xY5fVReUyxvnRwbQnMo14lQvsH+FVOYm2tek6m3WA5topD/T8uN0h0yJOOxX57ntRQ2
PefFcp2b6PpalMHQZnndMwxtvWGMadz8rbXWJD/TO+e2m+phM8uerOxM70cy/R+Q20ljbYj+DlK8
98vYLpZT18pjXE/ncD0N3dg/NmNrM2lf7s1MX24ez/+XbZOMTOmjLf6Vz2l18kfA3pheJ/9eAE5a
BZNT8MYUeKdg11VIXIWxTw5/gv/jSoHn2SsXruAlH/d8/OzHpORjMH4MKnRZuJy4nLw8dPnEZYXG
+BHo0Idg+rfJKs/70ffafh39VRt6D+Ym3ht7b/w9wqT2jvdU2qb3gLT9iogeYcI7UTIxNDE2cXFi
cuLKhGrsR4d/hH/4QsRjfMHzAvacXXJ211mSfAqMT3mewonjyeP48KNgfNTzaORR8sixYs+x5hzP
14/meSaPXjkqv3y0/Kje1NTzEOz62qGv4aG9Y3sP7yVjew7vwc9uu7ANjyQKPIObw57NzSGPI5rV
poySNgWZll/S07A6mN+U7JE8PRSos6PE09Fc4LFEzW087SxHAY3EI98kHySHyAWiVC1L5HiW0u9k
4koCG5d4lkSWyO/P7G3x0YoWDi0cW0gWNBV44s1VHmOzpznS/Ebz+80fNyt6muFx+tf0bNOFJiI1
FUSapKYcX1N23NUmRm1tQtTYhgG1QRS1RYzT7I5Ij3GXkV38ROwQmIfzcPh06/JwuOW8cnpZy7gq
0TkO940Hl7NfaWnHuOK+cdTW0dl+GuDvVu154AFU724ZL13ePp50r2oZ76MBiQXGaEBwnxZR/aqR
kVH5nVAQDtPgVvqLwltpUvdIOhGFZ7JReARGRtDICIRZnhykKWgkzJJZCisDtGT3CGI/LDcsQ7HQ
yEhW9/8BBkb1aQplbmRzdHJlYW0KZW5kb2JqCgozOSAwIG9iagoxOTcxOAplbmRvYmoKCjQwIDAg
b2JqCjw8L1R5cGUvRm9udERlc2NyaXB0b3IvRm9udE5hbWUvQ0FBQUFBK0xpYmVyYXRpb25TZXJp
ZgovRmxhZ3MgNAovRm9udEJCb3hbLTE3NiAtMzAzIDEwMDUgOTgxXS9JdGFsaWNBbmdsZSAwCi9B
c2NlbnQgODkxCi9EZXNjZW50IC0yMTYKL0NhcEhlaWdodCA5ODEKL1N0ZW1WIDgwCi9Gb250Rmls
ZTIgMzggMCBSCj4+CmVuZG9iagoKNDEgMCBvYmoKPDwvTGVuZ3RoIDUxOC9GaWx0ZXIvRmxhdGVE
ZWNvZGU+PgpzdHJlYW0KeJxdlMuOm0AQRfd8RS8nixFQ3cBYspA89ljyIg/Fkw/A0PYgjQFhvPDf
p2/dTiJlYevQ3CoOBU26PewOQ7+kP+axPfrFnPuhm/1tvM+tNyd/6YckF9P17RKP9L+9NlOShtrj
47b462E4j+t1kv4M527L/DBPm248+S9J+n3u/NwPF/P0a3sMx8f7NH36qx8WkyV1bTp/Dn2+NtO3
5upTrXo+dOF0vzyeQ8m/wPtj8kb0OKdKO3b+NjWtn5vh4pN1ltVmvd/XiR+6/86VK5aczu1HM4do
HqJZ5lwdWJTLPdiSLdgpVwW44PoOXJJ1vSK/gV+Y154rZcnAG2YE/MqM8lbZbsA7ZnLwG9c1syej
T56Rkcnpb3GtnP4Ct5z+dgWmf6G10R/XyqN/BY7+mqe/24Lp7zCHnP7yCqa/aIb+ldbSv9Ce9C81
T3+HdaF/BR+hf4F7lDh/9BT6O3hK9Mc9Cv2tZuhvX8D0t3gWEv21f5w/novQ3yrT38FZ6F9qf/o7
zFDoX5Vg+heYg6W/w3ti6V/CwdLfaob+BWptfH90Pc5f1+nv8Bwt/SvMx9Lfaob+lWboX+m1or8y
/UWZ/qJu9HeYiaX/Bv0d/QX37uL7j/m7+P5oJvprhv4OPo7+RaGbK+4ibDN8B/5sX9Pe5zlsXf1Y
6J7Fbu0H//d7Mo0TqvT3Gxv+DN0KZW5kc3RyZWFtCmVuZG9iagoKNDIgMCBvYmoKPDwvVHlwZS9G
b250L1N1YnR5cGUvVHJ1ZVR5cGUvQmFzZUZvbnQvQ0FBQUFBK0xpYmVyYXRpb25TZXJpZgovRmly
c3RDaGFyIDAKL0xhc3RDaGFyIDY5Ci9XaWR0aHNbMzY1IDcyMiA1MDAgNDQzIDUwMCA3NzcgNDQz
IDUwMCAyNzcgMjUwIDUwMCAzMzMgMjc3IDQ0MyA1MDAgNTAwCjUwMCA1MDAgMzMzIDUwMCA1NTYg
Mjc3IDUwMCAyNzcgNjEwIDY2NiA1NjMgMjUwIDUwMCA5NDMgNTAwIDcyMgo1MDAgNjY2IDI3NyAz
ODkgNjEwIDU2MyA1MDAgNTAwIDkyMCAyNTAgNTYzIDMzMyA1MDAgODg5IDUwMCA1NTYKNzIyIDUw
MCA1MDAgNzIyIDM4OSAzMzMgNzIyIDcyMiA1MDAgNTAwIDUwMCA3MjIgMzMzIDI3NyA2MTAgNTAw
CjMzMyA2NjYgMTgwIDcyMiA1NTYgNzIyIF0KL0ZvbnREZXNjcmlwdG9yIDQwIDAgUgovVG9Vbmlj
b2RlIDQxIDAgUgo+PgplbmRvYmoKCjQzIDAgb2JqCjw8L0xlbmd0aCA0NCAwIFIvRmlsdGVyL0Zs
YXRlRGVjb2RlL0xlbmd0aDEgMTI0ODg+PgpzdHJlYW0KeJzlemt4W9Wx6Jq99Zash/W0JVlbll+K
rIctPxM/tl+SHDtYfmIbHFux5UcSP2IpCQFKUsiB4BAgFChQaEKg3JaWREkpdSiF0Kbc9ty2wNfX
OYemcE45PaUlhXsv0PO1jX1nbclOArT3ce733R93y3vvWTOzZs2aNWtmlqzk4u44UZEDhCX8+Gxs
ob++K0II+SEhkD2+J8m92LWtBOG3CGH4yYWp2ZLgG38gRMQRIhVP7dw3OXQnc5QQJfJYRNPx2MTF
xqoyQlylKKNqGhHnVh6UYnsC2wXTs8kbqtgfonzXIWxv3Tk/Hru9+UwTtn+L7fLZ2A0LBvEQi6w2
bHNzsdn47y5ck4vtOkJkhxbmE8mCrxpWCCk9T+kLi/GF52Uf3oLttwlh8SaAH3qpEJTQNsOKxBKp
TK5QqrLUGq0uW28wmszk/5tLfIQY8VlPNGReXC/uvJrKfo3k0Pfqu1c+V3690rn6p/+bWsjWgKfI
KfI58o/klUw7RKJkhnwGMVdeL5PvI99epEXJMHn6r4r9GllGOr2iZIzcSh7+K3z/hVSTXyDPF8iz
67gfkJvILDmCI0dRi0EohxD5b+QM2U7+iXwPoS1pttVfk0fJTxk1WUm30ZKETArgJDnHvLEu7yHm
ONnMUB98GClRAddMmuHL5FE4hiPcvT7juk/o9xlyJz57yDTZQ+7IjNPMmMU9jILcgj13ImIjGSCt
ZIossGqW+vhXYD8cxneKfCkjZYD4VjpXcHdKI+x25jmGufQ5xB7FPkdJDNDCzBG2iTIy/lUtzuo8
CaySlamVQfgB/BytFyK/hUW00Bw5svIo2Q5Pi3XwLN82NNjf19vTHe26Zktnx+b2SDjU1trS3MQ3
NtTXbdpYW1NdVVkW8Pu8pSXFRYUFrnynw2LQaTXqLKVCLpNKxCKWAVLa5gqNcamisZSoyBWJeGnb
FUNE7ArEWIpDVOhqnhQ3JrBxV3PyyDn5MU4+zcmvc4KWqyN13lKuzcWlftTq4pZhuHsQ4SOtriEu
dVGAtwiwqEhoZGHD6cQeXJtlupVLwRjXlgrtmV5qG2tFeaeVihZXS1zhLSWnFUoElQilSlwLp6Gk
AQSAKWnbeJohsiw6bIotbItNpKLdg22tVqdzyFvanlK7WgUSaRFEpiQtKakgkpuhqpPD3OnSc0t3
LWvJtjGPasI1Ebt+MMXGsO8S27a0dEdK50m5Xa0p941vW3Dm8VSpq7Ut5aFSO3rWx+m4PCSkxIVa
F7f0IcHpuC6+ezUmlsFICrUfEgqG0LxLSyEXF1oaW4otrx7Y5uK0rqXTKtXSQhtamEQHsdfy6vOH
ranQXUMp7dg0bMxMNtTTkdJ3XzeYYgpD3HQMMfjX6HLWWJ26oTWe6F8jEzQEmgNt6nTSiR9e5sk2
bKQOdA+m2xzZZj1DeL9nKMWMUcq5NYqxn1IOrFHWu4+5cDU7egeXUqLC9glXG9r4cCx1YBv603a6
FC5tSv2R1elaytZxtf4hgZdDrdonZriUuAjNgr2u7ICeQrssaYWG+qP066IVByjSZXO1LhRD5bS5
2sYyf3umLSiA85amIp700vcNpvhWBPhYZo3aTgf82CM2hks00yosX8rvWkgZXM3r60nVapvpHRS6
ZLqlDC0pMjae6ZXyt7XSkbm2pbHWtApUlqt78CwJrr51uoKzfj1IKshQK2U2taBfFbUtDU5Mphxj
1gncaZPcoNWZ4odwgYdcg/Eh6mhoIfdbOJxTGDHFtPQNdvS6OrqHB2syiqQJVJyosO1jYlyD1rQY
dLmUrFDGDTJWdggZtYjgQgi4muvwmZIWyvDWosEFLHXV5jpuEKxkjRvVSLm5tnhrho+2rxIqpu7U
ElmTJqFNlNMSsTqHnOnLW8ogmcsMjD1k1KiRNRJbiJEAcQyKEVDUlhbq89ygK+4ack1zKT46SOdG
zSNYOWMMweaZteq7qnWFsdBMxInktQY1ZirksV5p3FRYaK83Ix8jt6+RuSWZq6N3iQp3ZQQS1Lw9
RagL8zU6q7D76X52hWK4iXFHC/t56TTP0708Tbftkqt9YsnVO1gncGME+Yz1RjpWNumAjr5mbykG
s+bTLjjUfZqHQ73Dg2e1WHod6hs8wwDTMtY8dLoAaYNnOUJ4ActQLEXSBkcbVFIPNmQCv/UsT8gB
gSoSEEJ7fBmIgJOt4YCMLzNpnHYNxyBOlMbxAo5euEqWabQxxu82boKuz81D00tjQ9THiQktgn+Q
AlcDWsfVcBoYiSqlcMWbU0pXM8U3UnxjGi+heCl6BpjAW3rjkrbN9aHFKyRNzL6EmRD3Y6UsJb7T
QPx1Z6Si31wsPy0R/7LuDMsgSE6zFC2m6DNSSd5f6s4AxQd1Tl2hU+dsZbiVAnhoZVrc/6evtop+
ROWuHlrpZL/Dfo+4MMfv4xUzXvCUwk0eMC2vnvuGXBWxRAII8bUIBgJ1+zbCxgItkYT3qUA1o4Q+
JVQq25RMkRKkSrOSUbqjDpO2skevVXVpNBJll9xKGi+WN14UHuAfoVdw5GI5XiO6oN9zsSzgQVS1
mtWAWepsBH1xtVPaAMHyPMZoUItc+T6mOo8NljeIKit8jCtfzUjfAZFIDKXHZSvNsn1vTMlAru8/
Fq7dFnEXhiZuvq/H4PdvUGRjsMuu3Ratdxutvk1cbmNLSx6jcjht8hWL328R/STH+9DAdZ6+z/QM
PHF037VlrEQ2p9YrRf6enfsO1DUO1eYaCoJc2vaNq++yo2ijIhJEG7mT5QfLmWTZwTKmlgNljjXH
k8MOMJMM08bAqG5ex+h0JLK/FEqp4YrkWZHS0srXKqFYFpm3glXcVVxs8kfztV3aUe28ltVqs7pN
JrRS0D/SeDG71k/NdLF8F7UOvv0jZQHBaiNgwLmrwWjIY4LlVdVmNUuNU1nRIKLGgga2sqKI2ocd
7Xns3x4AVh/oaRx+qNnODcQXNvbf0rehJDKx+7ZWPh4qvPTY7JOzVfUbN033bmT+vSk50qiQF+WW
XR/x1BdvsG7055UN39o99MSRRI/XUd2xsiyr3DIarIl07KE1HZB2rN2/ivYoJlNniRknaZDrIo6c
cP5xAtcSYKtJGK22vLrMFyrbWaInDEOIW6OWycPKqAIUjq58o0bG9hi0yi61Rm4kjYKDpD0kSJ0D
Jz864hkZHaFNdBFIT03KutL+wWb8AzHoNfoGlvnvgYoNgz0hy9xTD++Rgcla1Ds0EvB1VNrFMplo
8DbZyk8mRTKpiHnXW1Pc0FV8aYmdyvGeK4vWOCwV0WqVOxA0rYDFy4RMAV8Rat+w+nuRGM8vDlJO
7uNrW8v6yibK2IHiyWKmsAj2FIKBwy2hVMKgHMJykCsiVdKQlJFKBiUgKefUpD4LHsuCLOoDJciZ
lVXRWHGq4qWKVytEGyLzpv0mxuSK2rVqf4/OpOjKMkq68JxC7bC2VS6mXWBXkF64WdAZRqgzeARn
aGAbAU1Bp1+thsueYDL7sKUWrbkJ7iuJTMp6HpFB6/u7ZCu/tvc9Eq7bFiouCo3ffDRa3q10ba6s
2hptLDXbvJscNbfVs8+ovGU+zQcW75/O5ngfHRzyXXtL18AT9+69NqBKmHN9XdtvvJWnG6S9Ge20
iA7xZzzZSYmVbObtGrvD7rezx+wg25ydLSURkYZ1sMwxdpVlWGoLLdqCzeo1i0RdEg3pYo2ZOYMw
VQxW/osju8oChXRZcX56XOPM5BjBzQsek62cffizMvA06PJKTKbiPJ0ur9hkKsnThXK87GSOF4JX
IpFJ2MOAce48e54YSBN5iJ9sb4DaGoj7d/uZPj8Qn9bH2HlUbUoNA2oozILdKij1RJqM4jck8KwE
npDAPsmdEmZaAmyFBFwSYIhEK2EkkpaxKqiq0kYcdd1lzmqori6zKqNFWiPpyTVlYh/ubC1OkO5w
XFLq1aPpQBgUvJuCwqKOFJY3MNV6H0t9nS5g4dV73Mym28XVQXMehkhkhhP54dZ6y5ylqHCDNXpo
vNq4gQeHoW0gFmiebCso2Tx1y9Gu/IHhfueX9e0Lj05WTV7bZsz2FhQkejZPtRTKp3NKyi3MdolC
wl7/0Csz5QONBTWmhtqSssGbNg996ejeAb9UqZH9pXnnw2OlamOO8u1bXKWe9liVYNN6jIvfxTig
weyxk/cdzIeqfLjdCRK7yc4ctkCtBe40Y3TO0TN71FCQhSYEjxhuZ8ARkVFnyMHgKJMVHi8EEpk3
7jcyRmU0V8tGtSaS9omRi2tZYuTKS28w0dlnAp7+Cv+gMeHizNa2/bFNM9tabxnb+GL3HbHKjsOv
3Jx5Q98d9/Qe/c+7l+7pOfqDFWfV5H3X7/75E7G1txDfhlffZbaJPot7fwffOmFOmg+a2SweY5zG
6XAy+53vORlpNBc0uZCba8shYY1JYzDoAxpwakCmsWgYjd4WzbFYTDkaiYTtVqSje2Mw6NdeLBeS
IIK6IDbQ3Wk+3EWzYCGdFI3rmd1cVa13NTJBaVDqYtUAMq/LEyk0Bvdt2cB7jArJ+E2yv7uTL/yF
9hcxmeKk14uRpCBoDbSU2DfnM15v8c9+1nfpDXeIzud2QkTviuuJmbTzHg2HUSnLYBxm5IocBaNQ
KtlG5k0snDREuYAZXGlgx1SskRkl2Wn3pToGaWAO+oMjVGcEywJBTNXU+Bpw6Z2sq9oHHsBglFL8
46vBpq2tAT3fUiPy1bQqXHfvLnv1dUWlVfR5ViIVvQ6bVr73ulT55x3WSqobza170YfcZIoPS/JM
eUV5rFJmlXlkLCUTzgQmk+e4Bw54XvMwzsg85g9bVHe35YuWP1hWLCJiAYtFp+1yj7rn3azbXdQt
Xkum1LbatBPRUDoSTOfST2wqV7EQMpn1kCnJ2RJbrO/b37fBe83MDZ/li3o6m0zeaq29pzZ820S9
varT339/093mmrL84MiBa+LPHNm5uUiu0ctX/nTSnh89+vf7WmMN9o0b6AQ201yJeaSU7D9LdOjz
uehHYRYGCeTow7bj+XBtPmbM/HA+k08zpg4zZr4+n2Hy830b5KwnDMurb/E23CiANgISxbqi1JjT
ZTPKC3vUWoyg6axB4wxdJNwvnk/JoBhhhHShZj8leVauZ1eoxuTJDYoUcjmTHx0eC34yg9I82x2y
zH9JHLF4V/TGmgqP1Nu1Mf9T0qjKW1NUf03xpTuEWPF79usYf/OwhprlSzL5dKoYBooBE2qyEBQ0
ocoA8kgk6BDVs/AYC0LKsNOUwVa6I/Oq/SpGZdcWRPVaka9HalrPH5nZX1zPmMKcM0H1kymyqroB
qquqg9LLoVaIpqxxLUPSarIojNVktHk+yIpYmVihqvqWPr/Qndt3x9ZyTJWcs7lxU25IyJCXy0iT
gWEZiUiq2JuVrRKPP/adMZopzcXlVly7WQyaKvQFKeniFQ45EDm8JwcxXeASXGCxaEgEIsyZDtbP
NrLsezRpalmODbAsi+mSkC7GuBYYR3bhxqSLPbLrinQJDpoeL9L0iJrRFaI+aME99ibm6FqS4ncn
g8AHYMEPvX7g/LDoA94H+d5tXmahFPo8MLEBJorgYTMcNsM+M9TpO/XMPTqo18GwFu7RwA45DMuh
7HpVyfVGThXABTGqjLUOu30T1JaocqWjVfTrUCz4qvSu0VySB3l5uSKSzoHpZ3ZtLfiDuFRBhPwU
o/14gL8c6THTselY75Okg7zpqh0rMQoVQlFxZxNoazdf6+/fP+AJROPb49FA075ndo4/1lrWJOYW
N7fPtHBlXZMzk11lTbeeP3jLD5oh8ZLF49S7t+xsrYryVdWNvTvbr1+6zmfUrbzz1dyCopbhivKO
+soavmdHePyLc5uCG9CWZqwjCsUnSC65le/qkGHwOaV6SfWqio2qxlQLKlalsmlsx2zMqg1GbfO2
/bY3bas2MW+DXDMJi/EsWAltwAKTGxWbNbqoPKDm1VH1a+q31GI1dXZ5njOiVqNv4MGpkXoztZqQ
NahTYwW4a1EnJA0/mkzvoimCnpZMZqmruCgdkDFhfPupfz4he1pV8u3Hva25rjK9vdpVVmjNsr+u
fn2lU6wqK25+83Wl7Pyi0dE0EXq0D+eVgznvTYzDfrLMNyZ9B31M0nvQy0x6QJlrzfXksjeZDpuY
ThNsMoHSaDV6jGy7ATYZQAQGKACWhHXusOVe3XE8/tB58HJ1xMIbLRGdRWeRcHx2boTjyl7C4ljn
Zoui9l86ocIJTqddq4qyINVJd0k/KxU5pUelj0tZqZQ1CS6zK+0za04jFAOC03g8n3QbMEioI6wX
R+gyojWXkaZdBr0lT8Q8e+67w3cH3F5d7midN1qXv2lwanBT9ci+lsjtDYV+te3aYM+2TcNTw5vA
8PmjbuO/3GkrzXa3BStC1eVNw60d25vzjOrXd+Y4OrrKmqsrW0fpHptc/S37HPs1PBPN8tlmTq6N
KBVhPPLcKYcb8HhATWLBOCaXu/NJ2BHNgemcG3IO5bDdOZCzvPoab1JkReQIO7qcGg0ejUx4NDLK
NZmjkbDlMZzRClmIcWu1o6cwXQpV64Ppo8BabkNMOt6Dai1i05PRyu+uOBlJ5aLBeRnkCHH95XSw
Zm74yyM53pfLorV4MOqqUZUEgmZYsXgvfUs4GAn1UQT3gB7jmJUx8AaJpchSZWFVcg1oWaHy+7Gd
zjb3+z+MLNoBeHvUPmZnK+ygtXN25qAdBHLO2RcjlMC02oGzB+yMyG6wMx9kqIYTX40E7EBxBXb2
i2/bP7AzlPDcAw9jrzSP+e6jEWKH9+1AmSrs5+0/tb9tlwi02YN3UFqBvdXeZ3/S/qxA+sAu01KZ
MCvIS9nPpUfts0/Yk8gloa/7ETiPZAl2F9hes0PSflAQct4uVtqhnvZJs563S36a0UZTUxf5Qpp1
fY53GswRpd1q77CzST3o9UqxmLyvVFqVjFxp+FBPxB9K/ojiz9nhWTs8aYd77XCQioAxO/TZ0XIQ
oMaBtNYfUIUAxzsv8B+3w/1r/BNX8KOGr13ZE+fxB2Z0q7BDtl4dXHdddWUyy9aRi7Q49dMzya5d
nl2LW9Osi4sChJhdix78bE0zCCyLi6OLnq1YXeE4W0eqMZ2aMbXSErYqGzOtFKsONfzZVDHAa8aO
xspVaufiV359n+bmL+1oNOnMt3Us3bTd3Vdz4NEX9zbfec23wfpPT4X7ms5e+OiWrc+tfd9QII4Q
Bang8xRk7gaMIhoxnBKDmFeqI2KJXCqVS8UkwViEkjXoz65NnydH6B4pFOPGKNSLqwuDjAnUikt+
BZhfXnlLAScrotZKrExDscpfEVg9ttLJ7EC/zmX0fJ7EvMfMKORit7hWzKrYbFu+jRHZ4AMb3G4D
G13exrMvRHps22xMqw3KbVBgA4nNZGNesf3c9pGNTdoO2u63sSHbgG3SxlakiUU29ou/QSpzPiNj
2wMPRfoorchWZQvZRCjeJMAP2p6yUUm/sclw1CKkPWV7Tmh/ZJMaaA+YpRKp9D1IeUWgyCVC80Fs
fmST7LHdbmOEYX4c3hyR26D+K4L27Tg47/FFHhRGYN22IRvzlA1mbBCyAbIZ3pdL1IBZSEIgixCJ
HHRy9YcaAh+SPz5ng302GBBmXISsNkgb5W0b/NQGOC1kQFn3CwPtscGkwLxuoTT/R2v8r9jgWRs8
KfAftEFS4Ed78AJ/pgOxwctMwAacDbRC6z3BJQWfHv0bDi34LL3WPTuIt06oQdLcHsGp0VHSrk07
eNJunpFFnX0x49ZsdQP+Af0asrg6jzUapBJGDTHNzU/uaDTrTKbgtejd920rtzoTX/n1Smdf0/MX
/rh/5BsDae+u3f+FF2+48dFvr7z9xn/K/FKA/QnWZAXkRr54PB9C+XDQCYtOGHdCvxOKOJh0gCjX
kMsUSOA2MewS00JxmS/StE+IoKDANifX62Fevl/OyOVFAHqdntHrVQmzlHHtgfQ+oKcgEPZydi09
evrXa+LM5YbqBnGm+qcHucvfu0qdbOVffpg7//fP3DVelVzIq68t1/PN3ujnB2JHxwJ1Ox78xo9n
mac/13vPHXc8+PT0jm14+lE8CUx2jrtze/PYlx48fPhe+l9oWL2EtedZnGcD+QKfXxUMBQeCrCRg
CjAlubDdcKNhycAOaaDSXD5v3zifnU2dtVmTHenOBi47kM1ns8Xm7GxzMSvGeGfns7QRu50X89k5
EXGlKWE2e7NIsbaYKS7mEl5pVoKMYWiQkBzSWC7Um8JXLvQ7VRoPhMSZbcbqgQY3Wj7oajMFhJh+
q3JFrVnkh8bL36gKpsmcmiRSuvRqBuJl8dFerrBZlb2xNZwXOzRQcufBhProlu1Ntun5vLoawV75
Le295aOfm6g49c22ha4Nvfd9z6DQmVSQ+4I6x6hyd9/Yc/MBhaxHLvZds6Npbj5jRblWJXF37Gx5
4IVcRaBjon778Z1VwmGYgO73z//IWz6qqfuQONK/a3j1rn81rv0rn36bjyf9E1h+y2gJTtL5mkid
K23k2vX/+E8Q+1W/ADAz75JWEfZmj5BGESHteDcwtWQR34B3PcLDogS5PUPfnMHN0iEQtiBsZu0k
B+FJ5mkSoTKYp1ePiQQPEMYoJS9CCJaZTuY4u5l9TpQn2in6pXhM/C+SPPyclwakr8lC8lvkZxS/
VV6vYtJ6EwtpzsyDIVqsTYdx17wuOkZYAYuhJfOLG4JHDpKBATnHMjBDJGQhA7Mkn+zJwCJiJg9l
YDFRk1MZWEJM5NsZWEpuJD/JwDJigC0ZWE5w12dgJeowv/6rHx8czsBZZB7OZmA12rIERweRHFvn
mMkMDIRjizIwQ1RsKAOzpJXtycAi4mMfzMBiYsPzcxqWkFL2rQwsJR+IVBlYRkrEJAPLiU28Nq6S
1IhbM7CKXC++OQNnkV+J/yEDq8nNkuda5hf2Lc5MTSe5knE3Vx4IVHM98QkuEkuWcu1z4z6uaedO
TmBIcIvxRHxxT3zCx3W2N7f1NPW1d13DzSS4GJdcjE3EZ2OLO7j5yav7d85siy/GkjPzc1xvfHFm
sj0Z2zkz3pQYj89NxBc5L/dxBi7N8VfQA/HFBMWV+QLVvorLTAKP9xNd/yfK4YymZhLJ+CIiZ+a4
fl+vj4vGkvG5JBebm+D61jt2TU7OjMcF5Hh8MRlD5vnkNOq/fffiTGJiZpyOlvCtT6tlfnFhPqNZ
Mr4nzm2JJZPxxPzcdDK5sNHv37t3ry+WYR5HXt/4/Kz/b9GS+xbiE/HEzNQcGsA3nZzd2YkKzSVQ
8d3CiKjNlaYMzc/hgu1M85RyiXico+ITKH8yPoGqLSzOb4+PJ33zi1P+vTM7ZvxpeTNzU/7LYqiU
zDj/sd6khczjvtxHFskMmSLTJEk4UkLGiRvf5SSAn2qEekgcYxVHIiSGHKUItZM55PIh1ER24oe7
QkJCaMXxHcf3HqEv5ezEXs2kDaU1kT6Eu8g1iJ0R+GN4J5E7hrxxMovvRbIDcfNk8m+O34n9twnj
UMoM8s8htVfAzGDfdsTGUL8Z5G7CkcaRMieMsYh8XkGrvy2Bu0rG/x73gIBPrPOVocbUoj5S8amS
Lsvx/i+M+h+zXHqNpgQpSUF2mnNGkN2PHL0CV1ToSa2WFEabE7j6PmXELhxxUtA3fgXnuCCbziUt
eR7h6Yz9t5PdwnwTyEn7rc0tgSN/crWory6it85/zGZUuz3CmFsEfFLwPUqbFloLZCNmLD/ZK3x8
yHO15PGMXJ8AzSLn/2m/JO6kBcGOcWHVp5A37QE+QeYsrmdnxkJzwv6gFtp9xRzTtvlrXhkS3ukd
tvMqOXRl6Zv2XdM+kdF/UhgnbbUFfM6j3eOCtX0CdkqY4wyu4QxCV+pHV2wqg/u4Nmu6XD2f/5dj
s1h3vff0uVUnmSCfcr1EoiDFZO8XnqdAxOvgtUvw0iXQXoL5PwP/Z/j3ZdDw2W7HH62rjo+iJY4P
o3WO//p+neMs6CGbP1jn+MPFOse74VXHb6Nux7/h/Zu36xz/Gq10vI33Pz8bdLz1bK7jd+8EHW9e
CDp+xQYd/ndG39n/zql3RBoETr2z+g6m9wtQ57/QeGH/hZcuiCjQdeEUgq9eWL0g1VyAX2Kvf4ja
HL/A++d4/yy66vjB9+sd3++qc3y3y42qKNM6+r8Djd+55zvMy4+vOl5CVZYh60w4G1+qbyLmxa1u
h2YZFLwcvvVMheP5Z1YdtKIPni0oCZ2NFjgavwnPYaeXngXNqdFT86eOnRItnDxw8t6TLHcycJI/
+drJt06+f1LyDPK8ADpSD1rSD9oz1jocQM373Gy/5gnwn4B7TsDqCRg7sXDiwAn2K9mrji+zq47j
wez+R7HnF3rrHE9urhNGNj7uLAgde/zU48wjqOXDm1cdDyLlBbCDGZONAyxf73U7Gp/HVheY+c3M
A/fXOTT377+fkX8uWu+4D++jaIl776p33HPE7bj7SL2DHIFNmiNwFw5yx61ux8Fb6xwLtx64ldmz
u87x/m5IJjY4EoJdjLx1we2Yn/M45sIbHLlKa39O0NIvDbL9ElT2BcgFg6BCztdHgw5+GQxnCopD
qPPXY54AffOqmMMVGhvlHaNUHiIeGcnNC10f5hzXDQccw2G3wwDZ/XqctRjYfhEK1gj/OBhl97On
WMlY70LvgV62p9vv6EYBb0XfjzKaLkeXv4vtCAcdm9Ee7eE6RyRc49CEHWF/+NXwm+H3wpJjYbSO
td8WsfabgsZ+HWj6tUFNPwO4FEHS79esahiNZlSzX8NqSCNhDphADMtw7+m+Xo+nY1m62tORkkev
S8GhVGEvffLdwynJoRTpH75u8DTA3UN/d+QIabZ3pMp7B1Nj9qGO1AQCPAUOIKC1nzaR5qFEIulJ
X5DYTV9kNyISCQEjtD2XL0i3k8hLgd1bE2k8vhNpamKtA8rdLVDxBQniEeBERgCOCeuCkXNrYqug
Bqz1FqgZlgS9AG/L/wAofGM6CmVuZHN0cmVhbQplbmRvYmoKCjQ0IDAgb2JqCjgxOTMKZW5kb2Jq
Cgo0NSAwIG9iago8PC9UeXBlL0ZvbnREZXNjcmlwdG9yL0ZvbnROYW1lL0RBQUFBQStMaWJlcmF0
aW9uU2VyaWYtSXRhbGljCi9GbGFncyA2OAovRm9udEJCb3hbLTE3NiAtMzAzIDEwODYgOTgwXS9J
dGFsaWNBbmdsZSAtMzAKL0FzY2VudCA4OTEKL0Rlc2NlbnQgLTIxNgovQ2FwSGVpZ2h0IDk4MAov
U3RlbVYgODAKL0ZvbnRGaWxlMiA0MyAwIFIKPj4KZW5kb2JqCgo0NiAwIG9iago8PC9MZW5ndGgg
MzI2L0ZpbHRlci9GbGF0ZURlY29kZT4+CnN0cmVhbQp4nF2STW6DMBCF9z6Fl+kiApskJBJCSkmQ
WPRHpT0AsYcUqRjLOAtuX48nbaUuQN/Y742eZpxUzakxg09e3aRa8LwfjHYwTzengF/gOhgmJNeD
8vcq/tXYWZYEb7vMHsbG9FNRsOQt3M3eLXx11NMFHljy4jS4wVz56qNqQ93erP2CEYznKStLrqEP
fZ46+9yNkETXutHhevDLOlj+BO+LBS5jLSiKmjTMtlPgOnMFVqRpyYu6LhkY/e9OZmS59Oqzc0Eq
gjRN87QMLCPvtsgZ8Rl5Q7xB3hIfkHfEOXJOXCPvqWfUHyJvIx9JkyE/Eu+RK2KBfCKukM+RZcxW
Ux/0ipQ0O+R7/nhO+XPMLyi/xP6C8mfYX1B+ifkF5c8kMuXPsji0+3RwfLjfn7VwdXMurCQ+grgL
3MJg4Ped2MmiK37fXgygygplbmRzdHJlYW0KZW5kb2JqCgo0NyAwIG9iago8PC9UeXBlL0ZvbnQv
U3VidHlwZS9UcnVlVHlwZS9CYXNlRm9udC9EQUFBQUErTGliZXJhdGlvblNlcmlmLUl0YWxpYwov
Rmlyc3RDaGFyIDAKL0xhc3RDaGFyIDIzCi9XaWR0aHNbMzY1IDUwMCA0NDMgNTAwIDUwMCAyNzcg
NTAwIDUwMCAyNzcgNTU2IDQ0MyA1MDAgNTAwIDI3NyAyNTAgNTAwCjI3NyAzODkgNTAwIDMzMyA1
MDAgMzMzIDUwMCA1MDAgXQovRm9udERlc2NyaXB0b3IgNDUgMCBSCi9Ub1VuaWNvZGUgNDYgMCBS
Cj4+CmVuZG9iagoKNDggMCBvYmoKPDwvTGVuZ3RoIDQ5IDAgUi9GaWx0ZXIvRmxhdGVEZWNvZGUv
TGVuZ3RoMSAxODA4OD4+CnN0cmVhbQp4nN17C3hT15XuXuch6eh5ZMuybMnWkeWHLNmWLfmBwbaO
LVvIMeAHNtgQYxs/wASwsQ0JISmQEEhMXiSUkKYNNE3TkCZFBNKQzDTQNtNObpNCX5nJtFOYTtrb
3oGSr5PkTptg37WPJLAJbefeud93v+/KOuesvffaa++99tpr/2sfeWpi6zDRk12EJfLgpoHxFw+8
+Awh5G1CIGVw25R0uuv3FUhfJIQpGhlft8kT/PnvCeH0hKj5dRu3j5h+uHMPIToLIcW71g8PDLnq
CpF/wUGUUbkeM96deUKNaZRHctdvmrrjDt2zuzD9AaYf3Tg2OFD0i4v/TEg15pFbNg3cMd6k/hcO
05Rf2jywabjuXKkd05cI0dw1PjY5dQicM4Q0rKfl4xPD46dDx6YwfT/2ScI8wD/6wf6BiqYZluNV
ao2g1ekNRpNoTkm1pFnTbRmZdkdWtlNy5bjJ/9cf/m3+l+RufjdJI9uV+7wPt5BYyO2EzF6iqev3
mZX/d3uhiT9OkW+R4+QoeZecIF8iz5NDZB+5n3wOc1683l+QyBnyXfJ1TPwteYo89GfGtRtSyGso
bYK8TI6Rg+RJtOE/x7eBHCDfwNZXkyVkigzBe7Ab805jq58n0zBMPgYN5ECQXCa/w5a/in36OTlH
3kK6mvjmy4N/gbfIY9j32/D+Kt6fornMH8g08xjZzLzL7sY2HsARrcHsf1CqPAurMXUPtkw/a8gw
Gbuhk/fjKL9K7rw+gplf87tn/50YPv0auVcpPURGyZY5NZ5hGuiDdeLYCXlFydudLFRH2Q3MNxnm
6uOYOEDW4TUA72EvH2LryfOwHJrgCfKvZDt5kNmAPd1DHieNvBmOyU093V2dyzva21qXLV3Scktz
dHGkqTHcUC+H6mprFi2sXlBVWVFW6i8pLvIU5OflunNcTpvFLJqMBp1W0KhVPMcyQIqa3JF+KZbf
H+Py3dFoMU27BzBjYE5Gf0zCrMh8npjUr7BJ8zll5By5gVOOc8rXOEGUakhNcZHU5JZi7zS6pdOw
qr0b6Yca3T1S7LJCL1VoLl9JGDDhcmENqcm2vlGKQb/UFItsWz/d1N+I8k7otGF3eFhbXEROaHVI
6pCKedzjJ8BTBwrBeJoWnmCIxkCbjbF5TQNDsbb27qZGu8vVU1zUHDO6G5UiElZExlThmFoRKY3S
rpP90omis9MPnhbJ2n6ffsg9NHBrd4wdwLrTbNP09L6Y2RcrdDfGCu9834YjH44VuRubYj4qtaXj
Wjst15uEGJ8nuqXpjwgOx3350vycgUSOKk/8iFAyguqdno64pch0//TA6dlda92S6J4+oddPjzeh
hklbN9Y6Pfv6fnss8mBPTOxfDwsTg410tMRS21d3x5i8iLR+AHPwG3K7Fthd5p4kT9ufKyaoCFQH
6tTlogPff1omazER29XeHU9LZK39ZSL7fT0xpp+WnE2WpHXRkl3JkmvV+904my3Lu6djXF7zkLsJ
dbx/ILZrLdrTBjoVbjFm/Njuck+nmKVqf4/CK2GvmodGpRifj2rBWnMroKXQKtOikjB+HH9ctmMD
+eYUqdqNYqicJndTf+K7bb0NBUjFRbGoLz71nd0xuREJeSAxR00nSv1YY6Afp2i0UZm+mN89HrO4
G67NJ+1W0+jybqVKolrMEo6R/sFErZi/qZG2LDVN9zfGu0Bludu7XyPB2YsnyiX7ySApJz2NlNka
RrvKb5ruHhqJOfvtQ7jSRqRuuysm9+AE97i7h3uooaGGCi9icy6lxRgT7uxuWe5uaV/VvSDRkXgB
FcflNd0gxt1tj4tBk4tp8jRSN2Nne5BRxAwpgoS7oQbvMXWeBi8RFa7kUlNtqJG6wU6S3NiNWKHU
NNyY4KPpeUJ5ak7haFKaiiZRTjhqd/W44p/iIgaLpUTDWENDlRpNFrF56Akwj0ExShbVpY3avNTt
Hnb3uNdLMbmtm46NqkfRckIZis4Tc9U5LzVHWagm4sLiZIIqMxbx2ecqN7ZYSV9LRm8obk4WS9Ma
d8vyaSrcnRBIsOfNMUJNWF5gtiurn65nd2QAFzGuaGU9T5+QZbqW19NlO+1uHpp2L++uUbjRg9xt
v5O2lUJaoKWzobgInVnDCTfc335ChvuXr+p+TUSYdX9n98sMMOH+hp4TuVjW/ZpEiKzkMjSXZtKE
RBNUUgcmNAq//TWZkF1KKadkKOnB00CUPE0yD8jgaSaeJybzGMzj4nmykkc/OEu29ahj9N9N0hCd
n7t61k/391AbJ1bUCH4hBu461I677gQwKn1M6x5uiOncDTQ/RPND8XwVzVejZYAViovunBab3B/Z
ipXtnDTibYjvQlSsJiUngPhrXlZzqZcDJ1T8L2peZhkkyQmWZvM0+2W1yvJpzctA84NmlznPZXY1
MtJMLhyeWc93/enrjdw7FDwg7iGaEsRhpZz95F4RXKdnz57Myovi87xcm+aI7nEddJ1ysdtc0OkC
kJx50VboAwakdEf0HFyglNkS3QbQAqthB7DVAD4Aux9Mp2cvnkQm+pR1gjn6eUQUr2D/T8/+9mR6
dpQ+5VnBEJWk9MzoqARstwTNEkiSoI8CdLgKXUsEsAgCSNBhEkytNslis0kEOvyF/jWlxFJaSkTo
SLGlrDGLFrNZfE6AJwTYK8BiYaXARAu7C5knC+GOQlhXCJ7CBYVMeiEctj1vY9S2dNti20rbOhtv
EwoLBRtrLhVXlI6UMqWlASEADwSOBV4LvBf4XYAPyMWB6I4AVAeaAz0BtlB5jAYeCLwV+GNArQqA
IJghyyzrTFFzqd8lSCmSnzWzhTYCNhOwYgqK+yQAvwvAewF4KwCvBeBYAJ6kbQCKvU2epbIBuf44
nyVRHoCeALQked6aK+frAdgegFGFo1nhKAxARgCwU78JwPcCcCgAIwFYoeTHM3+q5D+nFO1Q6jYn
a6H0J7EL/xaAnwfgBwH4G6WBp5SObFc60qtwLwpAcQDsSgUc2OX5/Diw/Un+1UrHkd+n8OuSikD+
dxT+Y1S+/HSihdHkUBcpXcIaBsykdbBPF5Q2zgTguNKn/UnlXGvDP6eNK/OZH1GY5/Zjdn6njyQF
jikMJtQlc0VpEwVMTEz0rem9/tky5zNxw2ce42e4b1bjJpL/bPn8pkkoPegPmoPKA7/g963pXUOZ
fFsmzEF/74KU9Opav9+frExv+2yib5/vzZs+ykrB19vb1+vz+fBS6iCxhVKYdLnZErYgv0ClNoIa
3GwwNRvSremVVXVsFWCCxUSgjkGa/9yFxcCyLLCMLSPNnzLTe+Hhv2vlVQwDWVl6e2aGDo682sJw
lAMgq6giA772FrsztbSiKqNGDtWWb87/dDe/+9PdoR2BheVN4azamqp0dtOnj1sXLKrNCkea1m8v
Z3cqgQ/JwXgxjX+buMmzsl7jsDkYXI3oMNTU5awUTFGdHjr0LQajxWA0inj5DdBqeMRwxHDBwBkM
eRkkK5OszILMLOjIanHYLQ6H3SHa8S5rrVF7loNkGHVujjdk2ll9mqWNF7t7un0kdBm1juoNUa0H
/X5fzT7R5xPfhF5SvY8/e9YMQZu/d0u8hBbEddsLdWwwYE2zqNSsO7UOKsrz3TlGBhMQZI2sGnbm
RFeOhg9+3qDZ+crnNNrOPnnLrfXitpMgnWpRmYxaht3tX1LheGw6d1X+1UnmvoL27NbuYO+97Vef
4d+e+ZyrocqjpnqZfXBmJbcOI2kn+alcuRrAy0I+QSwDWmOmkUEPmm3LXuokFqcz4UFb4h50ka3F
ttrG2mxO8+nZD+SCPvOYeaeZ7TOD2axxim3OfidDb7ucrNPpklyyi2nVgAa3DDkVfbhJ49T4NaxG
TrFGNc5sG81PozuAzWljbGJ2itlExDR9G2+nKgyGgsGU6l6fYrtoab3UarcsSKn2b5nAe62/9zMG
ijokvdDrMrLunPyCqmwIBipDwCr2pxgifFQ1Mn5vl6sp22n2mfsOROzvvTquMuoF0EoFhanQ8f2+
L47XqdV7WX7XnX6u5OoLUufyxSnW0OIWN7NR2WddqMCP0KboPjv9yi7hvMAIdCBd/kC0VQCn4BeO
CMeFM8KsoGIiALxKDR3qFo63cDwv4tXPwS7uPMdw1IY4FW9Sc2lkORA0nQ8EuCjAeQHOChAT4KgA
8WXuS+gDFbFl4rrZKHZ0uRdXNI69KqiG1CALzpxTOTPLfnzqJ7z04ot/usgt/OR7ylrgZy+x73It
ZBF5QS7hFloWDi1ky6thaAGMV0JnBehcdpfPxfqybstC5GNhmHsqgETTAlFnGh1eGDfdNGeaU1vY
TLxHvUy/96L3Ay/r9dbqmse0x7WMXxvStmpZrWyyRLVpAb64PVfyPuplvN5cUWzndTreSkJBv4gD
8feKl1Oqq+m0brmszCpN4rDEy+LlslI6hYkPWIyMO6eEwbnEpVHHVJQjXcJWlNcxwUA2k64uAbpE
0ixIZ7Ps/sa7Xx7rfXA4nPq4yd/UF5JvW+rLbxqsrd/aU7F4+5dXddw/0qD/ivXOdRW9kcL8poGa
6q1raqC2a2dnoVS7etECT8hnTSuJBj3VvrzUtECkT+6YjLoctQNNGa0RMXdhYWGV15WaUrp4OO5f
emcvMbv4IpJFjsqdvIQOJSvLbDVonWa/udXcZz5uPmNWmWPOs05GJ6ZaTSYrmoLWpLW2qLUWtVqL
X512pxqcalBbM1O17QY1S92QwZTZxlqTviToN+NCEC8HUlBl6DaCfhJ5NdujFdXqbK1PrEE91vjE
6D5e9Ink2/t4tIx9Z88Cuhg/rhkzLpiyUl+eETWVX1FeWZXqrgqisQTVbtYIaRYrrpEqOJvXXdo1
oOU/d3fmztE7/H+f+fd3cxpvaWZxFieYRjql5gzmkXv/8Id7r+6wLDR7S9TqpH9VtXBLST3b9xrx
IZxDmOOmvnVWZ4xWm4GV66GjvoWAhQCIeBHSECgtg46ylkDQEggGRbzi2GYv3eG3B5hAIHwoDKNh
6AxDfjgSZoQwrAjvDX8z/G74N+GPwyohXBhm/hiG34ThyfBbYWZbGHrCUBkGSzg3zKjCoHYYTUYT
QsIW0WwR0WvRi641cVGbV8xzGGUIlpodaiK05YhWU1nAJNaLAZakob5/F4b3wvC9MHwzDM+F4WAY
9oYBW1ir9KcxDIEw5IbBGsbgAj4Mw/theDcMb4bhVBieDcNjYdij8MuzQ7TbEFF6Fq+BXftvN1TB
JnCw94RhKgwjySawghSGlDBwYfg4yf+9ZBOHkk3EG2hMDH0ec7wn2POJOWzlVJ+0H8j5hY8V/f1U
kfucwjqi8FUqTHFZbypauNYeqgDaFEk4nA+Upt5UmtqjdL8zWaQLw4ZPwnI/XAzDeYUnprDtUtiG
FDbs70Wl+biE/UqmLwxEUWq81lFF/TuUolLUt6QUL7yilJ8JQxz99N0Ifm4OjrCg7y8y3ASM/SUs
djN+XKvpAT9CrVDoMm7+CL0uX9v+fcqahDXXqyoizRQH9M5FAuYUqLb55yGDvl7i87lS69jreAAT
VUF0jeqgghjS5+GG63zMwbs4Qc0vWVG9rqPGuO3kc2qDTg0vqASBY7PlJb2Ltj9slBqXD8v7DiCk
eHkeM3Mnxk8+U0trsPe+9qvPsstzWsKlar6oepGFYozbtwQ6Q+4k0kjyBm7d0371y0o8OvsOYowy
bhkpJCHyA1nXo4cVuhHdNh2rPT37jycNYtRDHcUGdBS5BcBJFilXYnMWl9ZCa+252gu1LKmF2tr6
/LKRsm1le8u4MlabvlcL6Vro0Lbo9BadTo9fvVPn14V0Z3TndBd0Kp2cnRvVsWXpLPG2ZYkIJ/Qm
rc5e2Uau+9IQfun00M1HcaSyRy/qdPINjlRBa9SL9sbnaAvuSwrQ7eURWbgtN5mGbIbOgJFNpbpX
0S2J7lhVlTgdjHfHUxLPaXSqjpN/1OgFHr7G8CqOy23pWlvTdldnkaC3d991NFeeXNuSnpoT6qms
G2qvs6avsaxfw7jL67JmenhVQXSRV9DkFges/sbitMCt97YHbg89/IN7atl/yO99+o61rfJgOCdv
9ZNT27t23BU/EwjPXuIC6J8zSJD0y2EMuqe8e7yMJQd2ZO3Hbd4G/hTQ6UDigSwuzYTWzHOZFzJZ
kgmZmRX9FeMVTMFig6w1RQ3OtjSxqE1jpTqkZn15C923E2pJ7tV09HS3rqiDqrhG1LhfK7ZId5qE
QuqAC+iN2bc9Ghvq/+JYLQj6rJEHT4xu+PKmBa/n1N9aXXHbQJvdoMsPr66sHF3TajfqmK+Xjy7a
8/pUxaItX1nvH6r83CvbFizY+NTg0o1NUsaSB6eqBr0dU1GXbenDW2uGEvsScwVtz0Um5Vv2qmCl
AMdd0OcaczEu2eOLuuRUK960xqjL5bZqBI0AHUKLVmfR6nQiXlq6XWg1OisrsG0OUTRphbS4BSUW
9w0LWwFiGBhtmaDqgDgoSRoIIveEfaQzPzT7M+WRpQHd5lPPqPU6LfsCK2gFjnPWNrQU6zLtNjX7
Aq+5ZeKBuqtvs3XuSMMiq7WmrtpSt3pRFsvxDM5pCc5pMY5NJsvJAbmXK7OU5ZaxunTQpdhTfCns
bYt3LN6/mN2Rvz+f8UQKCy2OelUwYqLnJgsjj6pgVgVEBSpVV/Nii6xNi1oa2u32ZUKJadwDfg94
PO62ElGuXdbGmihguxwIhC7TqUYcYa72K3OfmHq8U9yG+EIBbQpquw4z3AlbKK/jQsz1YKbg+lKZ
Az/URv6afXDOrLDU28WByt2yevyWZVvbPP72TTv2hH6r5tUb1pR1hYPiy6kNG5/a2DO9pkynuQWX
htfkNM58+n3PiuUtC1xpRfVFK++5tUJQqYWlS0xuY0XnImdg+cbq9m2dFdl6YHMzSiyrV5oKwsGs
unW3FBYt21jvXFkws9daYsnL5Vh4BttOlaqWVUm1/qya7nW+ZCxpxbVUQA68RnLQdXUj2MkwgY6z
c0x+AXQUzME5fgKt5Ai5gFECKczUG/QG6DC0GE0Wo8kk4mWkBmbUQ74pkyfqNklMs5gMxoI4CFE2
kutu6jOGdkPkiG7JNS9avGF3UFTNvDMnYDw1dyO4HlPOCxhvdPgJVx/3K0dQF5v4Q6gLH7lbzr/T
Me1gtBqvZpXmTs20hudZSNPypidF32GP6BHd/GH0LZk0inDrTdHMzOKcJ4+4j7sZdyZ5RASx8Eue
1py+nLGcIzlcTo7zNIgnCEcUq/Nf/WGvmaJeanO+RJhwWYkecKVRm1NsiToYVu3GcdPdj7ocFTU0
GhMx3xo+OlZTO7C9xtsqFwvHDfU964Ol3Y2e/Kb+RQ9+M/+r9pX3npx5v+C7Bfyhyv57lg48MHyL
2xZcFC1ZtqVLzrJXR1bXlrZXSw/e6el8cLj6Txveeuv62cIKjAP1kP0aERD75nujAt3SbFlS9FHh
qBAT2JUMrFTBY7pndC/rWN3p2fMn8/1R+pQPIxOvS9Nt1bG8bpg+VNp8bUS7Qjui3atVqdXolvWI
lxktAx2sSlALy7SMRYspjM5Ji15n0esA91K96NSDXq8VL2ivaGe1rF97BIOxM1pOqzWGjK3GPtQL
w6pULEqZE4PGY08G1DpO0JpUPGE5Tp80vgCiGBptfsb6lN3wbhqEUytcgB6hOl5CA3ANBuKas5qz
yTAc90pQzoZcED/BwPBbAOZHMx8+H6UnFiffhtFfXv09tMHHd83s5d/+9LY3oGnGf/UJtK+m2X/j
jqFuC0gt+YYsb8vYm8FsyIMu07Bpq4mtLmouYrw68GpBy2ayXpYV/Tm2bOjIbslJt+TkpOM33ZTj
zPGjTZ3J4XOo5eWmZ0VzckKLFvPU7fPO7DRbOsnxiywpbzOInjkQ4bJycqME23GrU2BCnSddzMmp
+yxMEM8mhhw/e+AVn1dZFQdmuAKrUpXDG3fcJRYkIEFiW0SYYIUD1xHAIMUJDG5I0HHqI41Bq4IX
dVo+t6VzreY6Nqgdbq9NT1+jQIDiuxQIsH6NtiRYIsBXPkktiNb4BEt3OQUJ++PAoH7tPGAApAkX
8f9A/WaRe14j2tl/lG8RzNEMFhwO5rjpjIkx0fNqk51AJqhYJhOgA1oYtYVRq0VGzam5iwwwVI2M
OlOV1qYnhG23q0wMXNskcdsIJUN8jFev2RAqS4zHpr5eJS5FbAvosWhIGteYuoSlmjFBUA0vv3bq
tcOZh9P1+YvHV0jhjEwhPdMm5AddFk3qTzLZVz9tZl+9985FI0t8KtUDDMOC1VtbMHBv3Edl4T5Z
jmOk+PNJeWQwMBm4N8B6dat0G3RsGpvHMvzis7VwI+D014fqW+vZ3DLRmp2N4bq1JT3Lkp6VJeKV
LmfnRNPp0knPziLp1jTRUZbLkco2g9XbRsSbGND85XMdTU5cVtwXJPxXHDghrkx4MWoyoFZRB55+
EzT527kG8wWJ5Y0GgXmJ1RpE9UenlvMGXsUr0FLzGTzJLZuDG9evyVxUnscJvppoAXd5pierPNWa
MsdsbsSTMOfsa1xuWcGCBqCfh138eZ5p5cHJ+/kj/HH+DD/Lq3A2OggwwM7ZFfsJ7CLnCdOHoqgW
8XFtxwuE6OHWlolAXGHJgwygoRIFVUEIggvdxswF/u0/lSs+4hJXgDgoD7Htbtk+xe3hmB1l+8uY
Hb79PsZrg7wMUGWBvllHl38lWqtOJ0XOFUJpIbQWniu8UMiSQigsrAiyEdkKVmrPVp1ORdqCQVVJ
m11UtZnjcJcCHIQ+2L+Jy4E49pnAzcmXRD2Egl+cL4plcIrSk8AnpQ6Cye2pgG7QiUUPBDfI+/Yu
uLWlOnU6I3rbofVDT2+q7nrinTs2P7OxAp296gjD5DbcuqB0w0BbOvxPR7XjvoezyupzQ8U90eLq
TU8PPw3MNwcXrj+wMg3BU8a0xW1uGAhlZ92yc218nlbMXuZu4RaSAsiXrbdmbcxi6rKXZTN+U8jU
atppesTE83SnOqwzRwkPuUw508hMMXsYPiMH8vXb9Hv1bIYeSD5uNpCB0Rl+UWouEA4ydfGzFZ0B
QzADfg0hHVzQQUjXqgRhnE42paCqC4my5eQWWHJzC/BbMJsLplxnrj+XzZWz3dFcegicm2vKZCVW
RyGQNS3NaDAUENOcTSiEeq+OoyBf74Tihz2eAjE31/NZPxzH4L1bkmwGjOpuznY9ZFFeYijTl8Si
OH9Jf42kgmHjh2Zw5K8DKG7h1R3XIBSz5tOXbgKhmIdQkxiXsb9D2/WTXbL0QAHsz4GtLIwKDwhM
fnplOsM70hBQ0bN4VTNPzbcC/THPO6NEAiL1SxelDyROksqKIyKNzsS8tswxCvAzxTa+n4/xLM+T
Np01jqHi561J3L4lYbmK1VLAPs9kcd/iEwer7LW4zQo/W7AqUpn6RUf72MMr1z0x4FcL1qauwdFN
FT371lTwJ1hH8Jayps0r69IE7bo7XTVd5WUtt3cW140dXuVZUzz27NYlPnNJ59bFGcW3VGR7Vh0Y
Ld2Qv/NB1MM4Yqi1aKciOSTXj2CGqDOiV6Bvc5eKxCJSp9GBMVgLAxaGAZ1gFxhBQgwpCIwo9iN2
FFOkFDmlLWVXCsfQVxLZjFxYFC2l+xPaFyPIgjEqmgQwsYyJQBpJvFXwB33U3fgW9MZfhVXXounc
5H2Xyz335cEnP/vm3wyzahXP6LJdLj3sehNnXLaGGkNpaaGGkJX5DvolbmYlN4BxwkLSQf5VvuOW
6lXVG6rZPDdssMIeNVQ3NDcw2yqgq2C44L4C1psDWkemw+tgI6nGikroqGwxFlqMxkL8FvqNMG48
a2RajWA0dpZ2wq5OUDXLPJ1knOJFi0uzIZv6rWysypJSvyk1UshmtLTliipqNWZBH1WphLq2jDSh
jdiv70/Vfl9il4ovrgkllutVYvrEAlruKRSNxuV/Be/QpRM/nodEbF81J/KrrMpUPKACg2gcjAsL
Eqtsjj80AjzUO91Xpf+KeetQdHNrhcjreZWKcYQ6NkZbP9ft1+kDV35YPdK+yMDwJqOe+TquDZPm
y2m33Hl85tPRkcqxwVarRpNb3x2sG26rser0MyvzGnoXeJe05y25fXlmTabT6Vmy0F01sK+tbFMI
eODsFUtKM+qqPCxufs0Fn/7dbce21bHZ23eWDD097u2RwoMNUl7P57cs2hj3p/0z3exK3PdMZK2c
sV3zgIbZxNzNPMSwG013mR40sWqP0Rw10t8reAxmVDn7By1B45VJP5o4R4hf26plTFonAvNzCM1V
dpQaCimH+Wh9ImoftxIf2psCCThitqSku/NRg5lMFbty5v2Zfxre8I3N65sf//ljuPtdfWbmsTdm
nj98GAa/+wpCszIwbIn3M2/mT9BCfk70pEC26tR2NSPoD6mO0JYZLf+87inQEn/w6vvY8m8uV9Pt
K09BHFCFAAx8WnuON3NHdYuh2/vdYMXKlgapfk/9zwnMfgPXaQ2uUx1kyZF8DFAYQUs3fwEJNatR
6VTAoCfU8ITXIoUYkdUghEVqCauxsKwG1zQyLeWJBT2TThRE/vXZD1DwB3KRVg0cJ5j4nbiqdLyO
Z9twtQr0NRqrFwQDMYiGo4bzhosG3mCgRl1bHIgSto1l0lnZYImygkbLAUd7wZsYFveSNMkAogGI
Aao/MMBFA5w3wFkDxAxw1ADXj3KTcU6QHtUm3o/jF2ksVeJMTKRXL8DPvnmvw40Uwyo3Gu6IyaCH
ynSx4BYgmKpEOt/50cye78Olmf/41rdhzQ9nfJABfzvTyBQxxpnV8NWrH179sfIutnqmmylVbGtE
FrfrYUJzj4ZZy0ww9zCs8hOZuGkpT+W9tQEJ7R/YNnqIQ38s84GcaiJO0kp2KqbGAqsixB63L2pe
ZsX/l5X6fD4FrrC5xFzOFAStKWkWLaP+Pjgg/5p5zXT/iVkDm9+A7sOHZ7703VdmvjFzbubft6Bt
hQjh3+J3Ex35nBxdqQWgv1CHDt0aIliIIIh4EWJArMoqweaaucGmYIpyWoEFpk+jRvfJspyOJSkb
NyWPOtAfY8AQvDHcVLb04NzgAXrLSl2pLiWedKUGgb268yrsPAMpZ6aY2anXZ37PPHR1kt999UWm
80+J3wCMEKKqQNv1sI/IeqMt1RF9NhWe9AChOs3Ioz8zOi9bUtKiI2QbOUTYzqw3s36a9X4Wl0WV
/a49L1qZBXsNhwzPGdhyw5BhysBWMwASFkAp7jHT8AIwi2A1MIX54CtYVPBUAeuQDGK01gEeB/0N
Q0eWK6tFDRYM6h3QYVAbWq0Oi9XqwEVR4CpY4iEWj4cYoUO0ii0mo8VkMq5Uf039qppd4Iq6ul33
u5538QusUWu39X4rZ1W7XGora/KIKo/Vs8Iz4uEqPds8ez2HPJzH4z3mhUNeqPY2e3u8272c1Qt/
9MK73t94mVFMP+BlK70RL+OlC0mbZos+5oU9XogncesVvNVeRm2iNjVrohuoyVOQ5XBZVep8daWa
Fax0O1VbjaKjgDXhfgoGY9o3vfCs0uheL2zzwogXIl4o98LHXnjNC8eUBuL5nUpRpRcEL7zzoRd+
44U3vYD1n0vWH/XCCqWyxQsqhQFFPKmImPLCUFIEMuR7MdijgnB4v/PCz73wvaSoeD9QTqEXUrzA
eeGp9xRBX1dkxYtRVocXQPZCqRdylQY/8cIpZSwHaWvyzkR7WIh9fV/pK0p4yksrlScrofTRf/PC
D7zwN8lirLNIKcY65xWZ2PdGhZskZf00KW6/F3YovZG8wIgKR/VFL5zzwvzXWzf++mf+u61rRX1/
/YdBf/YFmfJBgETfYKUjRqqOe8O4b1yAzhGxclJC4qcY135B9Fd+ONRHfysU/6FQr0JSwkd/MwTz
fzPEplVSDEF/MQRJkiv6UR4GkgApKaLbOPP987e+7AGGYUwmg10HXd8uYlmTaMwywLIY87plmccf
LC7K73BexQDoqktfVVttyHVnN6Qz//1qRuVQLtKNWcyFuG9oJ4TJQZ/GkpWvxPizPEPBNj3IU0C3
x+aOhngQeWAUjzbnNbaMyIpgcHvNi8W9V+CarwJljGWlNGxtR/c083t+N/VIGLciPhxWzpFryY9e
ybOhNzdR5KBDossx7NjqYO00vQiRxLxDLn+uI90OHfYWh2hxOET8imcd5x0XHeyY44yDaXOA3xFy
MA5HKERHgdtkKH7w5YgmT70cdnu61XTjqdfREEx85uTL54tHusnTLxEbvNnpl/Esn8CDPgylfJ89
/goaIf5zpqr/9AEYbzTquZf4nMzfn+pCRMCrbjzNuOkJWEZtVZHG/OjeTyrh1czytAzrnzsBA7Jl
9hL/Y/4Q8ZEvy559bthvhGkDbGdhg35azwx77vMwIxao8DZ5u7xstbpZzaTfaqXKbLQ5olar79YQ
gTMEKLqj/4ZGil2r/DhPssUW1Tr6zK3pfelMerqZK/XJvjbfLt9Z33mfyufL7+NT4+YyLy7rvf5C
xZc8F0pe9GTh2nuUOZEZMNeOhPhlZXd+6a3dB//5sWjl0KOvvHvH7u9Md6aeMtUN3Lfysfef7ihf
94WRVYfuHsyH9uZ7BqpvPfIPO+66eOapjYsW9d/VUOVf2VR427dmrj655ulJuax9dAFdF/eQU2ij
T+Ne3yQX/UQH9+ngFxxMcyBgzHsGg6v3GFjA3I+LkHAvCe+qoUq9T82o+ZPoPnp76Tsj7LefEvFY
G8xus6vCZQ6aXWnMtx6f6YbnH4fnmf6ZTnjxMXhxpvOx+HqsIIT9Hq5HLZmWS1YLIGhUjBqBpGYL
w2IAyOLXz4U4hiMsxzqZncxxzNMwU1qbcp5hF61R/ggHhVw18rASJlmEoirVrt0K0gj6UM1BDH0C
2Ln0gL+XmrbOw4oMo7tZoIP4gy7hKlcqX5WHgENdkQ3rzs884Ybtz30IK7Of5EounPr1J7YnifI/
fGD+t+Izv/qnPlPNR8QZ//+xcw/+2pL8HydEeis1JYj0GKLBK/HPWYSo62aWkfC1/5MauuE/3nKZ
S6RR/RA5wU2SHI7MPshUY7XvExeCPR7pXtULmD85+w6WhxmFJiUK7yQ5gjz02YR8TfjMUupNKvQK
LAvjNY40h/X6kScP5X+DeWG2mv8+CeE1gnntlB/pLdyL5B6kcY5IETPNWtlT7ClO5F7nF6qjGq1m
r+ZDIaat1J7Wjeit+vsNAcMdRpXxXdMq05viN8yMucT8i5TSlActX7D8NO2QNd+61no2Pn6SSzoT
+mCISPxkFUYbS9Vv4MKiuQ5YkfgPSYLhFEnQgHi5P0EzREXGEjRLXGRrguaIFQFdnOaJkbyYoFWo
4dcTtJrcSc4laA2xQHOCFhCQ9SZoHfbhtmv/pVkC+xK0gYzBKwnaSOqYXGwdOETB5CyzNkEDyWZz
EjRD9KycoFnSwC5J0BwpYh9O0DxxsK8naBXxsu8maDX5kCMJWkM83IcJWiAO3pGgdWQBvyBB68mt
/HiCNpBfKme2lDaSu1QvhMfGt0+Mrls/JXkGC6VAaWmV1DE8JEUHpoqk5s2DJVL9xo2SwjApTQxP
Dk9sGx4qkZY0NzR11Hc2ty6TRielAWlqYmBoeNPAxG3S2Mj8+ktG1w5PDEyNjm2Wlg9snmyeGtg4
Olg/OTi8eWh4QiqWbiiX4gw3z10xPDFJs8pKSqtKyq/zUJbiz1T8Kx3D0awbnZwansDM0c1SV8ny
EqltYGp485Q0sHlI6rxWsXVkZHRwWMkcHJ6YGkDmsan12PkNWydGJ4dGB2lrkyXXxhQemxgfS3Rs
anjbsLR0YGpqeHJs8/qpqfGFfv/tt99eMpBgHkTeksGxTf6/VDa1fXx4aHhydN1mHH/J+qlNG5dg
hzZPYse3Ki1ib+bqMTK2GSdrY5ynSJocHpao+EmUPzI8hF0bnxjbMDw4VTI2sc5/++hto/64vNHN
6/zXxVApiXb+a7XRn43h5ridTJBRso6sJ1NEIh4ySArxGSCl+FeFVAcZRn8nkSgZQI4ipJrJZuQq
QaqebMQ/aY6ESSU1jM9hfG5T6lLOJVirgTShtHr0JM0YCS/D3FGFfwCvKeQeQN5hsgmfE+Q2zBvD
uPAvtb8E669V2qElo8i/GUuXY2ozym3GvAHs3Sjy1mN6EDk3Ky1MIFex0qe/VF+aJ+F/h3eFwjd5
jasM+0p1WULKbyonKaX4P9Hif01j8blZp0iZUmTHOUcV2V3IsVzhalNqUn1NKa1tVrg6b9JiK7Y4
ovR3eA7noCKbjiUueQzp9QnNb0DfP6H0YEiplxwb7og3mSdqoxNopWM3aIz2bpvS5lIlf0qxOVq2
XkmNk4W4S/nJ7cpfCfLMlzyYkFuiUJuQ8/+03hSuoHFFj8PKnK9D3vj8lygyN+F8LkloaLOyLqiG
ts4ZY1w3f84eI8ozvrI2zpNDZ5Y+ad1k7ycT/R9R2olrbRzvY6j3YUXbJUruOmWMoziHo0jN7R+d
sXWJvBt7k+zL/PH8v2wbgf3sh3gVIIq4yecMaQM1bvB+5X4cOPnzcP4qnLkK4lUY+wTkT+CjNo/z
DxGP84OIz7nzypErjP/K2JWdV45fOXeFJ5fES/Kltkvjl3ZdUgm/fj/b+a+/ijhNvwL5VxGr818u
RpxnLp67eOEiK18MVkYuRmzOf6690PXLWrbrArBdv2Bnnaafgelnsz9jZn8GR34KP/lxjfPMd+Db
bfnO/jfG39j1Biuf7j89fpqlcYtwOiUQMb0aepU5DSkvn3I7T4NJbngl4DSdDJ28cpIV+mPjMebR
2NFYLMbueunRl5ijL8VeYnZ+HY6+EHuB8R8bO8aYjrUeO3LswjFOd/SIzykfEcwR8jqGwyKILzML
5XoD0m14MSSG97N4nceLnUVKdkq5kaefynV+Ca8v4tX2FBxeFXU+cSjXef7QxUMM7ePKQwZzZOfn
oe/g2MFzBy8c5EwHnQd3Hnzk4OxB/vHHapzyY+lZEfkxQR8xHYC+A0cOHD9w5sCVA7MHVPIBR17k
6COxR5izj5x/5OIj7MMPRZylD8kPMbsegrE3QI/zc5HesS96ucBojkjTpdPMfXsizt2bZp27UJfn
tl7YemUre2UrTE2GnJOoxPOnwSjXwUSkwrkFL3k8vygijZeOM2OY2oxXJti6MoK2LnWQ7VKhiK9t
gsJNsBGpfqzeh1dLvQAashoo3H8K70Ak0Jwsq4xIp0Ejl+V7I2tWBZy3Rsqcq1EZq/CZGkjp4nF6
uQDbNcaCiQ2xzKEeiHWc7TjfQWfyZEdxeYRq63AHqvRK+2w7I7dXLIjI7XmeyLk2kJYV+iOaZc6c
iLA0YykTXdq99B+X/nbpfyzlDy8F25Lc4ohtSZYUObzk+SVMS6TK2RyRnFEczGK8jkfgQuRKhNkV
AWsgrcsMpi4xYOpigHQBAafTFDL1mXaaOJPJb2o1jZkeMV0wzZrUIcy7YmIRge+yAg+n4dETnct9
vpbT6tmOlpi6bXUM7o/lLad3uX1VTHV/jHStWt19AuDhnvseeog0ZLXEAsu7Y/1ZPS2xISRkSuxC
Qsw6YSUNPVOTU1t99ANxgvgmfT6FnPIpJEySSVoASiEto7dJXzxriuZNxnMBiUn0d1O++JfmTtJM
H1HYJ7euwaSPrJmcgkmUik3HMyaVVnyUlyS6o4j2rZlE8bCG5oLSNfrBupO2/wUltl3PCmVuZHN0
cmVhbQplbmRvYmoKCjQ5IDAgb2JqCjExNzEzCmVuZG9iagoKNTAgMCBvYmoKPDwvVHlwZS9Gb250
RGVzY3JpcHRvci9Gb250TmFtZS9GQUFBQUErTGliZXJhdGlvblNhbnMtSXRhbGljCi9GbGFncyA2
OAovRm9udEJCb3hbLTI3MSAtMzAzIDEwNjEgMTAxNF0vSXRhbGljQW5nbGUgLTMwCi9Bc2NlbnQg
OTA1Ci9EZXNjZW50IC0yMTEKL0NhcEhlaWdodCAxMDE0Ci9TdGVtViA4MAovRm9udEZpbGUyIDQ4
IDAgUgo+PgplbmRvYmoKCjUxIDAgb2JqCjw8L0xlbmd0aCAzNzkvRmlsdGVyL0ZsYXRlRGVjb2Rl
Pj4Kc3RyZWFtCnicXZLNboMwDIDvPEWO3aGChL9VQkgtLRKH/WhsD0CJ6ZBGQIEeePvFNtukHUBf
HNt8JPaL6lyZfvFf7djWsIiuN9rCPN5tC+IKt954Ugndt8u2onc7NJPnu9p6nRcYKtONWeb5b25v
Xuwqdkc9XuHB81+sBtubm9h9FLVb1/dp+oIBzCICL8+Fhs71eWqm52YAn6r2lXbb/bLuXclfwvs6
gVC0lqzSjhrmqWnBNuYGXhYEucjKMvfA6H97Ycwl1679bKxLlS41COI0d6yIk0fkkDg9IEfEKkCO
OYfiCeeEyClzhPzIOWfkA8ep9sjxEvnEcYVccFwin5kvyBfikPJLjp8cy4AZvyXZP0mQN3/sKdk/
KZDZP4mR2T8lZv8E/eXmT302fzwTyf4Kz0Syv6Kemz/F2V/hmUj2jyjO/in1Yf8IcxT7p/i/iv0j
dFDsr/AfFfuHki5xuy28Tpy3nzER7d1aNyI0lDQbOBW9gd+5ncYJq+j5BozovSgKZW5kc3RyZWFt
CmVuZG9iagoKNTIgMCBvYmoKPDwvVHlwZS9Gb250L1N1YnR5cGUvVHJ1ZVR5cGUvQmFzZUZvbnQv
RkFBQUFBK0xpYmVyYXRpb25TYW5zLUl0YWxpYwovRmlyc3RDaGFyIDAKL0xhc3RDaGFyIDM1Ci9X
aWR0aHNbMzY1IDk0MyA1NTYgNTAwIDI3NyAyMjIgNTAwIDI3NyA4MzMgNTU2IDU1NiAzMzMgNTU2
IDU1NiA1NTYgNTAwCjU1NiAyNzcgNTU2IDIyMiA1NTYgNTU2IDUwMCA1MDAgNTU2IDMzMyAyNzcg
NTAwIDMzMyA3MjIgNzIyIDI3Nwo1NTYgNzIyIDU4MyA1NTYgXQovRm9udERlc2NyaXB0b3IgNTAg
MCBSCi9Ub1VuaWNvZGUgNTEgMCBSCj4+CmVuZG9iagoKNTMgMCBvYmoKPDwvTGVuZ3RoIDU0IDAg
Ui9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoMSAxNzIyOD4+CnN0cmVhbQp4nN17CVhb153vOede
SWi/2kAgQFcIsQmQQOybLpsQBhuBAYMxBgwy4AUwix07qU0cr3gjTZrVjZ21WZxadpIJTlzHbTqd
pk0mmbaZ15kmE3fa5s00cex2kr7XSSze/1wJb13e97153/e+70nce/9nP+d//svvf66YnpwJIhWa
RQwSBjcPTHSXDbQhhN5GCOsHt07zr68zpQJ9CSFSsX5ieHOG5xefIcQmIiSTDG/avn57w0tOhJRQ
JytmJDgwxHsP5yFUmA19FI1AxqPXnpdCegjSqSObp+8Y0tbJIX0A0hs2jQ8O2CVBCaQ/p+nNA3dM
PM/8hIGm/ZDmxwY2ByviJD+H9CxCMcLE+NR0O0oLI1R1kZZPTAYnrvz2kX2QhvmxGyAPw5d+VEBK
aZowrEQqi5ErlCq1Rsvp9AajKTbOHJ9gSUxKtvK2FHuqIy09IzPLmZ2T63Ln5XvQ/1cfyduSt9HX
JPXIhPrF+y0ftgwZ0TaEFj+lqRv38Kr/u7OIiTxeRt9Bz6OT6IdA7Y0WHUA70dPo4i3V30BvoRfQ
YXQePYqO/JVuz0E/d4nU/ajvL1fDz6JxdAd6Csa9B/p7Ha3Fc5hB/Wga3Y0WYOwAe4Z9M9yMPsFn
0ZtYju7ETvIAzOGBv9Dh19GzaCPcX4X7ozSD/B59nVShMfI0U48Owgr7STNkvwljr0BP4R60FjRs
FGaBgBq5pa80Zhnaj+4EaubmEslu4kHKxc9hxgfRMZjJKNqCelBbtPgsAS1BRxgrrObb6BUx79BS
W+lzzAQ5T2KuPYzuhe9y+A6hIXw3OoGeDY+Ej6NHcT2uR/PhP6A4tENST5Yj1eJnkofIITSGmtE6
5EP/huokOqG+u6ujfWVba6BlxfLmpmWN/gZffV1tTbXgraqsKC8rLSkuKsxzu3JzsjPS0xyp9hSb
1WzUcVqNWqmQx8ikEpYhGGXX2339fCitP8Sm2f3+HJq2D0DGwE0Z/SEesny31gnx/WI1/taaAtRc
f1tNIVJTuF4Tc3wFqsjJ5uvtfOidOju/gFe3dgF9pM7ezYcui/RykWbTxIQaEjYbtODrzSN1fAj3
8/Uh39aRufr+OujvjFJRa68NKnKy0RmFEkglUKEM+8QZnFGFRYJk1JedIShGTYcNMY76gaFQoLWr
vs5is3XnZDeGNPY6sQjVil2GpLUhmdglP0qnjg7xZ7Ivzh1e4NC6fqdqyD40sKYrxAxA2zmmfm5u
f0jnDGXa60KZO35thpUHQ9n2uvqQk/ba1HZ9nKYbQ+KQxMHZ+bkvECzHfvnTW3MGojlSB/cFoqQP
2Ds357Pzvrn+uYGFxdl1dp6zz51RqeYm6oHDKNAFrRYWXztkCfkOd4e4/hFcFl2sr60pZGjt6QoR
h48fGYAc+PPabSUWm657qU7gLxUjYASwA3hqs9GFH1oQ0DpIhGZbuyJpHq2znEWCy9kdIv205OJS
iamDlswulVxv3m+H3Wxa2TUXYh2NQ/Z64PGhgdDsOpCnDXQr7FxI8weLzT6n1/Glrm6xLg+zahwa
5UOSNGALtLq5AUgKbTLHiQnNHyKPyxYYIE2n50vt0A3tp95e3x/92zpihg74nOyQ3xnZ+vaukFAH
hDAQ3aP6M24XtBjohy0arRO3L+SyT4SM9prr+0mnVT+6sktsEm0WMtaGUP9gtFXIVV9HR+br5/rr
IlOgfdlbu84hz+KlMwW85SUPKkDddbRybC3IVVr9XNfQ+pC13zIEmrae77LYQkI3bHC3vSvYTQUN
OJR5CYaziSOGSG17V9NKe1Pr6q6S6EQiBbQ71lF/Wzf2LkukGxC5UIwjhu8iFqYbKnKQwfuAsNdU
wD0kc8TAxQHDxVwqqjUVfBe2oKXaMI1QJl8frIvWo+lbOpVQcar1L/UmpUnop9ZvsXXbIp+cbALF
fHRgaBFDmepfKmIcYAkgj0A3YhblpZnKPN9lD9q77SN8SAh00bVR9ohcjjJD5Hl0r9pvSd3ELGAT
skHxUoIyM+RzWm5mbqhBTF9P+m8rblwq5udi7E0r52jn9miHCGbeGEJUhIUSnUXUfqrPdt8AKDFo
tKjPc2cEgeryCFXbOXvj0Jx9ZVeFWBssyNcsO+hYetSEm9prcrLBmNWcseMDrWcEfGDl6q5zHMCu
A+1dZwkmtf013WdSoazrHI+QIOYSmkszaYKnCdpTGyRixPqWcwJCs2IpK2aI6cEFjMS8mKU8jAYX
SCSPW8ojkMdG8gQxj35gl8wjwGOw3/X8EN2fu7pH5vq7qYyjWOAI/OEQtlcBd+xVZzCRqkIKe7Am
pLTX0HwvzfdG8qU0XwaSgWNxTvaOOa7e/oU5R3TvqA5uQ5IOQMkylHsGI1fFWRmbeDn/jFTyQcVZ
hgCJzjA0W0Kzz8qkSV9VnMU036Oz6Rw2na2O8OFU/FB4RNLxny/Use+I/c4ufsoeYFegfFSNnha8
c6l4R/JcMhmt3F55sJJxFBUWEQMvV/mlcbFxJEmeI6+UM5IcUw5BDGYYt8+iainpKyElJabatIb0
hcX/KeRcTMfp6d4GZMKm0laLxZOtTbOmEVfasbTFNCYtzRbI5jwBPWqVyVT6WOT1eFyXucveyx5X
7xadvtR1Gbt6aaLkMk31ejyX8129eW7U29vrhKvXkV9UbNJge0ouSbdrGHtKWmFBFfHiwoJcYk/R
EFl6FePJjzXpjLGO/CpSiWUaxmSMZZdrkzUptWmexlwzI02s65pc9tjJltkn2z+1FLeX5LeWOaTn
FcVDD2784VtZ1/555Y7WjAvF490l3eMsMxETYyluLSpoL+dPPbDx4AorZstr15ZZtOm1Hp2wcYXz
9TPh3ECr1Ns/XdjNYq27p7ltCHj7EvC2BtAvD1ZvQKjZQeYIqfO0e4Y8TJO9x77RzpRJcGEillhN
1hnrXiuLGvpt2GYrckqNPmSYNRBDWiAhmTMgtckdkDKUWZe9XrhRFuXnU/ZcjnAGPpiD5ael243A
AnsVU6jz6IxSmVTmqcKefD0T5Y7JmEw8wBa25sffmX7eTQjD4G9jQvDLGD6s+7mZN7//WrK3r6Zm
Q2NGRuNotbdfsJGU8K/DH3euSyjOtbFyZ4U/nb0c7k4qjU2IG+0LfxL+5cTjw3k5w8/dte2xvvTc
9U+C+nwL1p7KNqEStFfo2mTG2+MOxpFNcXhDEZ7KuyePNOStyiOpxTgrCSuYBIZIeBNPMhrT05Hf
ZLKWKRsVCpcfWfutE9ZZK2t1mSQ5gRQ+Yz6DZGSkcFxAolRKKD9cIDogLNxlfWlpRHBEsQGZucEZ
kTvAFlFkipMZun4qLem5TGFBkSc/mcTJckGQKG/ikhk2tXziydG1D04u159QFTatKy0b9Gd6urY3
CDsHK3/2VsvcpkbNE7Lc2vbcL5wrNlVXH9zSiAubd3TkWqqGm63F1SlKXWa1O78yK9mgy6geWn7f
M0newXpjTolN9WBuaZpFx2X5NgMwX/xyMZX9h8U9oNOalwFNvw5aDTvrynPLCm0mCfuPH/T3izo6
t/gxGw9yZEUetFFoqktpTxlKYZrye/I35jNleAMmhQoskZlkM7K9MlbBJrA72DmWNfiyUECP5/Un
9USvL+QbkBRLE0x65AooYzhHAEUFisoUZR0Vpy2gbtf55qBaRnScLT82zlOQVpAmyhTwyA6Mw1FB
WlI7Zm3eE9t/dAEf2P5kHsEgTiBTpzDg72u/TKrsr63f2Ohw+DfUC/1e/tujfWDhzKSoc50kKz9H
jp/80pDur3DK2dT8sgS8aeLkSJ579Nk7pr/Zn0WlifLgGMSKQeCBHKmRIKTIZBKWlSiXqVQYI99J
CZZINFrFSiWSBWK0iA0wJuS9nO8Fs6LT41LXFpAHkAidxwWLzHM7bCZbIVjEQlt6ocdE/h3f9VUW
fib8XfwfP/zh0aNHmeSjP7l4UQzc0ByM2yTyfu05pFi8KhSBMUzCPuKlY0pJcrLORbxknOwix4iE
CEaHH4Fv0hEdb4sLqKB1IEmixTAd4HN+ZDqA0cCUwWR0HlF084HjTqyz0wlRWyZKpIlKpIYkYZuJ
1L0c/k8szRk6MZkUCDSY9P4Wv6FmnWDFnzCnvmpnTh2NDx7ryWKkMey9jFTCGIvWNimOivPHneFV
zJ0wfxPKEGI56VWdVmKVEIkkDl1FSqzkkNSCbmy/h84FL20xTKXYo2GILrPrYP+FNfu7nc7u/Wsu
9B/syiT6uc8//uXWLb/4+Mv5+T/+5p+2bP3lx5/T8QIw3ow4XqpgQFeVyjid5CqMwkmJlEOS6GAw
DlVSOlbUWlF19CQzzExW1/41F/vnurKyuub6L67Z35VFjPNffvwLcYS5g+Ko//SbP1KZ2A02phF8
lxbZUbdQOZSCfSmdKWQoEfsSOxPJRjNuNHebyUY9btR36wlqOM1hxHFcP8dwnCOhASmwwhRQc9YA
NSUgK9e14GbbsWQ5Cjn9n7OjjbU7X5ncfOZrddf+7fPPvuNcvkGoHmvJcbWMllaPB3JI8tGfHq6v
O/zTYzgOx4d/G/5451Pr0jMHn7pz59PrMtLXPUPX8VJ4FVvDBlAGqkBBoW6oHPvKO8vJRidudHY7
iTQtNm1r2r40tsCGy2PwduYgA2vpz8SZmVWeZJ0P6WdBwXMDyamcWauzlAQUkr/uKW6yhvZkxgSC
F+W+yUNdZzKR/YmzyFjzwFjxUGdtnIS6iVeocp8G/8+w8d7AUNXYA2syXjOXDzSWjyzPAS2va1xX
Hk9S7nzvgQ5jti+fWHPLksLdEiZjWXmWnHEUVCQUNOfFBe77+68NHd9Y4hg4tX/qmwNZpWNPRLDO
XthXH+wrj5xoXggOpeIhBjdmdmeOZjKNqd2pZCZpbxLZlrg/kdyhOaAhO9RzalJH2skQYdIbrFZl
47uKjxSLCgYpOEW/glEoctIQ4JFLJmJCgbQ0iS2QwEkC3EeKKwoyC0Kg4ERX0ttLccgSBBGZ1nur
I8GUdRGeFMdR7AFiEVXYJIwp+LDlMrgmrXnLsuLeZfmqxzhhw0MjU3+zs7Zl3+n+e16Z9IQducHO
cob4YwqWr8P/o+PYcGl8dmVqTk5Po8t/9P0jx3+2u6T9wZ/NmvFPkpbtWrd2ZzMv2qHfgyUxAU+s
yCc475AekBI2wZhA2HhjPLFabbFyn4LjrIpxxS7FMQWriGXaEjlOK6d2B6AVVbm7XGZOXFRkOTgX
i1t8Y/fjxN2PjWNNruGq9n1r8l5WcXrpCzKtRkEkiVUd020lm7KYB2KUdTPHu8Is+U7J9HCb2VxV
W5dUNeRLU8joPC8sXmX+KGlHFtQlFG0w7zDPmRlzhlzjl0r1+iSJ3JcwTyWIJAh6hz9BUGr8KAEn
qAJxsTEoABIlwVoREnLUWMK0nc6ojYSJe+jUnb2GQo8BMK3JBghP3AlTBAXqLjxfdgcOhQMdAxkd
LfXmWN+q9UVPPAHmESeEPz56bbqlWaZQSQ5KOY3i4P3khMjXafQIu4p9HknRtlcQbpOwkgWsFjgp
MkqRRIoJbmNY8GI0M4NgI8EMATOLEAdyihHLEolXOi7dJWWkgt7klzJaMP4IuO1y9nr0pZUujweb
Icn9y8++u591cli8f198mp37nd/PcxsKsUmOTdPMr756hllNyt/BTzwS/nr43odF+70Cv8fsJBOA
EZIELbAnMjJ6zQVMhHEoi8QtxQAZ8Arixu+dPEl1qAjk5ZCkHvbBiq6eQyx4rofVOr80KTYpLYmR
gv9Nw4xeq1GyCkNMUqKJNcpZjOJZsyTWmixjpXGGU0bJKWncKXOCi/EyBDCa2S0VpABDOTNvJpfM
V83EKDWbpUZGYdPpVCr5KWpPY1jVaXUSVici7rQu3qRr0eEWXZ/uio7RCdYU/y71MfUJNdOi7lMT
tU6tk8QZGIUEuTxe4Bb1i1ucEAV4PLDh+dFHBNWBs9THQQWosUV0myAh9Etzb77y3BAmYAakg7Eb
6GUHabEX2gwehl4eyLcZmCdqMRv+TddYZ/gb7WPtb/2y9ndY1j3WhTd2jXX99JpQjzfUMtXhNzeF
R2i8hB/ahCs3RajwyKbwm7hSlJ2XgMfxoJMOVCmkTaTMphDWZrRN2/bYWIcPofR4lQ+pZ2Gh8dKA
lTNo1eAVvflRfVzygKCLNt2Svf1TU2zSMUO28oC7fHh5toipnscEdsNc3bGhZuXsqhzyamC40pzT
8bXWa0eYlSlNtW6ZJLu03OhqLkzKXjMfvOaK4BjqK0vEuX5TaBuKxUMc3p58MJkMJeA6U7uJNOl6
dGQmZm8MUTYoFIkNXkuL5ZjlhOW0RfKu5SPLooXpt2CLJd3QQHubsGBk4Sz9lgnLrOWiRWpZWLwo
JFqS/RaLOWCL1QQkVuUu5TEloxQgE6A6R+2rszcS58EWL3na3i03G1gwr4Yl/COL2ifR3BYtWdvd
nUde7lv3yLhPfZGb3do5A9a+YaZj01HdBXnd5GNDB9/YVkSSn/z5bGH+qq11mp7R4tFHh4ZOjJVt
2KyqvWttaeeD78Ds98G+rRGxpEdIiImhSPI6ilQoAUGimxDkdfz4p+CRXIoCx4/w+wAb2VAEc6Fz
wGsrWwa8rheyd6UcSyF32g7ZiMKWYMuyMaWJOF7jUyrTsQ+lzqaSVCodsUaTCnDMDemgwuGJ8gXr
lrD2TfjbHnU/Orw5rrDDKww3pr9yQz4Sqto2+Fbvbk9ny661tWyotlAJIVNfvXi7hNw7RP6BznkQ
1jwE8lGKjp5DWYvvvSTX+vmFxfeEbrnan1LqR0id63/D9a5r0cX0uyZcxAq66HUxLa4+1y7XMRfL
uXiX28W4XOXxKj9Sc2pyVY21aq+avKv+SE04NVYXSgPxKRkMVQVXRBdguXGABTEVhC2TUZe7ZcsW
cfml1No7/7JyxMZd1xF7pJLUpCMGlcXJ2wrSjM9RbnyD3og61ePL7VplIHpnid9V2V4Q9yytVbOc
fJvyxtN7T+u1x5e0J7OwxJjeUGTtH3I15idEdChS79lnrx253WdIcRs4CdFnIKkRIiwkYcFnQCgQ
8RmsxMhKGPaG05BKIObWgk/BXjSOdtHXnuA4EAKtyAdHcd1lfJ/7+3zuL/mM4kI5LqQ+YzX4jF89
8jAex2OPhNe+E5U/apfEmMUrpE9oZjWEVRvV0+o9albn0+ttEpLsQxBWA3DQmcwQSnPQzCuGgtfh
YkQnDeIZwu1sFvfi3CtShjELbaPCyt2rXa9ct1GSt8M78oO5N+zPzRYqgu+OhbvYZLYJ5aF6dFyo
2uGec5P1Xlyv6lAFVUxTWU/ZxjKm0IYlSaYkCvVYRVxC3I64uTjW5ctPCWjwvOakhmg0CQ1Sn+S1
xatIAtYnQ2vySyQVDaEEjBLeSyAJGdriQIqVqw5oTSZ5APFSN4QgUnCI3nwKKKKRL6ZoH0xS9LTp
lvi3F0cODLBHPEey3wz4aEQcCY9MwCLDbYCZDK8+OFipXtBtWVPaU20nhvKVY/7182uczr6HxrZ8
K4ehQOcFKps/s7lbgoW164TkZO9ATeH6QF64K61hXUV8U2tK0x2d38toLrPX7PvR/nvePrJsdCC+
qjiDkTsrGtO/+sGvfsO8u+WxweycwW9umTm+Nt3Z/yhEnv3hbzB6sD30nLBLqJKDgyIsp9H55dJ4
GoIBRR7AQkKyHws6kx9jVvKw9EHZI4jl2Fl2nj3Jgjk8Lnk0Bj1Kkdhl7g8iGL5GNdLpBN44IXTF
YIewwYbx1U/Ce5/D8vBbjBY7w+9/uY88cC3yFvxXENM4QAbz0Iyg36rdpyWjMdtjDsYwxAwBtHFh
8ZJQDIR5Ng/n5Xn47N9JHBKvCqtUul0S0CEscSi/0KpaVOMq5pjqtIqoVO74L8zI/QXdwAhKh42j
Rz69FA3oSyMQsdcjGo3I1hWK9qKQnoXRPbOZIqJLQ04TjXuMseXYxCRWb1rhdK0Y9HgGV7jogQ6W
v59TnWXIrFmZ6VxZnRHoeT+8KjswXof7vKuKEshBklDcWYX7fRMtWYdMucuKws+UrqnPVhBFTl1v
WfjpDd2HQMancRe7ivlU3IdmoVhG5CzCHJgKyYtWdhd7gj3NvgGsFvSxfha96MYB3I8nMBuA2ywO
4fewRBtBeLBKl3ML3QQPWAQKFwHowUXxYhLzK6br/vvD6P77Kc/pWW6TZDUqRx8LgzOle0vJYCkW
SgOl5I6CAwVkUwFuKugpINOuPS4izd2auy+X2Za5P5NscuDVDjyox0Nq3KHGdJvIdtlBGRFDzTvJ
IUKKEvLGvHwfT3gejRkEA0YGbKBOv8Jk9icYEgyKyrSx9HTlGI28rkQiL6Ioip9KSOCy09LsU9ky
bkoiKOeVhN6uAjJQSuLFoGtLBBSIp3bifkbP8ADsOWmhB7yvrvSWw7w/f6hXRA8RnLgwciqVBu4g
chQMliu65WyTd/vZ6d0vT5fJX4txLtvceODR+uHtnvXrPGM95Xvv2Xaf6hVl4M7Hurc9t8njaBxf
1va1diee7Ll3qKh648FGXcmamtSd2+tWF8Yejy/u9m7YtmNc0zvXk1PSf3dj8XCnoGXlFas2RGxw
Pdjg/aCHHLpfqOlkcaOmW0Ms2h4tkWuxg+mAMIKJZUgGHoF4Abdp5domDhk5DiB/GyNnmqKxhpxM
cLMc4SirkxUaP8fpCQ2aiJZoO+S4To6z5GVyIkf0hMnjAZ5QG+7UUZAFOoG+u19CPcZ+MxdxHDjK
OZsdezCEfFVMMfaQH78fbvkRVsXojTqp1GA0xWDjWwAchFhvnddk8tZ4Y8n3rstXPcpGR4W1UXUe
lVFJYZbFrY4j9YYOA0kRIMxISUFjJkeqzTrO8wrBhJHpouk9E2My5SrHriowFRISERHHFM8nTI1n
4IwMLnXKJgUpWZKMaDAuygOVi+jZjIiM8vNB313OJYD0Zw53xVcBEAIA4KcH4MmEbRJ2vn7n+NOT
tZq/UWbUB/2+ydbsrBVb/DnN1YVxIRdju7Y3yT0/OPrsVgGfH3rhTl9Bzw6fKaOp3O4MzDRWDDc7
uUSHkfz83vAqR6Gw5Tj1ZWA/ljN/A3aO6nm6YGQeIEQue8AFOECKpRCtSSFYo/GsiHEuRw+97IyH
XszhoxmXwqYjmZeY5WTXtbvJrojsNIPszAKfZWiZkCfTYJZoWLxaS7zkGDlB3iDvEmkL6RNPHN8l
H4FRB4hDYuSI7ZMwWA+e/HK+iFqp7fiBE5u55R/DoJHzRRP52wvheraAfe7LVexzx4/T8Uww3gLI
ahZuE7jp5D3JxJfcmUxSkwuSSRK11MsMZv98Eg6K3phJTSpIIjSQJIk8FJxIxBsT70w8lMgkJeYk
ViYyykR8p+WQhVh4EFQND+KQoMnSlGkYpQaraXdW2p0aO9SF6hn1XjWLxW4wzsJleAdmEK0zAc1M
gKALEcNIEdbgNi6Wa9JqjFqtRo3bEmMTm2Vqo0wN6pJkT2qWYaMMJ8lAkzLtmU1ZyJiF7LJYRmvM
ms7ak8VkZWVrs9bLcL4ME1liYmxmFsdotfbYmdi9sSRWjZFGVB9QIJ0HECk9a+jr7XVhCvp7Iarc
T7VH1CZzRJ1uU6o++moq+ie+pIq8qnKKmsbk4vS0dClspIyBXTeA6ykqrsLFBiBxXGwcxREQmv7n
28dijHKlHP6Mivt//OrZXrCRMUpIyfZ/d7fUIFcqYlQqJhjC/81SzzscjlRrgzWcA3r6uLmjf01S
Tqa90YifDa8yNtgzc5NX93XGE/qbJAbdBXrbAn7BgNKRE20X2op47NN16ohP3akmjbJuGWlkuhnC
ZfFZRMgKZBGUibMyszKT0ZhgDBgJMmKjMSd5PKKyLRm4JaMvg2RkZtrjp7Qy+xTV14iyvnMjtKMg
nkb0vVuuh3dGIr63w6CgelEpsf72o0ZHocfEtizf+/L64bP3NDXteXlD8Mye5lczQE+bp1syMlsm
GxsmW5zhrk/Ik2+G/8dTDQ1PYsWbb2PVCUE4Ef787RM/21lQuPOnJx75yWxJyexPUv74x4hOfSu8
ivl3EY9MCeqtKftSyGjm9syDmUwilbZKCHJcZrgp3Q7scAAc0UkknvgWwOfHgIHQXpn2hdbhcrQ4
xh3sMcdpB3E4sPmLeIT/HCCh8gMw2tVbGkUjhkLqnigKKS7MZURcAo7KJoJqGtCZRBgJRuxb7/e0
ZlS3OTPbajKNWdU572P57fAkvOpQ9wbcU9ZblwObkV2/phSvLlqWazqU1TLhC5+s6iwWMUrRKm/4
8brxQHYEcw+L70/qkQKpUYdQOCrdLj0oZXbJsVweg8fV0nlyksBHqxrnIDZB7FSMRKuyqlwAwFiV
CiulUmymMcLSK9nrbwwiC81z90YMDPboPCY5tjHPvXxtktz5d+fD82EV/hx7w9/F3sPMjq8OHGVq
rzWJezIPc6oAuUxD+4U1M9K9UlLK42nLHgvZmrAvgWwz7TeRbbH7Y8moAm/kcDeHJQk4LS1pzBrj
jSHjMW/EkJgYlKEfMxhQf+oEBNNMauq79AeYNNDS69VTZhlOnULmSCTvcYmb46JvXqJoH3zILcDC
U1glufU9sggeWJnNNJ89/+TTe9vTGwbKi3p92bIFuTD+xIbRb81Ude5/6vgsT346M/DUvXvu3rus
YlWpJbmiu1zXvC9Y5u6d6177+Pzu2bt9X6f7cAR00QtrTkUl6Glh246YuRiyQzYnI8P8Nn4/z4wk
3JFwIIGpL+4oJvV5HXlkWc7qHNKU3pNODMBgj44xoDGv45jjBAghe9HxHpXEpDLlmELhGruUdDWJ
vJuEURKXRJIKpgxmwRDrN5s1WVMpMs2UZEI5qyTXgVfUvzo9Ue96gyuem5mypLXXI6Him+OgP1Fg
1uvb851trbvX+2NPJW7rWXZHRx42NfZuLOl/dFO5947T45/+7vuOxo2+6hF/ut03Up8/vLKQvHEm
/PtXe20AqS09HXV7vn+3a5nHUrfjueDIc3fUhF8ONd4zWJ6zcspXM7UqP6U2CHx8EPjoj/LxBeFr
O5g5hogv2EeYO5gDDDNs32bfb2eGU7al7E+JsLM2b+XN7Ey0ZFsqLIxpzGhEY6cdWHBg5KAMZRyO
siTX2LziZASkXFJcVbCKrKlxHnM8TyFwgXlKe8yETSatrCBq/KLvoKmTF0NKMRjZsuUvvodesoA3
DroiyT9hp7986vnxOxd2VNbvfn2rf+fwirhTiXe2LrujPSfv7FT/N8crXk31b/DlDbV6Mpo21FQP
+9PwhaEXvubrPfXFQ2cwt9CXXDsWsPa01u/727t7+qomT26snQjk2KrXVfvvXlea0zYdsY+PgS7m
gH3QoEKBk4xJpSo0rlRySMVB7EXRp9Jo9quQakotlZhFiIFFiOlawjRSBTHZCxJIMYAMNqf/hd3N
5wP7QgPXrMwx9rW58D+H3w3/4MRjuBzn49S994pn21dBIX6BnWBgEwQV8wCdBmIl+FGEXJFjN/rO
ykZjzauf0PAycvbyMruKfQwpUaPgUEawkRw/L0gBiykYQlRqyJBJNG4ZliH2RbnkJfoqLP8HvU5E
cZDYbd/aXk8C5N0GjXT0pQI5fV+4Cz97H36W9Ifb8amv41Ph9q9H3qUy4W+QV8T5lgrpchQPYihG
1iQeLCel8MPkQeYRV/RcBx3Hj7LoegAdDZ1p2MyIMTP0RqNlBjlBlh+XLEeVqAX1oc8F89SKe1aQ
7a0HW0mwa6ZrbxczuhKXOjC/sPhvL8k1/kTxqfLnLixeBdel8jv0WKqP1RN/Y7y9scpdhd3luLw8
r9G9MYBVxkTjJiOT0bTSyFblBAokbPxE1WzVfBVTVeWOpzvr5Qx+rxvHu+PdA51+raCM82v7cyZy
ZnOYYABnBrAkUJDDKtz1TR1NwSamyejOWCnpqW1NZop7WpFCfNcI5hVgUq+L3kDIXc6o83dSNdDF
lYr5FLLTOxdRCSd4RtyLxEtC7csNu1Iceft8PXajkQoujgMERU2Q+PsffF1RYiGKoRhLg68rjTuz
ubYsNrGhc7h882Pr83JWbKzSWkwq56o93fVbO911k/etsFbVLcvK8hrvTViV5xzISHCbzCXh1805
Qnp2Y2FyWpywpSNvWffjNR1reWGgOr2hIk9lsrsS4vPTzGXr5wLLdw638ol1jc2Oqs2tufa6IaFh
U6fPVjTU35u76gfbnYd+s7bII5PvVyrZxpSS9Nj43Nqs6mmnJb+s4asfD/1yOvcbwYI1demG5LSI
f14Lop8H9owitM1CY9Q/j7Lb2YMss8yy2kJkjjgHWY+2on2IkTsfUmRkJKOHaBhuyEl6KFkhaI1+
hcKe+c2M9fat9n12JinJ/JidReIPq0CfwNBjVySeisCT3hvBk1Rmr5Ld7vcwRWJ5jqqWthZvOj5N
0qtWBJZXODKXb66rG2/Lly2olu0MTWw6s7Pu2rE3md/Wj7TVlJfXrSyuXd9aTYnC4vbS5LSGYJVq
9YObKt29B788/9ZbYswk6n30jCpV0EslUd2Xx7CPSrQR/fcuWQBPfsQGMBE78IloCSLHTbRRTXgV
cKgMWdFpoS3ZrNX7g/oZ/V4905jUnUQYGn3kMJUMcZJyQpBf1TiD9iKShtYjsoHbwc1xTCPXzYEi
m0fN280HzYyZo8dS1pgYXbKVs4J+vKrQ+a1Wm15HtU2hE5Rav263GZspblSrOb+Z45J1WlVAIuJA
D/DWSRWgxEOD8BIKmPSl9NceNDjvFV9g9johDHfaxLeW6YWiRHvx9Xjc4CHfdQTW3bEipYw3uHUt
h9z6cNZFHKPkk+MIE5dsVX11Yd03x8tZ2X6G2Xp3Huu6ttPSsrxKrqxsakkid0fs+RawKVtBnjLR
U0JOaTr2JXUmrU9i1ifiIgbzVreV0J9WkZNWbLXyQlKqHwJ1pTKkwApqEuqBBwqFk8oaQT1uk2AK
mBhk4kzE5EvoTCCOvgQI21lOwSvcin7FhELiVswq3gNXySoUIkMlfZwB+EHh1hYxlu8V3SL1GM5e
+ssXwB2QMXldCG95q45v8Y/iD2FwWUb7PWu8wZYy04nEtulH1x95Z3+1sOdHc8GHxpfHP6staByo
6N7Vlkaeu+fHh/3uFeuLqn17R4XgAiaPPYPx6Z7i3u011blddVl1+/8uonNPRDGxCsWhAaF+huwl
hIoEmYibjSPGuNS4oThml/aYlli0Tu1GLVOgxAUKXM5gtBqpT6qJWh1vXB35bYuhT8YY+6T6W35H
cvlPcZRNZ4t6eSfWAXxig4GHPjwcPoqLH/uPZzoulkyemtn+xM/+noSeDS9+u1tSv/yJ/zy1/+L2
0i//AytEJUFY98me3Dzcp634Alkj/9fy7uHfGJb+92LxS9CIf4BIh/7TC4lmYvo/Gdcevum/PjC6
9YPZd1AdmkUvoW8tfonmIOyZw504gHZDzl70e3QBTeMVqAhSu0EozkGLQfDF59Ax3I9+BdQsqkez
2ISakQndhb4F8cY8OoIeRI+Btk9DTO9Ea4GqQVuQ+CMPlI3+GXfh3+IwmSXnmUSmHQDcZyCxSNIu
OSX5SmqW/kjGy56R/WOMG74/kMfK1yuMii7Fz5V65c9VNaq3VX9Q52qSNSe1vHaD9tfcAZ1bt0G3
R/c93Wf6q4b1hsNGs/F5ExtdaQHqpw5Z3HUOuWD7EJPDxEEe5VAi7rzOj/7rvMFICykcbSUDpx6h
Aa2AEY7QLNSZj9ISwE4norQU6BejtAztQK9H6RiIpAujtBxpcGOUVsIcVl3/z7FcPBWl1WgcPx6l
NaiKcDA6ZuWQukhWRGmMkhlNlCZIw2RHaQYVMGVRmoU6Y1FaghKZw1FaCvSzUVqGPme+H6UhqmIX
orQcJbKXorQSlbBfRWkVWiMpiNJq9C+S+SitQXdJx2rHJ7ZPjg6PTPMZg5l8vttdzLcFh3j/wHQ2
3zg2mMtXb9rEixWm+MngVHBya3Aol29urKlvq25vbFnBj07xA/z05MBQcPPA5EZ+fP2t7ZtH1wUn
B6ZHx8f45eNj423B4ZlNA5PVU4PBsaHgJJ/D31bhtmRncHKK0nm57uLcghuFt1X930wCZj48OjUd
nITM0TG+I3dlLh8YmA6OTfMDY0N8+/WGLevXjw4GxczB4OT0AFQenx6BeW6YmRydGhodpKNN5V6f
fu345MR4ZA4rp4Nbg/zygenp4NT42Mj09ESZy7Vt27bcgWjlQaibOzi+2fXXyqa3TwSHglOjw2Ow
8NyR6c2bmmFCY1Mw8RlxRJjNzSzzjY/BxmyK1Mnmp4JBnnY/Bf2vDw7B1CYmxzcEB6dzxyeHXdtG
N466Iv2Njg27bnRDe4mO819rjWpB+ybQdjSJRsGyjIC94VEGWKBMeOYjN3yLgWpDQTQETz8agBrZ
QDWiMaiVC1Q12gRf/qYepsRUEJ5BeG4V29KazdCqBqxZG7RpB7oF0V+ijYr1B+CahtoDUDeINsNz
Em2EvHHAE39t/GZov04ch5bQ/8Mbg9Ll4nNcbDeMZmB+tL9qGGkQcsbEMSahXo44q7/Ww18v7RRL
pq7n58GMKMdywS7+uZZ/vdf/GiciPB8We5kW+47UHBX77oAaK8VaAbEl5cK0ONqYWKv9z4zYAiOu
h/aUZzdqDop9T0M60vM40CNRfm4AXk+KMxgS2y2tbQpG/lPuU9mbBOkbv4UPK8XZbRXHXC7mT4uy
RMtGxNQEKgNP40LbxG8u1Lm158Fov7kitRlq/p+2mwbNmBD5GBR3eRjqRnY8V+xzM0hWc5RDY6K8
Uw7N3LTGCG/+kpT5xGdEYzbd0g/dWfqkbZdmPxWd/3pxnAjXJuA+DnwPitzOFXOHxTWOwh6OAnXz
/OiODUfzbp/N0lxuXc//y7EjuAKF7SCdf+YjDMkZ9hr+IpBh/b0vw/o7X5b1qq/QeuizRz974TNm
45VDV8jrV/BTV7DlSs+VjVcY9tO6T4niE9+i9b//Os368a8rrb/5dbL1V//qsyr/FQv/6ou1/vKS
z/r6pR9f+sUlRrjkKfJd8pmt57ERVWE96sAGQVXJdHxU+WHHv1R+0PF6tRzHAkRoh/sQXGTxIo59
SRXr4xdw7FlM0HnI5GgBNp39oNK6gHXCILNo5T7kPxQ+DHw4+2HoQyn/QeCD2Q9CH7DaD/B7Jo+1
74fjP9z1Q6bvzfE3d73JvPE9/N1AmnXiAuYvuC9cvMBMXJi9QLTnreeJ67z3/Pj50+c/Oi8592Ka
lV9wLwQWJhZmFyTi78UWDJk+7lXMvxp4dfbV0Kvs7CuhV4j2Je9LV14SfzzjfN5vnQ3Nh0godDH0
XohxnfaeJidfDL1ILr743ovEdcp7ipx4AV98/r3nSbUWa1E+1oAJQXDn4OLhmoALQBrmBBMOHO8/
PnGcefiBNOtDvjSr+0HhQQLzeOmB2EQfnU/WAxqd7xuWRav2/tP3v3E/I9yflOcT7o+1wE2l9Wnv
c93nvW/XfVfuk2hfwypAZiqBJ18/kma9d+Wi9aN57J7H1nnXPBmf3zVP0DHuGH+Mof3yx8yJPv6o
+yhpOdJ3ZPwI4z6MtYeth12HGeEwZ/Bxb2AlTFaJ3HAxsEHKs3G87xwlhABn9B3anWY9uKzCemB/
pXX/ngrrvmWL1hN7MbeH3+Pew7jvwbt2Y2G3XOWbgm0YB9kagysBmzviPeYOmYfpkMKG9kNZH1zn
Fi9h2Vlrmk8kBKsh0bd2td+6xpdn7YHnanga8vUdEsx0sPlMxwKOecVSYdUy+ByOx+azhVZhAR5x
Gb4FrBAc0GFbwGK90rrYSoTWwhKf0OrI8L0bwB8142ZfkrXJ57cGFrBFWI2XAcsbYWJ+uBrgOu3D
H/mu+MisD8fmmzp0WNvB5Ws7CAYZRhCUar3aPu0uLavVurQt2nGIwj7SLmplXsi7omUAjLcgfDIW
S/ACnj/TvtLpbFqQLbY1heSBnhA+EHKspHehdXVIeiCEOlb3dJ3B+Gj33iNHUE1SUyh/ZVeoP6m7
KTQEhECJWSC4pDOxqKZ7anpqesZJPzhKTCGnc3oanmJCLIELOZc+mCawc2p6eiqaAy0gNe2cEe/O
qSmxIRZbIxgAup4CiwoNpp1TgPfpA1rQAaElBnMGbaDuVN+UOLI4BjzXTonDYiAQVJieikxkyty3
FqH/BSWZvy0KZW5kc3RyZWFtCmVuZG9iagoKNTQgMCBvYmoKMTIwNDgKZW5kb2JqCgo1NSAwIG9i
ago8PC9UeXBlL0ZvbnREZXNjcmlwdG9yL0ZvbnROYW1lL0VBQUFBQStMaWJlcmF0aW9uTW9ubwov
RmxhZ3MgNQovRm9udEJCb3hbLTI0IC0zMDAgNjA3IDgzMl0vSXRhbGljQW5nbGUgMAovQXNjZW50
IDgzMgovRGVzY2VudCAtMzAwCi9DYXBIZWlnaHQgODMyCi9TdGVtViA4MAovRm9udEZpbGUyIDUz
IDAgUgo+PgplbmRvYmoKCjU2IDAgb2JqCjw8L0xlbmd0aCA0NDgvRmlsdGVyL0ZsYXRlRGVjb2Rl
Pj4Kc3RyZWFtCnicXZPLbtswEEX3+gou00UgaahHAhgCHDsGvEgb1OkHyBLtCqglgZYX/vvwzmVa
oAsLh+TM8JAeppv9dj8OS/rup+7gFnMaxt6763TznTNHdx7GJBfTD90SR/rtLu2cpCH3cL8u7rIf
T9NqlaQ/w9p18XfzsO6no/uWpD987/wwns3Dr80hjA+3ef7jLm5cTJY0jendKdR5a+fv7cWlmvW4
78PysNwfQ8q/gI/77IzoOKdKN/XuOred8+14dskqyxqz2u2axI39f2tlTDmeut+tD6F5CM2yKm8C
C1nAVrm24EK53IFLxhTgivwMrskV+ElZnsDPZI1ZM0brvLB+Bt5wvgRvOa8Or2Tda6dsN4HzjDW3
YPoLPPPo/wqmf6Xz9K80l/419srpL3DIo7/WpL/VOvSvcJY8+tdg+tsXMP1rZfpbrUN/qw70r3E/
Qn8LB4n+OK/Qv8R5Jd4/9hL6W3hK9Ed9ob/VePpbrRP9cedCf6v70t9qTfoLzij0F/gL/QV3JfQX
zY33j//ORv81mP419rL0L3BeS/+i0CaM3YZ2xHv5anPT3bwPLa6PSnsbXT2M7u+7m6cZWfr7BNvk
4rwKZW5kc3RyZWFtCmVuZG9iagoKNTcgMCBvYmoKPDwvVHlwZS9Gb250L1N1YnR5cGUvVHJ1ZVR5
cGUvQmFzZUZvbnQvRUFBQUFBK0xpYmVyYXRpb25Nb25vCi9GaXJzdENoYXIgMAovTGFzdENoYXIg
NTEKL1dpZHRoc1s2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYw
MCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAw
IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAg
NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgXQovRm9udERl
c2NyaXB0b3IgNTUgMCBSCi9Ub1VuaWNvZGUgNTYgMCBSCj4+CmVuZG9iagoKNTggMCBvYmoKPDwv
TGVuZ3RoIDU5IDAgUi9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoMSAxNTM2OD4+CnN0cmVhbQp4
nN16DVhU17XoXvucMzNnBuYHmMPPIDPD8D/AwAyCCMgRYcCgAgIGUBwQUIgKw49/MakkMTWiVvNn
vLWJtvW2t/mpg/EHm96G3tukfTcxmjZNbq9t9aa2SW9q9d5nmt6ow1v7zICYpL3ve/d93/u+d+Cc
s/baa6+99lprr732PjMytKmHRJBRwhG5a2On/+1TP/sJIeRNQiCqa/OIbdfqS/MQvkwIvWetf93G
DM/FPxLCZxOiFtZt2LbWuPjTpwnRFRCSfKO3p7M7rrzVQ0huBvIo7EXEluDDaix3YDmld+PI1j+Z
Fx/F8k4sH90w0NWZ/dV/eY4QVwqWl2/s3OpPUEfxWN6KZVt/58aesfVfehvLhwjRdPsHhkfeI1lT
hBTdYvX+oR7/CeMnVwmZl0gI93vEAf6xKwJBFStTjhdUao2o1UVE6g1GU1R0jFmKjYtPsCTOSbLa
7MmOlNS0dPL/7SW8KbxJHhQeImayTXnedfHzSQzZQsjUH1jpzjN47/9dKTTKE+IhlXxMPppV8UPy
M/I9EiDnZ1NDOmQy60EUuUJukNf/ElfkZ4UlCniJvE1eI6f+Ah0l34Hb5J8hHv38DEIMV04uQjvK
8zziNpF9cAu2gZ0cBaNSm4+89cB/Aa8ymCKXUbqnyGXyFFSSy8IwF48V/0xfI1/jHqLnyBso8zK6
D3FT5D3yJuRBFRkmJ8m3FAbD2N++2Rw5Qr5BDpFH7mCF7wa/LzxETxPT1J/IafJ9RQM7yBjpmGl0
Hf4IB3BOxoMGpm36g+lKdQ13Hz1N6e0nsfA4WYd3J/wCqfdxCz8znOeDA8FeEMiTKMH70ED2I5fv
Bs8Gj5HV5Dj9OWkm/4FyVwom+A4hclVrS3NT4/KG+rplS5fU3rO4ptpbVbmoYqFcvqCstGR+8byi
wrn5ea7cnOyM9LTUFEey3RoXYzIa9JE6rahRqwSeo0CyqxzeDlsgrSPApzlqanJY2dGJiM5ZiI6A
DVHeu2kCtg6FzHY3pYyUaz9DKYco5RlKMNpKSWlOtq3KYQucq3TYJqCtoQXhfZWOVlvgqgIvVWA+
TSlEYsFuxxa2qrjeSlsAOmxVAe/m3rGqjkrkN67TLnIs6tHmZJNxrQ5BHUKBDId/HDIWgALQjKr5
45RoIlm3AS61qrM7UN/QUlVpsdtbc7IXB/SOSqWKLFJYBlSLAmqFpa2PiU722MazJ8f2ThjJmg5n
RLeju3NVS4DrxLZjXNXY2K6AyRnIdFQGMu+/Eocj7wlkOyqrAk7GtXb5TD+1d7qEgJBqdNjGPiY4
HMfVP9yN6QxjVKnGjwkDvajesTGvw+Yd6xjrnJgaXeOwGR1j4xERY/4q1DCpb8FWE1Pf22MJePe2
BowdvTA/PFjv8tpAdMPKlgBN9dp6OxGD/+UO+zyL3dQ6TVP/l6oJKgLVgTq129nA90zIZA0WAqMN
LaGyjayxnCCyy9kaoB2sZnK6xtzMakana2aadzjQmrWNLWMBPnVxt6MKdbynMzC6Bv3pPmYKhzGg
/5PF7hiLMtmKXa0KrQ2lWtzdZwsIaagWbDW7AXoKazJmVAr6P4VeVy3YQZopylbsQDaMT5WjqiP8
v7k3DhnYcrIDNc6Q6ZtaAnIlAnJn2EZV43kubNHZgSbqq1TMF3A5/IEYR8WMPZlYVX2NLUqTcLNA
zKIA6egKtwq4qipZz7aqsY7KkAiMl6Oh5SzxTF0eL7BZXvaQAtJayYilRehXaVVjLd1rA9YOSzfO
tLW2Fos9ILeigVsdLT2tzNFQQ5mXsTu70mOALmpqqW101Da0tcwLCxKqYOz41KrPsHG0WEJs0OUC
mlSNrYVauFYkNCLC5kXAUVGKz4A6VYO3ERWuYJmrVpTaWsBCpqlRjECmraqnMkzHyncxFZg7LaqZ
5qZiReSzqMZib7WHrpxsitW2cMfYQsOUWjNdxaViJEAcRTYKiukyjvm8rcXR42h19NoCcn0LGxtT
j6LlsDIUnYdt1XRXaZayUE3EjtXTBabMgNdpma3cQLVSninWfKZ68XS1bUzjqG0cY8wdYYYEJV8c
IMyF5XkmizL72Xx2eDtxEuOMVubz2Lgss7ncy6btmGNx95ijsaVUocYI8qDlftZXFKmF2qaKnGwM
ZhXjDnisYVyGxxrbWs7iaml7rKnlBAW6qKOidTwF61rO2nCtULCUYRmSFWyswDgtx4JGobeclQkZ
VWp5BaGUuyaAKDjNNA5I1wQN4YzTOIo4PoSTFRy70EpxvahjjN9Vtm5mnwdae8c6WpmPEwk1gv8Q
AMcC1I5jwThQVURA6+ipCOgcFQxfzvDlIbyK4dXoGSBBTvb9Y8Yqx8dxOWzVpKQSH91CMy7eapI7
DsRVekLNJ191j6uEX5ae4CiCZJxjaIGhT6hVjlulJ4DhPSa7KdVusldSWzAFDgV7heZPX6jkzyl8
d+Pqb8Q8TU/iybKzJGLqz7JLJEsNK4klz9Jh8VtGLbzVAjHqNpsmT0M1Kp8rBmJkvb0mJkYd7RM5
dRQpL78aVexytl8FV/tV9+Cg8ddX8/OIE2L01IH9muzuJCoUpDHYvYAKxrIv/cOjwW8Ef0G37Xr9
4fLge488EjwPxRW+8iTuH1d+5+GlQRRo4eZjvRsHg0XJC1hmCGQXChvk68gcsvosMUx9eFLUkiXm
ialJOVGMqDGbrTusR6z0ghVcVp/1uJWLmOO9gM2Q4OWUjBr2liORkMTXR0QZ1QbMS8vLyz0osRPl
dre3D5o8LieT2mMqyKXp9iTO7FnAedxSrDkXHMkqs2k/cJRCBOV5jjdnFdeXxOdHWorS+jZxpY5l
1cWRESXeKnNJ+0KHqPpIJT7/7dtXmX7rp/7AP8kvI9HEQVLkmJhqktqR6k+lCdXa2DqD0VonSKT8
ajkKcjWkN0Vrybl0bsEC6gkrDruPScLSAso/WTX21u6d/7Tbu+ixt8aeeOuRsuC/fGnrAzsdclvh
gs6KZJr0wFtPNy5/6vyD284dbGp6+tz9P/xu4NXOvW1OZ9teJs+u4L38fr6BpJBC0n6WJE9dlhM1
ZClnw0dq9XnMaymZ558HOYkm74UoiAorkL3lKE1ETVRGXaLNKBlMFnedlsnuuTpbkW4cxKBifef0
QNIdqEv0goK0sFZhZlh6OjOu/flrn12f51uxOEEFqObgBwIHJipwlPec2LTuYKcreNE/kNW4MDNj
4fKswqbiJJq8/cLB5picxYVCxtyS+GAn/2+ND6eoMwrmmdevanrq3P1nX3Y07994374mh3PlVxQf
qkFbWNGHSsihs2T+1IeyFj3dbmSeRCemritFt9ea5c20suF642011kxrptbsVfRShyzK6ssgryxQ
RuUycJWBzqt1mwVXQ8pPs8CfBdYsVxbNykoxGhsEo86mozqdoiJXu/Eqe7bjO6q4GG2NDjdk/HX7
ICu6XE7jVSMqzTlLaUVJHNPLXOaMudy0M8Sqc7mwN8Qmcbx14QMnh9d968Em8ycRWQsa5+Y1liXn
Nw8vrNzZK5eOvDDQcmhrg/E/1SlzvVnd3Zm168pqHx+sgtJlD9zrSqrqb0jNmZek1VnyU7PyrbEG
Q1bNQPPSbc059ur+ZQnpniSdpzQ1e47ZYHTWblZiRSnqbxR9eS5Go92n8+PECLLEyhSXiopTG/HB
xYk6sqTQrfMmT2ZeyKSZmcneV71Q5wWpOpbpNNMcVxMbW1otyJHGGqFouVabWG6VXNIOab/ES5Kp
IdGYXl7ndhFUm9t91V1+FdVmwujCHAxh59X2QeObbqZQt1vRmFMIT5ZyYMpiTqVOZTM3iZpNincV
mfWotLR0hx6i1XrOHCMpmoXdy7avyF008rWW35szStIcRRnxQvBihDz4twM9z/XPV0c7Em1J8RkZ
OUn39WhV847/04GchrKU6pLClrLkGGfj/cs6HmlIBb6opM5t1jtKcvTVm1a43F0HfMHNaaWZZtUh
lVbF9/b0+KlIKUb74qW1ubVrPOhE+9EZ/w53yRypkvPA+yoFP4VLuKIJslAv0KNCQKA7BOgQwCrA
NQFGETEpXBB4IErcAvQevBQHYpONBfj9EC+8+WmB4ufxU3+kjwvzSCxpkj00g/l3RIQPw3aMVu/l
1Jwg1HE+boDjODktu+YoB1ykUIfSajQqg6mOKAHJ4zJ5UMcY0Z2DYRi17nGhzoXktLkmx1xPkcfs
MTtMTJ2FqGOAYw98efczLYFz50rLE7ISCkaidu2mX/pBMPiD22/V1WpU3zWZQmtZE/rRKhx/CvMk
OcsqpHov2cEuY5yxF/mLwFU9qb+gp3l60FtJVl1ctDG/ThAlZewYbvAfxRpk8VIJOfl5dpwhaN3Z
YTPWU5BWgHLaUb5YCDuG2cgszy2hgsDx+cfvX/t0pwvjzoa5a5oq4ygAxKto8DcZCxudhY3Fc36V
1VSRqcksKDT3rWw6eG7b9reebpJyazzadHdhPOy5aavbnkwd6/c12rPa9nYFD6SseJxMr1V8N8YZ
B+k8S6wYYdMwuBLvZcd1B3WkHkg9mkr9yiuQej1VuJYK8RHeC5EQGY617C3rMdZGxqvq5xijDZFs
5G5cZT3Ty5VieyXM2k3TYzPZZ61cEPJ/bklM7j1zPY2l9uAHs5av4he3rNnVnEZ95X21WTmNw1W3
v8/VOO5ZNDcyYq4sSw/4Zf+hltsNynqBttqv2KqALJVjppeIQn8hSNoc7wX0qrDYMcoSgWtsjLJE
mInJ/FeXiDvrAwJq+wJQjKVSq9RftEQUhleIjhU1CeyIjQavcQLEo82ArRC9Bztzgxc3DDqbKjIy
5Cbn+hFq337+mSYcfqG50JOhcTzUyP88uMZWlpBk8Xc0Pv3mtokTyWx92NuUPI4228F8kp+PNlsl
51qVNSFG572ELsjcUv9FVgPvteSpZJqsmAvHnczMJcWYI4jhjrnaryrGYgNXciJTeMFTBotuOtt1
TXAoJnexYi4cGcdB8AYIHCfMe2lL52PNafz821+fNhitvDWRXDttsO1+eeBQCz0ezjdyMEYnkXRS
dzrem5CQ6jUyCdPTnTXGTFdmXaYvcyDzSKaQYqoWTMtTUiTrcq1RaiDGeIiPV+KuslxdDQVddDaU
HiMvWkyYNb/mgD1klyJBz3Es6Npzgd6z6ZWd3sZ9E2tHT40U3r4nrnBF2T2rY0CMWrjh68PO2qJk
Csc0/TFV+36+//A7j8xvPXppl6ZyU3N+eUVsbu+9xdz4nPJu7yOP4DjuxEg1qZMLQfDSV1XgV8El
FahEWawX6VExINIdInSIYBXhmgijiJgUL4i8YODNpBGjJQayu6Olm5kheq7dDKGYidMinr99/vxN
jp9/83X0Awc6/XexXwu59yzR4tydw1zh1TkwOgcsFp8BDIZ48FIVzqM8jNhMs0ZjdA2NbojAWV8X
LxggFKbcLKe7O3a2D4ZcwM6iZ0iR4fRSj/r0mOEXwQ+fey6p5v6Vee2pUTnR6Z45ET/nHri1k3vg
B4ML+pZla1WneMFoy7c1/4DFGWbrIrS1jRTJSUavwWDx1iVCYrJULUTXaY1GrVG2oNBxoZCO/WNU
NzKbsuDxOYvGCqFE1xg2Kl3+0A9HZe/OH27v++bmxfrgbyM6WgZ7f1W/IRIStNXbXoypf+LcA7t+
9viSeZ07l+gbu743Hhzr6Y6s3d1XHlrj+G7Uo5XFQCEcA7Xey+J1kYr2A/ajdupXXgH7dbtwzQ4J
kvdCLMSGg0nsdAyMjSOxotlqrOeMbAzlnvLPx0CYDnd3BUOcX+iVcCwc7IIfzgqF8ZSjwK0JB7rl
dPVMIPx74c3getvC4tzIUCzHtUrYLxwkmaTrLMmY+rOy78Ap/2e5iEGWVQkJwiqVM88JqSvzjIAZ
vZEabT6zxWLmbUKeQG1Ch3BUuCxcF/AiPl10yBSDYVu0Y4DAvF+xhtOZipGB6d6RnJKGhokqTAlb
hpuOhJylcVtrSTSAtfvg+b1ngjeONze/COoTY+ef6UoM3tLPb926ZP1Xu1yu7mffcS3pyO9c8oS/
auM/QsSRvwXtKz3z+/avqM5plNOrRl8e6D+z8x42xhXk63wrP050pEHO1umBp3oDJso0iuNFeF5W
URoRSfW8WtDnqeGA+qiaqgn/kiicYKHd/Xr7oJPEGZf+zhQFxS5PAmJ8q9udwFAY5U0Ok32u3YQ5
ipn++P3gIOx/H56gxcFeOHSZbUYvh/RcgnpWoZ7LyMazWPhQrgjl5mRpVlumu43l4VZtdBsp17UZ
tFZtndanHdAK2mi3kONLwZSbN/qUlDtPx+XpZCXzjlYy70El9Q7n3e3o+qGUezrjnlmFUlnCXRjK
t4W750RI87FJgqDyPvnb5/a++zc+M8yJyG3YtuLgEfm+sdrSrRtXV6U3Pf3W/WOvPbo0Kvi+tOtL
y9aVJbjbHqyteHjz2lonHOx41l/mXvP4apdrWbF1Zef8e/JsBn1S1vzmoaV9B33ZzpZHW9NXrrLk
liUXLMqxGvXWrNJ7t4Z0g3t0/hju0QWSLEfz6no1cG02kodREhcJH4liYY6Nrd34VigZtJt3Qzq9
ITx0s+sKtjfinq8X1za2Bz1L1JBSHog4Nx5lKA+ABwIxroD5XTIeFWGKCpDivPzUaDvgKuxITp8r
YSQoLAew05pPIS3Y1HCv76s9S+Y2ywmezKhgE2T+O7f45r7XlrdG/kQTZc5am8e7mLyxKO85lFdN
8+Qdaj1QXq/jYWA9DzreyW/n9/CHeaFEx1v4lfx6/gX+FV5VoqDf4C/yggVpSpSa7Vj3EX+TF3lo
e4NepB9R7iQFHa2lK+lhyu+hr9A3cCLLWQU1PI3BJJseEIEXR8SdIndMPCneEDmRxZGpX/9rzXpx
u0ibRChhFCkiffO6CO+IV0T6igg7xafEYyK3XoRpghiRXhQ/EilbT2iK2CR2I9djonBThMusHbwg
wlMirBShUgSL6BQpzpSv3mSsTorviBxWFIigEwG5K2sV67NA5K6gTHRSBCYd3SOCn3XZLdJpqXqR
xRUR3hDhgHiUtSoQK7H3naJwg2EvivSkCNhuhMm5konGOvlIvCnSCyL8SITDikQ60SLSImyyXdwj
HhblklfEN0RhQASnWCLWimxa6/C9EmtfQKaqKRHofvG8eEnkiGgT80S/yOMU9+EeXDndccPq9nYf
Rlx2IciuwfA1G6dg70bMYKaRTsS4VrPX0NBVjB2IHZodLuwsXJg5IfiLYDF/mn/2Zhf/7JUr0/MA
AuhXHOmT43B3xOKrLPiFUWV3pGYxlgrM4Lr8gpojAhABTEo5NSa2hmsjxIhLJVdJyCS5QC4T/joB
No0uI0Pg2DRS9hUozVXnakXQodB0wskkPPTpDkWGPfh4EfKxSaKs5w6GpiHBrdlhQlxXlRDYHt6S
7QE75AfPz8xhlR1lz6MrT+fa2NJhm8BVUccgg4Y99WxRmVLK+rS0pFwVWZXnfsMNf+8G2OOGHW4o
cde617s5lxssbrjphmtueAEp6BE3rHRvd+9xc3WMCJBA54Yff+SGS2447H4Fabj9bqhFGlrO6pxu
Gmr+ivsia37cTXe6Yb0bfIwKCpQODG644QYU4FU3HHMD408H3NA03QXvhmdCXSDNSdYR7A8xZx3x
FndI3D1u1slNtybU44+YzIAS45BGmNxQp3SIAq+bcoN8/AqTCgd13A1PsV4B+6x0g9MNVoUKZbro
hvNMxDsdqErcIQ0wfdx0q0PiFb3h/shNQ6KNKCNLUVigJO+wXgD7mBk3lVkP5W562X3dTZH/UTeU
u+vcO9wccdvcVG2LnbPKlpSXRJNUsWmxablWLsnAnMbtLvewFcWjnH66V4e93jd7foR8f1bx7jnS
3j74edzgnetzlQrWp5y0ut1RxSaPJ3QWggkQRuwilVqP23wHl8ulp6VLsUmg5EPRSRArxRYWLeCK
ou0mwcJh7DRHa6JMRlXwp0Hc+keJMRLHUT74Key5pY3VRej1kaqIiAjhz7CbW+HZkDPXXVedJJcW
RN/6IxcVXVAqJ1XXzZ+Xd1/6reeFh279wdqWlT+3IM+cnZVm4OLZhAH2IZ6/D9ceFe5IxnlN+bgQ
XnbUroAGlx2Bn152cLbgH50LBlxqBoOB4IOQ+Rvu3puvY2tlT616DvfUxeTvWB52XcnDrGwKNSuT
qdhLSGSO90r2jWyaXdJUsrPknZIrJXxJCRwueaXkYgnXVAJYcJUAtZZgugGBkgsll0u4IyXQUTJa
QrECd+Ek0haZF3khklf24NFsM+5R1cfb0zi2D88JbcRxaxfrYUcjoZPjGWMPKQmpCbdNylbvr2zN
pVjP9AnVDJHaxEWY0stznF5P4l2b9YLDGx54JkE1Z1GDb17r9qWO4O8ZWVaVJ5H+5Q38tuFFbUVx
oW18iMpZ17/o9vHp8xfhN5hrReMecctZkjb1k5e1ZGkaKvNlzLdYXGJlfP+zvAARiXFYktgjZuWr
5DwyyMzLlDM7Mv2Zo5lHM1W2zOuZNGnlpBbytMCSM6qN9xl4h49lYMrRNqqIndtNnww7lYNOquJn
p7m8FCVM6yu8RxZ+s2Yi+Mm3x4OfnGhtPwXiiy+CeGp18Gdze/+mZ93h3oK5vV/t2fC1njz6478N
/sdk750sd+33g58cG3h5tGo6y6199Az6kB4DdQ3GYCP55imDEcfDscNLA/MfsGER4nC0BHFs+Pj+
UM5HxGQUHImCjihwRQEQUaQGo9Fl9Bmp33jUGDBeNvJGY56xwziJAKecI9vL6QDdQY/Q4/RVeo1O
UY2BWrHIUVEEAw0tqh7cX7PlZh7LUYfmeZRZzLwpNJOdzkzMu2B6ykIR2LmK4M9vfwIFkKxP0EXo
tDqtRc+WGJx6W3JWp+dmZeak+Vzc7pnvOoM41ggST1rOkripy8qMiVNGhVsxAxuwYR771BOHxciV
xHLAAnkW2UJj2ogqTyWrOI0q2qfmYnyqqLAdV7crZpyxIhpRD8pnnbD1cHOrGG7wvombj99+HYLH
IOr1/uB7i7Z+u+ftT1ufGSinbwSCH59cJTy0/Pngpye3BwYLb1Uv2H465JfBZXwbznEPqWInlyn6
Au8l1BE7gHFV+6tB5RWEBdWTiRcSaR7uc7MMxXUpduPCuuhYs9hAVCrctJe7Xcarsw8JPa5Z54QQ
SvRBOYAphaLCu08NcVriu8iux3iJ24LoGXdUDoxp0/pvDldFQryhq97dWGIHoPnj9697eo3Lve7Z
DRteyBPYsRRoKV/5yKuDGXJjVmHj/CT20aIiI7jMuXS9bF94T+Ki/obE+XGJCX2rGx7/H9sefOOJ
ulXrzEWeDHXKw023/nXz8ZH53K/XPrY8OavlsdXHT9gbx1AvHrTl4yyfJjH0fbkumnICLOciudW8
EMNjrzFAVLCcRJLValWMWhXJq+VoqUatjlVTnVr6sfSeRA9J8GUJ1FKslC7dK22RhGekb0tnpA8k
XlIy5H86V6OR4CeM9gOJC1FvkSAj1IZ+gnUSnJHgWxI8I8FWCapZ8QOJPiYdkug65EjnSeiroJLg
0J8keEe6ItHXJDgtwZPSNyW6U4IeaZNEmyRYJEGKVCBRs0J8Q4LfMnI4Jb0m0WMSPK303S2NSHSR
1CjRAglSJZAkoBL8zy9kvEmCtRIg56o7nHkJen8rfSxR5IzUL0tAjkrwhAQj0k6JrpGgXgK3VCHR
FIW3/B5yvy7B+xL8SHpHoickQFEOSPAwawHLpTUSrZSgkHUARkWWK9INib7L6OEb0gmJPiXBZunL
Eu1m5FAgVUo0TYIYZZDz/oPRA1L/gwQnFS3uZOQodDcj80o0SsLgwrgh16NSgPEZkZ6SuHrGg3Hj
dmLxpPQjHL/gl6CStWSSYCNNgJ/kL+BSoQbqi4mPhEghOlqFjqGkJ5iduKKK23HFYvFmNebx0wnE
kO8vZCOzc4/ZOYvvc4TtX0z4uW3CNM6pIIzvImQq3uXc5fyRcXLSSH64S4gLF/Lz7Bz+gV0ETF9Y
HmPnNz54+4MHg7/AJXEVJbefiIg16QC0ptiIPfA09AYPseycu+ioLkmjXNr8akdw/UwMfBbnjYkk
Er9cS5QvIWDkolbqiMloMFlN1GQq19XpqC7JnwQsuTuaxMXi5prP4ylvpD5f7EDsjtjjsXysLNlr
YmOJ5JtRa/ibt3Kq4Maw+Nag29U+z6OcNGAMxxGEP32b2TkUbginP4DzDcGzwW/hcCZ3vrZzoatx
aBE8GHx814PBL8PDFb6yJBp7+/fCQyUbD3fWPbK2yng7wL29rjvYYS1eFlrD+G7MiHTke6c1cWxA
qonw13DKYruHQUSpUHMarU6lA9xHchrQilRUI8CpeS0HoOM0IhF1xgM60ClbJm1kjU4XqRIEqqyK
c+q4I5ggXo+Ey5FQF3kkkoJay/G8RjBwoc8RnuJ4V6yHna7GsXF7TB72CT0M4WoW6zHuQtviTTWT
GgZo0LigpKk6Zl67hT05z61g8OewN7gLXB/8DjdMu2A/PBbcSl1UF3wO1tz+8+23QvsnQYW21JHl
8lwDB2p0DFGrpGtyJCeI4QMRjc8nDAj7hUvClCBcE0AQRN4HnBg+JWE2w0UhZDLjWyaWtw8quzWz
PXzv5ptu/Yxev23kVggPXQk+dyW470r4PHOT8Cb2/xU5JZFAAsC92nVaKmhBi8oFnUZMI4XESw4S
XiQ6o6JUoxjBlOqKRHG9F3jgw6eb/PTvFvjtsAco2KLja6haC6BWawwC4cPfe4pdxUypzvbpI0+m
YNQvvk3Mx5QJZge1ctip6LIieGkbO96EhyE3uBP+Bv6tKXif8Oat78JksO32BgJTn2IeXYb+E0E2
kHEt5uNq0eMZ1xnKTwDlPR5MzCNdAf27gcKEswsiry/XBiBXHyCT45q6/xQC4uTZH/7b9c3agDp3
XNRoAppJ/TjHKugkR04QTpObmwun2W+g1RoxN3QF5ASSlw/RzNrADI9/J9+GnPMTwAevBN+7+H7w
veCHoCFTXMmt17iSm69zQ7e+ouT8uH8wfcRbLmX5DKUfE2voN73n9/42ZvrHpFOfBpepnkOrsH0G
nf7BLCHqBcFlZNGdn9B+5jeoGfQPpFJYQXZzc8gu/jekHu9d/DCpwbuUFpP9eBP6PIlHfJNSF7p3
YH29Uv88cTAYcfuFHyPNi2QF8ivB8m7EG/Edi3S78d6jel7BadTYl6qYNCGdHtvsZrzx7VHgYcSt
UN77VcXMRiSbjJJfQgp8g1bQ33ES/q3l3uVL+YAQI2wVTqq0qhbV99W5ar86qEnSrBAfFn8kXtat
0o1GpEV8IzIucigyaPgqZqSjxklTiun+sBYy0EFDeqKYBbtIG3r1/aqvE07BJsKKGV11zOgNiAFL
EG7Fk4EwzBErGQ7DPIkhT4RhAWPUt8KwCvcYJ8OwmtxPfhyGNSQGFoZhkeihOQzrUIaumV/U58KO
MBxJBuClMKwnC2giO7LBeUbIJG0Lw0CSuIQwjIGAmxeGObKAk8MwTzK4L4VhgSRy3wrDKpLG/UMY
VpMb3IdhWEMy+F+GYZEkCnwY1pF5gi0MR5BVQksYjiS/Fk6GYT15QPXEogH/tqG+db0jtoyuTJs7
L6/Itryn21bTOZJtW9zflWtbuGGDTSEYtg31DPcMbe7pzrUtWVxRtXxh0+K6Zba+YVunbWSos7tn
Y+fQetvA2rvbL+lb0zPUOdI30G9r7OwfrhjY0L1wuKunv7tnyJZj+0ytjVV/EW5Fz9AwQ+Tn5hXl
FtyhYAQ5n2n0XwiEo1jXNzzSM4TIvn5bc25jrq2+c6Snf8TW2d9ta5ppWLd2bV9Xj4Ls6hka6UTi
gZFeFPu+TUN9w919Xay34dyZ0SwaGPIPhMUa6dncY1vaOTLSMzzQ3zsy4p/vcm3ZsiW3M0zchbS5
XQMbXX+tbmSbv6e7Z7hvXT+OPrd3ZOOGJShQ/zAKvknpEaWZrUHvQD8aaUOIJts23NNjY+yHkf/a
nm4UzT80cF9P10juwNA615a+9X2uEL++/nWuO2wYl3A//73WGN8GiJ9sI0Okj6wjvWSE2HB+d5FM
fLtxMcwjRQgtJz2kG981pBMpshFaTPqRKhehhbgGbMD3HQ7DSqkH3z343qy0ZZRLsFUF7sqWY5sm
hOsI++rYp9B34j2C1J1I20M24nuIrEfcAFn7V/tfgu3XKP2wmj6k78faRiz1I98KLG/AlgsR7kKq
foX7EFLkKPL8tba2mdb/u3QrFJrhGYp8lI/pL5cUfCGPaQ45/0VP/z0NhWyxTuEyovAOUfYpvJuR
olGhqldaMh2NKL31K1RNX9BjHfa4Ftszjd6h7FJ4j2A5xHkA4d6wtu8jmxT/GEZK1m56bMPY8+dt
w3xyCL1y4DPaYtJtVvpcquBHFB9jdb1KyU/m42rkIluUv1ykuZtzV5hvrgJtRMr/03YjOGP8ih57
FHuvQ9qQ7XMVnhvRmkvCGupX5gHT0KZZYwzp5i/5oFd5h2bShrv4MMuyN2s7Lf1wWP61Sj8hrfnx
OYB671G0natg1ylj7EMb9iE0Wz5msXVh3GelmZbl7vH8v+ybC+dt6eQ98gXXq6Qe1LiQu5TnceDl
arhwG169DcbbMHAT5Jsw+vGBj49+zP379blW1/Uj16nvGriu+a4NXDty7dI14XdXbNbfXimzvn85
3fqvl8usl8p+1fzrMq75VxOQdKLU6lqogyT2QRSfNrxlvLmpSUiSM+ITvb/kpqzkIvwLX2p956eJ
1p/9NM3a8faBtyff5tgrgMDlt9nnpJffjp/jxffJt7WRXsMESLIBXv1BmlV+JXOhV34lOd07AXbZ
cbrMSiZg4ozWSs4AOWM7I5/pOOM/I7DXgTMXzlw/I0yATY6sQbpTHafo0VMXTim/J9Gf0um9hhO+
E3ScC8kcT8rxrsObI/vxCSh5vJyRlum1HncdLz9+5DhvOA7ycb3kJS/5Xxp9ibv80vWX6AvPz7U+
X59mPQsWSMDhozgJp8HwHTD8HXwfYiGalBIrmOVd9aXW5w6nW5/F+2t4jx6GQ94M65Fnjj9DD3rn
Wg1PWZ+iTx5Isz7xeJp1/16d9St706yGfdZ91LdvYN+OfVP7eHlfdKzXsBfkvTqD17Dbupt++VGD
1fcoFD7sfZhuRiE24T2C9zDemX6w+IHzww0/vOv/nZ/2+qHVD2zfOeJHpQ7011j7vW5rAsQ1x3vi
mtUerlmF1unEth0+t9WH79VtNdZV3nTryrat1jZvvjXaHdUsANfMu7nmAQ4MXDlHfY0gN2Zke+XG
pGR8RMd5lzdkWBvqEq31eMfXZdbR1rq+OjoBUXKmN9W62BtvrfHardU46D97UQkguc3NJjA0G92G
ZgqkGciUdQJMJywivoxyGb6N7MzUaLFZ8ix+C281lBt8hh0G3mBwGeoMA4b9hkuGKYM6hL1m4DF9
9hEYlUCACTgw3tTodNZOqKeW1wbU9SsD8FggtZE95Ya2gOqxAGluW9kyDvCV1kf37SMVc2oD7saW
QMec1tpANwIyA0YRMM4Zl0hF6/DI8Mim4RFn+Iw9BJFpxPDwJoZlKOc0iYIeHh4ZGSGhJsPOYeIc
do5sUloAgmQ43HqYkTNu4X9gTyxvco4orBjh8AijcTIo3BlRkIyNcmEPw3E41/8X/eOm+QplbmRz
dHJlYW0KZW5kb2JqCgo1OSAwIG9iagoxMDE5OQplbmRvYmoKCjYwIDAgb2JqCjw8L1R5cGUvRm9u
dERlc2NyaXB0b3IvRm9udE5hbWUvQkFBQUFBK0xpYmVyYXRpb25TYW5zLUJvbGQKL0ZsYWdzIDQK
L0ZvbnRCQm94Wy0xODQgLTMwMyAxMDYxIDEwMzNdL0l0YWxpY0FuZ2xlIDAKL0FzY2VudCA5MDUK
L0Rlc2NlbnQgLTIxMQovQ2FwSGVpZ2h0IDEwMzMKL1N0ZW1WIDgwCi9Gb250RmlsZTIgNTggMCBS
Cj4+CmVuZG9iagoKNjEgMCBvYmoKPDwvTGVuZ3RoIDM5Ni9GaWx0ZXIvRmxhdGVEZWNvZGU+Pgpz
dHJlYW0KeJxdks9ugzAMh+88RY7doYKkAVapQmppK/WwP1q3B6DgdkhrQIEe+vaL/WObtAPoi2OH
D8dxedgeXDvGr76rjzSqc+saT0N38zWpE11aF2mjmrYep5W862vVR3GoPd6Hka4Hd+5Wqyh+C3vD
6O9qtm66Ez1E8YtvyLfuomYf5TGsj7e+/6IruVElUVGohs7hnKeqf66uFEvV/NCE7Xa8z0PJX8L7
vSdlZK2hUncNDX1Vk6/chaJVkhRqtd8XEbnm395iiZLTuf6sfEjVITVJ0qQIbIRzw7wQzvbMFnHJ
ScEL5gw5mjkHl8yPwkbyl8i3zGvkCG/AO+YSLN/dIj9l3iEuvAcvA+sEnDHDP2MfDf/skRn+VuLw
Nxtm+KcSh79lZw3/XM6Hf8qeGv5W4vA37Kzhb7fM8M/FB/6ZxOFvuYca/innGPhbPt9M/jkz/C33
08A/5Z6Yqf/8Xwb+lntipv7zf5nJP5dLn26Xr5/n82esVH3zPoyUDLHMEk9R6+h3zvuu5yp5vgGZ
MsZ5CmVuZHN0cmVhbQplbmRvYmoKCjYyIDAgb2JqCjw8L1R5cGUvRm9udC9TdWJ0eXBlL1RydWVU
eXBlL0Jhc2VGb250L0JBQUFBQStMaWJlcmF0aW9uU2Fucy1Cb2xkCi9GaXJzdENoYXIgMAovTGFz
dENoYXIgMzkKL1dpZHRoc1szNjUgNjY2IDM4OSA2MTAgNjEwIDU1NiA1NTYgMjc3IDI3NyAzMzMg
NjEwIDYxMCA2MTAgNjEwIDU1NiAyNzcKMzMzIDU1NiA2MTAgNzIyIDU4MyA2NjYgNjEwIDU1NiA2
MTAgMjc3IDI3NyA4MzMgNTU2IDg4OSA3NzcgNjY2CjcyMiA2MTAgNzIyIDcyMiA1NTYgNjY2IDU1
NiA3NzcgXQovRm9udERlc2NyaXB0b3IgNjAgMCBSCi9Ub1VuaWNvZGUgNjEgMCBSCj4+CmVuZG9i
agoKNjMgMCBvYmoKPDwvRjEgNjIgMCBSL0YyIDQyIDAgUi9GMyA0NyAwIFIvRjQgNTcgMCBSL0Y1
IDUyIDAgUgo+PgplbmRvYmoKCjY0IDAgb2JqCjw8L0ZvbnQgNjMgMCBSCi9YT2JqZWN0PDwvVHIx
NCAxNCAwIFIvVHIxOSAxOSAwIFIvVHIyNCAyNCAwIFIvVHIyOSAyOSAwIFIvVHI0IDQgMCBSL1Ry
OSA5IDAgUj4+Ci9FeHRHU3RhdGU8PC9FR1MxMCAxMCAwIFIvRUdTMTUgMTUgMCBSL0VHUzIwIDIw
IDAgUi9FR1MyNSAyNSAwIFIvRUdTMzAgMzAgMCBSL0VHUzUgNSAwIFI+PgovUHJvY1NldFsvUERG
L1RleHQvSW1hZ2VDL0ltYWdlSS9JbWFnZUJdCj4+CmVuZG9iagoKMSAwIG9iago8PC9UeXBlL1Bh
Z2UvUGFyZW50IDM3IDAgUi9SZXNvdXJjZXMgNjQgMCBSL01lZGlhQm94WzAgMCA2MTIgNzkyXS9B
bm5vdHNbCjMxIDAgUiAzMiAwIFIgMzMgMCBSIDM0IDAgUiAzNSAwIFIgMzYgMCBSIF0KL0dyb3Vw
PDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDIgMCBSPj4K
ZW5kb2JqCgo2IDAgb2JqCjw8L1R5cGUvUGFnZS9QYXJlbnQgMzcgMCBSL1Jlc291cmNlcyA2NCAw
IFIvTWVkaWFCb3hbMCAwIDYxMiA3OTJdL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNl
UkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDcgMCBSPj4KZW5kb2JqCgoxMSAwIG9iago8PC9UeXBlL1Bh
Z2UvUGFyZW50IDM3IDAgUi9SZXNvdXJjZXMgNjQgMCBSL01lZGlhQm94WzAgMCA2MTIgNzkyXS9H
cm91cDw8L1MvVHJhbnNwYXJlbmN5L0NTL0RldmljZVJHQi9JIHRydWU+Pi9Db250ZW50cyAxMiAw
IFI+PgplbmRvYmoKCjE2IDAgb2JqCjw8L1R5cGUvUGFnZS9QYXJlbnQgMzcgMCBSL1Jlc291cmNl
cyA2NCAwIFIvTWVkaWFCb3hbMCAwIDYxMiA3OTJdL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1Mv
RGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDE3IDAgUj4+CmVuZG9iagoKMjEgMCBvYmoKPDwv
VHlwZS9QYWdlL1BhcmVudCAzNyAwIFIvUmVzb3VyY2VzIDY0IDAgUi9NZWRpYUJveFswIDAgNjEy
IDc5Ml0vR3JvdXA8PC9TL1RyYW5zcGFyZW5jeS9DUy9EZXZpY2VSR0IvSSB0cnVlPj4vQ29udGVu
dHMgMjIgMCBSPj4KZW5kb2JqCgoyNiAwIG9iago8PC9UeXBlL1BhZ2UvUGFyZW50IDM3IDAgUi9S
ZXNvdXJjZXMgNjQgMCBSL01lZGlhQm94WzAgMCA2MTIgNzkyXS9Hcm91cDw8L1MvVHJhbnNwYXJl
bmN5L0NTL0RldmljZVJHQi9JIHRydWU+Pi9Db250ZW50cyAyNyAwIFI+PgplbmRvYmoKCjM3IDAg
b2JqCjw8L1R5cGUvUGFnZXMKL1Jlc291cmNlcyA2NCAwIFIKL01lZGlhQm94WyAwIDAgNjEyIDc5
MiBdCi9LaWRzWyAxIDAgUiA2IDAgUiAxMSAwIFIgMTYgMCBSIDIxIDAgUiAyNiAwIFIgXQovQ291
bnQgNj4+CmVuZG9iagoKMzEgMCBvYmoKPDwvVHlwZS9Bbm5vdC9TdWJ0eXBlL0xpbmsvQm9yZGVy
WzAgMCAwXS9SZWN0WzU2IDQ4Ni4yIDU1NS41IDUwMF0vRGVzdFsyNiAwIFIvWFlaIDExMy44IDcz
NS4zIDBdPj4KZW5kb2JqCgozMiAwIG9iago8PC9UeXBlL0Fubm90L1N1YnR5cGUvTGluay9Cb3Jk
ZXJbMCAwIDBdL1JlY3RbNTYgNTAwIDU1NS41IDUxMy44XS9EZXN0WzE2IDAgUi9YWVogNzguMyA1
MDUuMiAwXT4+CmVuZG9iagoKMzMgMCBvYmoKPDwvVHlwZS9Bbm5vdC9TdWJ0eXBlL0xpbmsvQm9y
ZGVyWzAgMCAwXS9SZWN0WzU2IDUxMy44IDU1NS41IDUyNy42XS9EZXN0WzExIDAgUi9YWVogNzgu
MyAzOTguMyAwXT4+CmVuZG9iagoKMzQgMCBvYmoKPDwvVHlwZS9Bbm5vdC9TdWJ0eXBlL0xpbmsv
Qm9yZGVyWzAgMCAwXS9SZWN0WzU2IDUyNy42IDU1NS41IDU0MS40XS9EZXN0WzExIDAgUi9YWVog
NzguMyA3MzUuMyAwXT4+CmVuZG9iagoKMzUgMCBvYmoKPDwvVHlwZS9Bbm5vdC9TdWJ0eXBlL0xp
bmsvQm9yZGVyWzAgMCAwXS9SZWN0WzU2IDU0MS40IDU1NS41IDU1NS4yXS9EZXN0WzEgMCBSL1hZ
WiA3OC4zIDM1NC44IDBdPj4KZW5kb2JqCgozNiAwIG9iago8PC9UeXBlL0Fubm90L1N1YnR5cGUv
TGluay9Cb3JkZXJbMCAwIDBdL1JlY3RbNTYgNTU1LjIgNTU1LjUgNTY5XS9EZXN0WzEgMCBSL1hZ
WiA3OC4zIDQ2MC41IDBdPj4KZW5kb2JqCgo2NSAwIG9iago8PC9UeXBlL0NhdGFsb2cvUGFnZXMg
MzcgMCBSCi9PcGVuQWN0aW9uWzEgMCBSIC9YWVogbnVsbCBudWxsIDBdCi9MYW5nKGVuLVVTKQo+
PgplbmRvYmoKCjY2IDAgb2JqCjw8L0NyZWF0b3I8RkVGRjAwNTcwMDcyMDA2OTAwNzQwMDY1MDA3
Mj4KL1Byb2R1Y2VyPEZFRkYwMDRDMDA2OTAwNjIwMDcyMDA2NTAwNEYwMDY2MDA2NjAwNjkwMDYz
MDA2NTAwMjAwMDM0MDAyRTAwMzM+Ci9DcmVhdGlvbkRhdGUoRDoyMDE0MDkyMTAxMDIxOC0wNScw
MCcpPj4KZW5kb2JqCgp4cmVmCjAgNjcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDgxNzc3IDAw
MDAwIG4gCjAwMDAwMDAwMTkgMDAwMDAgbiAKMDAwMDAwMjY2MCAwMDAwMCBuIAowMDAwMDAyNjgx
IDAwMDAwIG4gCjAwMDAwMDI4NzcgMDAwMDAgbiAKMDAwMDA4MTk3NCAwMDAwMCBuIAowMDAwMDAy
OTE3IDAwMDAwIG4gCjAwMDAwMDU1NjMgMDAwMDAgbiAKMDAwMDAwNTU4NCAwMDAwMCBuIAowMDAw
MDA1NzgwIDAwMDAwIG4gCjAwMDAwODIxMTggMDAwMDAgbiAKMDAwMDAwNTgyMSAwMDAwMCBuIAow
MDAwMDA4NzgwIDAwMDAwIG4gCjAwMDAwMDg4MDIgMDAwMDAgbiAKMDAwMDAwODk5OSAwMDAwMCBu
IAowMDAwMDgyMjY0IDAwMDAwIG4gCjAwMDAwMDkwNDAgMDAwMDAgbiAKMDAwMDAxMDg0NiAwMDAw
MCBuIAowMDAwMDEwODY4IDAwMDAwIG4gCjAwMDAwMTEwNjUgMDAwMDAgbiAKMDAwMDA4MjQxMCAw
MDAwMCBuIAowMDAwMDExMTA2IDAwMDAwIG4gCjAwMDAwMTI4NzggMDAwMDAgbiAKMDAwMDAxMjkw
MCAwMDAwMCBuIAowMDAwMDEzMDk3IDAwMDAwIG4gCjAwMDAwODI1NTYgMDAwMDAgbiAKMDAwMDAx
MzEzOCAwMDAwMCBuIAowMDAwMDEzNjUyIDAwMDAwIG4gCjAwMDAwMTM2NzMgMDAwMDAgbiAKMDAw
MDAxMzg3MCAwMDAwMCBuIAowMDAwMDgyODM2IDAwMDAwIG4gCjAwMDAwODI5NTIgMDAwMDAgbiAK
MDAwMDA4MzA2NyAwMDAwMCBuIAowMDAwMDgzMTg0IDAwMDAwIG4gCjAwMDAwODMzMDEgMDAwMDAg
biAKMDAwMDA4MzQxNyAwMDAwMCBuIAowMDAwMDgyNzAyIDAwMDAwIG4gCjAwMDAwMTM5MTEgMDAw
MDAgbiAKMDAwMDAzMzcxNiAwMDAwMCBuIAowMDAwMDMzNzM5IDAwMDAwIG4gCjAwMDAwMzM5MzYg
MDAwMDAgbiAKMDAwMDAzNDUyNCAwMDAwMCBuIAowMDAwMDM0OTYzIDAwMDAwIG4gCjAwMDAwNDMy
NDMgMDAwMDAgbiAKMDAwMDA0MzI2NSAwMDAwMCBuIAowMDAwMDQzNDcyIDAwMDAwIG4gCjAwMDAw
NDM4NjggMDAwMDAgbiAKMDAwMDA0NDEzMCAwMDAwMCBuIAowMDAwMDU1OTMwIDAwMDAwIG4gCjAw
MDAwNTU5NTMgMDAwMDAgbiAKMDAwMDA1NjE2MSAwMDAwMCBuIAowMDAwMDU2NjEwIDAwMDAwIG4g
CjAwMDAwNTY5MTkgMDAwMDAgbiAKMDAwMDA2OTA1NCAwMDAwMCBuIAowMDAwMDY5MDc3IDAwMDAw
IG4gCjAwMDAwNjkyNzEgMDAwMDAgbiAKMDAwMDA2OTc4OSAwMDAwMCBuIAowMDAwMDcwMTU1IDAw
MDAwIG4gCjAwMDAwODA0NDEgMDAwMDAgbiAKMDAwMDA4MDQ2NCAwMDAwMCBuIAowMDAwMDgwNjY3
IDAwMDAwIG4gCjAwMDAwODExMzMgMDAwMDAgbiAKMDAwMDA4MTQ1NiAwMDAwMCBuIAowMDAwMDgx
NTI5IDAwMDAwIG4gCjAwMDAwODM1MzEgMDAwMDAgbiAKMDAwMDA4MzYyOSAwMDAwMCBuIAp0cmFp
bGVyCjw8L1NpemUgNjcvUm9vdCA2NSAwIFIKL0luZm8gNjYgMCBSCi9JRCBbIDwzMUVCNjRGMDg4
Q0U5QjQ3NkU1ODhFQjVFREEyRDlFMT4KPDMxRUI2NEYwODhDRTlCNDc2RTU4OEVCNUVEQTJEOUUx
PiBdCi9Eb2NDaGVja3N1bSAvOTNDMDM0RTFERTU3OUVFMTA4Q0FCQzQ1QzFENjM2RUIKPj4Kc3Rh
cnR4cmVmCjgzODA0CiUlRU9GCg==
------=_Part_269_1256366361.1411492314880--
.
Author: jeremy8258@gmail.com
Date: Tue, 23 Sep 2014 10:18:01 -0700 (PDT)
Raw View
------=_Part_1902_562863222.1411492681683
Content-Type: multipart/alternative;
boundary="----=_Part_1903_376707119.1411492681683"
------=_Part_1903_376707119.1411492681683
Content-Type: text/plain; charset=UTF-8
A few times now I've encountered the situation where I want to calculate
the difference between two values and then get the absolute value of the
difference. The problem is, abs() takes only one parameter, meaning there's
a good chance the argument to the abs() function will result in a negative
value, and then be passed to abs(). For some data types, negative values
aren't allowed and would lead to exceptional, undefined, or illogical
behavior. This problem is easily avoided.
In short, I propose a new standard template function, std::abs_diff(), and
its overloads, as such:
template <typename T>
inline T abs_diff( const T& a, const T& b )
{ if (a<b) return b-a; return a-b; }
template <typename T, typename Compare>
inline T abs_diff( const T& a, const T& b, const Compare& comp )
{ if (comp(a,b)) return b-a; return a-b; }
template <typename T, typename Compare, typename Difference>
inline T abs_diff( const T& a, const T& b,
const Compare& comp, const Difference& diff )
{ if (comp(a,b)) return diff(b,a); return diff(a,b); }
I actually drafted a proposal before finding this forum, so please see the
attached PDF for a more formal and complete argument. What do you think?
Jeremy
--
---
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
Visit this group at http://groups.google.com/a/isocpp.org/group/std-proposals/.
------=_Part_1903_376707119.1411492681683
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr"><div><div style=3D"overflow: auto"><div dir=3D"ltr">A
few times now I've encountered the situation where I want to calculate=20
the difference between two values and then get the absolute value of the
difference. The problem is, abs() takes only one parameter, meaning=20
there's a good chance the argument to the abs() function will result in a
negative value, and then be passed to abs(). For some data types,=20
negative values aren't allowed and would lead to exceptional, undefined,
or illogical behavior. This problem is easily avoided.<br><br>In short, I =
propose a new standard template function, std::abs_diff(), and its overload=
s, as such:<br><br><div class=3D"prettyprint" style=3D"background-color: rg=
b(250, 250, 250); border-color: rgb(187, 187, 187); border-style: solid; bo=
rder-width: 1px; word-wrap: break-word;"><code class=3D"prettyprint"><div c=
lass=3D"subprettyprint"><span style=3D"color: #008;" class=3D"styled-by-pre=
ttify">template</span><span style=3D"color: #000;" class=3D"styled-by-prett=
ify"> </span><span style=3D"color: #660;" class=3D"styled-by-prettify"><=
</span><span style=3D"color: #008;" class=3D"styled-by-prettify">typename</=
span><span style=3D"color: #000;" class=3D"styled-by-prettify"> T</span><sp=
an style=3D"color: #660;" class=3D"styled-by-prettify">></span><span sty=
le=3D"color: #000;" class=3D"styled-by-prettify"><br></span><span style=3D"=
color: #008;" class=3D"styled-by-prettify">inline</span><span style=3D"colo=
r: #000;" class=3D"styled-by-prettify"> T abs_diff</span><span style=3D"col=
or: #660;" class=3D"styled-by-prettify">(</span><span style=3D"color: #000;=
" class=3D"styled-by-prettify"> </span><span style=3D"color: #008;" class=
=3D"styled-by-prettify">const</span><span style=3D"color: #000;" class=3D"s=
tyled-by-prettify"> T</span><span style=3D"color: #660;" class=3D"styled-by=
-prettify">&</span><span style=3D"color: #000;" class=3D"styled-by-pret=
tify"> a</span><span style=3D"color: #660;" class=3D"styled-by-prettify">,<=
/span><span style=3D"color: #000;" class=3D"styled-by-prettify"> </span><sp=
an style=3D"color: #008;" class=3D"styled-by-prettify">const</span><span st=
yle=3D"color: #000;" class=3D"styled-by-prettify"> T</span><span style=3D"c=
olor: #660;" class=3D"styled-by-prettify">&</span><span style=3D"color:=
#000;" class=3D"styled-by-prettify"> b </span><span style=3D"color: #660;"=
class=3D"styled-by-prettify">)</span><span style=3D"color: #000;" class=3D=
"styled-by-prettify"><br> </span><span style=3D"color: #660;" class=
=3D"styled-by-prettify">{</span><span style=3D"color: #000;" class=3D"style=
d-by-prettify"> </span><span style=3D"color: #008;" class=3D"styled-by-pret=
tify">if</span><span style=3D"color: #000;" class=3D"styled-by-prettify"> <=
/span><span style=3D"color: #660;" class=3D"styled-by-prettify">(</span><sp=
an style=3D"color: #000;" class=3D"styled-by-prettify">a</span><span style=
=3D"color: #660;" class=3D"styled-by-prettify"><</span><span style=3D"co=
lor: #000;" class=3D"styled-by-prettify">b</span><span style=3D"color: #660=
;" class=3D"styled-by-prettify">)</span><span style=3D"color: #000;" class=
=3D"styled-by-prettify"> </span><span style=3D"color: #008;" class=3D"style=
d-by-prettify">return</span><span style=3D"color: #000;" class=3D"styled-by=
-prettify"> b</span><span style=3D"color: #660;" class=3D"styled-by-prettif=
y">-</span><span style=3D"color: #000;" class=3D"styled-by-prettify">a</spa=
n><span style=3D"color: #660;" class=3D"styled-by-prettify">;</span><span s=
tyle=3D"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"c=
olor: #008;" class=3D"styled-by-prettify">return</span><span style=3D"color=
: #000;" class=3D"styled-by-prettify"> a</span><span style=3D"color: #660;"=
class=3D"styled-by-prettify">-</span><span style=3D"color: #000;" class=3D=
"styled-by-prettify">b</span><span style=3D"color: #660;" class=3D"styled-b=
y-prettify">;</span><span style=3D"color: #000;" class=3D"styled-by-prettif=
y"> </span><span style=3D"color: #660;" class=3D"styled-by-prettify">}</spa=
n><span style=3D"color: #000;" class=3D"styled-by-prettify"><br></span><spa=
n style=3D"color: #008;" class=3D"styled-by-prettify">template</span><span =
style=3D"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"=
color: #660;" class=3D"styled-by-prettify"><</span><span style=3D"color:=
#008;" class=3D"styled-by-prettify">typename</span><span style=3D"color: #=
000;" class=3D"styled-by-prettify"> T</span><span style=3D"color: #660;" cl=
ass=3D"styled-by-prettify">,</span><span style=3D"color: #000;" class=3D"st=
yled-by-prettify"> </span><span style=3D"color: #008;" class=3D"styled-by-p=
rettify">typename</span><span style=3D"color: #000;" class=3D"styled-by-pre=
ttify"> </span><span style=3D"color: #606;" class=3D"styled-by-prettify">Co=
mpare</span><span style=3D"color: #660;" class=3D"styled-by-prettify">><=
/span><span style=3D"color: #000;" class=3D"styled-by-prettify"><br></span>=
<span style=3D"color: #008;" class=3D"styled-by-prettify">inline</span><spa=
n style=3D"color: #000;" class=3D"styled-by-prettify"> T abs_diff</span><sp=
an style=3D"color: #660;" class=3D"styled-by-prettify">(</span><span style=
=3D"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"color=
: #008;" class=3D"styled-by-prettify">const</span><span style=3D"color: #00=
0;" class=3D"styled-by-prettify"> T</span><span style=3D"color: #660;" clas=
s=3D"styled-by-prettify">&</span><span style=3D"color: #000;" class=3D"=
styled-by-prettify"> a</span><span style=3D"color: #660;" class=3D"styled-b=
y-prettify">,</span><span style=3D"color: #000;" class=3D"styled-by-prettif=
y"> </span><span style=3D"color: #008;" class=3D"styled-by-prettify">const<=
/span><span style=3D"color: #000;" class=3D"styled-by-prettify"> T</span><s=
pan style=3D"color: #660;" class=3D"styled-by-prettify">&</span><span s=
tyle=3D"color: #000;" class=3D"styled-by-prettify"> b</span><span style=3D"=
color: #660;" class=3D"styled-by-prettify">,</span><span style=3D"color: #0=
00;" class=3D"styled-by-prettify"> </span><span style=3D"color: #008;" clas=
s=3D"styled-by-prettify">const</span><span style=3D"color: #000;" class=3D"=
styled-by-prettify"> </span><span style=3D"color: #606;" class=3D"styled-by=
-prettify">Compare</span><span style=3D"color: #660;" class=3D"styled-by-pr=
ettify">&</span><span style=3D"color: #000;" class=3D"styled-by-prettif=
y"> comp </span><span style=3D"color: #660;" class=3D"styled-by-prettify">)=
</span><span style=3D"color: #000;" class=3D"styled-by-prettify"><br> =
</span><span style=3D"color: #660;" class=3D"styled-by-prettify">{</span><=
span style=3D"color: #000;" class=3D"styled-by-prettify"> </span><span styl=
e=3D"color: #008;" class=3D"styled-by-prettify">if</span><span style=3D"col=
or: #000;" class=3D"styled-by-prettify"> </span><span style=3D"color: #660;=
" class=3D"styled-by-prettify">(</span><span style=3D"color: #000;" class=
=3D"styled-by-prettify">comp</span><span style=3D"color: #660;" class=3D"st=
yled-by-prettify">(</span><span style=3D"color: #000;" class=3D"styled-by-p=
rettify">a</span><span style=3D"color: #660;" class=3D"styled-by-prettify">=
,</span><span style=3D"color: #000;" class=3D"styled-by-prettify">b</span><=
span style=3D"color: #660;" class=3D"styled-by-prettify">))</span><span sty=
le=3D"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"col=
or: #008;" class=3D"styled-by-prettify">return</span><span style=3D"color: =
#000;" class=3D"styled-by-prettify"> b</span><span style=3D"color: #660;" c=
lass=3D"styled-by-prettify">-</span><span style=3D"color: #000;" class=3D"s=
tyled-by-prettify">a</span><span style=3D"color: #660;" class=3D"styled-by-=
prettify">;</span><span style=3D"color: #000;" class=3D"styled-by-prettify"=
> </span><span style=3D"color: #008;" class=3D"styled-by-prettify">return</=
span><span style=3D"color: #000;" class=3D"styled-by-prettify"> a</span><sp=
an style=3D"color: #660;" class=3D"styled-by-prettify">-</span><span style=
=3D"color: #000;" class=3D"styled-by-prettify">b</span><span style=3D"color=
: #660;" class=3D"styled-by-prettify">;</span><span style=3D"color: #000;" =
class=3D"styled-by-prettify"> </span><span style=3D"color: #660;" class=3D"=
styled-by-prettify">}</span><span style=3D"color: #000;" class=3D"styled-by=
-prettify"><br></span><span style=3D"color: #008;" class=3D"styled-by-prett=
ify">template</span><span style=3D"color: #000;" class=3D"styled-by-prettif=
y"> </span><span style=3D"color: #660;" class=3D"styled-by-prettify"><</=
span><span style=3D"color: #008;" class=3D"styled-by-prettify">typename</sp=
an><span style=3D"color: #000;" class=3D"styled-by-prettify"> T</span><span=
style=3D"color: #660;" class=3D"styled-by-prettify">,</span><span style=3D=
"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"color: #=
008;" class=3D"styled-by-prettify">typename</span><span style=3D"color: #00=
0;" class=3D"styled-by-prettify"> </span><span style=3D"color: #606;" class=
=3D"styled-by-prettify">Compare</span><span style=3D"color: #660;" class=3D=
"styled-by-prettify">,</span><span style=3D"color: #000;" class=3D"styled-b=
y-prettify"> </span><span style=3D"color: #008;" class=3D"styled-by-prettif=
y">typename</span><span style=3D"color: #000;" class=3D"styled-by-prettify"=
> </span><span style=3D"color: #606;" class=3D"styled-by-prettify">Differen=
ce</span><span style=3D"color: #660;" class=3D"styled-by-prettify">></sp=
an><span style=3D"color: #000;" class=3D"styled-by-prettify"><br></span><sp=
an style=3D"color: #008;" class=3D"styled-by-prettify">inline</span><span s=
tyle=3D"color: #000;" class=3D"styled-by-prettify"> T abs_diff</span><span =
style=3D"color: #660;" class=3D"styled-by-prettify">(</span><span style=3D"=
color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"color: #0=
08;" class=3D"styled-by-prettify">const</span><span style=3D"color: #000;" =
class=3D"styled-by-prettify"> T</span><span style=3D"color: #660;" class=3D=
"styled-by-prettify">&</span><span style=3D"color: #000;" class=3D"styl=
ed-by-prettify"> a</span><span style=3D"color: #660;" class=3D"styled-by-pr=
ettify">,</span><span style=3D"color: #000;" class=3D"styled-by-prettify"> =
</span><span style=3D"color: #008;" class=3D"styled-by-prettify">const</spa=
n><span style=3D"color: #000;" class=3D"styled-by-prettify"> T</span><span =
style=3D"color: #660;" class=3D"styled-by-prettify">&</span><span style=
=3D"color: #000;" class=3D"styled-by-prettify"> b</span><span style=3D"colo=
r: #660;" class=3D"styled-by-prettify">,</span><span style=3D"color: #000;"=
class=3D"styled-by-prettify"><br> =
</span><span style=3D"colo=
r: #008;" class=3D"styled-by-prettify">const</span><span style=3D"color: #0=
00;" class=3D"styled-by-prettify"> </span><span style=3D"color: #606;" clas=
s=3D"styled-by-prettify">Compare</span><span style=3D"color: #660;" class=
=3D"styled-by-prettify">&</span><span style=3D"color: #000;" class=3D"s=
tyled-by-prettify"> comp</span><span style=3D"color: #660;" class=3D"styled=
-by-prettify">,</span><span style=3D"color: #000;" class=3D"styled-by-prett=
ify"> </span><span style=3D"color: #008;" class=3D"styled-by-prettify">cons=
t</span><span style=3D"color: #000;" class=3D"styled-by-prettify"> </span><=
span style=3D"color: #606;" class=3D"styled-by-prettify">Difference</span><=
span style=3D"color: #660;" class=3D"styled-by-prettify">&</span><span =
style=3D"color: #000;" class=3D"styled-by-prettify"> diff </span><span styl=
e=3D"color: #660;" class=3D"styled-by-prettify">)</span><span style=3D"colo=
r: #000;" class=3D"styled-by-prettify"><br> </span><span style=3D"col=
or: #660;" class=3D"styled-by-prettify">{</span><span style=3D"color: #000;=
" class=3D"styled-by-prettify"> </span><span style=3D"color: #008;" class=
=3D"styled-by-prettify">if</span><span style=3D"color: #000;" class=3D"styl=
ed-by-prettify"> </span><span style=3D"color: #660;" class=3D"styled-by-pre=
ttify">(</span><span style=3D"color: #000;" class=3D"styled-by-prettify">co=
mp</span><span style=3D"color: #660;" class=3D"styled-by-prettify">(</span>=
<span style=3D"color: #000;" class=3D"styled-by-prettify">a</span><span sty=
le=3D"color: #660;" class=3D"styled-by-prettify">,</span><span style=3D"col=
or: #000;" class=3D"styled-by-prettify">b</span><span style=3D"color: #660;=
" class=3D"styled-by-prettify">))</span><span style=3D"color: #000;" class=
=3D"styled-by-prettify"> </span><span style=3D"color: #008;" class=3D"style=
d-by-prettify">return</span><span style=3D"color: #000;" class=3D"styled-by=
-prettify"> diff</span><span style=3D"color: #660;" class=3D"styled-by-pret=
tify">(</span><span style=3D"color: #000;" class=3D"styled-by-prettify">b</=
span><span style=3D"color: #660;" class=3D"styled-by-prettify">,</span><spa=
n style=3D"color: #000;" class=3D"styled-by-prettify">a</span><span style=
=3D"color: #660;" class=3D"styled-by-prettify">);</span><span style=3D"colo=
r: #000;" class=3D"styled-by-prettify"> </span><span style=3D"color: #008;"=
class=3D"styled-by-prettify">return</span><span style=3D"color: #000;" cla=
ss=3D"styled-by-prettify"> diff</span><span style=3D"color: #660;" class=3D=
"styled-by-prettify">(</span><span style=3D"color: #000;" class=3D"styled-b=
y-prettify">a</span><span style=3D"color: #660;" class=3D"styled-by-prettif=
y">,</span><span style=3D"color: #000;" class=3D"styled-by-prettify">b</spa=
n><span style=3D"color: #660;" class=3D"styled-by-prettify">);</span><span =
style=3D"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"=
color: #660;" class=3D"styled-by-prettify">}</span><span style=3D"color: #0=
00;" class=3D"styled-by-prettify"><br></span></div></code></div><br><br><br=
>I
actually drafted a proposal before finding this forum, so please see=20
the attached PDF for a more formal and complete argument. What do you=20
think?<br><br>Jeremy<br></div></div></div> <span class=3D"GD3NFXLJDC"></=
span></div>
<p></p>
-- <br />
<br />
--- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
Visit this group at <a href=3D"http://groups.google.com/a/isocpp.org/group/=
std-proposals/">http://groups.google.com/a/isocpp.org/group/std-proposals/<=
/a>.<br />
------=_Part_1903_376707119.1411492681683--
------=_Part_1902_562863222.1411492681683
Content-Type: application/pdf; name=abs_diff_proposal.pdf
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=abs_diff_proposal.pdf
X-Attachment-Id: 68e6514e-7eab-4681-abf8-369ebb39c2d6
Content-ID: <68e6514e-7eab-4681-abf8-369ebb39c2d6>
JVBERi0xLjQKJcOkw7zDtsOfCjIgMCBvYmoKPDwvTGVuZ3RoIDMgMCBSL0ZpbHRlci9GbGF0ZURl
Y29kZT4+CnN0cmVhbQp4nO1aS6vsuBHen1/h9UD3lUqSZUHT0D7uHsjukgNZhNnNA7JImJtF/n7q
oZdtWX3OhXBmIDSou21Zqnd9VbI66+E/L78PCj+jhsEHGL798vK3H4Z/xqtq+Pbby/z2opU5431t
z+Pw9vPw5aEHgOHt179flL6e9EUBj+aKg73yr5O5KEc/Rxr89WQvalLhmqZNeOMEF3WjPzeePsnc
mW/zA/z/lQbHk/lJrxb6CnzlLmvxKg+t6BqOOt4Qsu6yKm6htdz66e0vL/e3l69bNpHBaRincDYb
NmXNhckk+mQhIeEhZM2Rh1D4lz8aZFOaO2mjSUA4yF/HFIYsqLmIYywcMHuT5isPlsxruVnmaX/E
mRuJsdEkxmDQRX9ICCTdnTyrTRW9eVIGTgko+Pr+LRF8moicg41BabSZamdTdlYsGKMsrkjKxQW7
5Ntwdm3yFzEZIKpP43Nydiuhfsh8tNaA3wbHO6r87R/HxBh39htiSKkkEQWkVhdFaDJtz6jqLzni
uIgrgAyobvzl0SxIK0HzJjwFr6FU6Sf+EJEEHfTt6i6ajUvPcb6scYtqXLJG9et1Yrv0F71cJ0cm
Muv7dssHrkjUKQuqrzzQ57BhDjRLCBSQ9Vrak7YDJoWZgacyay1r2CbEOuWL1VGxBPZqkHCL9z0y
b5EAuBAVeDGAIzFVGpyjCNMqtMCo7uBhBI5TURziFwvNZTnJqkEsAOKUA3asCqj8PTsXuPXM0Pnp
bFOs0qPYzHT1FD5QdiQH1tidAqrhuMQBEkTA2sSwalnt5OUyu/pzSLIQ4DyOGwXMyHQAki1rEe0D
XlHYhqVYrA7UYbzSMGJyai4e/v/Zfsi0NuORzjDy2YZcL/1o56zd61i0vMT8kdUKd3GBjaI5XsTo
hNYQ4FEgA4A6jv3aj+gZDQo+XeyfquCPqnwjv2cKNwoBX0Pl0bU5RHO8Q9WJukueC0ZJ5EGF0wWj
Uw6KSq8SFZqCJB04jPR6Cm16Pl0tn6j+vrJ30roY6Kpbj+e9hxtUqVGUwULEWZQODUNXdmwEF351
j42Ab1WzyP3x75F23YS0Ngn4dLl/qoa/b+zbxU7Kz+xCQar4sloqq4hQapwq7aOze1Q7gScjNZMu
yIrdn4P9ylac2Ingg4zl32M8kyeY0KDysxX6BzKJ/7VR7aRP1XHHqOw07VCdYSAq2eXqposZc72v
7xhkwHieANcYaeA1VzYuXYt4s2MuXjV3/2xV/+mMqWsQewlfzNQ1CGtKw0VTOuAyhrsrWK4ebMaV
T+9RrDvC1XBvA2u8hQu12LYx3EbhnsPcLW+wMty1TDDiEabJaY6KvoA4JvVQNgYpkU9xFaSwDJxi
bqyS6Q4nSdR8RSP3UqpR4ZnCId4G43bPFD7UGXNyGIftN/IFo0cwbXUYxhH5QQl++2X49YdtbT36
Ne920Jq7JJqliSwqSv2eO1xtzRpjDuQXKc/eyyCSDQsyLqwmBOTV4lZmlxdiTRE7BVt5oBFMqdsh
DbUn8JNX61uD2tejT7soJrpNTpcr44GawV3VpDbNA8HbtjTlntmQusW7IMK1K8lG+zJosA7HuqEX
zddIY1IWjB0/3sYXzBenhvoGsMmLIGJ9ULxiqlormXgxaens0gzpByFdYhuZiMjkUhYKuAbesqDI
v3C/qZJtV58mbDHn9/iUt+hGJih0LE+p8NCtcKIre2afQrNRaIboW3eKU+rR8SptCfA06K5L63dR
jbkQPfM9ZNNM+5xurTp0gzVNqte+XUe5WEDMZBpKxqwbtqqO22yMip0kKLtqTxQoUUVpvgZ6THgU
0ccsvit2ncIx0wHJm54YmW+0rbtevWmyRqdoEFdxUlqok7TqR2n+rtE03KMv8YL3BM45MOSYQG3R
TEJPRUm0t6rRveUCp3XwAsvH+NT23md/6kA+gQAHz4vezJXd+MTnJsDN28R+vBhRALFWmsY3+atd
PuoxxJntnB0JLyqauBu0JariEcVEyuaKyLCIpCXNpOQLPh6kuXKPKKpnTzQ70IxbPBaQh155XOiG
jydeJ50ejQc8cWKeYiP/Ji2+8AmSurr1znxmoKtHQtyab8ixk+HRFhqrBWTFW5zhWmzVBBGFdIyn
44jpaExLj2XpvhpgMruTlJh4PxbZyb5g4vBnOnF9Qgev9tygpU4013r95GFkPEA9i9RHKxRAHrcO
BhDDQSsny0lfiqAJAWAFVoMWvUhhnzO9rds7HCW+J3GaUWMyey5fmgffJWBMOesn3yPgFPJjkGbg
QvE5ifww3cRvm/ogErn3SKQjEke9bhjdOQwO0JIPZSJ2PobU59uJRGsCQ4eWpwKm/Or5HZKYM+Kq
xCCDxHRJizO5NFRwEO7JiGzJnqpOEby8rYqgJzlGJD4TFqRjzeMj6uwCmYG0tjSgZExeEYmtUiAv
VJcfVIOtGMC1IC8cr22ydXQxxqQVj++qL8DZvaFKeVN5fXLEjtQINrWtUcrH1IKbW+ZcVG5zVcYn
NgUxLbVoUv0lNa66pXk5wOQiGc3ElTiyFUg3UqAXO42+oEPPK3AeRZQixsotHuqo1WkmOnVtCv/D
sBpLY6aAaB17qJomQpvUAzItZosDGylkfkCo1ryXVHNE6pFErX1GanaiVPel6q4csavcAODoUpB/
fHLZppqWR9nGuVEFpBtt6nWU2ALp5GUc5gQwb2G0ziTzexHJfZLvzjlcJq1FP4pY2iSIigLYe7UU
Q3n5uW4nibDim0UZ8kMacjD2sZbq0dSkZ4/tc3RMpdDR9lxfpTSQSpq+6qBxJNRSXUh2MbNABLt0
V1awq8ik4bzOIJUQlnavim1DSlEoJSk3lbbwylfwQR4ONHd7mia5QoWYVapeCfe7pfIt/ZHkJ/lY
bm4lCpil8xXPZYMOK0Xte2FcBkrCi4TkunEtoicOwjPm+jnxh1Rw1wDp8Px3ouijEWTvTqLGq3Mf
AWrxpSXhCAmUphhs32oivWS/2qomTlmlUJFelkxBOT573Aoa8fPpj3HRqtEDRysdjwyX8oHYGi8l
4fdE22iU9SU82l1zs2Ylho2NI88pVK1IqU5jNjCKvlNsXdnonhfaadUO6XnMSrVl4+w0XINv8kvV
C1n1YxNT5Z2l5JUR/9KdqLSWu/VelHyiA6cPGpK1GtfEluqOXxHM+GzVZt3Yg29GCShuk9B2pZLU
I2t2jVpkroznnSaz7myzyKl1MEad7ZvcbQ/Y99Daiufjxq5CjN/hB/PK8XSM4dQsFENmc79yv4qV
rA2M2miDQQ3iq6VXyy/edYsAPU2IyPZ7XszjqI7DArf1BFI5IXN3COCZQG1s/wVNqgh3azSSYsoM
uRSsE0mzntDzXm0S00onNToHFwicx+tjijhtfWaSosDJ5bwcY0ZudZS3ZksyrrLM1+H34cv9x7+6
4bd/D1/evtlh+dfw9eW/ASIKogplbmRzdHJlYW0KZW5kb2JqCgozIDAgb2JqCjI1NzAKZW5kb2Jq
Cgo0IDAgb2JqCjw8L1R5cGUvWE9iamVjdAovU3VidHlwZS9Gb3JtCi9CQm94WyAtNzkgMzk1IDY5
MiAzOTUuMSBdCi9Hcm91cDw8L1MvVHJhbnNwYXJlbmN5L0NTL0RldmljZVJHQi9LIHRydWU+Pgov
TGVuZ3RoIDI1Ci9GaWx0ZXIvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnicK1QwUDAE4qJ0LqcQLtcQ
rkAuACnGBAQKZW5kc3RyZWFtCmVuZG9iagoKNSAwIG9iago8PC9DQSAwLjUKICAgL2NhIDAuNQo+
PgplbmRvYmoKCjcgMCBvYmoKPDwvTGVuZ3RoIDggMCBSL0ZpbHRlci9GbGF0ZURlY29kZT4+CnN0
cmVhbQp4nLVaS4skuRG+96+o80L36K1MKAoyq6oNvg1u8MH4Zu+CD1529uC/73hJCuWzZ7xm2Ows
pRT64qGIT9KaN3v5z8tvFwP/knWXPLrLt3++/PWny79fzNto7Jguy7/ffnmJ6S1fsnNvwyWMw1u6
WPcWYeDl55/kmzVvoX0L+lsa89u4My4NERp2xmW/NyoZaN0ZFQbQcWecj/DcGef8m9sbB9oNO+Mi
tO7hjKDduDcue22xfhxYeg9nBCwbONmlBp01f2DPAfyVwBIf/7h8eQ8XC28/X6014HXrbbDRRHO3
ybybZCbjzdM8zN1Ym+1w+/jXy/Pj5eumUOsBxKlQ+JWNNU87nogzFrTpxUVAgwInC09EBLi8meHN
k3DEGu18JDblBE7pxKJIwJMIF74PZoRf90MxyYP/enQJ/kUYjhgn+HsHLKkIR4XJjoDTPuC/5wnO
aMG73zNBhrf3Ih6scyzeb6H3ZgIbP8n37yDEOgeo0bLR4ARob9ABXUqtCOHpPGnleh3BJ47gVVgg
waPME2AQmvEcWmdO003D3+80fTiZzIbVOji2gzVo/okC+kmTv4Om+Au/TiYLNEujt632OTtA+KdP
2IEBDYcWGb/PKnEYVysPpibhT5j8gb52Z0JyWmYDFw8HhAxPGuAgfcGAv13NcHNXD4vy9pquZgRV
AzU5Qy+vkRp9NKPPtwg9bYavxt8svN9eM3ymFh9uf//48/7UbmHp/0PYJ5fdAM/BjW7i90NrQDKN
O6D+uBhMbq6wJnN3dxfcYVIOQyhRWZ3kwTtkYniCO9D45oGPDL8m8B28jvKZftAjQ/iQg8CX1DBD
7+puNQTbRJ6788vs7jy2H4A2hxeMVIoX/Ejud88aQTN1EdHBuVuZASMI22aaAgxc9OEZKfQQwAjR
Br9o/kgDFyBiwesn7MQRSY1BDQKt3W0QINAHQ3kDL7wRHMIZSitAcGY+DOmQzdlqqnMLPmd4mmKq
eLOmQMsmVIO45jGyDa1DFuPQrcVmuXiJv+ViYkAg45yy16sNVyi5w1UFTQ0jQUGInEGpGio1y3tW
8dIDA2PeWS4nDuzC1kZRJRpLulCxDGPJIaTxcJMo7kIQ+gjYEmEcgowS+4h6Nl/JemThYwfGvFxn
xXpJrAKSHjWY1QLDKG2weqe3OQ84PWQSJJkR+Zz3+1wS+ymklU9JTYLZtlOJHfymhhTZsMzY7nU5
kAdGNndA2aKSpH69/qoVSoTDH1dWTx8PxcmrzCQL1NXe9tnHozie5psYa1r4oS1j21ILrFn7XOWT
ujpED5LO444DJLhSIZoBS8BKjAtEWWlsrakaUPRYGfGzUZJgc+ORKhzGCBBlq8F+PkrG1I9UcbLI
MJ/CC+UTt1WEOONjFzP2jJuYJ/AcFlIorbg5gnJqDjRwsBXLOxrsRnqNy+VyX6xkWP0YRVOfCTdK
cCq/dLGR8N5KuBC2juP3XmMRmMFJNNpc9kMtYRnSILZEGsyslhuViqDX33xzAAqgDVdJ1j6W9aEy
2yKZsmZYAzDFOyICrgT9VOxXpZVSu1/KuyLQ1x6VFkipTl6DBmpwnarVdFVKdPmlBAfo32E8Ziom
sPu6Op1UmMWgaY49ZOpep3pIbKuZFuN9FGP/iPkkmDhAkegsalMf+n2NNkCabBKN1wEpgG2S3MU1
l5eAwx08wavxz97qY12RxG7+mq3XHLGpDPAhhiuKg/K64QE/mnL0sMzYYkQKMeGJezzmZCH6lMq5
QZ3Ezbv549Q9TlO7Tda9TanV3uxz2Tkg5/BULcbxIDcH02u5qCehbngGC5tV93DGxt0M7aEabNts
QQU/pYNnxkQ6pKNDOOy4qYTLe0ATnqKugV7dnmocDa5u5ePFBtyRo24WMyxEHfjoTikHd88Yd0R/
XonQ+NKQ6enwabkl3GLp96jD5Rs1WCO9o7yyKNtkS+9ZPtB0EzVB6Hh8+tL90WZjKB47P5vYXp1Y
urFk35BQwuRXr0bTtNaqlhGFzPJhYKDIJO9LgKF9Sxz+NGQUs0x1VsAfUEsGgH0mme9wLUMA+ZX3
RMCMVhiVV2aeRLuhWVo8MinLkCFmCe/SAFLIeva+Fw7aEz8aCDJcoeGgiM38o+ohmMDnR9Zyo11T
kP5s4n+vTzXNGRwoG8Iqf1KbE5ZCRxZ6k1o3EDW/S4FpnPaPZEVtZ9srX8a3fQLNXMX1AE4Km8vD
ilr0hc0VA3Btyzx9xTysdt59iVmYjUfPpZLZEQRgaHt5Vrq1mp2FLGf317K9JOIWlvuw7y+VYvIf
J+KhuqNSZtnRu3rywOdLMrIFz7GrUlhxkM2YLtyrMCi1gwR27Z6FAr8mReZ5v1nPh4SOCYOsG2Wg
cbPmbxzyi7GFQmw4l90B7Guua8v1p0BishOq5Fw9cf5kcdSpVyXGrBLjQxWN0BLZTJWJK0Dt35eE
ml9DV024QZc0KsVc6XRF0fkVK4+kZFUoLZmbqtKTrMutz1tBDzJq/k61voAjQ52ym2a3OMS+IK7q
/jkoj1pPlQBUix461JpSAbRDl/baKWRWURyuhY+VqqoFlFIOiL1O7+ckCllD5/i7em8fmZiUMQrX
InRqIR4aL/BqqOIrj8aR7gpc1BZfwnpsVnCGo4N6VcxbRFSoRy60o99yIYGAdOILntiC5N4WRacx
+dR2NEItqMciyK0iono9txA8oR82+9XViDqt3CrCR0Rjo0DP0J8Wi2RSPlhoKfRzp+RrArLehMsZ
ZZliUlWrUQTuSlhgT1zOvfNR4qZlQfUV1rOPZ5c8kupF5+5KR1WekutPKp+N4+pGxNnuMEDulfa3
97v1Prj1HdiWUSACh2t3BNbFRc+BHixFIOCNDxYmvurUHqmkFBQwcjqxcNaeZXwcYLkp03jZVsJO
GkHvbEYzkogtg6qLh8pRNy/N6EiiXqYgw9d3M92hvASjnInpIzAOwWOvh+WaZLu3c6yyGoG/YNpm
jmVTfxeGrGgdq3QA+EQ2VBeoHEWBj1LAmFzy0LFzHPvHFTPIsdajDxkmXXzS1d9oLAhxW7trGl3U
yKeUtppD7OT0Xe1drzhTeHQzlGphMgut7czu0FHelZOK5qpHf3gqPK/e57UT8Joj6SJzxOyzuf74
5hQPiZozyvmnHKh2nLtoXGhpVpmvi0u9rShCWsoiLGRP2sWRF4tIX21UVoyXA7p6XenqbWXh4mVr
11NoNo0O08VGDnxS9z7x7LjS2mF1KiaWkkQVVfCBf0/o9hhW1yCwPY9RnSHGsuHFRNdvG1R4rS+r
Y7V5vf/tq8Xelqz+7wlxdSG3VbD39HMDXvQ0BX3Lh7dhxARATILjBYlFlJ9Y62Cyp3nH40vuVRQC
ukXKqs5DXQBgF+A2O3AgvGEtbdi7T6zbB/D6OrCrR3S3wpWt5TNldO3+r5ffLl+ef/qLNZdffr98
+fg2Xh6/Xr6+/BctGP+hCmVuZHN0cmVhbQplbmRvYmoKCjggMCBvYmoKMjU3NQplbmRvYmoKCjkg
MCBvYmoKPDwvVHlwZS9YT2JqZWN0Ci9TdWJ0eXBlL0Zvcm0KL0JCb3hbIC03OSAzOTUgNjkyIDM5
NS4xIF0KL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0sgdHJ1ZT4+Ci9MZW5n
dGggMjUKL0ZpbHRlci9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeJwrVDBQMATionQupxAu1xCuQC4A
KcYEBAplbmRzdHJlYW0KZW5kb2JqCgoxMCAwIG9iago8PC9DQSAwLjUKICAgL2NhIDAuNQo+Pgpl
bmRvYmoKCjEyIDAgb2JqCjw8L0xlbmd0aCAxMyAwIFIvRmlsdGVyL0ZsYXRlRGVjb2RlPj4Kc3Ry
ZWFtCnictVpLj+S4Db73r/B5ganR0w+gUYBdrg6Q2yAN5BDsLbsL5JBgJ4f8/VAUJVEPy+7ZXjRQ
XWXrQYrUx4+UxE0O/3v5fRDwN0o1TIsavv/y8vefhn/TUzF8/+1le3+x420eJjnf1PD+z+Hrmxz8
91//8SqX+xflPlX4ut5/fv/ry/P95VsxyjTfTH+UXRgx3uWrlPAh4Bl8zvjmCeOLzf/wL6QSzzu+
h9c2tXf9xXb/Yl7F6n8ocSgSKjbO5ma9SHaQ5jahSELev8zQ+W5fxQNHntxXg19XeuA+XQvpH2/+
tdT4y94NSEkv/BDbfXwVGpXwLUf8vpKmUgQt/JMd2xg3785mHNkAwr1cU7v8nR8qysdeonQ0Hmvt
B1noa5JBUEObi7am/qChLVu778/7FxuX0X5oSqZO137jdBtr+zE5a5Wf/RHNFJxUDdK7qDLgaFo6
icCGi5xQL+tspoRS+AvdzTpXxW/QZPIOCmIEV53cT0XvFvXApkpQD/XQxvu4a+M/3eASXOlxl64L
DqMl9o/DwvpFhcRtEXIZh/I/KKjsctOgnr4tw6Rg1aQC1//+y/DrT8U6uJaGL4QZpISFcLsKvFns
QoonfN/Fm5hh9vd/tVZTa9VcTNBiJ339OlySXlt7UXrX8pL0UnSkN6rtCmLRDzDMBv8tINYEO7q0
brIiNFn6zqaVc9l8BucNehEGB1TPaGzwhYZ3Lf6xkqMXwMljBOLXElAwuJq2vo3vjs73QEVQIXKu
6OUjCUBTUgN67TwdfR8d3D2Zo3QLuDSaeKNXaVukRhuJOLvd4/1biSTXQr6hLNt9sZtXBsXGmFFL
DyJsIJ4AI3hzMG3bZiudsWUuCFpLiQ3OHVCeYPYJHqBWrS0eN/dOdpRj2t0qKZFWCNfYS7niivpX
vh8uofaRzpsEhyeL4WgoluorZhdbqvWGQMyQzn8PFndCJHCaNdjAL2DwORQK25loAbRMpuNVOzkf
CYaCdxM2VcKgOLiqwdXjwk7hh3qoh+/csLf3SFX5D0mTANzZjtR+oFGiSNwqc7kaE46tOHB7414w
bN9ks6zByXsCzkLRKWpauURwHANzb+m1t7Hfk3PThUkztERa1zMPMyYgHQvU8i3jJuhqiesEbhHp
hycKvslGhMFEigNrrqlrJBORRtiMWtmcvqwZg8to1al4jtb5dkow8ZBvJBkT32Ok0nOduc3RpsS3
+Mup7C7Sgy0jX6NbjcAu9UVyqc/okVUGomuXHn029MpxhlDPJtbR31d0SUgH9nuPKsrFQr7TEp2A
I9A6lQe2sYheU4pfYRtQQEWoCcAxvoYtk0VBFj2XgH8enwLe2zkGPr054yhCOhzuGZoZGfHlIEjD
8GzOuEsxJuGPAAESlTMc7ZYUQU62tBSBe8f17KL2IyFp4NAZHKmoInEaWh7fwAgX5jNVvGlcI/nM
Y7D1/RNbiIju14n/qGJAXCHMySiIhXVNVMn14HxKR45m0KSNaNdbnuRJfv19d+SQ+SBdo5jFfRZG
6cUyykXOYlHTYf3AyL78gmd+xGIkmYcRBqcbUrcYQEraAziqGfGVo1t63pyFOYdq0rvuhl2tt1iY
P6jnXS4RztXNcRK5zCgg8ygjl8IyBQPio9RasUDCQkiCZF8xoBbuMQ9eLJpl4G55ZDMplMQWKB+u
d/jU0EXpKh5lESKIl8m0eUBLoekg2+9XPmwWUPXnBOCu3SBXrO0WYrJyk8RYnRMKr4xphGmbGIlf
bG7YXAkcwCYXOK4DyUQAHkm7QHMivajZgSr7cPtk6pCLrkURhjgBk4u/XEm6A58K3kQ+1acNRukC
lIy+L0RLGYz88dyAJR5TnpFgN58wZDh0Le6HGg8mGxQwCbIBmg65NAy/yJUIp3a+bRRum6nK3AJS
xWrSFsNZips5UCNUerD2z9JynqCaTulDXYt9uy/2rJjbHgC2lXK+4KAbC7NvKIsM9dvwPtR53wjC
4lcNLW1fcjOdlGy1AzOOmYhJDKpo+61pSzPKrBgirRFms92Udl/2eEyYjlkJyzxoG6EgZQk3297Y
Yq7CSio3N/a7jkw/00YkOBe0RVMfWSYjYcDwgOB84hXuPQOcOPpEC1SVoIv5+3ittWiVcg9NFR6T
VLj4bLYUvKpadYiux7XqC4h64ANTxHqbCxIw1ZIvkEd4PfrgCYBYpfpG5kWFHyCaM0ca62EEOwTu
WbF1qim4CXOgdET5oOxdoDNlRGGKFR8U8E5iLoDOhJr4CeCH5QJIN6EzbBKjzwo1RG5FoLRF6qlR
ijwEhdXJ2Lwbh4F911oKGHiVZtYB41LVe7awDdSiIXvtF72hYTbzD1XspXXA3pR/4Xb6YK2sUZVK
BxgbT0fp2CPUmjZ2xuG7U4oMJvWODgvJTc3jcVHMjj6vMpf/Mkafb5aRwxlMLIeFhCQkr0HSiSXc
KSXHMfreAmG0LClfT0OJP0zMu2JylpUpqI5QGRGz3o3V5g3qEqsZB+X5+nCjd/A0jUDEFbCGcbAK
dD4+eJqc67ElCW4stVilAnLwlKNS6nl05KQWAMrmki5gj3SIYrgmzM2KHDTVUhKbvKSykbgfUeWx
t29dw6WlMch5dDDlxmrp6PbFxbJR7gisvA+2D8WgE78dpxolsp2b7YbqXCztncDSN17B8Tw9K1/x
kj4W1rG5V7SwbgSmR64oyOeyCdjIZcRhGNPYDxFXuAgTVTD0yiEsaRybt2XjhUPuhg693LCu3HVd
nq6prK7qdJ+1G5LwdCTHsAeDaAiwHG8IW6p1kWV1sjo1iYgX0yzNypz40mFjGd0xYuw+xIT9kOqB
icLsLHFLp6lBGv8fsbdx7hSPWPEQiIwb/csR0LE8xr8WIPRSFfSchPFWAO65H7mXwGEhP7b8hDT8
GmN037OgTCXw7oKIZl2nd2UnHI+wYk1IqAqCzk9N9iL5YyUjVqKTPD1khaqqelKnaVsr7Yw5Uxg3
P6uiEfNak+WSWuLXJ+W6vA5pO2XIVJKq6oH9vEXOZdFHLkdspYS0TygEGdY4IsqaDtk/+T5DwdTo
rL97pIH7jotZlny2gIrhmIcf5ebK9C0xLlUGGa1QYUaCvqJkPufaacswhsKgWNk9gXhYE28JhOOt
eL0gr7zRfDR11rfIMyKsRXS2zkdSktGKHlmWW2Dd3nj255QhM4vjOFPKDa+ZE684FTEhv1BS363J
0nrvjSEP32OmkB/6f+i+EMBKxqvy80xDIIuFwJJaeIOl2zznN0lkbt/8TDOjEHuwfO/oOUeCImQx
zzjKEk/quIU7dE1rZEXWeOoXXbxRYYlz+Mlb1ziyog+OUlq4Vq7tRcXBpOfb/VWuYTSxgAJI+ani
eM920nGSnzZqyfB5uT2S97AfaUBAaiWfmaf3LaWm+qS12sk0c/eoE6nXlmxKvnO2nBRwwDLKVpU3
vcZrOts1/44Nrs/ryGyoI/pJHdM2FnlyhgTzax3YDm4ZfjiqZMlUF83P2baUJa7+mSDfvATY5vYt
xWKujFltQNYqe++VZhYJ/FlKAZ+hwGjapRloyZbnx24Ej+4CTr3EGam4dht4dte+r8jtWk7ncvfv
AuMNgFpu5+x3K141kmFWsWA1wcxrVHUNIt0U9FHr7MLwstzKm5p1pfPjSWDE870Vy92jzYGMVCUx
yPH1qFhIftu5IXs4YATLPPS3a8QRUPu0G7epieezfuKKXO5MEH+p62yjNeyFBfw/dr+7j8bpfkxN
1fO6WXG5GM2Qx2Gmb/9ue2RoPIKje61ZYDsdJsSnLsgqQH+b3DiO1ro2cIkHdC021YXVD4aAau90
/LhzmtBCjvpo/9vw+/D1+Ze/STv89t/h6/t3QKn9P8O3l/8DcAV60wplbmRzdHJlYW0KZW5kb2Jq
CgoxMyAwIG9iagoyODg2CmVuZG9iagoKMTQgMCBvYmoKPDwvVHlwZS9YT2JqZWN0Ci9TdWJ0eXBl
L0Zvcm0KL0JCb3hbIC03OSAzOTUgNjkyIDM5NS4xIF0KL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kv
Q1MvRGV2aWNlUkdCL0sgdHJ1ZT4+Ci9MZW5ndGggMjUKL0ZpbHRlci9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeJwrVDBQMATionQupxAu1xCuQC4AKcYEBAplbmRzdHJlYW0KZW5kb2JqCgoxNSAwIG9i
ago8PC9DQSAwLjUKICAgL2NhIDAuNQo+PgplbmRvYmoKCjE3IDAgb2JqCjw8L0xlbmd0aCAxOCAw
IFIvRmlsdGVyL0ZsYXRlRGVjb2RlPj4Kc3RyZWFtCnicvVhJr9w2DL7Pr/A5wEwkarEFDAyMZwnQ
W5oH9FD01iZA0QVJD/375SJKsj3jeS3S4OF5bC0U+ZEiP8kcbPf37nNn8C9a6PoE3Zdfdj+86f7Y
mUMyNsVu+fvl0y7EQ9+FmA7Q+TQcYmfhEHBi9/GN9HkXDo77hs7DIeU+g5/6r2Jcorll6FCGbq/u
XJ9XH7pAi8k0McXQsOmFRg5dDx6tfPm5e3sDVLR7+fjj0d7GPRxtP8IRriaO9mh6O437/miSswbG
4eh6GsJ9OmQavT3qMDPgZBx7oZ5h3IemjUcnMGYygE9wvso64wrBeNMbV2ayIgawLeGUKO3Y4vGr
z5NVOK8uC+SxeYAHoDmqyokG2vNo8QnjfiArSFcZ5XmmnUzCtWlCICiMdMZxH6UlQyPaCAa0mjW0
AqAdyXjCSu2jedMIaBGgoaxcEOP6bL2AN/708t3u+rJ7f9dh1qA/5w4js6zP9iCkajdrgq4KBJ8g
oGvYqFheFFDsz1IGhkjNaxXN+KFt6DwBIS1tYWjlFVdJskCSwcDRQkAk8TAUFzKKE2LviocB4dqz
Miyjp/BYy7mItTEDzUvjwqwHjiYQZGj2VOKwE3/hZOrR1dgy/q3Biv1izfTEMzFF3KvPPQNPxEQj
QkJnPe5lFmMZByBPogMJC3olFx+t4afHBhsZyTB6NplfafCJnxeaIs08MUuaEDkrDSLPVXk2r1U7
RWDKLUE7T3VIXnMYHY0LVZ625tdLlc2LcTySctdmuVvVwje6EBBZzNTq/sCk3MwAuAaASDo26oZq
v0piI3MT4UrZgtu1nxtVnIje9K53a++GBhCFWX0ljmjxhYw4Nl95O2oYhLkfVlCFYpKOt0sc7LBS
pY6zDV5NpJ2aKQpBicVTGwwbHlqHkaM5p4pGDY9NfAEI1dkm9KK9bOIm2zxJ8KvEUVM8lJw0aRri
lMgjcvmRnJLLIeU0Kp2zase5eV9rYlsfp4WEnGRZkKgpy3NeaFbUlNUW2LYG1Sozr7NQy2xWuaZc
Tf1wLLZDqfqiDEj1PNf6d6m1t8l3z4hLNAEJk0vCmvxj3hLNgMSJ/ew7iwzmI1pnwXp6YpC9/Hov
RDBD+3ZqCRFICNgth3CGmbCAszIaAeE/EIESJnYRJVK9culZVdHZgMKaNsnRCRWj7RVzvVGl5x7N
zGco4Sc1UMv+HeLGUtSXD8NGxAjJmDGJzf0akkeXLIomA4HkKVNQVr+ys1jM0HqeN8rmOj1ocS7x
cjFnc7XBXDBuMCiMNTf2xA2/wBpjncE3i2+AUXA/okS4dxiwj5NOr9ojnPIkaFxlyyeNOnI5Q+9n
eWK5tc8NtS18p5DO1+aBxplKgppwmnkdNWw2dJtGcuyxPqd2ThXHNPDxUrqGYrU0oOWHJSnJriIb
tt0OCZ+LvQ5l9VNOoDWXrhwD7clisRtVY9kneeMHkebaTT7LpVJvMDmAIaFPis7l7lZf1B7dK5qB
Gtxq3pLdlGuHnEXC8IyN+iHDZzs7HMr5MDEneTCxH3BL3504jH1PFdwyqUOciWvLadOW0tlnd1Nr
4L1AlNDlITeyhCnvamIixsCNxpE3Pdn9QMdo6VwdSlJw5fDrcJsQNelp9QezB8BDs49RT2IlpVzN
2fbESTGZ0HvElHLFeEG+iLZa7MM2AATifjoRwcFp0N6rbSwgoolXExz+GOIVDlEKhrIAxo2NmLpO
llqvNBqulMfgcredZKVNdbzVFK3qoKBoybrIm7ukTnyfJ1VOo3ZateekikqEB0uLg0zSxLpwUHyN
g8AtFX+tgwirdbsDRA9n41w054kTrf12Lly2zxWlMdxLhj9xtkvDsk4una2iyO1wIbd/fce7aB7s
zP4VjneD0bD5Pxz/YIzLvjtzcADC9CREXBwO3zRINpUJQQ9OM8f/m79XReAqVu/gxgpnM59GLJIv
+AoRW1AlpFDtdCd665gsZzOSuYBCKhesWAmdMhCkx3QU5hK1l2sJL0SRftMo9yDYMeAZGD9uWPOk
8HnqkYMh5Ndp5DpIw7dPx4AseElUbWrYqdAW37KEcqhZXLXOyc2pkkvIl6iVoecb39kVa3tTe5e2
noVMBrowxWc550562poxrFNzhK530+1ZIbWdkCnrNvlaMVO9TNbzfMoY5UvWS3PZN7+SLpesdUq+
WaUYm52l8nknM5pNb4ZhTW4fgSyGVw6Y/a1qlPM8M3pXGKzXK1gkr/je3usuwsDpZbKsLbMrwb3D
Y1vqKcZ9/06uAWBIeET/fRcwKUH++q37sHvffe7eXt99ANN9+qt7+/LFpu7yZ/d+9w+LL3NaCmVu
ZHN0cmVhbQplbmRvYmoKCjE4IDAgb2JqCjE3MzMKZW5kb2JqCgoxOSAwIG9iago8PC9UeXBlL1hP
YmplY3QKL1N1YnR5cGUvRm9ybQovQkJveFsgLTc5IDM5NSA2OTIgMzk1LjEgXQovR3JvdXA8PC9T
L1RyYW5zcGFyZW5jeS9DUy9EZXZpY2VSR0IvSyB0cnVlPj4KL0xlbmd0aCAyNQovRmlsdGVyL0Zs
YXRlRGVjb2RlCj4+CnN0cmVhbQp4nCtUMFAwBOKidC6nEC7XEK5ALgApxgQECmVuZHN0cmVhbQpl
bmRvYmoKCjIwIDAgb2JqCjw8L0NBIDAuNQogICAvY2EgMC41Cj4+CmVuZG9iagoKMjIgMCBvYmoK
PDwvTGVuZ3RoIDIzIDAgUi9GaWx0ZXIvRmxhdGVEZWNvZGU+PgpzdHJlYW0KeJzlWk2L5DYQvfev
8HlhelSlLxuMYdzTs5DbZBtyWHJLZiHkg50c8vdTKn1YtmW5O7OBhGGht9uSpdKrp/fK8ogjNH8d
vjaC/hnAxnbYvP58+OFD8/tBHDsBnWmW/79+OWhztI0V4igb1bVH0wAeNd3YvHzwbUbqqUXlLZqv
lu/SEo/txn2qM3ShfJ9sO+6xuM8vS7iAx4vr2TYWJa348lNz/wQNyOby8rmHdrDYi/OAPTwOd/RV
0VdhhRnudC+6ITSKdrizodG4D+TOZrqPe039fbsefrx8dzhfDs/FgISkoDkg1QCF9tIjDpdfSjd0
Dh1Daw0rQFosrwDVYEQPpwFsj4KjNANQKAKlps+WopGQX6d4TS/GAXUPRigKEkOb9b3VcAfC93QX
8URfR9/DtdMtI3V1Q9+BSlM7yMxy3niRLim6R8YxwDJIwnJgnW9w0xEAGD66LfA8FlYTA+dYKBe5
G3akGU9AU8K4CsWFrVdRu0VzrzwIpgC1UAeFNCyP3PrL06gebB6Kvo4B39kq/eguKPHgL1oP7kgB
GxdM68izsV6pzHzBkS3igaY7iUcB4kzfH8XTBnuUMEcsQjbP8j8IThk5H3orOBAbwWlE2gbr4Hol
iAO17WAEfdYoIM7/GQp4opcI0O7nH2nbZ6u9GWJCgVRzjVcNYpYoI9tlXiW6JdDEBJQ4VfNDgrvM
z+1yxdKAfEUPpEuEcoacDYLlQXbDiAcCEzSniIeQKRncPFbUaFtzPBoEY7dAQwpDQ1lOwwkQZB0T
3VryqDdigieKmNYntRNx6hNoF0TcLzgOQdmagQE1LNy2uBIMrTVxam6nApItfhOH1NJEw0ucB3wk
26r6pEaIxpqDbG0vraeK3414DlTya+bvD66Jdz8DFpXbg1Vl19R1boCQtCXoAtO4rEUpyTvgq85V
PTNgiHm8L2vAqFaTWM+Bge4b7a4dw1YWVsxXsG04eyVDwPcxETdamUwfDKTHdJYg/hGYkFjgc64W
WQ+pLBU6m3KNTq6z5e4WdxJbV8MWAAprSvEEmELpFtK2Lt8w9/WA16qCm3dcw5BXc8z+enqJl90y
eq/dFMQ5SJRjVZbNh+CwQatan+HNicAwstNMSRSIl8R+tYEvtC1JVSlC7Gg2l1U1KxAKlAgIJivx
RTAzjCqnQOMozFM9G6iZk4qYp5MyLLW9UKyYFIlZyYeN1Pf7VoRJwlQxujmHlpW5j30M7d4b6qlW
uCbq4qliUpTAzbQLA1gpnMgRf4HbKObM0SKDl6K8XJDne8kvMzgmSp729Arbkonc8FTDZSMHRr2n
BxuK0FKnqFkeJJZgpg86W5+KwrCsXBn9nvSTrXf8Neqwt3RQpcLNLT3lzj8hTjy3galhA+Tu5zj9
kOjs1WYHOldoR2to0xK8fEQvvmqgomPBnmGxx8pu+USjfa1Xc1hp21gVTXsDArPfWLLtZE0aFWuC
92Cw2XKvNNgSQP8fg6Vuq9rt3zHY4ky3pQio0JyFvJsi6JyplKZee3QFzfU5VW4huU1jcunk6TNm
zm1ykmbevgzzcgtDLzbOwLZNKHCnSLuCzdcZIvWa37FoCTaD5+kR48QaMOblf9E9CxXCnhQhrEut
9+GdUrSlM9p35p1oTdzH6XAAZTwCuFNu4ekMYORkUIL8NMGu+JygOodey/mCZOGRPj7CRrFop2K6
rsqzDXzTqUvhDHzpivFJu3AqkKUtEnSCovJuRkp3LIDaPUia2gsR13GG4HS8smWhyr2DKWG+csLr
QjXXhmq2Qt10e1sOta+fdSKXFYv3Q5Lyung3xIt0TGayiSdPaOJGlaxCrJ4m3MlLqhLadALldy2M
mTV4NVQhiKTWQS8sKVZWrmWnnQsCBttxupbYtz7jmSfzRuObT6HisjbeiMC4mi95IylPDs0YFj4d
YOK0OZZlJIWaztIWdUrtzSZzEDp7lHVKan4JmaV0t7rR4N7clUiQrCdIR5VF0JqVuUzyFbNYAdLR
JSPZjooDbaGVims2QUd9AB6PRV0N8XD3KaSJhd0pff2IFyRuqjiVJl4vY54DFet2+bZXCI6StxZ7
+Yuf1TE6jMl1fRyOmb4gATs5MhcbyHX8bCfZxSaYb4Bo6pH+hZPkK8mvOk3wd3tqTN2OkCdtn/oC
qG8pzZNALRKd09IP9f3H8HcH0FJh+dvBvXzA8OvX5lP4EwIyE5ka/a/UiBZTk/s+NYDNhvS/UiNo
kZrcd9fw3Hxt7s8fP6FuvvzZ3F9eUTWPfzTPh78Bs28bqQplbmRzdHJlYW0KZW5kb2JqCgoyMyAw
IG9iagoxNjk5CmVuZG9iagoKMjQgMCBvYmoKPDwvVHlwZS9YT2JqZWN0Ci9TdWJ0eXBlL0Zvcm0K
L0JCb3hbIC03OSAzOTUgNjkyIDM5NS4xIF0KL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2
aWNlUkdCL0sgdHJ1ZT4+Ci9MZW5ndGggMjUKL0ZpbHRlci9GbGF0ZURlY29kZQo+PgpzdHJlYW0K
eJwrVDBQMATionQupxAu1xCuQC4AKcYEBAplbmRzdHJlYW0KZW5kb2JqCgoyNSAwIG9iago8PC9D
QSAwLjUKICAgL2NhIDAuNQo+PgplbmRvYmoKCjI3IDAgb2JqCjw8L0xlbmd0aCAyOCAwIFIvRmls
dGVyL0ZsYXRlRGVjb2RlPj4Kc3RyZWFtCnicfVJLa+MwEL77V8y5YGdGkiULjCCO3YXeQg09lN66
21tLs4f9+zsPO3bDdgk48ni+x8wnbAj+VJ+A/IvkIGUHl5/V0x28L1WEy1s1zFUbmw4SdY2D+RUO
9wR2/vXc032hnnKpXU/H8jI/VNNcnW/wRL7J3xA4VxhKzOIiP3AodejRu8RlTMKLk9SPjvSLvNBo
tQFZmP/b74TVeMyJJ1VdB7SoBqb3hLHUsceMo9AF7KzqhNmrOIkPH+So7bS8MEaauTWvKOVINJU6
yWcvI6GOh8FAt6/WhE4RbXFXJ8md2IAJqYxWpZkm5pjQVuXbUne2QXTsN4Z/cvrWJlqNCljn0qK1
Y+ID72I3r4lkOpWuXxbVlbrtN4zQrzOtDddj/n8onW/8TSh7tCiw1WQ+VW+UDyaWLYmjiosl25r9
qUnD8Vg2C10DVaSyLFS86i1WhVFkKm07WZaFEt+50rXLTo5rOKay2L5yDMsN2KLk1JImVK+yRs9K
0UbTG26z2Np3aItx3BYcOLj15gZOZ5/XIFfia0T2CLpMERAOc76Zdru4zvAJh+nHo0d4+w2H+eIy
jB9wrv4CRpbmQgplbmRzdHJlYW0KZW5kb2JqCgoyOCAwIG9iago0NDEKZW5kb2JqCgoyOSAwIG9i
ago8PC9UeXBlL1hPYmplY3QKL1N1YnR5cGUvRm9ybQovQkJveFsgLTc5IDM5NSA2OTIgMzk1LjEg
XQovR3JvdXA8PC9TL1RyYW5zcGFyZW5jeS9DUy9EZXZpY2VSR0IvSyB0cnVlPj4KL0xlbmd0aCAy
NQovRmlsdGVyL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp4nCtUMFAwBOKidC6nEC7XEK5ALgApxgQE
CmVuZHN0cmVhbQplbmRvYmoKCjMwIDAgb2JqCjw8L0NBIDAuNQogICAvY2EgMC41Cj4+CmVuZG9i
agoKMzggMCBvYmoKPDwvTGVuZ3RoIDM5IDAgUi9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoMSAy
ODA4OD4+CnN0cmVhbQp4nNW9CXhb1ZkwfN5z7tW+XG1XlmRZUiR5kWzLsbzGsXzjeFHikCiJnTg2
tuXEdjYSO7aTECiJgSwkgUlaQkoIhZTJUArp4CyloaWN2w+Y4aFAOgWmlFLcTmg7H6RkGMrXj2D5
O+dKzkLbmef5v/95/udXLN2zvGd7zznvdt5zMzq8tR/p0BgiSFqzqXfo4NoV9QihnyIE5jXbRr3T
9ZKXhicRwuLA0NpN+dF3/4gQ+TNCSn7tbTsGXqnaLSCkpUXazq3r7+37XZ2hDKHkOZpQsY4m3J/a
oaTxj2g8sG7T6O0hsZvGe2kZyLptcE3vv/xy868RWp1P8/9uU+/tQ/+u+AlH4+dp3Lu5d1P/4v4n
jtD4LxBSLRoaHBntQ4FphDYGWP7QcP/Qnzq+rqLxBtq/UZoG9B/76GhQweKYcLxCqVJrtDq9wSiY
zBarTbRnOZyubHeOx+ub5Q8Ec/PyC0LhwqLiSMns0mhZeUVlVfWcmrm1sTppXv38hkb0/+MP/wCy
oThfi4xoSP696UNOIQd7Tn90829q0fTn/2/2QpV+PIyeROfQA+gd1JXJaEIJtB5tpSk3fn6MfkZT
2SeBOtDT6MDfqPYUOk/z03BJdAgd+xtwCfR1dBb9002tJNAmdCfty3fROzAbvUKXyiD6BFTobvQS
rfUTmnbLX6sKG+jPgBwcuCH1XXQcH0QL8SUaOcZycAQL6EX0KHTTmkfpOB+4NuK5f1HpPnQX/V2O
1qFtNCx/+NovfonU0/9JR3UXWojuQfPQbTeUeAEeJxo6f63ocYrTH8tpkZlMZZxswM9hPPUgjXwV
raXfXqBjxw+QeaiBNwHdnVLjqva21uXLliaWLL5lUcvCBfHmpsaG+fXzpLpY7dyaOdVVlRXls0si
xUWF+Xm5wYB/ls+TZTUJRoNeq1GrlAqeIxhQYaO/Kekdz02Oc7n+eLyIxf29NKH3hoTkuJcmNd0M
M+5NymDemyElCjnwJUgpDSldgwTBOxfNLSr0Nvq94681+L3noWNpOw0/0OBf5R2/LIdvkcNcrhzR
04jPR0t4G7PWNXjHIeltHG/atu5AY7KB1ndaq5nvn9+vKSpEpzVaGtTS0Hi+f+g05MdADuD8xjmn
MVLpWbPjJNjY2zeeWNre2ODy+VYVFS4YN/gb5Cw0X65yXDF/XClX6V3Puo4Oek8XThy4/7yAVifD
uj5/X++t7eOkl5Y9QBoPHNg3bgqPF/gbxgvuuJRFR94/XuhvaBwPs1pbll1rp+V6kzDOBwW/98Cf
EB2O//JHN6f0ZlIUQeFPiAWbKHoPHGjye5sOJA/0np8eW+33Cv4Dp3W6A0ONFMMo0U5LnZ/+/kHX
eNP9q8aF5DqYkxls07KWccvSzvZxHGzyruulKfSvzu+rcvlMq2ZgEn8rG1FEUHRQnPp8bOAHz0to
NY2Mjy1tT8e9aLXrDJIi4VXjOMlyJmZybG0sZ2wm51rxpJ/OZsvy9gPjXHBBn7+R4vhg7/jYarqe
NrCp8Avjhs9cPv8Bs8lbHVklw3pprxb0rfeO87kULbTUjQXoSmFFDghyxPBZ+nHZRRvINZm91X5a
Daun0d+YzPxtW5dFK/AWFY7Hw+mpb20flxpoQOrNzFHj6ZIILdGbpFO0vkGevvGIf2jc6q+/Np+s
W43rl7fLRTLFxq3zx1FyTabUeKSxgbXsbTyQbEh3gdXlX9r+PIpOT54u87rORlEZWtXAgMX5dF3l
Nh5o7xsY9yRdfXSnDXjbXb5xaRWd4FX+9v5VbKFRDBVM0uZ8covjeH5re8tyf8vSjvaqTEfSGaw6
Ltj4pWr87a50NXTJjauCKm87dpFVFFCgCd4mGvDXz6W/48qgin4FinA5lS3V+rnednChGWjajfEC
b2N/QwaOxW+qlGfLaX58pjYFi9J65sddvlW+9KeoENNsb6ZhWkLFkBqfySJBSgloGqbVyEkMl1ls
zXvb/f3+Vf513nEp0c7GxtAjYzmDDBnnmblqvSl2A7IompCPZs9EGDLHm8KuG5E73izHr0XjX8pe
MJPtPaDytyw/wCr3ZypEtOcLxhFbwlKVySXvfraf/U29dBPTHS3v5wOnJYnt5XVs2x7wL+g74F/e
PleGphTkLtcdrC0zaoGW1vqiQkrM6k/74b6lpyW4b3lH+/MCFanua20/gwHPT9avOh2gee3Peymv
kFMxS2WJLOJlEVbTMhpRyfCu5yWExuRcTk6Q42vOA5LTVDNpgNacx+k0YSYN0zQunSbJaexDZylr
HcUxpd+N3j42P19Zte5AchVb40ikGKF/MA7+GMWOP3YasEI3rvH3149r/fUsvY6l16XTFSxdSVcG
iFBUeMcBodH/p6wimXUjJjv28W1UAlai4tOAInPPKDnV5dLTCv5Xc88QTIPoNGHJPEs+o1Sov5h7
Blh61OQzBX0mXwP2pgLwcGod3/b5Mw3ca3K9NdNf8FupzCWgXHS71LrVAVstoDW4DBsNpItsIria
LCBYS1wEq10Y1PQPgQF1IhHsYj7KhzopH7z5MJR/In8ynyg7Ev5JP/YHehTJXOLv0SVdZlR3+TL9
g0jX5a4tw91dwq+7uy53d80u6erq7pI/UFaMw2DKIdHSGIZSLgdsVgNw/lksubzSlFfOnVx27Bd7
zuU0LWwJ7PruaOXUn78F+h+tbX06NfVs9b57tuadOnUKP3XkX+9vuHonxgRaHvo1KWh67IvvnUz9
YwdgKHdxjznL6XgXT39EzpCXqDLgQfdLc3drjmgwr4GDquMqrFHBQe44h9Uc7MZHMFZgUOniyId8
Xh8WfCW+hG/Sx7GY5CM1vvPTE5I4b2H8cR8M+UDyJX1jvhM+LukDOcsQLI6LcYUpoRZcCSJSLNRR
HFwOUxwMh7vpr/Dry7NLMhigOLBi/6zc8rKKaKmopPjwzzJgmzUHM5SQM2//9s1f/OJXb//ynLO2
b8HCZJUoViUXLuirdcK7H0+j1H/88Yv/9Z+9x9ZXVq4/1rv6kY3V1RsfYesG5PEupuPNQ5ukPJXy
PiVW6e/TY5UawKEAcFsseQWoAGJSwVjBiYKLBVcK+ALWe0+oKN5T8GwBXuEecGN3fIdmvwZrshJW
o5A3aynPhlNaF01Pald4C53V10sjs0tQdxd0s2kNGgibvvKyGB2BaDf584rhxiFVksXO+LJVoTu+
s7ls/u3/sHrpw7HKcHB99bw1jf6cRXevmdU8v8ZebXFbNPPHnt869vz2Kosu9fmTNmek75GNHV8d
qOLVOiUdn4uO7z2qIbjRw9Iqu6QS4jr1XDXWqeaqsMqoaDZqP9Ziq9ZzwgPII3gmPJMerhp5vJ4S
j0TDvORJeoY84x7OKwfGKOC4R4Gaxx1wyPG4A084Ljqwg2HEqtLGHUpnQu02Ksgyo1XUJgw2NqtR
GROlEKFTuyW9xLcIv6JrvFSe3jBYxWhpBVvFPpPd5svLYIbFobqlrer2qr+D6PbUH1XuxMr2QEV7
nf92yAHd8lVGAf/eUfTFI46iRcKsbHNO/foWPOAokuc1jJDCQed1LvmBtIcrh0vln5ZjvtxWHiwn
XBlcKvu0DPNltrJgGdHmwYd5V/Pwhbw38nCeV6WPa/Phw/yr+fhC/hv5OJ+lcLlwKffTXMzn2nKD
uYQLwqXgp0HMB23BYJBo7fCh/aodX7C/Ycd2uQYRPhSviviC+IaIRZaiPD/9z5JWkxMHhUnhUxDh
/PQvpIt0PogJVEQVaC4oqMpqVliOWrDGEmuKbYvhghhYY6CIwZ8vxeBfYnAu9mIMPxGDIzG4Jwaj
MVgdg1YGIMZyaQnukxi8GHszdilGzsTgZAwqYitiA7SiozE+EAMxBlwMPo3B27HfxfCLMTgaey6G
d8dgWwxWxaAs1hDDuTEwy2D//Fm6uTdj5Em5wb0xGI5BXwwSMaiPQSBGF24alEL+NgZvxuDlGMQo
B5Psz56JL4utjuEG1gUKKvcQy3nTJ78VfyJ2JoZvrHJFpr50Dx9m/fssRk7GWAfI0RjsZiDb5Ppy
YxUxjGPmGKYD+V16vPg5BnIkhtl4t8XITIOfsV5diuGXZWQcldHFuk+rKWEtWWOBGFl3JQM1SpvD
EktnfSG0+nep0hCbiOG+2O7YyRhJpHvZECPCDCYvsg7AMzE4LHeyJrYxhr3pqnGVXGsydiKG6RxJ
bCrpEKXOI3RQl2KfxrgxNnmjcptlMXDJddJ5nogBFmKJ2FBsLDYe440xqs5Gm4eqAFVBVXVirtGS
FSiI8lWJPLHCpvL5spfpBVRaWrSMFxjNEV5J/0Sjl+2ljKB2bblcSndZTxfdfPJnmH2ukdWZ1BuS
e/5Kxk1FwnJ6+MbMmwH+snAmV3iTbntTdYRt/Z7urjCiuz9Modk3/XdzDGKEUUf2m4NtjDpQbleW
ywilUvxSPBNjVKMp+5ZlrYHGrW5vR29PLqMYO1Jt97e0ORsb62ymB1L1B9vasmtrys0PpFZs3w4W
khQCOZayanOe15pTv6Fl6qijqMiB25evUmn0XMW863GFSstNOViMeCmlwShB6WsTpTMeFEKjUtF+
KzxM5QPLQQsWXbkurM5yZBVkHcviVLlxj1brKUSFEBsrPFF4pZAUUqp5dv7COHtK9lBxPAjx+0QQ
USIYVHgTDkGx1JRmi2aKMcZJSsMznES4xhrhGsewzbCUCoYtNwBjJz7KKoGz1Q135dTXx5z2eYvb
i7Z+s6/w9Qst966uTn29amm5A75mCsfhHfOCvWtreZVGUWV0iXpp5/d3fPZJfvdj25bBo5EVdy5a
dOeKSJpn0gf5DR2zHz33PFJNT0ohtRDnVKAyCmpd3Cg0a7UfarGoDZ4MAhe0Bl8MXgpy1ScZwQyy
sWaFS+LhIFiDMBEEnAjCUHAseDhIWOZZz6y4DFRkEePI2TxGWRJmnMlLAxcpR1KoPN6E3+gUtJ6E
wW1zIGRNL/2oKcrYTKm86rvZsg9ThtPDpInrHCfM0BaGv7qgblhADdm3tLYGKjrmBYdTG+9a2pYd
m1tu3pXasGUL6NKL5aZl0iMvC8u1ZUFxZJ3+CBdxdyMHWilV4yqVKc4p4FkXTLigzrXEhTWGZpKw
Jq3YalUiIhAvISrC6RJqSW2Iq5Vao820FLHZp4N6Pcy4Z3dXNBrpEi6XdnUNU9kwzFNpyOQvr4Oo
LWrzm9JMlK4BWJzsufOu/rp//deakuACj3F2Tb11eC1+sCjvrbdap3bNq9co5mmsRk1abkZM3uMf
oPJtCB2SBK0fVCpjlhEbCB0jzmFMag5l7Ciu9Nq9WPAWSoWACscKcbVQeLgQS4VJGjlcOF44UThZ
qPTK0YlCzqltfj8EITaRFiojhgyJoOjUaPilbsGUsCJ5Vcu0ikkFdEhMKBiWBV8qI4WZjMQkpYyY
pzTlAB0cMAHBSqMxGhOpBIzZcs/DqWBjb01WZUWpOXRb9MBXpg7uhwgAgaK7F0+8VnbbP2wpWZPs
yIUrAwdXBDm1TjVlV6l+wRVnFaXGLbPLy7P84X//aPuFvXGt2WGU13cBRczDdH1noY1nOQ1ghoSI
2hi3eGAQdtGaQd2MDILBa5gwXDRMGhQqg8fZ48SSE1ZYBizYQrIwGznbDRhnCcaE2ag2JHQ2WSik
AlEkLLwS7YItwxG2JiNdlBrSMdv8eTcvQ0b38MPhOdmSVCN+M1VPSZVZbU90dQXIS6nNKr1ZM1U/
s+a2WmYX5tD5fGL63+BB8mNkoRLtE98rK2goaC0gssSqn98URwVCAZ77ZgGwlOeqauKH00Epp6gk
PlkA5wpeLHizgJQUAGag3gJyomC8AMsgZr0Qt6KjOUOaMc1hDRnXgIbtV19uXCNPs+iKP64BpAGV
xnHcLxiP85aMTM+EvHDXMN2c8oakrEPekmGq4gQzs5iWg3Ow6UtxeNDiLXQ4C70W+nQ60s+b4rc6
Cn0Wi6+QEmWWWIR/fj1Xzkiv8zhd51soXkKoAn1d8m3MBZc9bMcGMSZis1drjLvNRWasM4PeBMAB
OU/JmlttitPZVmVrKpoVVWNV0FMFUhXQwOxma56sBWgM8by8JVaw5ubOCieys1FFdKnGKCoSatus
BBJkBDCqxHgepeKUiLPJZ0LwsPArSqxkciTzVEbKZ2hS3jXlgKuDcnkXKIzgL4+BRWkgNivb6fAz
aXOiaGsqZTFG4z1zGrqqsnIqFrT1lDxg8FWFSlYHZ1XNO/j2vTUrqrIPNawpJT/OmrOmZWqPo6jb
mO/PCrWsnRvrjOWJKuAeDDWWZjttW18z2FI5HLYUJ2Ljniy6DzoonT/EL0Kz0C6pLZgDvOMhB1bp
zNnmueZFZm6/EUIcWK1YPeicNcsZQAEpgKVAMnAiMBngynwNPuwrwRLGWG33HTIDMgtmbDbrRvbZ
wa7Avm2QJW+IrsuUrnWZzNUMO5Tpp/kbxRglBRQpTFsqgPIYX56m0xQRphkKwCl95NAXr/Z/e1//
fN+2vTk1FRGzv37Rgyt+9V44MXrkdB8+82D3Q3dvGzvSdc99aqNFcxKw2fG9by27/+679n69c0bf
5ZchPVVje7/rEehKcJ2fviLV6ozxFbYBGzYJNLRdBzs0cLsCthMwDFLG55f8WPIn/SeoNs9lDUqq
w6oTVIq3jGiV7hHekVn4TKGXtdj0DIepqoMNVM2jlZqjpWbyF2ps+W1PbmGK7Ju/Ou+oWbNgYU+F
zVbRs3DBmhoHPvlU6ovTndAHrXAL9Kb+PvXs4d8eX7r0+G8PH/7g8ba2xz+Qadc5Omd7+DjSoJgU
EnQJHU7ohnTjuis6Dm2WBB4QL/EJ/gQ/zvMqXjmmUSB+hKQnwvmazDidtNd0Z/KUDAVNfHkwikfA
PBUBS+o/YF9ZwlVe7uKaest/Le+rfNreJN9A2zOguyVBVyW64+WKRkWbgqxQgIKh0mxxxgUhIeCE
MCSMC1cETn9++g/SbEow9JxkdcQ5jUYFmw0KhAXspQsmgYfwCTyOVVRF5Q1bESGgVSrYaqmL0k3E
mHyaHdJAJBKOhll/6Q8Kg8lv8pUDFQVs4AcfCZ2aehofGnku9Rif8sIHkJd6B/L2kIe/GD5ESqe6
KL4WwVGcxBFEUK9kxXwJDw38KL+bP8mf4/kjPPCywLKiMz7GU5rIQ/UEf4XHEj/Ej/GEZZ6tkeIy
kNafF99F8YuehxeQPPtUWqNkrqeLmTSE12eXWMp9tkXYCkePHZNxV0/X3im6v/JRFToubarMoitt
fx484oGcfBqsyQGXGBbxBv0d+kf0RJPrzA3lkjLfoGaOMCcxByfmDM0Zn3NlDlc4iKzWQbSLVukr
K5s9qg7sDxwLkECgIHvE5BEjYp1IRNHkKBhR8Hv5ozyhE4/qKOupkwUKitIuxoxl4iSkl2wp23uQ
pkthS5oYg5ntOP+s3LzyqD1ti6pkq5kKmLMU6TVcUUmXdP3coRN9w09uKs9r6h29t7H9UMM8vyUS
LXc07eio5OsfWdV6f38lnLl7h6+us6Z+dyx77mpycu3jGysT30qlTt/96iObGjwm0x8Oqw1avmb3
zx8OlkT7j8L3z3572XCzN9vx4PsPtaRpeg1CnI+vRTq6d09Kd500nTNh3gN7nA85Me/YQ2mVBjsx
NmgYYlFHtt/oj/gH/bv8h/x8xF/nX0Ijj/sv+N/3K43+Hhp5gwan/YoqloQZ8C6ayxn9Hgq8i4I+
61eolIaOhAUsqqReb+KT1h6RGCw9JnOatcu6jSypd6ftHGkjVrg7bcnL2PFkK951Ns+oPmN7pMO/
ZKx79bruXbd4U4vfmnr18VPw+QM/HC6JDH7/ABlPjLYEpvYUtd6ReiZVL2/Cx5zltRsPL1/28GgT
w8f0S6lFsJ+uJwvKhwLpdbuXCW4LN2ru1GCNlOOLt1KWnR1o3mgFrRUs1pA25Arh1JuhSyG8MXRn
6GCIBELwTOjdEH4m9IPQ1RA5EgJtCF4PhzaGcEg68914SPrW0/E+luoKhUPksQ8pFH4x9GYIu0It
rIJOBloWaghhVgHeLVewSQZrCXXKjRwP8SGpsydexvLuDLGm3g19GFLUnAgB9oYAhbyhktB4aCJ0
MaRIhJKhIRrhZFHSSqUUYwhU/HIjF0zkG30Jt8OFKH+VyW23vNF6GNrljce00LTiGQ6no3KMSZlb
pn76JlVjZWETviRyEDkuL3ImUqftUPtNOXmiPS/HRJ92kT414SWb6gulYMTlK62Z+wBEuffFdLYo
5rNn/ueXNnw9WahR/dOm7J33kwnZLkVQe6qJvMO5UBlqRqvgAcm+oxFWzB6YjWd7qZwcn90+e93s
+2Zzs9lw1TQFZ9FJLGUSqEElxAP5NCmPJemZgLJCZYyLrJynSqWPe/MphLJ5Vmmxws+htnhwluRw
x4PsZ1ZwVjBrnwEMTeWSkxLo8pZ4GMEPEHDIirAadbZ2gtQJZZ3g7YROWdpblYyPdcJoJyQ74Vzn
i51YTnbd0ho/0QlcJ9Rxnbs7T3aSkzTvzc5LnRzLPzsvHpef5bXpZzgiPyULXX7XGsDezpJMfcVG
Z7w6tsBdkgVZCn9phAuRRNxdRbmwJx6JkxNaiGvj2vmJREiYn7BkZ7Th6ggVGITXSqmUYJelBiZZ
yoJlOE1z2UpgYib9sOmmyiAVuy53ySXDVP4y26uZBh1OfxCVTpkZAqwKNvFKqm34risYbF1UFpPy
ytyZFWKvtFMYQsURH5PG0swb6FK5gZ+TgZ88V7A8u47EK0B8+MHy7RP3bzzaHXIUxQLmSCj7scfK
ev+uI3tONFf9nv/gLF9BU3PqiM3vMNirVy/suHdFQerspk5bZFFF5S2zRbFkEb73iSfVintNObtH
593VW+OPLSvx1VSWORWuUOWsMwvfWbJjaYFCqSaD4cO5I198v1oyR8rKHYGaUJa/bgWuvmtXXdfc
nJy5XXV1PXUeRjvD9Mcs0wo3elRajhZqNcc1z2jIh5qrGrybEgpHs9YatuIWa6f1uPWqlWOxGusz
1h9YP7QqBKtUXRu3ejiP1YOrP/XAYQ9V5GXb8ISHO0wD2MOmn+5X+Znlkp+SQHUItnmdCbfR6kjY
ZzSiyxCWlXV5f/5Ktv5PvcmmbXbJX2zP61r6nXSXiTfuOs03U44TeyD8F3vx6tIbdXPGN9bJZzqT
koZX2pRYTVRmM7NPliT74gqzaM41N5lXmAfMik/N8DszvGmGAfM285Pm58wvm/lWM7B8/LYZ5ELV
8xrjLBs3mFvNuNQM4DWDlQm8UG01l5n7zEfMb5ovmT81K2kSHjKDZE6Yh8zEzHATzI/LT7ov2VPK
ttjjuCOhm9RhHeh7jETXo0moqFpOkhrGZmSeXccsAl2Xr2MtbbYLZwxvw2Emb/RQFVpp8lGubImS
DNLw9jdAdddjObF55qsfnDqF5/Iq59V1BgXYU7syh0CyHNk6/RH3AV0fYbROsvVng80ddPe7iS0r
mNWfRYJ2CFAZ7qxaz/r8BymPBgQht0gqAmdnCZUwMS9RIsXbejTIBCaThsvN9fQgi9z9tNQhK/6Z
U5GwrALxswLFVNsxVwTkTWb58pFIHUSJgRDFydT06Vu7TgN+svGOwb6Ioj6n6fnk1u/tnF//lbPD
sS29tziD8xSh2+7Ya731H68+dg5U32lVG8ya1Lv/GI5IX738nYd/89BCITto/efUSzq7WZMe7wB6
lfNwe5AWLZIiGgPwBjU8LckiKRNIxzCvIVSU4JS8ASkFpaRMKDmVEnHfUfNnGQcqfZmZM7OE30GE
or3Uebn0knCJrl5ZIPWZoiafDW9dm2qHp9bC03hragU8PQBPp1YMsDOo1EuwC/0c2VHtOfXD6Ouy
OOlTmeI8EkBIshMWxTf4pwbVu9SH1ESdtAxZxizEgpi69Oll6Ip0vRieupxWppVUSaR0iMtYAWGX
b8Ho8s42a44/x9pQnl2WlzW7ZrB7UdYt7tZKs8NidgSzK6ptBbUMBw7Km/5MTqFZ5L7nkWt68izl
LE7GZ/Q0IGblZmHMgYo7P31RKtaa4goAE5Ur7e6cHFgGCFrcOVa3O0eEZdnu7Ga7aLXbRRBVbshx
s0qmqTbtdttz1KgA4QIkuX1xFFgVWB/YESAtAXAECgLVAaINwJ8/DFwN4GOBbwdeCZCDAVgRAJof
kH7/P+MfBuD5ADwTgB1UxMWdgY0BXBu4JYBdgXAAvx34XeCzAPl2AI4H4IEA3BkAVj0WA0Br/eer
AbjMir8SwM+kc/bLDasD8L8DQGt+JwCvztS/LVM2HKgJtASIIwBv07rlTuE7AwcDWM1yH6YF3w18
GMCvBOAcK3Q08GSALAhARQCsgUAAKzLlaJ+OSnsCMBrYHcArAgMBjAPwSQDeDFwK4OcCLwfwfpYJ
Cao949JAfQDPFF8nlz8T+EkAnwzA1zJVDASgNQBNATAHZgVKA4QLwKesqd8F8LnAiwH8pAy6OwDL
AqsDwwFSFmhgeMgN4AAjWInGePzlAJwMnAvgmSoZJJbhclnngbZd9RnrIciN7w4cCZwMkOEAXGu7
lE4K6wGAXKmaEjK58QBbvm2U4ScCIFdIu3YxQOleYCxwODAemAjwxsCSAFZ5dSU6SUd0umxk99qx
ZE/Yk3aC7IIdq+21btC6wVzinnBj5Pa6S9xkgZvVPEuaH+fd0OhuowRpj5sD0U38KDuH2BNeh1FY
qlNkyyIhOwAx2aNUGKTshBJIWbcdphpj18xxSHhLuOevnl+Et/yN84sbzjZuztjy5RLdN0OnZZHM
IcjrtEelpuraSJgpsfuyhPC+8IszD9UEpRrsbESWW9WQNgVlpFFGBJkZ1KZ0yQ9yNPVVb/3SdY3O
vFmzbBGfpzLcVFMiOlOPJOHckdRnD0I32fBF59L719ZgXsG/mrTnNnZXx8kQZYeuqUH8IH2m6R+e
/o1yP+WJVvyGdEZpBLsB7tRDux7CeljHQxYGHkBFeFim1Wk7FLxVoeD1sIwj3K06vVWn02NYZjAa
Ogi2EoIBlglG4VYEVlr3Xh0odXm6St12HadeaVxrxBXGJiNWGu3GPCPR6IiR8jiiQOIrIvxAhG+L
cFyE/SLkiivEbSJ5W/ydiM+JL4r4STn5ThEGRGgVoUkEtegQC0TyW5EtjNve+XX8iHhSxHspCRIh
IJaJDUzxBSzCJyJcEuFtEU6KrCqyQ9wvYlpBAaVQYi5tZq/4nMirRXj638X/LWJR+oen4q+K77LQ
I9+I0ybXs/ZWiDhXrKCQhDV49vCDcbnh4L6DcasIChE+E+FNEVhtL4tklQgtLFWkRciwXGLjYLpE
ZGB9/HkR7hEBhkToY6UuifigeFx8RiRDbHR9IpZEsIpsFHJrUuH8pvhBESQxIWKOplK5i+HrVRaz
ikdEYhVH5cG9KfJygXKrPc4MCC0iURDJnx+PkDqyhBAXAT0BIumy4gX0qdcbDIIWKXrMKmLU6WTh
nwJnNqdVB5j9yR4bhqx4ma6ByiUcXQ6UmUfppyssC94zhy+lkWgkKm+gMLOAZBSwmR01TNWz4XC4
e2ZrhGWAtDn4pvPJ4fCX95vwMpX1ayMRZk1mO/hL2+amR3oHZT5q8NO/9K5RQ1SdDllTC8tTJ1PH
y1MNWzF6CepgfRHcCiU/gxe4P37+n+TRL/p4vbO83PnFEvLEF93kNA2zfZJHZUfmj+2AlZJwr/JB
JV5i7DHiJaiHytMZkcjE2N0xGtDnG0zxGl2LrlNHarQt2k4tcamhTzmqPKIkTITAnLJMifswKJUq
g0FvVBgNdFPpm1VKq0qlNCiVAjyruKB4Q0EUCv2gCgSVV1VCp4mJgy7JlXThEy5ALi8NJ1wTrkmX
olZwjbuw4CqhCUnXRdcVlwLR4JDrME2foAlKF1uIq7ri8vOWtvSzvFp+Spbw7LgRCc1JGyCbYPPa
iMomC6VmW9wmJhxIpReILWFEBiVHtBabAhLEmPZ1oTpV5sg5LJ++lYZl6TRtBXmNzS+jvVFztSm6
T6BK2IsCpXUytZuhulQTk+crM1WyoA83Hsu1w92rYdHW1KfQPpDatSKVurMvtWv7QZgNL8HjrqIi
e+qPU3+0U0kfHtqX+oSJ/DzOKpqRZ/l9VJ4tQO9LxTt4Zs5VmERTrqnJxAWzgXfZXEEXCYrA2232
oJ1QOcsIIaPR34HY+B3MghTODTeFB8LbwtxnYfiXMMBEGMIst31eQzwRBi4cCJeFG8JcNReGdPBI
+Fz4xfCl8KdhlRCmim9YCifDQ+HJMO/oLFFJKqxicrKqINBjzPXkPp5LcnNzrD1aQdByOT1EPkBh
Nrm0iS4tMtPtltZwGQ8Tfh2mEjVzFru24INpm1y5gHx/1bHIJKOX50Y/P/z49Lkk9ELbPR9umO9q
/PFGJkQv3vNs7+zetnrLKfj43qbcspXPfPEPkIQub3Zq8snZ5fO+dvmZ7/z+wBy9NUsLdzkrKpxp
W5wvtYiMk5eQD5Wgw1L/+siOCFa4YbfpiAkrTLBbe0SLiRZUVGhUz4obSqVSQKVjpbiaBhKlQ6WH
Sy+WXinl0wGypBTCIpfdjHyCz+u76OOYo0Mix1WcsIihvKWcWkDpdSc7F6W1IXaUVlraNXOUKB+Q
Z3BiyRymzVjaqJKfQ9yZBZY+XsmcMT68EVTYVl2/MLf9/tXRsnXfWB/dEmUnfidT0nbcN2ted03J
ptzQQHT37WTAUVRpdtt0sTu/u23k+XubtFqdx5etTmVFIllk8cDhzpBJmDKp1O9mbJX8cspfHSgX
/b20QWM5YMEnuXMclj3p9pqOmvC6IDySDeuy78vGvN6mxypHFiyzWR3WrA6b1coCPmOJDWw2Z4cx
X8gHKX8o/2I+8UFHQgEKK0pGfIM+7PMpPEllj5rYQNGTxZll5YSZJmfWEDtuZYdPVAszmaur94UF
9ON9PN2PdCfOrCHU9Zf2SSXDl/pGE+ZTr0699fgpPJ/ZKIsW9VXAxq+mLqT2gSZ36a6OZ07funPx
LLwoxc3YKku7di+/ZcettcLUH1zleBHclbitPnvqf/iaN2fOXAVKV9Von5TPN4cRaBHM6UQb0Z3o
OOJcqBP9AL2KOBZ7BhGkfVELWka56priWplCsdNMLWCkFbQJ7QntuHZCqzhMA1e0RJuxRciAOr0Q
VyTUdD4SJGN/gLQaHQ5TvKQpFtOmrtOdQWZXOAFNTTeQFOZjNv0R/oTOaRb6FtXaVRp9HKkFNVap
qJZEwKfCoAIIZXUoWLO3UgqicBqdHucS5y7nISfvcUacbzinnZyRBg45H3c+63zfqZhb5xx0XnB+
7OQu0FzslJaviJ9wwi4neJ3Q4wTkBMEhJvUec4QdpuktPOrBJE2BZbVaeFnmmOEZ83M47Ski/4XT
pNV0gxmfLvpyeOQU5h6eVbVg8WLfvPXB+hxLU+h+7o8y9/tJ54G++fmCYPj0oN35o/S4g5QH/piO
2w7/IU2zpRrUE43KqcJqowNSRscSR49jl+OQ44Ljfce0Q3Ul7Sr4hoOKnWB0eGg+eYNmfewg4w54
3AFjDvA4IrQQoWz19UHHs7Tkxw4uwaAjjjoHmXbARQdccMAJB9TR4ruYKQd20Uov0GqnHXzSAUsc
UMIKwDc+lqEjjkEK96yDE1jJN2iF0w7usOOEA+9yQJJB1jnwJKtvprO8Vy6/kfb3DbmpQw643uN0
Ku1wD62YjYcrcUgOLO3zOKjmDO+zYYw7cA+LlThwDe3z5EwRhpBDDlLCIpOOKw6SrlmG9VJoVjmt
YELGxpBjzIE96YHTihO6Md24bkLH6XAPVf8vqN9Qc2pbB9YjNajVVpLUEBvuQZkDiFK6CKIQmfpp
l/DTm+Snv9RVvpxyXWu5lt99vYJhxmNonG2J9Gm0ycd4CwkzSgE1b0XvPRN0zecebXCZm7sH58x+
i276r+tUP4Oa1Es/4xQ8ubrRVT5ja/k+5+GOIgUqkVxYodrFAYcUGFCEAyNXxw1yb3DTHM8hR6Rr
SzT62muQRWVK4fVSdoQGNjXYBsjzX/wrKcCHSuGttakdqR1rmW195izXjWajRvS4NLQPYA8BE7Hu
RUcpDR4snTvoscI91q9ZsVAKh0ofL8XWUmupIWdwr+oo5cXNQnOiGSeah5rHm680c/mD+w3HDDhh
AIOJ+EfmzSuqHOEdNkfQscfxkIN3KItG1FqHtkC7X3tMy6u0jvShWpfsr1XNDNPpA2Dm8sZM1lso
XREud9EIOxEGq0KZQ2yyzbm8rKKS2b4yJs4vnwt/Ob5/Y2dFe92st3/79ttjm1Zumr36SF/ya2tK
D37Z+bnAVtoaiy2NWCyRpbFYa6mNfLb5WL5VWjk4/0cTP/zxnmcL8h8eXHJ35+ySjrun/Au2LM7P
X7xlwcIti/LzF23Bb9esbs7Pb15dMzfZEAg0JOW5205xPE73fiHaIc3eg8HopXKuQgU8sZEgIarc
3Hzn4DZ+L4/5YlQsFWOpOFl8oniymMsf8hsYIXTTAoZZnhGEbHnbAgrbiGbIOGbERiMYjRqKQuYM
IGSc3pjI83YGh2bmECALPnADHyczR5EZNwklXZc2nylG4IOhU6M11dvO7uj+9iJtfZE5OlfK6dre
6HTF71pd0+FO4qemzpiLKhuJUNT91f6eRzbPtYngfEFjNaojK25fsHh0cZ6gwseOpVo5lZJnPHxT
6k7FJ3wr6kNfAU66/fhsaLQA12XtOtJFHroVtEvDS2uWblx651J+Q+KOBFbMFediVbkVnMoO5QYl
aQAY/ZcicS7Mrf+X4Ff6+4LGIKiLgkVBzeKfI1EQsU7cadwJ0zsB7RR2Xtw5ufPKTl6Sdp7YiZM7
h3biwzQ0vpPsZEis7uiOG3d6dmJVU8eKjm0dpONf1mqgXQN6DWia/9Xt3v6L0Ia3KyMhCFWGKnn1
clj+lonr63mLR5HL0brMUQjFs3A5ymyxXWyppg/Q0myjO7Nou+lyjUaZ1xk7MJHPhLtnRIQunhkn
ArkU92YmXaXvJXAZJ8RKlimfmVTSzDmQA3Zy7biEy5yVcNfEUsjNCKqyh4ts66jkz1Ts+Ooza7+b
+v2P++bt+M7bV+9/FlSnV1Wt3vvoqZU6u1nHE9eC1luL40ty5rRXl7R3rauzerJdwjCvUnCc0e2c
N9y1YLZz2bF39o69970HeqOLv/npkz3Hdm6cnfqtRq0SFO7G5qZsd1mePT8/0NJcazsfWljl2/pT
MD96CLhff3dX48oTvz249oVv7u4q5XRWY3ZjtitW5t/Uufzvj+wszp3t0gDBU3+0lUZCBp3dpCld
uW3fV+N3v7yvaf7t33713+/a/cnzg9mRmJ+cAvpRmHIczpVD9zQ2LxZ9BeY0Ldw3/W+wA73F/LUk
B6VSzINK0FzRkMxDpck4UqXNV5f/0mUKdli8Rdddoor+0iWKtbOO0lzfDM0dwkDJLqW5lMZG6B7G
dXgQv4GnMY9lmvvaa9Eoo7mU5FKqX1muBkp215ECSnOf//5a2Af71qbCpXL/F9KNsZrSAy36kVSJ
Oqx8gD/Cn+Q5jt9NA0TPD+nH9If1pEHfqu/TE0Hv1WNOD5P6K3p8Tv+i/k090cuKaIIdaU5IKxsW
xJN6Vkgugkv0wOmt+oCe1HD6Mn0DrWRUv1sueEmvvqif1GPMKi3RJ/RJ/Qn9uH5CrxqTHxf1nFbR
oyKI7yEz7BFkj9DutLqZ5nmRL4t7NiU8d2rqD6dO4axTiRnhtTyj5yyk9O/3VE51Uon1K1L5QP62
fPywCtSq/Sr8KAcPcKCj0p8Z+ZvtYRSGZvqVwmPhiTDxUs2PBThZZcwOF8dd8SU81TcTTpslIaK8
hEbwI+RdKt+FiTLnyBkvovS2vOYwdk3N85oy10eKSS1krk9AxhHDxHaTAv+88N5VqV3RDU8MRkfK
MQZ4DBpGU39OeYINyZq5G4KhzdE9u5r8lfCbrT+4t1Gn1YZnlxg/zSr6/HlHEby2/vCqPLuAf69S
v50+N1P8RpZ3vy15IUtniqMsrSluRwBIr1dlGewdJWZ2tEXMTicbpM1ijy9xwhbd3bqv6sh83XLd
Gh3RsQOjCqr16jAmtyZVY5Tx3qP/mh7r9Nl6rFdgUxZR9xh0WkLMdqLqQWAED2AV1WeYMhOlFEn2
bZc93M3VzLDLnChL2RlSmMrvFEnm6tpINMqcZMM+/w2ajBqY9JuOkm5/ynYuVXnqFByFc/ArGDt1
amryHHf31Tdm5vwLjnxR7ry6Wo7PTu9XNP0Rx27cG8Al5XRoNmgOaEgH2oBwm6pfhdtIP8FEwYkc
VivPp09QFJknnJ/+57NqXVzNrEMBGtCkT03UGqtarcGwTKVWNafNp5hKdpAjA5r1prhaTTRa5EJh
RGYhQaCY/V48GUcCNLOwZMpvik8KcE54UXhTICcEkFPL3bPiguAVSgTCCXCSZuIxAXBSGBIw3RMq
DSEJHW+U1MCr+9X4T1SaBCwyBFN5TzaeQ6R0xk6+hRnRw8Lrf9tuTZVHZu/pTt8euMHgJpupn0zt
W5i6KwnPPQRmUDwEt5INX9xD7pCt0NvxQdkKDWg/3Vuf8ovoOvtAesLqCXjKPERrgTDUAHYCaMqc
ZXh3BPYWg624vBjPCwGXZc3CqgILaMyg1RpAp9CIGmzM8eRgISdH1zG7FtVC1WTtlVqMai/W4pJa
iT5IfoeNTqatxCbZEjZOZRvIh9Z8uLcQthVCa2FfIQ4WglgI+wVYKNwhYJ1QmM85lT0VABUWf48T
ecDjcXIorXGlDTT26mv2Stk3TXakkr1NMvYZ1NWdVsLSMLJZ4gbZRfHXboIprjk5H5zntzQsv7Vw
0dCCQO2anXt2rqmdO/rt29acaZnnLxxLLNzYNKt2za49u9bUVo98Z2vs9g0dPlj/3aywz1IQXz0n
3j2vqLhqxa6uxbtWlThNqX8/6Q15K1vC81bUFkZqOu9Ndh3dWK2zOvVpGsdsZSOyb0Aeuk26ZVVw
fRCv8A34sMK1wjXgImr7Kvt6O9EoQaOngh/wJtBqOhFl8Dnsrlydt0AqwKizxCpZsdHqsUasxMr3
+C3GHgc34xnZdXlL5qbjTXf80sLAjCOFksoVkPE8kx0niwFDMDRw6p57Tq0Nhday50DoZyuf/PSx
Y//5dEfH0/957NgnT3fgE/f/9sRKyrrvPzj5jdbWb0wePAP4qUTiqVTqzJnU1aeXL38aeOajT5WG
Dygtz0fjzyM93TNhlRAvsFZbcZYV1OzP1mwUQBRCJ5hbkhCaCE2GuOoToSshnPZHCpfEqYglhCAR
gqHQWOhwiIQylxhkgDC7xOBpHgsACggBb2AicDEwGVCoAsFEPvLYhEDCMsuWw/OOZZq/fYXhpgsM
DFezS2SnJeV/d4uhCah4kp1YufLGmwx1sQrzrlTf9vuhlHxmyA/n6790naE7c8vFcpP9dLUs9y9C
c9H42b2VUMZo0wgl4mEm/99vBg170rWgqpnTMgfPce0th/JBb49r0IV3eQ95caHL63UVErVtcBva
S9dYDMUkdveJXZCajHFedYlaUhP1HNdIdnapgMJCGIfDwZFSpTDCM49zbKSCrYa/QT9I26+oosVW
U1rLslOBVc6lQmtX2rWaufb8NVUhAuWVMZhZaLJPMcncKmC+PePSjtNb1ny/hSkOc+Y3y4pD4S1r
aw4d2nKba07X/JzaqhKzv97ftKh19s/fnRUfXPTcKdjUeWhNWZYlo0QULx9pWLy2zk1Uy9SKsXvm
9UrejAeyWtAqn3iqblNrtdb2LYpb+/RveKZTGUCSnmzWQp9mVLNbQ5o4uIM7QDkJu2G8g+wnuJ/A
fAIElum0ulsxsVIGqtWol2k6eM7KU5lLQzNHtczWSga0wGnLtA3aVi2n1fK6x6mciPdjnMSQhasw
1rC7yoJH6BGwUagTlgi7hGeFjwXF+8K0gJEgya66XM0J+jshEK8wJhwWCBIuCpPMgZdxmLOFkbj8
FKzyUzJqDXHNIJVoeBvV/oyy0S2QLxvdnhPd8YzBTjJRjqYlWKMjfI9BSThm5Y7WpZm57CMtvN7V
VTpzdiC7zqYJhMx66DPaJfOesHAD72FWCnZjDKjwdgPr4ccfnPogOvX+13HOOcrmH6JYLnd+/p+Z
k50geddZnj4bwD8nL6Fy9E0psLD0QCn+iu1+G54jLhTvEA+IHB+1RYNRMte5yPkV5/1OTr4QYqfr
PSeLsvGgJNjiwaClCVV6K6GSDbEkxxdfUtlT+WwlKWrK1mqzLUV8KOEry23Ixbm5PkFI8GxqTmqJ
lyJFy24LZ1Z1xiGXrmmZg4S3yPwjLLvIoDSJzHCEjPGu4kbeYUvzDuaMSyW/vNY93ZHOxXP0RbM9
q+u7+kMNKztXNoToumxsuGduJOTsiC5tCzW239reGAJV3fqWAq1R4H9/b3b+0rbSeYXunNy5HfOl
vga/RffaJntWoqG4piCH0vZbGT2oo4ziaf4J5INnJb1a4VAUKIhK64cpP0NA95+vxg/6oczf4O/z
k93+N/2X/J/6uSE/WGlSK03k2M+o/5ycodD6XX780yt+eFEGJXJZlk9OzpRNw7MgLzehGT8bl4s9
Kkd1Dx+PH/fDqH+3H8sJs/c/EH/GD6zYbj9x+YHzw6d++IEfWD1yUtiPaeJGBnDET+RSh/vXxVtm
YJ/x/8CPj/gh7O9kkFY/Zimv+gkLs2GM+vk5V/1wjvYRn/BDwM8GPCpXpxD8gJEfvP4Sf8I/5j/s
H/dP+q/4VYLfS6MTfi5Lr89uJukTjjF2wpHtS3hsyJkgDqM5QSVgMBjUcE3ISKsvlCuUMmFXdnTN
WOwy1rrwDda7sHyAKvOOGRA5hdFEi7+88ksLxoDdwO6QyazjN088EV66dQFduLOLhNxsf6FT8/nn
r6a4g6R9dl79hm9uqtKqXrtTo/XM62t6tPWLz3xFRb603ED5KX+ejyMjMqN/l+IKE5gMRsGoNoNZ
r1NQqiXoOpQKq1Kp4GEZzUhyvJUqii4qsXqpMiEI3ONKkI9Fo0ogSqvVCpesYGV0pKQ9bpVpDFWb
LlqpGGu9aL1CxQqW5w3IeWedOWmYXMES77FCBUc1R0PSbGQOaKAVWqjcK1CNV6fkjD0ayByMlMoa
BTsbka+oy6eQXT3ywbTwUybLyvLulpuFXWFiArqEfeyXKo7yKVI0fZpEfJQE++C1VPPD8MqP4N2n
p145t2fqyj44+Dv4eTnTI/58VcX0Cbg3dRe3bmpr2vfiI/5HVKewwnuSsJHq5t6CovgGKnk+IrCj
iz9IdoMp3sJ38lTTHubv4ckT/Bn+J/L1g4vSVgr7AP8NHm/g7+BxOw8k1woOXIAX4FWYEw25hibD
CgPHBONcDRGVuUqsABDSuodRsBqNQtp1I6N7pJ06WphTh14Hy7S8tlmhsyoUOoo5g55gMFYYwcjY
v4b2ijlxYBVV6c6fyV7AHpLWtGBUB226fh1zGnhKWqVfENWBQifqsHrG1UNAYkBsEFtFIojAiXBO
/FTEJ0RoEEfF3eIRkSth7huyFwRz6OCQCNWt4iUKRSQR8JgIF0WQHSoKCjMOFS5P/IIIQ+KYeEIk
PSJ4RdAihaDACj0xIK1AMZAwq4yAOZ2RZwTXnuY5VE+ks16aNgjM+FLO2L+F10uvOx2wmxDypjJF
o+m/9Gp4c1/WX/VASIu0M16ZlLNtoVqRdoY7uSCaduHhV6ReWvyHDxamfjAIFx59/99af/vWIzDA
9CN829SRjI60B/dPfR3fLetJGLVTWex/UFksF1WgU1LLPQGwWgPWVmufddTKl2X3ZY9mk/Lyh8ox
R+T7t4Hg7iCnKhxE71vAIumFuMWyly67KlQlVWGpKll1omqyivOUDmrYdZ1CnTFeopE0WOMpLY2M
7p0Fs2blOUeMyCpYvXTLWY3KvJH7eNhBOT0Vx7r+yjWSMLvRSdl4Kd05128qoxnmBbLBEGYIEJHl
VlnQxyCLZ7nMkMucqP9H+bpjfZu/s71u+cHnVrc8Eqv3m+mE2Zu3LItw8WdaW/d1l6ZWS+0V9rVD
DQ8t9DSsgxPrnhias+IZNP30c6B4OmE1/n6/RtApGw5cfCC3JJL8Wqo61Lar9eTXnFmHf31sScam
k1pE3iXvIAcKoXulDq3xoPG4kfQXbC3ATsLuSmgVoAo4kBJ8ymZ8/QZsohDS919PFHLXb77Gbzfd
Z8JLKNXJT1DdQRsIeJYaRKxM8K6MEYpdz7+cOR3IHFZTsj5j2qFois6I9BXyBZvcGXIN187wZTZP
hYt1qS13c4qiPR0vvVC2/pu3RbeXp8L++t5YVlVlqTm0Obp7jLzz+ffZiTTwuStD/pKrH408f3ej
TpsKDny1K8yuw+LLzLrD6JCZ6kO/p3TIBT+SZm2zHrVi3rXHhTc473A+4iS8E+RXW8hvs9hqYa7P
k2dVGW8XPQ1o9Af0dI+DSp3JUbGcEvb2DFaEsB+XBSkMvNKptFqQ3sDrbDoXDVkUNGxotMAeukAZ
wbs/tyC+kIcDlJrxWTRsg2W0TIvOZtXpbJR50CLNBt5qMPC2hU5wOq20Xj2tmJfvM2iQ2y319sU5
t9WNA+4yd4O7z73bfdL9ovtN9yW3mqUHaCJLOkcTL7k/dWuqWWqZe9R9RE5VltGfN2kGx5wOz7p9
cdn5sMxojyfcgAW35MaW1YxHKxHla14dUeksNicxJBR6l5XT2AUj4pVElyAaG6pLG6zSHjKZm9xb
mHElnDmmDQs/ZaYVKvixL81kLjLXqQmEe9hbEbYwlpP+Ms+Za/4zacMLo1+yIzXqStsytWmWpL7R
YZDy1R2bUyvueid1d+ofN0F56sogPH3Xdy/eDctuS/253lZUZIdbUqfpU4CH4auM+KQ+AYE+bamn
M77z/EGqq7jQYalAZQOVFVR6UNFZ14gdnSYoMzWYsEnG+ItukkY+kVE4pzaNwuK8UHySojDhHnKf
cF90c2pHRwJPYoyzkmqqk2hVpEfPE4dowj1Wdq5ZmmbT7PfaixAyuBN+1TXzGhmqF8yYb02+zDO9
i5hZtObUKew4hbczmy6z7U7tPzVj1536D2xkz7SdD5dPvTpzTtmRWoTX8Q8gO2qUsvJsUGqtt+Lb
jXC7Fsr4Bh7n8WBRyl5TGkNciT45pAc9c+fRm5GK7vU62V/np+HS9P1P2bzB2W3FOE3+5Lv6LpW9
aOFtLXtfuleS7n1p75bddBP8sfVbjz9075Zwa/O33oXsH/4QXL98srl13vPvfZa2P+JqvgkRtOh5
GvmDlOfyxqkyx266hfD38f/En2OFGmfRVMTD3CR/gscS0xnPT49/j25AygCZGz7rW4S5xcqX07aE
7X6I9vXBv6628h1o5o7EXXSefWhMWs67bW7Mq2yqrXRuFIOKXQpiVpgVdo9fosLtkHwLljfaOxIw
CRjqmMAlJo0lVHaj4gVnT/pycqDHZzYkOUpDlUrcw5HrFxmi6cu+6XcbRNLW3C7h9fSRKUNdHciv
BsocNvsqozToM/kyNwJ8dGrJH+u93s7uVvu7sMEjSZ7UUVDFNrfXGavrLVd/lp7o1IV3OAWBqU9P
pPqemHqP0MifU4/J9P+JaUTW8ZvQErQGVkl72nr39D7USzp7D/Ye7yWtXbvZ+Z61K9DV0JWOKDau
vHMlXrNyZCWuWd65fOPyO5dz7AffuRgOLji+AN85HzbWw5h0WMLyT6PUJmFFIagK2ZW80bzdeTiU
R/UQCOdAQzZ0uja6cNi50XmnkwzKzggEM9JZQ4Frm0I9LR2oyR5ss4+FIGQP2b2JpqYlpVAqqU1x
Tamm1NvUj/q9/ZP9xNsv9WNvf0k/7qfL8rsma7yjycsWqF+li3tr23rsHD8nQTnoWASMVKqpi5CI
OcFLshKK0lNA2VLGoEmXyOX01VV5LhgrlwNbKImSg/IVKpQxZ7Kr2mH20gY5SB/o2jedFrxRc73J
7MluV92gkJCMBpu2xRB2+p2XPji0xwhZGGrf3x3pWVqrL8ozRqokX/GiCnfRwp7VPQuLgtKK0oKW
ap+s4u6qi/j0+cVljmWtxQt7+noWFuc29lQVLavLvdNfc0sor7nCM6tmUSg/XuFxU+U3pBWM/B92
G7LMWmtBXah00dyy8ppb1tRH2+YVaWzljSsrmCps0P58k9asUyQaIg3lRcXlzbfWVXXFS3TOOS3d
8GH+3Nn5Fuwoqg0WSaVhO58dmcf2Uj2lIwmZjtwildeILWKnSGqoPtIpkEZ7mx0vNHYYMdEjKlHH
keWThIpqjirm6impOJXKgFCamDDb+pRMTlCPjFOLfCmeYTQHpy2k9S23LSyyqyyNu7fseZmRlJdT
i1rDW+596PFvte787L3n57U2P/nL1Ac//GHq0rvfku8j1kx/zn0i36F10z1/WXI+guGg5rgGPyLA
Ha4Drkdc5A7jAeMjRpLHlmScLkmuAh4pBr4YVMVK1FkgUTWgoCCqtHZ4veNeqrtQKtiJokK0JCpF
E9HxqEIXrS2pPVyLh+jPidrx2ou1fC1blfFkXzxS+3EtNtZCOar1Uqhk7UQtP0eoTTCD/eHaK7VE
ouEhWuxi7WStoticPMEoiN+RrDL7ehRJP/H25JhlozL9o2Rky+VqkKWq9C1Q2cLcxUgKzQtTGbWb
mU/Tr1y48TquJR0UZZtKDMPNnm/MTUO2IfrJj/yLv9LxxrtddzS7+4t6jq6/UlwaXhftvmdp4AvK
WXD/Ay8MlxQsGJi78oHV5TU7X75/6Nfd5M817TXuFJ/X3Df1YtPAfN/UT6mOB6FbNqf+KU2bwsu2
Lqhbt6Rcry5bPty08qtrqxVs3awgt4KLzg2Bp59HPHPAvjodf5O/xH/Kk5/IV9PHJPUnn8VX8AM8
ZrGzH30s30U/+/sP03fSNb/9IN7Hw4o08Pd+9X6cqt7vsvBzb/8ynk6eOPuzt9LQulffiMuMbVYa
/uzEi5lqfnAhPsrD25nr8Mu/+3z8RR6e5J/j8REe1vNQwTfxmJ39Ylr/31dTOOn4Y3Feeujh+O/4
z3i8nt/BYzXv4J/nX+G5IV7adU+c1rafP8Z/myfbMvVqVvezep9Lt/7cio74QKaHS9vSHTG0LIkH
eMC8mXK1dB9r6uSs5yrmxC9m6tGVlNHwJH+FJ1gu7gmkizsc7riRf5a/wBMVHCtB7J2VVPvFdB/U
vSZzHqrfhXvY+0nCPRmJKn11gzHJLeHwtWsdlC6GmZElnLazMKsBOyYLzy6xRIl/xUuxhXxtysNs
u1ReepDdq0APS+uJYBH8AlGtp3Ij8/PuyPh5ow6lUpVRsCR21VKkGm9dQkyKWBBL6IMwr/8kVW4P
i+PiFVGp36U6pHqcHeOBSqU3WomqR4kMhDNpCCh6OPONHtny+1fSb9jJHOBFLlenPbBBNgjNHJDe
eGKnJE1vTT30Vqrg67jyHNwNm5+Gcw9iISXJtovv40uy5PQQ3pg+GU/LCwV0nE70G2kh8wgs1xOb
Lqgr1xGHrdHWZsPEZrdTPgMqLdVPd2cfySbJbMr9WrPxpWy4mA2tNPlc9ovZnJQNgeyybDyeDdmy
dBVrjKNsIdubTWo4Wu5kNpHTayrnxCeygcFZmQ/sJFX269h9DpS0ljjA4YhYe6yDTGNVWJJqpAOd
jvnFXkfQ5Wt6603Cxxa2ALpn7lLKZgDmBROJ9lDVX/bcun7GcrNUAk+9P/Xjx28URw56ams9uGPq
s5kz5Rkx5GdMDEn7kPKPUrx50DEpvA6gXN2oxuWqRhWeo1+ox6ps0BLPrZzCqsA6hY/zQV36xSps
WYcicflNmlXeQNzrA85n9eErPsDsRZvjvgnfpI+3dRgQbyXGHmwizc6VTuxMqtgUqCjR1lI5MMzI
Y+a09zLlL/KVjGsHcxmf8mteo9jvDZRnZOuZozpu3zl45VTx6CuPpP6U+l9Mvs5r25dcf7S3KONB
+v6t39m77D/eI2Vy7N1l+5JlZd17l8rv+AfThz93/sMLPca5f0Ke9Pvl37j/A+vMO9CnX0o1Kffz
TyD28nmcSaTllL5UI1p57T3q8KU3sTfhj1AD/0+ohkNoMXkALaZPl6IahWk4QcMRXI2srDqOiX9P
owIaf4LmxWm8g5Wh33P0m0/zFtFnPTeCanD19Es03E5hw9y/oRp+BWrl7kUDOA3vUD6AqGiN8mi7
rfTpo/m0DCogbhk+yGAzdW9XdqNNtNw+mraOtrGQpi1UuuX+ItrW/kwdVvafKNCwndbRSuHqaNhK
v6yddlaGfs1snDSvg7aFWL9o2hM0Xs/ahy1oBSvP+k+fYVp9IToJ2XA/VnFzuef4OF17jypyFbuV
gvJpVbZqt+oFdba6Q/255h5tq+5hvah/yuA1dBueEE6YyyyCZcKasE7a5tieE9+2Y/u5rFLHrY7D
jhecZc4zrjLXb7OfdDvd4zndnhzPee9PfN2ztvlz/E8EzgVDwdHgU7k5eYvzHs3fULCoYCJ0a+iX
mZlrQndR+pu2xAgowt46xGnpbBF5xrNhxbX5TV6ba6CQyUwYIyUayoQJFZW2Z8IchflaJswjA3oi
E1YgIxrPhJXoDnQhE1YhK1RnwmpkgFsyYS3tQ+e1/5GiGGbq16NB+IdM2IBi2EpbB05NYxN4WSYM
yEvMmTCmBLo0EyaogkiZMEdhtmXCPMomRzNhBcohZzJhJfqUXMyEVSifezETVqNs7qNMWIuqeFUm
rEO38jP169Gv+UczYQP6iuKO+YNDO4bXr1036s1fU+AtLSmp9C7r7/PGe0cLvQs2ryn2zrvtNq8M
MOId7h/pH97W31fsXbSgvnHZvNYFSxZ71494e72jw719/Zt6hzd6BwduLr9o/er+4d7R9YObvcv7
h9cPLOtfu/W23uF5I2v6N/f1D3uLvF+G+HJ8Rf/wCIvMLi6pLC67nvtl4P+mI7T3a9ePjPYP08T1
m71txcuLvYne0f7No97ezX3e1msFlwwMrF/TLyeu6R8e7aXAg6PraFc3bB1eP9K3fg1rbaT42gjm
Dw4PDWa6NNq/rd97S+/oaP/I4OZ1o6NDcyKR7du3F/dmgNdQ2OI1g5si/1Xe6I6h/r7+kfVrN9OR
F68b3XTbItqhzSO041vlFmlvbsRa0+BmOjm3pWEKvSP9/V5W/Qitf6C/j3ZtaHhwQ/+a0eLB4bWR
7es3ro+k61u/eW3kejWslkw7/3el0Xw0SPfgDjSM1qO1aB0aRV6Uj9agAvosRSX0XyUNLUP9qI8+
46iXQhTS0AK0mUIV0xD7nzFuo8/rNYzIsX767KfPbXJZBrmIlqpHjbS2eaiVhpegxTR1vQzfS7+j
FLqXwvajTfQ5jDbStEE08F+2v4iWXy23w3LWU/jNNHe5nLKelmUl16KttIesxnm0rTU0ZbPcyjCF
LJL79V/X8d/lr5BDI9dyZtN+MbwVo7K/Wva/q/n/DiNp3K+VaxmV605DrpfrbqMQy2WohFyS4WJU
bm2zDNX6V1pcQlscoOUZ5q5DrpHrHqXxdM2DNLwug9UNFOPDcg/65HIzYxuhLf/lHLA1OExX4eCX
sMR6t01u8xY5fVReUyxvnRwbQnMo14lQvsH+FVOYm2tek6m3WA5topD/T8uN0h0yJOOxX57ntRQ2
PefFcp2b6PpalMHQZnndMwxtvWGMadz8rbXWJD/TO+e2m+phM8uerOxM70cy/R+Q20ljbYj+DlK8
98vYLpZT18pjXE/ncD0N3dg/NmNrM2lf7s1MX24ez/+XbZOMTOmjLf6Vz2l18kfA3pheJ/9eAE5a
BZNT8MYUeKdg11VIXIWxTw5/gv/jSoHn2SsXruAlH/d8/OzHpORjMH4MKnRZuJy4nLw8dPnEZYXG
+BHo0Idg+rfJKs/70ffafh39VRt6D+Ym3ht7b/w9wqT2jvdU2qb3gLT9iogeYcI7UTIxNDE2cXFi
cuLKhGrsR4d/hH/4QsRjfMHzAvacXXJ211mSfAqMT3mewonjyeP48KNgfNTzaORR8sixYs+x5hzP
14/meSaPXjkqv3y0/Kje1NTzEOz62qGv4aG9Y3sP7yVjew7vwc9uu7ANjyQKPIObw57NzSGPI5rV
poySNgWZll/S07A6mN+U7JE8PRSos6PE09Fc4LFEzW087SxHAY3EI98kHySHyAWiVC1L5HiW0u9k
4koCG5d4lkSWyO/P7G3x0YoWDi0cW0gWNBV44s1VHmOzpznS/Ebz+80fNyt6muFx+tf0bNOFJiI1
FUSapKYcX1N23NUmRm1tQtTYhgG1QRS1RYzT7I5Ij3GXkV38ROwQmIfzcPh06/JwuOW8cnpZy7gq
0TkO940Hl7NfaWnHuOK+cdTW0dl+GuDvVu154AFU724ZL13ePp50r2oZ76MBiQXGaEBwnxZR/aqR
kVH5nVAQDtPgVvqLwltpUvdIOhGFZ7JReARGRtDICIRZnhykKWgkzJJZCisDtGT3CGI/LDcsQ7HQ
yEhW9/8BBkb1aQplbmRzdHJlYW0KZW5kb2JqCgozOSAwIG9iagoxOTcxOAplbmRvYmoKCjQwIDAg
b2JqCjw8L1R5cGUvRm9udERlc2NyaXB0b3IvRm9udE5hbWUvQ0FBQUFBK0xpYmVyYXRpb25TZXJp
ZgovRmxhZ3MgNAovRm9udEJCb3hbLTE3NiAtMzAzIDEwMDUgOTgxXS9JdGFsaWNBbmdsZSAwCi9B
c2NlbnQgODkxCi9EZXNjZW50IC0yMTYKL0NhcEhlaWdodCA5ODEKL1N0ZW1WIDgwCi9Gb250Rmls
ZTIgMzggMCBSCj4+CmVuZG9iagoKNDEgMCBvYmoKPDwvTGVuZ3RoIDUxOC9GaWx0ZXIvRmxhdGVE
ZWNvZGU+PgpzdHJlYW0KeJxdlMuOm0AQRfd8RS8nixFQ3cBYspA89ljyIg/Fkw/A0PYgjQFhvPDf
p2/dTiJlYevQ3CoOBU26PewOQ7+kP+axPfrFnPuhm/1tvM+tNyd/6YckF9P17RKP9L+9NlOShtrj
47b462E4j+t1kv4M527L/DBPm248+S9J+n3u/NwPF/P0a3sMx8f7NH36qx8WkyV1bTp/Dn2+NtO3
5upTrXo+dOF0vzyeQ8m/wPtj8kb0OKdKO3b+NjWtn5vh4pN1ltVmvd/XiR+6/86VK5aczu1HM4do
HqJZ5lwdWJTLPdiSLdgpVwW44PoOXJJ1vSK/gV+Y154rZcnAG2YE/MqM8lbZbsA7ZnLwG9c1syej
T56Rkcnpb3GtnP4Ct5z+dgWmf6G10R/XyqN/BY7+mqe/24Lp7zCHnP7yCqa/aIb+ldbSv9Ce9C81
T3+HdaF/BR+hf4F7lDh/9BT6O3hK9Mc9Cv2tZuhvX8D0t3gWEv21f5w/novQ3yrT38FZ6F9qf/o7
zFDoX5Vg+heYg6W/w3ti6V/CwdLfaob+BWptfH90Pc5f1+nv8Bwt/SvMx9Lfaob+lWboX+m1or8y
/UWZ/qJu9HeYiaX/Bv0d/QX37uL7j/m7+P5oJvprhv4OPo7+RaGbK+4ibDN8B/5sX9Pe5zlsXf1Y
6J7Fbu0H//d7Mo0TqvT3Gxv+DN0KZW5kc3RyZWFtCmVuZG9iagoKNDIgMCBvYmoKPDwvVHlwZS9G
b250L1N1YnR5cGUvVHJ1ZVR5cGUvQmFzZUZvbnQvQ0FBQUFBK0xpYmVyYXRpb25TZXJpZgovRmly
c3RDaGFyIDAKL0xhc3RDaGFyIDY5Ci9XaWR0aHNbMzY1IDcyMiA1MDAgNDQzIDUwMCA3NzcgNDQz
IDUwMCAyNzcgMjUwIDUwMCAzMzMgMjc3IDQ0MyA1MDAgNTAwCjUwMCA1MDAgMzMzIDUwMCA1NTYg
Mjc3IDUwMCAyNzcgNjEwIDY2NiA1NjMgMjUwIDUwMCA5NDMgNTAwIDcyMgo1MDAgNjY2IDI3NyAz
ODkgNjEwIDU2MyA1MDAgNTAwIDkyMCAyNTAgNTYzIDMzMyA1MDAgODg5IDUwMCA1NTYKNzIyIDUw
MCA1MDAgNzIyIDM4OSAzMzMgNzIyIDcyMiA1MDAgNTAwIDUwMCA3MjIgMzMzIDI3NyA2MTAgNTAw
CjMzMyA2NjYgMTgwIDcyMiA1NTYgNzIyIF0KL0ZvbnREZXNjcmlwdG9yIDQwIDAgUgovVG9Vbmlj
b2RlIDQxIDAgUgo+PgplbmRvYmoKCjQzIDAgb2JqCjw8L0xlbmd0aCA0NCAwIFIvRmlsdGVyL0Zs
YXRlRGVjb2RlL0xlbmd0aDEgMTI0ODg+PgpzdHJlYW0KeJzlemt4W9Wx6Jq99Zash/W0JVlbll+K
rIctPxM/tl+SHDtYfmIbHFux5UcSP2IpCQFKUsiB4BAgFChQaEKg3JaWREkpdSiF0Kbc9ty2wNfX
OYemcE45PaUlhXsv0PO1jX1nbclOArT3ce733R93y3vvWTOzZs2aNWtmlqzk4u44UZEDhCX8+Gxs
ob++K0II+SEhkD2+J8m92LWtBOG3CGH4yYWp2ZLgG38gRMQRIhVP7dw3OXQnc5QQJfJYRNPx2MTF
xqoyQlylKKNqGhHnVh6UYnsC2wXTs8kbqtgfonzXIWxv3Tk/Hru9+UwTtn+L7fLZ2A0LBvEQi6w2
bHNzsdn47y5ck4vtOkJkhxbmE8mCrxpWCCk9T+kLi/GF52Uf3oLttwlh8SaAH3qpEJTQNsOKxBKp
TK5QqrLUGq0uW28wmszk/5tLfIQY8VlPNGReXC/uvJrKfo3k0Pfqu1c+V3690rn6p/+bWsjWgKfI
KfI58o/klUw7RKJkhnwGMVdeL5PvI99epEXJMHn6r4r9GllGOr2iZIzcSh7+K3z/hVSTXyDPF8iz
67gfkJvILDmCI0dRi0EohxD5b+QM2U7+iXwPoS1pttVfk0fJTxk1WUm30ZKETArgJDnHvLEu7yHm
ONnMUB98GClRAddMmuHL5FE4hiPcvT7juk/o9xlyJz57yDTZQ+7IjNPMmMU9jILcgj13ImIjGSCt
ZIossGqW+vhXYD8cxneKfCkjZYD4VjpXcHdKI+x25jmGufQ5xB7FPkdJDNDCzBG2iTIy/lUtzuo8
CaySlamVQfgB/BytFyK/hUW00Bw5svIo2Q5Pi3XwLN82NNjf19vTHe26Zktnx+b2SDjU1trS3MQ3
NtTXbdpYW1NdVVkW8Pu8pSXFRYUFrnynw2LQaTXqLKVCLpNKxCKWAVLa5gqNcamisZSoyBWJeGnb
FUNE7ArEWIpDVOhqnhQ3JrBxV3PyyDn5MU4+zcmvc4KWqyN13lKuzcWlftTq4pZhuHsQ4SOtriEu
dVGAtwiwqEhoZGHD6cQeXJtlupVLwRjXlgrtmV5qG2tFeaeVihZXS1zhLSWnFUoElQilSlwLp6Gk
AQSAKWnbeJohsiw6bIotbItNpKLdg22tVqdzyFvanlK7WgUSaRFEpiQtKakgkpuhqpPD3OnSc0t3
LWvJtjGPasI1Ebt+MMXGsO8S27a0dEdK50m5Xa0p941vW3Dm8VSpq7Ut5aFSO3rWx+m4PCSkxIVa
F7f0IcHpuC6+ezUmlsFICrUfEgqG0LxLSyEXF1oaW4otrx7Y5uK0rqXTKtXSQhtamEQHsdfy6vOH
ranQXUMp7dg0bMxMNtTTkdJ3XzeYYgpD3HQMMfjX6HLWWJ26oTWe6F8jEzQEmgNt6nTSiR9e5sk2
bKQOdA+m2xzZZj1DeL9nKMWMUcq5NYqxn1IOrFHWu4+5cDU7egeXUqLC9glXG9r4cCx1YBv603a6
FC5tSv2R1elaytZxtf4hgZdDrdonZriUuAjNgr2u7ICeQrssaYWG+qP066IVByjSZXO1LhRD5bS5
2sYyf3umLSiA85amIp700vcNpvhWBPhYZo3aTgf82CM2hks00yosX8rvWkgZXM3r60nVapvpHRS6
ZLqlDC0pMjae6ZXyt7XSkbm2pbHWtApUlqt78CwJrr51uoKzfj1IKshQK2U2taBfFbUtDU5Mphxj
1gncaZPcoNWZ4odwgYdcg/Eh6mhoIfdbOJxTGDHFtPQNdvS6OrqHB2syiqQJVJyosO1jYlyD1rQY
dLmUrFDGDTJWdggZtYjgQgi4muvwmZIWyvDWosEFLHXV5jpuEKxkjRvVSLm5tnhrho+2rxIqpu7U
ElmTJqFNlNMSsTqHnOnLW8ogmcsMjD1k1KiRNRJbiJEAcQyKEVDUlhbq89ygK+4ack1zKT46SOdG
zSNYOWMMweaZteq7qnWFsdBMxInktQY1ZirksV5p3FRYaK83Ix8jt6+RuSWZq6N3iQp3ZQQS1Lw9
RagL8zU6q7D76X52hWK4iXFHC/t56TTP0708Tbftkqt9YsnVO1gncGME+Yz1RjpWNumAjr5mbykG
s+bTLjjUfZqHQ73Dg2e1WHod6hs8wwDTMtY8dLoAaYNnOUJ4ActQLEXSBkcbVFIPNmQCv/UsT8gB
gSoSEEJ7fBmIgJOt4YCMLzNpnHYNxyBOlMbxAo5euEqWabQxxu82boKuz81D00tjQ9THiQktgn+Q
AlcDWsfVcBoYiSqlcMWbU0pXM8U3UnxjGi+heCl6BpjAW3rjkrbN9aHFKyRNzL6EmRD3Y6UsJb7T
QPx1Z6Si31wsPy0R/7LuDMsgSE6zFC2m6DNSSd5f6s4AxQd1Tl2hU+dsZbiVAnhoZVrc/6evtop+
ROWuHlrpZL/Dfo+4MMfv4xUzXvCUwk0eMC2vnvuGXBWxRAII8bUIBgJ1+zbCxgItkYT3qUA1o4Q+
JVQq25RMkRKkSrOSUbqjDpO2skevVXVpNBJll9xKGi+WN14UHuAfoVdw5GI5XiO6oN9zsSzgQVS1
mtWAWepsBH1xtVPaAMHyPMZoUItc+T6mOo8NljeIKit8jCtfzUjfAZFIDKXHZSvNsn1vTMlAru8/
Fq7dFnEXhiZuvq/H4PdvUGRjsMuu3Ratdxutvk1cbmNLSx6jcjht8hWL328R/STH+9DAdZ6+z/QM
PHF037VlrEQ2p9YrRf6enfsO1DUO1eYaCoJc2vaNq++yo2ijIhJEG7mT5QfLmWTZwTKmlgNljjXH
k8MOMJMM08bAqG5ex+h0JLK/FEqp4YrkWZHS0srXKqFYFpm3glXcVVxs8kfztV3aUe28ltVqs7pN
JrRS0D/SeDG71k/NdLF8F7UOvv0jZQHBaiNgwLmrwWjIY4LlVdVmNUuNU1nRIKLGgga2sqKI2ocd
7Xns3x4AVh/oaRx+qNnODcQXNvbf0rehJDKx+7ZWPh4qvPTY7JOzVfUbN033bmT+vSk50qiQF+WW
XR/x1BdvsG7055UN39o99MSRRI/XUd2xsiyr3DIarIl07KE1HZB2rN2/ivYoJlNniRknaZDrIo6c
cP5xAtcSYKtJGK22vLrMFyrbWaInDEOIW6OWycPKqAIUjq58o0bG9hi0yi61Rm4kjYKDpD0kSJ0D
Jz864hkZHaFNdBFIT03KutL+wWb8AzHoNfoGlvnvgYoNgz0hy9xTD++Rgcla1Ds0EvB1VNrFMplo
8DbZyk8mRTKpiHnXW1Pc0FV8aYmdyvGeK4vWOCwV0WqVOxA0rYDFy4RMAV8Rat+w+nuRGM8vDlJO
7uNrW8v6yibK2IHiyWKmsAj2FIKBwy2hVMKgHMJykCsiVdKQlJFKBiUgKefUpD4LHsuCLOoDJciZ
lVXRWHGq4qWKVytEGyLzpv0mxuSK2rVqf4/OpOjKMkq68JxC7bC2VS6mXWBXkF64WdAZRqgzeARn
aGAbAU1Bp1+thsueYDL7sKUWrbkJ7iuJTMp6HpFB6/u7ZCu/tvc9Eq7bFiouCo3ffDRa3q10ba6s
2hptLDXbvJscNbfVs8+ovGU+zQcW75/O5ngfHRzyXXtL18AT9+69NqBKmHN9XdtvvJWnG6S9Ge20
iA7xZzzZSYmVbObtGrvD7rezx+wg25ydLSURkYZ1sMwxdpVlWGoLLdqCzeo1i0RdEg3pYo2ZOYMw
VQxW/osju8oChXRZcX56XOPM5BjBzQsek62cffizMvA06PJKTKbiPJ0ur9hkKsnThXK87GSOF4JX
IpFJ2MOAce48e54YSBN5iJ9sb4DaGoj7d/uZPj8Qn9bH2HlUbUoNA2oozILdKij1RJqM4jck8KwE
npDAPsmdEmZaAmyFBFwSYIhEK2EkkpaxKqiq0kYcdd1lzmqori6zKqNFWiPpyTVlYh/ubC1OkO5w
XFLq1aPpQBgUvJuCwqKOFJY3MNV6H0t9nS5g4dV73Mym28XVQXMehkhkhhP54dZ6y5ylqHCDNXpo
vNq4gQeHoW0gFmiebCso2Tx1y9Gu/IHhfueX9e0Lj05WTV7bZsz2FhQkejZPtRTKp3NKyi3MdolC
wl7/0Csz5QONBTWmhtqSssGbNg996ejeAb9UqZH9pXnnw2OlamOO8u1bXKWe9liVYNN6jIvfxTig
weyxk/cdzIeqfLjdCRK7yc4ctkCtBe40Y3TO0TN71FCQhSYEjxhuZ8ARkVFnyMHgKJMVHi8EEpk3
7jcyRmU0V8tGtSaS9omRi2tZYuTKS28w0dlnAp7+Cv+gMeHizNa2/bFNM9tabxnb+GL3HbHKjsOv
3Jx5Q98d9/Qe/c+7l+7pOfqDFWfV5H3X7/75E7G1txDfhlffZbaJPot7fwffOmFOmg+a2SweY5zG
6XAy+53vORlpNBc0uZCba8shYY1JYzDoAxpwakCmsWgYjd4WzbFYTDkaiYTtVqSje2Mw6NdeLBeS
IIK6IDbQ3Wk+3EWzYCGdFI3rmd1cVa13NTJBaVDqYtUAMq/LEyk0Bvdt2cB7jArJ+E2yv7uTL/yF
9hcxmeKk14uRpCBoDbSU2DfnM15v8c9+1nfpDXeIzud2QkTviuuJmbTzHg2HUSnLYBxm5IocBaNQ
KtlG5k0snDREuYAZXGlgx1SskRkl2Wn3pToGaWAO+oMjVGcEywJBTNXU+Bpw6Z2sq9oHHsBglFL8
46vBpq2tAT3fUiPy1bQqXHfvLnv1dUWlVfR5ViIVvQ6bVr73ulT55x3WSqobza170YfcZIoPS/JM
eUV5rFJmlXlkLCUTzgQmk+e4Bw54XvMwzsg85g9bVHe35YuWP1hWLCJiAYtFp+1yj7rn3azbXdQt
Xkum1LbatBPRUDoSTOfST2wqV7EQMpn1kCnJ2RJbrO/b37fBe83MDZ/li3o6m0zeaq29pzZ820S9
varT339/093mmrL84MiBa+LPHNm5uUiu0ctX/nTSnh89+vf7WmMN9o0b6AQ201yJeaSU7D9LdOjz
uehHYRYGCeTow7bj+XBtPmbM/HA+k08zpg4zZr4+n2Hy830b5KwnDMurb/E23CiANgISxbqi1JjT
ZTPKC3vUWoyg6axB4wxdJNwvnk/JoBhhhHShZj8leVauZ1eoxuTJDYoUcjmTHx0eC34yg9I82x2y
zH9JHLF4V/TGmgqP1Nu1Mf9T0qjKW1NUf03xpTuEWPF79usYf/OwhprlSzL5dKoYBooBE2qyEBQ0
ocoA8kgk6BDVs/AYC0LKsNOUwVa6I/Oq/SpGZdcWRPVaka9HalrPH5nZX1zPmMKcM0H1kymyqroB
qquqg9LLoVaIpqxxLUPSarIojNVktHk+yIpYmVihqvqWPr/Qndt3x9ZyTJWcs7lxU25IyJCXy0iT
gWEZiUiq2JuVrRKPP/adMZopzcXlVly7WQyaKvQFKeniFQ45EDm8JwcxXeASXGCxaEgEIsyZDtbP
NrLsezRpalmODbAsi+mSkC7GuBYYR3bhxqSLPbLrinQJDpoeL9L0iJrRFaI+aME99ibm6FqS4ncn
g8AHYMEPvX7g/LDoA94H+d5tXmahFPo8MLEBJorgYTMcNsM+M9TpO/XMPTqo18GwFu7RwA45DMuh
7HpVyfVGThXABTGqjLUOu30T1JaocqWjVfTrUCz4qvSu0VySB3l5uSKSzoHpZ3ZtLfiDuFRBhPwU
o/14gL8c6THTselY75Okg7zpqh0rMQoVQlFxZxNoazdf6+/fP+AJROPb49FA075ndo4/1lrWJOYW
N7fPtHBlXZMzk11lTbeeP3jLD5oh8ZLF49S7t+xsrYryVdWNvTvbr1+6zmfUrbzz1dyCopbhivKO
+soavmdHePyLc5uCG9CWZqwjCsUnSC65le/qkGHwOaV6SfWqio2qxlQLKlalsmlsx2zMqg1GbfO2
/bY3bas2MW+DXDMJi/EsWAltwAKTGxWbNbqoPKDm1VH1a+q31GI1dXZ5njOiVqNv4MGpkXoztZqQ
NahTYwW4a1EnJA0/mkzvoimCnpZMZqmruCgdkDFhfPupfz4he1pV8u3Hva25rjK9vdpVVmjNsr+u
fn2lU6wqK25+83Wl7Pyi0dE0EXq0D+eVgznvTYzDfrLMNyZ9B31M0nvQy0x6QJlrzfXksjeZDpuY
ThNsMoHSaDV6jGy7ATYZQAQGKACWhHXusOVe3XE8/tB58HJ1xMIbLRGdRWeRcHx2boTjyl7C4ljn
Zoui9l86ocIJTqddq4qyINVJd0k/KxU5pUelj0tZqZQ1CS6zK+0za04jFAOC03g8n3QbMEioI6wX
R+gyojWXkaZdBr0lT8Q8e+67w3cH3F5d7midN1qXv2lwanBT9ci+lsjtDYV+te3aYM+2TcNTw5vA
8PmjbuO/3GkrzXa3BStC1eVNw60d25vzjOrXd+Y4OrrKmqsrW0fpHptc/S37HPs1PBPN8tlmTq6N
KBVhPPLcKYcb8HhATWLBOCaXu/NJ2BHNgemcG3IO5bDdOZCzvPoab1JkReQIO7qcGg0ejUx4NDLK
NZmjkbDlMZzRClmIcWu1o6cwXQpV64Ppo8BabkNMOt6Dai1i05PRyu+uOBlJ5aLBeRnkCHH95XSw
Zm74yyM53pfLorV4MOqqUZUEgmZYsXgvfUs4GAn1UQT3gB7jmJUx8AaJpchSZWFVcg1oWaHy+7Gd
zjb3+z+MLNoBeHvUPmZnK+ygtXN25qAdBHLO2RcjlMC02oGzB+yMyG6wMx9kqIYTX40E7EBxBXb2
i2/bP7AzlPDcAw9jrzSP+e6jEWKH9+1AmSrs5+0/tb9tlwi02YN3UFqBvdXeZ3/S/qxA+sAu01KZ
MCvIS9nPpUfts0/Yk8gloa/7ETiPZAl2F9hes0PSflAQct4uVtqhnvZJs563S36a0UZTUxf5Qpp1
fY53GswRpd1q77CzST3o9UqxmLyvVFqVjFxp+FBPxB9K/ojiz9nhWTs8aYd77XCQioAxO/TZ0XIQ
oMaBtNYfUIUAxzsv8B+3w/1r/BNX8KOGr13ZE+fxB2Z0q7BDtl4dXHdddWUyy9aRi7Q49dMzya5d
nl2LW9Osi4sChJhdix78bE0zCCyLi6OLnq1YXeE4W0eqMZ2aMbXSErYqGzOtFKsONfzZVDHAa8aO
xspVaufiV359n+bmL+1oNOnMt3Us3bTd3Vdz4NEX9zbfec23wfpPT4X7ms5e+OiWrc+tfd9QII4Q
Bang8xRk7gaMIhoxnBKDmFeqI2KJXCqVS8UkwViEkjXoz65NnydH6B4pFOPGKNSLqwuDjAnUikt+
BZhfXnlLAScrotZKrExDscpfEVg9ttLJ7EC/zmX0fJ7EvMfMKORit7hWzKrYbFu+jRHZ4AMb3G4D
G13exrMvRHps22xMqw3KbVBgA4nNZGNesf3c9pGNTdoO2u63sSHbgG3SxlakiUU29ou/QSpzPiNj
2wMPRfoorchWZQvZRCjeJMAP2p6yUUm/sclw1CKkPWV7Tmh/ZJMaaA+YpRKp9D1IeUWgyCVC80Fs
fmST7LHdbmOEYX4c3hyR26D+K4L27Tg47/FFHhRGYN22IRvzlA1mbBCyAbIZ3pdL1IBZSEIgixCJ
HHRy9YcaAh+SPz5ng302GBBmXISsNkgb5W0b/NQGOC1kQFn3CwPtscGkwLxuoTT/R2v8r9jgWRs8
KfAftEFS4Ed78AJ/pgOxwctMwAacDbRC6z3BJQWfHv0bDi34LL3WPTuIt06oQdLcHsGp0VHSrk07
eNJunpFFnX0x49ZsdQP+Af0asrg6jzUapBJGDTHNzU/uaDTrTKbgtejd920rtzoTX/n1Smdf0/MX
/rh/5BsDae+u3f+FF2+48dFvr7z9xn/K/FKA/QnWZAXkRr54PB9C+XDQCYtOGHdCvxOKOJh0gCjX
kMsUSOA2MewS00JxmS/StE+IoKDANifX62Fevl/OyOVFAHqdntHrVQmzlHHtgfQ+oKcgEPZydi09
evrXa+LM5YbqBnGm+qcHucvfu0qdbOVffpg7//fP3DVelVzIq68t1/PN3ujnB2JHxwJ1Ox78xo9n
mac/13vPHXc8+PT0jm14+lE8CUx2jrtze/PYlx48fPhe+l9oWL2EtedZnGcD+QKfXxUMBQeCrCRg
CjAlubDdcKNhycAOaaDSXD5v3zifnU2dtVmTHenOBi47kM1ns8Xm7GxzMSvGeGfns7QRu50X89k5
EXGlKWE2e7NIsbaYKS7mEl5pVoKMYWiQkBzSWC7Um8JXLvQ7VRoPhMSZbcbqgQY3Wj7oajMFhJh+
q3JFrVnkh8bL36gKpsmcmiRSuvRqBuJl8dFerrBZlb2xNZwXOzRQcufBhProlu1Ntun5vLoawV75
Le295aOfm6g49c22ha4Nvfd9z6DQmVSQ+4I6x6hyd9/Yc/MBhaxHLvZds6Npbj5jRblWJXF37Gx5
4IVcRaBjon778Z1VwmGYgO73z//IWz6qqfuQONK/a3j1rn81rv0rn36bjyf9E1h+y2gJTtL5mkid
K23k2vX/+E8Q+1W/ADAz75JWEfZmj5BGESHteDcwtWQR34B3PcLDogS5PUPfnMHN0iEQtiBsZu0k
B+FJ5mkSoTKYp1ePiQQPEMYoJS9CCJaZTuY4u5l9TpQn2in6pXhM/C+SPPyclwakr8lC8lvkZxS/
VV6vYtJ6EwtpzsyDIVqsTYdx17wuOkZYAYuhJfOLG4JHDpKBATnHMjBDJGQhA7Mkn+zJwCJiJg9l
YDFRk1MZWEJM5NsZWEpuJD/JwDJigC0ZWE5w12dgJeowv/6rHx8czsBZZB7OZmA12rIERweRHFvn
mMkMDIRjizIwQ1RsKAOzpJXtycAi4mMfzMBiYsPzcxqWkFL2rQwsJR+IVBlYRkrEJAPLiU28Nq6S
1IhbM7CKXC++OQNnkV+J/yEDq8nNkuda5hf2Lc5MTSe5knE3Vx4IVHM98QkuEkuWcu1z4z6uaedO
TmBIcIvxRHxxT3zCx3W2N7f1NPW1d13DzSS4GJdcjE3EZ2OLO7j5yav7d85siy/GkjPzc1xvfHFm
sj0Z2zkz3pQYj89NxBc5L/dxBi7N8VfQA/HFBMWV+QLVvorLTAKP9xNd/yfK4YymZhLJ+CIiZ+a4
fl+vj4vGkvG5JBebm+D61jt2TU7OjMcF5Hh8MRlD5vnkNOq/fffiTGJiZpyOlvCtT6tlfnFhPqNZ
Mr4nzm2JJZPxxPzcdDK5sNHv37t3ry+WYR5HXt/4/Kz/b9GS+xbiE/HEzNQcGsA3nZzd2YkKzSVQ
8d3CiKjNlaYMzc/hgu1M85RyiXico+ITKH8yPoGqLSzOb4+PJ33zi1P+vTM7ZvxpeTNzU/7LYqiU
zDj/sd6khczjvtxHFskMmSLTJEk4UkLGiRvf5SSAn2qEekgcYxVHIiSGHKUItZM55PIh1ER24oe7
QkJCaMXxHcf3HqEv5ezEXs2kDaU1kT6Eu8g1iJ0R+GN4J5E7hrxxMovvRbIDcfNk8m+O34n9twnj
UMoM8s8htVfAzGDfdsTGUL8Z5G7CkcaRMieMsYh8XkGrvy2Bu0rG/x73gIBPrPOVocbUoj5S8amS
Lsvx/i+M+h+zXHqNpgQpSUF2mnNGkN2PHL0CV1ToSa2WFEabE7j6PmXELhxxUtA3fgXnuCCbziUt
eR7h6Yz9t5PdwnwTyEn7rc0tgSN/crWory6it85/zGZUuz3CmFsEfFLwPUqbFloLZCNmLD/ZK3x8
yHO15PGMXJ8AzSLn/2m/JO6kBcGOcWHVp5A37QE+QeYsrmdnxkJzwv6gFtp9xRzTtvlrXhkS3ukd
tvMqOXRl6Zv2XdM+kdF/UhgnbbUFfM6j3eOCtX0CdkqY4wyu4QxCV+pHV2wqg/u4Nmu6XD2f/5dj
s1h3vff0uVUnmSCfcr1EoiDFZO8XnqdAxOvgtUvw0iXQXoL5PwP/Z/j3ZdDw2W7HH62rjo+iJY4P
o3WO//p+neMs6CGbP1jn+MPFOse74VXHb6Nux7/h/Zu36xz/Gq10vI33Pz8bdLz1bK7jd+8EHW9e
CDp+xQYd/ndG39n/zql3RBoETr2z+g6m9wtQ57/QeGH/hZcuiCjQdeEUgq9eWL0g1VyAX2Kvf4ja
HL/A++d4/yy66vjB9+sd3++qc3y3y42qKNM6+r8Djd+55zvMy4+vOl5CVZYh60w4G1+qbyLmxa1u
h2YZFLwcvvVMheP5Z1YdtKIPni0oCZ2NFjgavwnPYaeXngXNqdFT86eOnRItnDxw8t6TLHcycJI/
+drJt06+f1LyDPK8ADpSD1rSD9oz1jocQM373Gy/5gnwn4B7TsDqCRg7sXDiwAn2K9mrji+zq47j
wez+R7HnF3rrHE9urhNGNj7uLAgde/zU48wjqOXDm1cdDyLlBbCDGZONAyxf73U7Gp/HVheY+c3M
A/fXOTT377+fkX8uWu+4D++jaIl776p33HPE7bj7SL2DHIFNmiNwFw5yx61ux8Fb6xwLtx64ldmz
u87x/m5IJjY4EoJdjLx1we2Yn/M45sIbHLlKa39O0NIvDbL9ElT2BcgFg6BCztdHgw5+GQxnCopD
qPPXY54AffOqmMMVGhvlHaNUHiIeGcnNC10f5hzXDQccw2G3wwDZ/XqctRjYfhEK1gj/OBhl97On
WMlY70LvgV62p9vv6EYBb0XfjzKaLkeXv4vtCAcdm9Ee7eE6RyRc49CEHWF/+NXwm+H3wpJjYbSO
td8WsfabgsZ+HWj6tUFNPwO4FEHS79esahiNZlSzX8NqSCNhDphADMtw7+m+Xo+nY1m62tORkkev
S8GhVGEvffLdwynJoRTpH75u8DTA3UN/d+QIabZ3pMp7B1Nj9qGO1AQCPAUOIKC1nzaR5qFEIulJ
X5DYTV9kNyISCQEjtD2XL0i3k8hLgd1bE2k8vhNpamKtA8rdLVDxBQniEeBERgCOCeuCkXNrYqug
Bqz1FqgZlgS9AG/L/wAofGM6CmVuZHN0cmVhbQplbmRvYmoKCjQ0IDAgb2JqCjgxOTMKZW5kb2Jq
Cgo0NSAwIG9iago8PC9UeXBlL0ZvbnREZXNjcmlwdG9yL0ZvbnROYW1lL0RBQUFBQStMaWJlcmF0
aW9uU2VyaWYtSXRhbGljCi9GbGFncyA2OAovRm9udEJCb3hbLTE3NiAtMzAzIDEwODYgOTgwXS9J
dGFsaWNBbmdsZSAtMzAKL0FzY2VudCA4OTEKL0Rlc2NlbnQgLTIxNgovQ2FwSGVpZ2h0IDk4MAov
U3RlbVYgODAKL0ZvbnRGaWxlMiA0MyAwIFIKPj4KZW5kb2JqCgo0NiAwIG9iago8PC9MZW5ndGgg
MzI2L0ZpbHRlci9GbGF0ZURlY29kZT4+CnN0cmVhbQp4nF2STW6DMBCF9z6Fl+kiApskJBJCSkmQ
WPRHpT0AsYcUqRjLOAtuX48nbaUuQN/Y742eZpxUzakxg09e3aRa8LwfjHYwTzengF/gOhgmJNeD
8vcq/tXYWZYEb7vMHsbG9FNRsOQt3M3eLXx11NMFHljy4jS4wVz56qNqQ93erP2CEYznKStLrqEP
fZ46+9yNkETXutHhevDLOlj+BO+LBS5jLSiKmjTMtlPgOnMFVqRpyYu6LhkY/e9OZmS59Oqzc0Eq
gjRN87QMLCPvtsgZ8Rl5Q7xB3hIfkHfEOXJOXCPvqWfUHyJvIx9JkyE/Eu+RK2KBfCKukM+RZcxW
Ux/0ipQ0O+R7/nhO+XPMLyi/xP6C8mfYX1B+ifkF5c8kMuXPsji0+3RwfLjfn7VwdXMurCQ+grgL
3MJg4Ped2MmiK37fXgygygplbmRzdHJlYW0KZW5kb2JqCgo0NyAwIG9iago8PC9UeXBlL0ZvbnQv
U3VidHlwZS9UcnVlVHlwZS9CYXNlRm9udC9EQUFBQUErTGliZXJhdGlvblNlcmlmLUl0YWxpYwov
Rmlyc3RDaGFyIDAKL0xhc3RDaGFyIDIzCi9XaWR0aHNbMzY1IDUwMCA0NDMgNTAwIDUwMCAyNzcg
NTAwIDUwMCAyNzcgNTU2IDQ0MyA1MDAgNTAwIDI3NyAyNTAgNTAwCjI3NyAzODkgNTAwIDMzMyA1
MDAgMzMzIDUwMCA1MDAgXQovRm9udERlc2NyaXB0b3IgNDUgMCBSCi9Ub1VuaWNvZGUgNDYgMCBS
Cj4+CmVuZG9iagoKNDggMCBvYmoKPDwvTGVuZ3RoIDQ5IDAgUi9GaWx0ZXIvRmxhdGVEZWNvZGUv
TGVuZ3RoMSAxODA4OD4+CnN0cmVhbQp4nN17C3hT15XuXuch6eh5ZMuybMnWkeWHLNmWLfmBwbaO
LVvIMeAHNtgQYxs/wASwsQ0JISmQEEhMXiSUkKYNNE3TkCZFBNKQzDTQNtNObpNCX5nJtFOYTtrb
3oGSr5PkTptg37WPJLAJbefeud93v+/KOuesvffaa++99tpr/2sfeWpi6zDRk12EJfLgpoHxFw+8
+Awh5G1CIGVw25R0uuv3FUhfJIQpGhlft8kT/PnvCeH0hKj5dRu3j5h+uHMPIToLIcW71g8PDLnq
CpF/wUGUUbkeM96deUKNaZRHctdvmrrjDt2zuzD9AaYf3Tg2OFD0i4v/TEg15pFbNg3cMd6k/hcO
05Rf2jywabjuXKkd05cI0dw1PjY5dQicM4Q0rKfl4xPD46dDx6YwfT/2ScI8wD/6wf6BiqYZluNV
ao2g1ekNRpNoTkm1pFnTbRmZdkdWtlNy5bjJ/9cf/m3+l+RufjdJI9uV+7wPt5BYyO2EzF6iqev3
mZX/d3uhiT9OkW+R4+QoeZecIF8iz5NDZB+5n3wOc1683l+QyBnyXfJ1TPwteYo89GfGtRtSyGso
bYK8TI6Rg+RJtOE/x7eBHCDfwNZXkyVkigzBe7Ab805jq58n0zBMPgYN5ECQXCa/w5a/in36OTlH
3kK6mvjmy4N/gbfIY9j32/D+Kt6fornMH8g08xjZzLzL7sY2HsARrcHsf1CqPAurMXUPtkw/a8gw
Gbuhk/fjKL9K7rw+gplf87tn/50YPv0auVcpPURGyZY5NZ5hGuiDdeLYCXlFydudLFRH2Q3MNxnm
6uOYOEDW4TUA72EvH2LryfOwHJrgCfKvZDt5kNmAPd1DHieNvBmOyU093V2dyzva21qXLV3Scktz
dHGkqTHcUC+H6mprFi2sXlBVWVFW6i8pLvIU5OflunNcTpvFLJqMBp1W0KhVPMcyQIqa3JF+KZbf
H+Py3dFoMU27BzBjYE5Gf0zCrMh8npjUr7BJ8zll5By5gVOOc8rXOEGUakhNcZHU5JZi7zS6pdOw
qr0b6Yca3T1S7LJCL1VoLl9JGDDhcmENqcm2vlGKQb/UFItsWz/d1N+I8k7otGF3eFhbXEROaHVI
6pCKedzjJ8BTBwrBeJoWnmCIxkCbjbF5TQNDsbb27qZGu8vVU1zUHDO6G5UiElZExlThmFoRKY3S
rpP90omis9MPnhbJ2n6ffsg9NHBrd4wdwLrTbNP09L6Y2RcrdDfGCu9834YjH44VuRubYj4qtaXj
Wjst15uEGJ8nuqXpjwgOx3350vycgUSOKk/8iFAyguqdno64pch0//TA6dlda92S6J4+oddPjzeh
hklbN9Y6Pfv6fnss8mBPTOxfDwsTg410tMRS21d3x5i8iLR+AHPwG3K7Fthd5p4kT9ufKyaoCFQH
6tTlogPff1omazER29XeHU9LZK39ZSL7fT0xpp+WnE2WpHXRkl3JkmvV+904my3Lu6djXF7zkLsJ
dbx/ILZrLdrTBjoVbjFm/Njuck+nmKVqf4/CK2GvmodGpRifj2rBWnMroKXQKtOikjB+HH9ctmMD
+eYUqdqNYqicJndTf+K7bb0NBUjFRbGoLz71nd0xuREJeSAxR00nSv1YY6Afp2i0UZm+mN89HrO4
G67NJ+1W0+jybqVKolrMEo6R/sFErZi/qZG2LDVN9zfGu0Bludu7XyPB2YsnyiX7ySApJz2NlNka
RrvKb5ruHhqJOfvtQ7jSRqRuuysm9+AE97i7h3uooaGGCi9icy6lxRgT7uxuWe5uaV/VvSDRkXgB
FcflNd0gxt1tj4tBk4tp8jRSN2Nne5BRxAwpgoS7oQbvMXWeBi8RFa7kUlNtqJG6wU6S3NiNWKHU
NNyY4KPpeUJ5ak7haFKaiiZRTjhqd/W44p/iIgaLpUTDWENDlRpNFrF56Akwj0ExShbVpY3avNTt
Hnb3uNdLMbmtm46NqkfRckIZis4Tc9U5LzVHWagm4sLiZIIqMxbx2ecqN7ZYSV9LRm8obk4WS9Ma
d8vyaSrcnRBIsOfNMUJNWF5gtiurn65nd2QAFzGuaGU9T5+QZbqW19NlO+1uHpp2L++uUbjRg9xt
v5O2lUJaoKWzobgInVnDCTfc335ChvuXr+p+TUSYdX9n98sMMOH+hp4TuVjW/ZpEiKzkMjSXZtKE
RBNUUgcmNAq//TWZkF1KKadkKOnB00CUPE0yD8jgaSaeJybzGMzj4nmykkc/OEu29ahj9N9N0hCd
n7t61k/391AbJ1bUCH4hBu461I677gQwKn1M6x5uiOncDTQ/RPND8XwVzVejZYAViovunBab3B/Z
ipXtnDTibYjvQlSsJiUngPhrXlZzqZcDJ1T8L2peZhkkyQmWZvM0+2W1yvJpzctA84NmlznPZXY1
MtJMLhyeWc93/enrjdw7FDwg7iGaEsRhpZz95F4RXKdnz57Myovi87xcm+aI7nEddJ1ysdtc0OkC
kJx50VboAwakdEf0HFyglNkS3QbQAqthB7DVAD4Aux9Mp2cvnkQm+pR1gjn6eUQUr2D/T8/+9mR6
dpQ+5VnBEJWk9MzoqARstwTNEkiSoI8CdLgKXUsEsAgCSNBhEkytNslis0kEOvyF/jWlxFJaSkTo
SLGlrDGLFrNZfE6AJwTYK8BiYaXARAu7C5knC+GOQlhXCJ7CBYVMeiEctj1vY9S2dNti20rbOhtv
EwoLBRtrLhVXlI6UMqWlASEADwSOBV4LvBf4XYAPyMWB6I4AVAeaAz0BtlB5jAYeCLwV+GNArQqA
IJghyyzrTFFzqd8lSCmSnzWzhTYCNhOwYgqK+yQAvwvAewF4KwCvBeBYAJ6kbQCKvU2epbIBuf44
nyVRHoCeALQked6aK+frAdgegFGFo1nhKAxARgCwU78JwPcCcCgAIwFYoeTHM3+q5D+nFO1Q6jYn
a6H0J7EL/xaAnwfgBwH4G6WBp5SObFc60qtwLwpAcQDsSgUc2OX5/Diw/Un+1UrHkd+n8OuSikD+
dxT+Y1S+/HSihdHkUBcpXcIaBsykdbBPF5Q2zgTguNKn/UnlXGvDP6eNK/OZH1GY5/Zjdn6njyQF
jikMJtQlc0VpEwVMTEz0rem9/tky5zNxw2ce42e4b1bjJpL/bPn8pkkoPegPmoPKA7/g963pXUOZ
fFsmzEF/74KU9Opav9+frExv+2yib5/vzZs+ykrB19vb1+vz+fBS6iCxhVKYdLnZErYgv0ClNoIa
3GwwNRvSremVVXVsFWCCxUSgjkGa/9yFxcCyLLCMLSPNnzLTe+Hhv2vlVQwDWVl6e2aGDo682sJw
lAMgq6giA772FrsztbSiKqNGDtWWb87/dDe/+9PdoR2BheVN4azamqp0dtOnj1sXLKrNCkea1m8v
Z3cqgQ/JwXgxjX+buMmzsl7jsDkYXI3oMNTU5awUTFGdHjr0LQajxWA0inj5DdBqeMRwxHDBwBkM
eRkkK5OszILMLOjIanHYLQ6H3SHa8S5rrVF7loNkGHVujjdk2ll9mqWNF7t7un0kdBm1juoNUa0H
/X5fzT7R5xPfhF5SvY8/e9YMQZu/d0u8hBbEddsLdWwwYE2zqNSsO7UOKsrz3TlGBhMQZI2sGnbm
RFeOhg9+3qDZ+crnNNrOPnnLrfXitpMgnWpRmYxaht3tX1LheGw6d1X+1UnmvoL27NbuYO+97Vef
4d+e+ZyrocqjpnqZfXBmJbcOI2kn+alcuRrAy0I+QSwDWmOmkUEPmm3LXuokFqcz4UFb4h50ka3F
ttrG2mxO8+nZD+SCPvOYeaeZ7TOD2axxim3OfidDb7ucrNPpklyyi2nVgAa3DDkVfbhJ49T4NaxG
TrFGNc5sG81PozuAzWljbGJ2itlExDR9G2+nKgyGgsGU6l6fYrtoab3UarcsSKn2b5nAe62/9zMG
ijokvdDrMrLunPyCqmwIBipDwCr2pxgifFQ1Mn5vl6sp22n2mfsOROzvvTquMuoF0EoFhanQ8f2+
L47XqdV7WX7XnX6u5OoLUufyxSnW0OIWN7NR2WddqMCP0KboPjv9yi7hvMAIdCBd/kC0VQCn4BeO
CMeFM8KsoGIiALxKDR3qFo63cDwv4tXPwS7uPMdw1IY4FW9Sc2lkORA0nQ8EuCjAeQHOChAT4KgA
8WXuS+gDFbFl4rrZKHZ0uRdXNI69KqiG1CALzpxTOTPLfnzqJ7z04ot/usgt/OR7ylrgZy+x73It
ZBF5QS7hFloWDi1ky6thaAGMV0JnBehcdpfPxfqybstC5GNhmHsqgETTAlFnGh1eGDfdNGeaU1vY
TLxHvUy/96L3Ay/r9dbqmse0x7WMXxvStmpZrWyyRLVpAb64PVfyPuplvN5cUWzndTreSkJBv4gD
8feKl1Oqq+m0brmszCpN4rDEy+LlslI6hYkPWIyMO6eEwbnEpVHHVJQjXcJWlNcxwUA2k64uAbpE
0ixIZ7Ps/sa7Xx7rfXA4nPq4yd/UF5JvW+rLbxqsrd/aU7F4+5dXddw/0qD/ivXOdRW9kcL8poGa
6q1raqC2a2dnoVS7etECT8hnTSuJBj3VvrzUtECkT+6YjLoctQNNGa0RMXdhYWGV15WaUrp4OO5f
emcvMbv4IpJFjsqdvIQOJSvLbDVonWa/udXcZz5uPmNWmWPOs05GJ6ZaTSYrmoLWpLW2qLUWtVqL
X512pxqcalBbM1O17QY1S92QwZTZxlqTviToN+NCEC8HUlBl6DaCfhJ5NdujFdXqbK1PrEE91vjE
6D5e9Ink2/t4tIx9Z88Cuhg/rhkzLpiyUl+eETWVX1FeWZXqrgqisQTVbtYIaRYrrpEqOJvXXdo1
oOU/d3fmztE7/H+f+fd3cxpvaWZxFieYRjql5gzmkXv/8Id7r+6wLDR7S9TqpH9VtXBLST3b9xrx
IZxDmOOmvnVWZ4xWm4GV66GjvoWAhQCIeBHSECgtg46ylkDQEggGRbzi2GYv3eG3B5hAIHwoDKNh
6AxDfjgSZoQwrAjvDX8z/G74N+GPwyohXBhm/hiG34ThyfBbYWZbGHrCUBkGSzg3zKjCoHYYTUYT
QsIW0WwR0WvRi641cVGbV8xzGGUIlpodaiK05YhWU1nAJNaLAZakob5/F4b3wvC9MHwzDM+F4WAY
9oYBW1ir9KcxDIEw5IbBGsbgAj4Mw/theDcMb4bhVBieDcNjYdij8MuzQ7TbEFF6Fq+BXftvN1TB
JnCw94RhKgwjySawghSGlDBwYfg4yf+9ZBOHkk3EG2hMDH0ec7wn2POJOWzlVJ+0H8j5hY8V/f1U
kfucwjqi8FUqTHFZbypauNYeqgDaFEk4nA+Upt5UmtqjdL8zWaQLw4ZPwnI/XAzDeYUnprDtUtiG
FDbs70Wl+biE/UqmLwxEUWq81lFF/TuUolLUt6QUL7yilJ8JQxz99N0Ifm4OjrCg7y8y3ASM/SUs
djN+XKvpAT9CrVDoMm7+CL0uX9v+fcqahDXXqyoizRQH9M5FAuYUqLb55yGDvl7i87lS69jreAAT
VUF0jeqgghjS5+GG63zMwbs4Qc0vWVG9rqPGuO3kc2qDTg0vqASBY7PlJb2Ltj9slBqXD8v7DiCk
eHkeM3Mnxk8+U0trsPe+9qvPsstzWsKlar6oepGFYozbtwQ6Q+4k0kjyBm7d0371y0o8OvsOYowy
bhkpJCHyA1nXo4cVuhHdNh2rPT37jycNYtRDHcUGdBS5BcBJFilXYnMWl9ZCa+252gu1LKmF2tr6
/LKRsm1le8u4MlabvlcL6Vro0Lbo9BadTo9fvVPn14V0Z3TndBd0Kp2cnRvVsWXpLPG2ZYkIJ/Qm
rc5e2Uau+9IQfun00M1HcaSyRy/qdPINjlRBa9SL9sbnaAvuSwrQ7eURWbgtN5mGbIbOgJFNpbpX
0S2J7lhVlTgdjHfHUxLPaXSqjpN/1OgFHr7G8CqOy23pWlvTdldnkaC3d991NFeeXNuSnpoT6qms
G2qvs6avsaxfw7jL67JmenhVQXSRV9DkFges/sbitMCt97YHbg89/IN7atl/yO99+o61rfJgOCdv
9ZNT27t23BU/EwjPXuIC6J8zSJD0y2EMuqe8e7yMJQd2ZO3Hbd4G/hTQ6UDigSwuzYTWzHOZFzJZ
kgmZmRX9FeMVTMFig6w1RQ3OtjSxqE1jpTqkZn15C923E2pJ7tV09HS3rqiDqrhG1LhfK7ZId5qE
QuqAC+iN2bc9Ghvq/+JYLQj6rJEHT4xu+PKmBa/n1N9aXXHbQJvdoMsPr66sHF3TajfqmK+Xjy7a
8/pUxaItX1nvH6r83CvbFizY+NTg0o1NUsaSB6eqBr0dU1GXbenDW2uGEvsScwVtz0Um5Vv2qmCl
AMdd0OcaczEu2eOLuuRUK960xqjL5bZqBI0AHUKLVmfR6nQiXlq6XWg1OisrsG0OUTRphbS4BSUW
9w0LWwFiGBhtmaDqgDgoSRoIIveEfaQzPzT7M+WRpQHd5lPPqPU6LfsCK2gFjnPWNrQU6zLtNjX7
Aq+5ZeKBuqtvs3XuSMMiq7WmrtpSt3pRFsvxDM5pCc5pMY5NJsvJAbmXK7OU5ZaxunTQpdhTfCns
bYt3LN6/mN2Rvz+f8UQKCy2OelUwYqLnJgsjj6pgVgVEBSpVV/Nii6xNi1oa2u32ZUKJadwDfg94
PO62ElGuXdbGmihguxwIhC7TqUYcYa72K3OfmHq8U9yG+EIBbQpquw4z3AlbKK/jQsz1YKbg+lKZ
Az/URv6afXDOrLDU28WByt2yevyWZVvbPP72TTv2hH6r5tUb1pR1hYPiy6kNG5/a2DO9pkynuQWX
htfkNM58+n3PiuUtC1xpRfVFK++5tUJQqYWlS0xuY0XnImdg+cbq9m2dFdl6YHMzSiyrV5oKwsGs
unW3FBYt21jvXFkws9daYsnL5Vh4BttOlaqWVUm1/qya7nW+ZCxpxbVUQA68RnLQdXUj2MkwgY6z
c0x+AXQUzME5fgKt5Ai5gFECKczUG/QG6DC0GE0Wo8kk4mWkBmbUQ74pkyfqNklMs5gMxoI4CFE2
kutu6jOGdkPkiG7JNS9avGF3UFTNvDMnYDw1dyO4HlPOCxhvdPgJVx/3K0dQF5v4Q6gLH7lbzr/T
Me1gtBqvZpXmTs20hudZSNPypidF32GP6BHd/GH0LZk0inDrTdHMzOKcJ4+4j7sZdyZ5RASx8Eue
1py+nLGcIzlcTo7zNIgnCEcUq/Nf/WGvmaJeanO+RJhwWYkecKVRm1NsiToYVu3GcdPdj7ocFTU0
GhMx3xo+OlZTO7C9xtsqFwvHDfU964Ol3Y2e/Kb+RQ9+M/+r9pX3npx5v+C7Bfyhyv57lg48MHyL
2xZcFC1ZtqVLzrJXR1bXlrZXSw/e6el8cLj6Txveeuv62cIKjAP1kP0aERD75nujAt3SbFlS9FHh
qBAT2JUMrFTBY7pndC/rWN3p2fMn8/1R+pQPIxOvS9Nt1bG8bpg+VNp8bUS7Qjui3atVqdXolvWI
lxktAx2sSlALy7SMRYspjM5Ji15n0esA91K96NSDXq8VL2ivaGe1rF97BIOxM1pOqzWGjK3GPtQL
w6pULEqZE4PGY08G1DpO0JpUPGE5Tp80vgCiGBptfsb6lN3wbhqEUytcgB6hOl5CA3ANBuKas5qz
yTAc90pQzoZcED/BwPBbAOZHMx8+H6UnFiffhtFfXv09tMHHd83s5d/+9LY3oGnGf/UJtK+m2X/j
jqFuC0gt+YYsb8vYm8FsyIMu07Bpq4mtLmouYrw68GpBy2ayXpYV/Tm2bOjIbslJt+TkpOM33ZTj
zPGjTZ3J4XOo5eWmZ0VzckKLFvPU7fPO7DRbOsnxiywpbzOInjkQ4bJycqME23GrU2BCnSddzMmp
+yxMEM8mhhw/e+AVn1dZFQdmuAKrUpXDG3fcJRYkIEFiW0SYYIUD1xHAIMUJDG5I0HHqI41Bq4IX
dVo+t6VzreY6Nqgdbq9NT1+jQIDiuxQIsH6NtiRYIsBXPkktiNb4BEt3OQUJ++PAoH7tPGAApAkX
8f9A/WaRe14j2tl/lG8RzNEMFhwO5rjpjIkx0fNqk51AJqhYJhOgA1oYtYVRq0VGzam5iwwwVI2M
OlOV1qYnhG23q0wMXNskcdsIJUN8jFev2RAqS4zHpr5eJS5FbAvosWhIGteYuoSlmjFBUA0vv3bq
tcOZh9P1+YvHV0jhjEwhPdMm5AddFk3qTzLZVz9tZl+9985FI0t8KtUDDMOC1VtbMHBv3Edl4T5Z
jmOk+PNJeWQwMBm4N8B6dat0G3RsGpvHMvzis7VwI+D014fqW+vZ3DLRmp2N4bq1JT3Lkp6VJeKV
LmfnRNPp0knPziLp1jTRUZbLkco2g9XbRsSbGND85XMdTU5cVtwXJPxXHDghrkx4MWoyoFZRB55+
EzT527kG8wWJ5Y0GgXmJ1RpE9UenlvMGXsUr0FLzGTzJLZuDG9evyVxUnscJvppoAXd5pierPNWa
MsdsbsSTMOfsa1xuWcGCBqCfh138eZ5p5cHJ+/kj/HH+DD/Lq3A2OggwwM7ZFfsJ7CLnCdOHoqgW
8XFtxwuE6OHWlolAXGHJgwygoRIFVUEIggvdxswF/u0/lSs+4hJXgDgoD7Htbtk+xe3hmB1l+8uY
Hb79PsZrg7wMUGWBvllHl38lWqtOJ0XOFUJpIbQWniu8UMiSQigsrAiyEdkKVmrPVp1ORdqCQVVJ
m11UtZnjcJcCHIQ+2L+Jy4E49pnAzcmXRD2Egl+cL4plcIrSk8AnpQ6Cye2pgG7QiUUPBDfI+/Yu
uLWlOnU6I3rbofVDT2+q7nrinTs2P7OxAp296gjD5DbcuqB0w0BbOvxPR7XjvoezyupzQ8U90eLq
TU8PPw3MNwcXrj+wMg3BU8a0xW1uGAhlZ92yc218nlbMXuZu4RaSAsiXrbdmbcxi6rKXZTN+U8jU
atppesTE83SnOqwzRwkPuUw508hMMXsYPiMH8vXb9Hv1bIYeSD5uNpCB0Rl+UWouEA4ydfGzFZ0B
QzADfg0hHVzQQUjXqgRhnE42paCqC4my5eQWWHJzC/BbMJsLplxnrj+XzZWz3dFcegicm2vKZCVW
RyGQNS3NaDAUENOcTSiEeq+OoyBf74Tihz2eAjE31/NZPxzH4L1bkmwGjOpuznY9ZFFeYijTl8Si
OH9Jf42kgmHjh2Zw5K8DKG7h1R3XIBSz5tOXbgKhmIdQkxiXsb9D2/WTXbL0QAHsz4GtLIwKDwhM
fnplOsM70hBQ0bN4VTNPzbcC/THPO6NEAiL1SxelDyROksqKIyKNzsS8tswxCvAzxTa+n4/xLM+T
Np01jqHi561J3L4lYbmK1VLAPs9kcd/iEwer7LW4zQo/W7AqUpn6RUf72MMr1z0x4FcL1qauwdFN
FT371lTwJ1hH8Jayps0r69IE7bo7XTVd5WUtt3cW140dXuVZUzz27NYlPnNJ59bFGcW3VGR7Vh0Y
Ld2Qv/NB1MM4Yqi1aKciOSTXj2CGqDOiV6Bvc5eKxCJSp9GBMVgLAxaGAZ1gFxhBQgwpCIwo9iN2
FFOkFDmlLWVXCsfQVxLZjFxYFC2l+xPaFyPIgjEqmgQwsYyJQBpJvFXwB33U3fgW9MZfhVXXounc
5H2Xyz335cEnP/vm3wyzahXP6LJdLj3sehNnXLaGGkNpaaGGkJX5DvolbmYlN4BxwkLSQf5VvuOW
6lXVG6rZPDdssMIeNVQ3NDcw2yqgq2C44L4C1psDWkemw+tgI6nGikroqGwxFlqMxkL8FvqNMG48
a2RajWA0dpZ2wq5OUDXLPJ1knOJFi0uzIZv6rWysypJSvyk1UshmtLTliipqNWZBH1WphLq2jDSh
jdiv70/Vfl9il4ovrgkllutVYvrEAlruKRSNxuV/Be/QpRM/nodEbF81J/KrrMpUPKACg2gcjAsL
Eqtsjj80AjzUO91Xpf+KeetQdHNrhcjreZWKcYQ6NkZbP9ft1+kDV35YPdK+yMDwJqOe+TquDZPm
y2m33Hl85tPRkcqxwVarRpNb3x2sG26rser0MyvzGnoXeJe05y25fXlmTabT6Vmy0F01sK+tbFMI
eODsFUtKM+qqPCxufs0Fn/7dbce21bHZ23eWDD097u2RwoMNUl7P57cs2hj3p/0z3exK3PdMZK2c
sV3zgIbZxNzNPMSwG013mR40sWqP0Rw10t8reAxmVDn7By1B45VJP5o4R4hf26plTFonAvNzCM1V
dpQaCimH+Wh9ImoftxIf2psCCThitqSku/NRg5lMFbty5v2Zfxre8I3N65sf//ljuPtdfWbmsTdm
nj98GAa/+wpCszIwbIn3M2/mT9BCfk70pEC26tR2NSPoD6mO0JYZLf+87inQEn/w6vvY8m8uV9Pt
K09BHFCFAAx8WnuON3NHdYuh2/vdYMXKlgapfk/9zwnMfgPXaQ2uUx1kyZF8DFAYQUs3fwEJNatR
6VTAoCfU8ITXIoUYkdUghEVqCauxsKwG1zQyLeWJBT2TThRE/vXZD1DwB3KRVg0cJ5j4nbiqdLyO
Z9twtQr0NRqrFwQDMYiGo4bzhosG3mCgRl1bHIgSto1l0lnZYImygkbLAUd7wZsYFveSNMkAogGI
Aao/MMBFA5w3wFkDxAxw1ADXj3KTcU6QHtUm3o/jF2ksVeJMTKRXL8DPvnmvw40Uwyo3Gu6IyaCH
ynSx4BYgmKpEOt/50cye78Olmf/41rdhzQ9nfJABfzvTyBQxxpnV8NWrH179sfIutnqmmylVbGtE
FrfrYUJzj4ZZy0ww9zCs8hOZuGkpT+W9tQEJ7R/YNnqIQ38s84GcaiJO0kp2KqbGAqsixB63L2pe
ZsX/l5X6fD4FrrC5xFzOFAStKWkWLaP+Pjgg/5p5zXT/iVkDm9+A7sOHZ7703VdmvjFzbubft6Bt
hQjh3+J3Ex35nBxdqQWgv1CHDt0aIliIIIh4EWJArMoqweaaucGmYIpyWoEFpk+jRvfJspyOJSkb
NyWPOtAfY8AQvDHcVLb04NzgAXrLSl2pLiWedKUGgb268yrsPAMpZ6aY2anXZ37PPHR1kt999UWm
80+J3wCMEKKqQNv1sI/IeqMt1RF9NhWe9AChOs3Ioz8zOi9bUtKiI2QbOUTYzqw3s36a9X4Wl0WV
/a49L1qZBXsNhwzPGdhyw5BhysBWMwASFkAp7jHT8AIwi2A1MIX54CtYVPBUAeuQDGK01gEeB/0N
Q0eWK6tFDRYM6h3QYVAbWq0Oi9XqwEVR4CpY4iEWj4cYoUO0ii0mo8VkMq5Uf039qppd4Iq6ul33
u5538QusUWu39X4rZ1W7XGora/KIKo/Vs8Iz4uEqPds8ez2HPJzH4z3mhUNeqPY2e3u8272c1Qt/
9MK73t94mVFMP+BlK70RL+OlC0mbZos+5oU9XogncesVvNVeRm2iNjVrohuoyVOQ5XBZVep8daWa
Fax0O1VbjaKjgDXhfgoGY9o3vfCs0uheL2zzwogXIl4o98LHXnjNC8eUBuL5nUpRpRcEL7zzoRd+
44U3vYD1n0vWH/XCCqWyxQsqhQFFPKmImPLCUFIEMuR7MdijgnB4v/PCz73wvaSoeD9QTqEXUrzA
eeGp9xRBX1dkxYtRVocXQPZCqRdylQY/8cIpZSwHaWvyzkR7WIh9fV/pK0p4yksrlScrofTRf/PC
D7zwN8lirLNIKcY65xWZ2PdGhZskZf00KW6/F3YovZG8wIgKR/VFL5zzwvzXWzf++mf+u61rRX1/
/YdBf/YFmfJBgETfYKUjRqqOe8O4b1yAzhGxclJC4qcY135B9Fd+ONRHfysU/6FQr0JSwkd/MwTz
fzPEplVSDEF/MQRJkiv6UR4GkgApKaLbOPP987e+7AGGYUwmg10HXd8uYlmTaMwywLIY87plmccf
LC7K73BexQDoqktfVVttyHVnN6Qz//1qRuVQLtKNWcyFuG9oJ4TJQZ/GkpWvxPizPEPBNj3IU0C3
x+aOhngQeWAUjzbnNbaMyIpgcHvNi8W9V+CarwJljGWlNGxtR/c083t+N/VIGLciPhxWzpFryY9e
ybOhNzdR5KBDossx7NjqYO00vQiRxLxDLn+uI90OHfYWh2hxOET8imcd5x0XHeyY44yDaXOA3xFy
MA5HKERHgdtkKH7w5YgmT70cdnu61XTjqdfREEx85uTL54tHusnTLxEbvNnpl/Esn8CDPgylfJ89
/goaIf5zpqr/9AEYbzTquZf4nMzfn+pCRMCrbjzNuOkJWEZtVZHG/OjeTyrh1czytAzrnzsBA7Jl
9hL/Y/4Q8ZEvy559bthvhGkDbGdhg35azwx77vMwIxao8DZ5u7xstbpZzaTfaqXKbLQ5olar79YQ
gTMEKLqj/4ZGil2r/DhPssUW1Tr6zK3pfelMerqZK/XJvjbfLt9Z33mfyufL7+NT4+YyLy7rvf5C
xZc8F0pe9GTh2nuUOZEZMNeOhPhlZXd+6a3dB//5sWjl0KOvvHvH7u9Md6aeMtUN3Lfysfef7ihf
94WRVYfuHsyH9uZ7BqpvPfIPO+66eOapjYsW9d/VUOVf2VR427dmrj655ulJuax9dAFdF/eQU2ij
T+Ne3yQX/UQH9+ngFxxMcyBgzHsGg6v3GFjA3I+LkHAvCe+qoUq9T82o+ZPoPnp76Tsj7LefEvFY
G8xus6vCZQ6aXWnMtx6f6YbnH4fnmf6ZTnjxMXhxpvOx+HqsIIT9Hq5HLZmWS1YLIGhUjBqBpGYL
w2IAyOLXz4U4hiMsxzqZncxxzNMwU1qbcp5hF61R/ggHhVw18rASJlmEoirVrt0K0gj6UM1BDH0C
2Ln0gL+XmrbOw4oMo7tZoIP4gy7hKlcqX5WHgENdkQ3rzs884Ybtz30IK7Of5EounPr1J7YnifI/
fGD+t+Izv/qnPlPNR8QZ//+xcw/+2pL8HydEeis1JYj0GKLBK/HPWYSo62aWkfC1/5MauuE/3nKZ
S6RR/RA5wU2SHI7MPshUY7XvExeCPR7pXtULmD85+w6WhxmFJiUK7yQ5gjz02YR8TfjMUupNKvQK
LAvjNY40h/X6kScP5X+DeWG2mv8+CeE1gnntlB/pLdyL5B6kcY5IETPNWtlT7ClO5F7nF6qjGq1m
r+ZDIaat1J7Wjeit+vsNAcMdRpXxXdMq05viN8yMucT8i5TSlActX7D8NO2QNd+61no2Pn6SSzoT
+mCISPxkFUYbS9Vv4MKiuQ5YkfgPSYLhFEnQgHi5P0EzREXGEjRLXGRrguaIFQFdnOaJkbyYoFWo
4dcTtJrcSc4laA2xQHOCFhCQ9SZoHfbhtmv/pVkC+xK0gYzBKwnaSOqYXGwdOETB5CyzNkEDyWZz
EjRD9KycoFnSwC5J0BwpYh9O0DxxsK8naBXxsu8maDX5kCMJWkM83IcJWiAO3pGgdWQBvyBB68mt
/HiCNpBfKme2lDaSu1QvhMfGt0+Mrls/JXkGC6VAaWmV1DE8JEUHpoqk5s2DJVL9xo2SwjApTQxP
Dk9sGx4qkZY0NzR11Hc2ty6TRielAWlqYmBoeNPAxG3S2Mj8+ktG1w5PDEyNjm2Wlg9snmyeGtg4
Olg/OTi8eWh4QiqWbiiX4gw3z10xPDFJs8pKSqtKyq/zUJbiz1T8Kx3D0awbnZwansDM0c1SV8ny
EqltYGp485Q0sHlI6rxWsXVkZHRwWMkcHJ6YGkDmsan12PkNWydGJ4dGB2lrkyXXxhQemxgfS3Rs
anjbsLR0YGpqeHJs8/qpqfGFfv/tt99eMpBgHkTeksGxTf6/VDa1fXx4aHhydN1mHH/J+qlNG5dg
hzZPYse3Ki1ib+bqMTK2GSdrY5ynSJocHpao+EmUPzI8hF0bnxjbMDw4VTI2sc5/++hto/64vNHN
6/zXxVApiXb+a7XRn43h5ridTJBRso6sJ1NEIh4ySArxGSCl+FeFVAcZRn8nkSgZQI4ipJrJZuQq
QaqebMQ/aY6ESSU1jM9hfG5T6lLOJVirgTShtHr0JM0YCS/D3FGFfwCvKeQeQN5hsgmfE+Q2zBvD
uPAvtb8E669V2qElo8i/GUuXY2ozym3GvAHs3Sjy1mN6EDk3Ky1MIFex0qe/VF+aJ+F/h3eFwjd5
jasM+0p1WULKbyonKaX4P9Hif01j8blZp0iZUmTHOUcV2V3IsVzhalNqUn1NKa1tVrg6b9JiK7Y4
ovR3eA7noCKbjiUueQzp9QnNb0DfP6H0YEiplxwb7og3mSdqoxNopWM3aIz2bpvS5lIlf0qxOVq2
XkmNk4W4S/nJ7cpfCfLMlzyYkFuiUJuQ8/+03hSuoHFFj8PKnK9D3vj8lygyN+F8LkloaLOyLqiG
ts4ZY1w3f84eI8ozvrI2zpNDZ5Y+ad1k7ycT/R9R2olrbRzvY6j3YUXbJUruOmWMoziHo0jN7R+d
sXWJvBt7k+zL/PH8v2wbgf3sh3gVIIq4yecMaQM1bvB+5X4cOPnzcP4qnLkK4lUY+wTkT+CjNo/z
DxGP84OIz7nzypErjP/K2JWdV45fOXeFJ5fES/Kltkvjl3ZdUgm/fj/b+a+/ijhNvwL5VxGr818u
RpxnLp67eOEiK18MVkYuRmzOf6690PXLWrbrArBdv2Bnnaafgelnsz9jZn8GR34KP/lxjfPMd+Db
bfnO/jfG39j1Biuf7j89fpqlcYtwOiUQMb0aepU5DSkvn3I7T4NJbngl4DSdDJ28cpIV+mPjMebR
2NFYLMbueunRl5ijL8VeYnZ+HY6+EHuB8R8bO8aYjrUeO3LswjFOd/SIzykfEcwR8jqGwyKILzML
5XoD0m14MSSG97N4nceLnUVKdkq5kaefynV+Ca8v4tX2FBxeFXU+cSjXef7QxUMM7ePKQwZzZOfn
oe/g2MFzBy8c5EwHnQd3Hnzk4OxB/vHHapzyY+lZEfkxQR8xHYC+A0cOHD9w5sCVA7MHVPIBR17k
6COxR5izj5x/5OIj7MMPRZylD8kPMbsegrE3QI/zc5HesS96ucBojkjTpdPMfXsizt2bZp27UJfn
tl7YemUre2UrTE2GnJOoxPOnwSjXwUSkwrkFL3k8vygijZeOM2OY2oxXJti6MoK2LnWQ7VKhiK9t
gsJNsBGpfqzeh1dLvQAashoo3H8K70Ak0Jwsq4xIp0Ejl+V7I2tWBZy3Rsqcq1EZq/CZGkjp4nF6
uQDbNcaCiQ2xzKEeiHWc7TjfQWfyZEdxeYRq63AHqvRK+2w7I7dXLIjI7XmeyLk2kJYV+iOaZc6c
iLA0YykTXdq99B+X/nbpfyzlDy8F25Lc4ohtSZYUObzk+SVMS6TK2RyRnFEczGK8jkfgQuRKhNkV
AWsgrcsMpi4xYOpigHQBAafTFDL1mXaaOJPJb2o1jZkeMV0wzZrUIcy7YmIRge+yAg+n4dETnct9
vpbT6tmOlpi6bXUM7o/lLad3uX1VTHV/jHStWt19AuDhnvseeog0ZLXEAsu7Y/1ZPS2xISRkSuxC
Qsw6YSUNPVOTU1t99ANxgvgmfT6FnPIpJEySSVoASiEto7dJXzxriuZNxnMBiUn0d1O++JfmTtJM
H1HYJ7euwaSPrJmcgkmUik3HMyaVVnyUlyS6o4j2rZlE8bCG5oLSNfrBupO2/wUltl3PCmVuZHN0
cmVhbQplbmRvYmoKCjQ5IDAgb2JqCjExNzEzCmVuZG9iagoKNTAgMCBvYmoKPDwvVHlwZS9Gb250
RGVzY3JpcHRvci9Gb250TmFtZS9GQUFBQUErTGliZXJhdGlvblNhbnMtSXRhbGljCi9GbGFncyA2
OAovRm9udEJCb3hbLTI3MSAtMzAzIDEwNjEgMTAxNF0vSXRhbGljQW5nbGUgLTMwCi9Bc2NlbnQg
OTA1Ci9EZXNjZW50IC0yMTEKL0NhcEhlaWdodCAxMDE0Ci9TdGVtViA4MAovRm9udEZpbGUyIDQ4
IDAgUgo+PgplbmRvYmoKCjUxIDAgb2JqCjw8L0xlbmd0aCAzNzkvRmlsdGVyL0ZsYXRlRGVjb2Rl
Pj4Kc3RyZWFtCnicXZLNboMwDIDvPEWO3aGChL9VQkgtLRKH/WhsD0CJ6ZBGQIEeePvFNtukHUBf
HNt8JPaL6lyZfvFf7djWsIiuN9rCPN5tC+IKt954Ugndt8u2onc7NJPnu9p6nRcYKtONWeb5b25v
Xuwqdkc9XuHB81+sBtubm9h9FLVb1/dp+oIBzCICL8+Fhs71eWqm52YAn6r2lXbb/bLuXclfwvs6
gVC0lqzSjhrmqWnBNuYGXhYEucjKMvfA6H97Ycwl1679bKxLlS41COI0d6yIk0fkkDg9IEfEKkCO
OYfiCeeEyClzhPzIOWfkA8ep9sjxEvnEcYVccFwin5kvyBfikPJLjp8cy4AZvyXZP0mQN3/sKdk/
KZDZP4mR2T8lZv8E/eXmT302fzwTyf4Kz0Syv6Kemz/F2V/hmUj2jyjO/in1Yf8IcxT7p/i/iv0j
dFDsr/AfFfuHki5xuy28Tpy3nzER7d1aNyI0lDQbOBW9gd+5ncYJq+j5BozovSgKZW5kc3RyZWFt
CmVuZG9iagoKNTIgMCBvYmoKPDwvVHlwZS9Gb250L1N1YnR5cGUvVHJ1ZVR5cGUvQmFzZUZvbnQv
RkFBQUFBK0xpYmVyYXRpb25TYW5zLUl0YWxpYwovRmlyc3RDaGFyIDAKL0xhc3RDaGFyIDM1Ci9X
aWR0aHNbMzY1IDk0MyA1NTYgNTAwIDI3NyAyMjIgNTAwIDI3NyA4MzMgNTU2IDU1NiAzMzMgNTU2
IDU1NiA1NTYgNTAwCjU1NiAyNzcgNTU2IDIyMiA1NTYgNTU2IDUwMCA1MDAgNTU2IDMzMyAyNzcg
NTAwIDMzMyA3MjIgNzIyIDI3Nwo1NTYgNzIyIDU4MyA1NTYgXQovRm9udERlc2NyaXB0b3IgNTAg
MCBSCi9Ub1VuaWNvZGUgNTEgMCBSCj4+CmVuZG9iagoKNTMgMCBvYmoKPDwvTGVuZ3RoIDU0IDAg
Ui9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoMSAxNzIyOD4+CnN0cmVhbQp4nN17CVhb153vOede
SWi/2kAgQFcIsQmQQOybLpsQBhuBAYMxBgwy4AUwix07qU0cr3gjTZrVjZ21WZxadpIJTlzHbTqd
pk0mmbaZ15kmE3fa5s00cex2kr7XSSze/1wJb13e97153/e+70nce/9nP+d//svvf66YnpwJIhWa
RQwSBjcPTHSXDbQhhN5GCOsHt07zr68zpQJ9CSFSsX5ieHOG5xefIcQmIiSTDG/avn57w0tOhJRQ
JytmJDgwxHsP5yFUmA19FI1AxqPXnpdCegjSqSObp+8Y0tbJIX0A0hs2jQ8O2CVBCaQ/p+nNA3dM
PM/8hIGm/ZDmxwY2ByviJD+H9CxCMcLE+NR0O0oLI1R1kZZPTAYnrvz2kX2QhvmxGyAPw5d+VEBK
aZowrEQqi5ErlCq1Rsvp9AajKTbOHJ9gSUxKtvK2FHuqIy09IzPLmZ2T63Ln5XvQ/1cfyduSt9HX
JPXIhPrF+y0ftgwZ0TaEFj+lqRv38Kr/u7OIiTxeRt9Bz6OT6IdA7Y0WHUA70dPo4i3V30BvoRfQ
YXQePYqO/JVuz0E/d4nU/ajvL1fDz6JxdAd6Csa9B/p7Ha3Fc5hB/Wga3Y0WYOwAe4Z9M9yMPsFn
0ZtYju7ETvIAzOGBv9Dh19GzaCPcX4X7ozSD/B59nVShMfI0U48Owgr7STNkvwljr0BP4R60FjRs
FGaBgBq5pa80Zhnaj+4EaubmEslu4kHKxc9hxgfRMZjJKNqCelBbtPgsAS1BRxgrrObb6BUx79BS
W+lzzAQ5T2KuPYzuhe9y+A6hIXw3OoGeDY+Ej6NHcT2uR/PhP6A4tENST5Yj1eJnkofIITSGmtE6
5EP/huokOqG+u6ujfWVba6BlxfLmpmWN/gZffV1tTbXgraqsKC8rLSkuKsxzu3JzsjPS0xyp9hSb
1WzUcVqNWqmQx8ikEpYhGGXX2339fCitP8Sm2f3+HJq2D0DGwE0Z/SEesny31gnx/WI1/taaAtRc
f1tNIVJTuF4Tc3wFqsjJ5uvtfOidOju/gFe3dgF9pM7ezYcui/RykWbTxIQaEjYbtODrzSN1fAj3
8/Uh39aRufr+OujvjFJRa68NKnKy0RmFEkglUKEM+8QZnFGFRYJk1JedIShGTYcNMY76gaFQoLWr
vs5is3XnZDeGNPY6sQjVil2GpLUhmdglP0qnjg7xZ7Ivzh1e4NC6fqdqyD40sKYrxAxA2zmmfm5u
f0jnDGXa60KZO35thpUHQ9n2uvqQk/ba1HZ9nKYbQ+KQxMHZ+bkvECzHfvnTW3MGojlSB/cFoqQP
2Ds357Pzvrn+uYGFxdl1dp6zz51RqeYm6oHDKNAFrRYWXztkCfkOd4e4/hFcFl2sr60pZGjt6QoR
h48fGYAc+PPabSUWm657qU7gLxUjYASwA3hqs9GFH1oQ0DpIhGZbuyJpHq2znEWCy9kdIv205OJS
iamDlswulVxv3m+H3Wxa2TUXYh2NQ/Z64PGhgdDsOpCnDXQr7FxI8weLzT6n1/Glrm6xLg+zahwa
5UOSNGALtLq5AUgKbTLHiQnNHyKPyxYYIE2n50vt0A3tp95e3x/92zpihg74nOyQ3xnZ+vaukFAH
hDAQ3aP6M24XtBjohy0arRO3L+SyT4SM9prr+0mnVT+6sktsEm0WMtaGUP9gtFXIVV9HR+br5/rr
IlOgfdlbu84hz+KlMwW85SUPKkDddbRybC3IVVr9XNfQ+pC13zIEmrae77LYQkI3bHC3vSvYTQUN
OJR5CYaziSOGSG17V9NKe1Pr6q6S6EQiBbQ71lF/Wzf2LkukGxC5UIwjhu8iFqYbKnKQwfuAsNdU
wD0kc8TAxQHDxVwqqjUVfBe2oKXaMI1QJl8frIvWo+lbOpVQcar1L/UmpUnop9ZvsXXbIp+cbALF
fHRgaBFDmepfKmIcYAkgj0A3YhblpZnKPN9lD9q77SN8SAh00bVR9ohcjjJD5Hl0r9pvSd3ELGAT
skHxUoIyM+RzWm5mbqhBTF9P+m8rblwq5udi7E0r52jn9miHCGbeGEJUhIUSnUXUfqrPdt8AKDFo
tKjPc2cEgeryCFXbOXvj0Jx9ZVeFWBssyNcsO+hYetSEm9prcrLBmNWcseMDrWcEfGDl6q5zHMCu
A+1dZwkmtf013WdSoazrHI+QIOYSmkszaYKnCdpTGyRixPqWcwJCs2IpK2aI6cEFjMS8mKU8jAYX
SCSPW8ojkMdG8gQxj35gl8wjwGOw3/X8EN2fu7pH5vq7qYyjWOAI/OEQtlcBd+xVZzCRqkIKe7Am
pLTX0HwvzfdG8qU0XwaSgWNxTvaOOa7e/oU5R3TvqA5uQ5IOQMkylHsGI1fFWRmbeDn/jFTyQcVZ
hgCJzjA0W0Kzz8qkSV9VnMU036Oz6Rw2na2O8OFU/FB4RNLxny/Use+I/c4ufsoeYFegfFSNnha8
c6l4R/JcMhmt3F55sJJxFBUWEQMvV/mlcbFxJEmeI6+UM5IcUw5BDGYYt8+iainpKyElJabatIb0
hcX/KeRcTMfp6d4GZMKm0laLxZOtTbOmEVfasbTFNCYtzRbI5jwBPWqVyVT6WOT1eFyXucveyx5X
7xadvtR1Gbt6aaLkMk31ejyX8129eW7U29vrhKvXkV9UbNJge0ouSbdrGHtKWmFBFfHiwoJcYk/R
EFl6FePJjzXpjLGO/CpSiWUaxmSMZZdrkzUptWmexlwzI02s65pc9tjJltkn2z+1FLeX5LeWOaTn
FcVDD2784VtZ1/555Y7WjAvF490l3eMsMxETYyluLSpoL+dPPbDx4AorZstr15ZZtOm1Hp2wcYXz
9TPh3ECr1Ns/XdjNYq27p7ltCHj7EvC2BtAvD1ZvQKjZQeYIqfO0e4Y8TJO9x77RzpRJcGEillhN
1hnrXiuLGvpt2GYrckqNPmSYNRBDWiAhmTMgtckdkDKUWZe9XrhRFuXnU/ZcjnAGPpiD5ael243A
AnsVU6jz6IxSmVTmqcKefD0T5Y7JmEw8wBa25sffmX7eTQjD4G9jQvDLGD6s+7mZN7//WrK3r6Zm
Q2NGRuNotbdfsJGU8K/DH3euSyjOtbFyZ4U/nb0c7k4qjU2IG+0LfxL+5cTjw3k5w8/dte2xvvTc
9U+C+nwL1p7KNqEStFfo2mTG2+MOxpFNcXhDEZ7KuyePNOStyiOpxTgrCSuYBIZIeBNPMhrT05Hf
ZLKWKRsVCpcfWfutE9ZZK2t1mSQ5gRQ+Yz6DZGSkcFxAolRKKD9cIDogLNxlfWlpRHBEsQGZucEZ
kTvAFlFkipMZun4qLem5TGFBkSc/mcTJckGQKG/ikhk2tXziydG1D04u159QFTatKy0b9Gd6urY3
CDsHK3/2VsvcpkbNE7Lc2vbcL5wrNlVXH9zSiAubd3TkWqqGm63F1SlKXWa1O78yK9mgy6geWn7f
M0newXpjTolN9WBuaZpFx2X5NgMwX/xyMZX9h8U9oNOalwFNvw5aDTvrynPLCm0mCfuPH/T3izo6
t/gxGw9yZEUetFFoqktpTxlKYZrye/I35jNleAMmhQoskZlkM7K9MlbBJrA72DmWNfiyUECP5/Un
9USvL+QbkBRLE0x65AooYzhHAEUFisoUZR0Vpy2gbtf55qBaRnScLT82zlOQVpAmyhTwyA6Mw1FB
WlI7Zm3eE9t/dAEf2P5kHsEgTiBTpzDg72u/TKrsr63f2Ohw+DfUC/1e/tujfWDhzKSoc50kKz9H
jp/80pDur3DK2dT8sgS8aeLkSJ579Nk7pr/Zn0WlifLgGMSKQeCBHKmRIKTIZBKWlSiXqVQYI99J
CZZINFrFSiWSBWK0iA0wJuS9nO8Fs6LT41LXFpAHkAidxwWLzHM7bCZbIVjEQlt6ocdE/h3f9VUW
fib8XfwfP/zh0aNHmeSjP7l4UQzc0ByM2yTyfu05pFi8KhSBMUzCPuKlY0pJcrLORbxknOwix4iE
CEaHH4Fv0hEdb4sLqKB1IEmixTAd4HN+ZDqA0cCUwWR0HlF084HjTqyz0wlRWyZKpIlKpIYkYZuJ
1L0c/k8szRk6MZkUCDSY9P4Wv6FmnWDFnzCnvmpnTh2NDx7ryWKkMey9jFTCGIvWNimOivPHneFV
zJ0wfxPKEGI56VWdVmKVEIkkDl1FSqzkkNSCbmy/h84FL20xTKXYo2GILrPrYP+FNfu7nc7u/Wsu
9B/syiT6uc8//uXWLb/4+Mv5+T/+5p+2bP3lx5/T8QIw3ow4XqpgQFeVyjid5CqMwkmJlEOS6GAw
DlVSOlbUWlF19CQzzExW1/41F/vnurKyuub6L67Z35VFjPNffvwLcYS5g+Ko//SbP1KZ2A02phF8
lxbZUbdQOZSCfSmdKWQoEfsSOxPJRjNuNHebyUY9btR36wlqOM1hxHFcP8dwnCOhASmwwhRQc9YA
NSUgK9e14GbbsWQ5Cjn9n7OjjbU7X5ncfOZrddf+7fPPvuNcvkGoHmvJcbWMllaPB3JI8tGfHq6v
O/zTYzgOx4d/G/5451Pr0jMHn7pz59PrMtLXPUPX8VJ4FVvDBlAGqkBBoW6oHPvKO8vJRidudHY7
iTQtNm1r2r40tsCGy2PwduYgA2vpz8SZmVWeZJ0P6WdBwXMDyamcWauzlAQUkr/uKW6yhvZkxgSC
F+W+yUNdZzKR/YmzyFjzwFjxUGdtnIS6iVeocp8G/8+w8d7AUNXYA2syXjOXDzSWjyzPAS2va1xX
Hk9S7nzvgQ5jti+fWHPLksLdEiZjWXmWnHEUVCQUNOfFBe77+68NHd9Y4hg4tX/qmwNZpWNPRLDO
XthXH+wrj5xoXggOpeIhBjdmdmeOZjKNqd2pZCZpbxLZlrg/kdyhOaAhO9RzalJH2skQYdIbrFZl
47uKjxSLCgYpOEW/glEoctIQ4JFLJmJCgbQ0iS2QwEkC3EeKKwoyC0Kg4ERX0ttLccgSBBGZ1nur
I8GUdRGeFMdR7AFiEVXYJIwp+LDlMrgmrXnLsuLeZfmqxzhhw0MjU3+zs7Zl3+n+e16Z9IQducHO
cob4YwqWr8P/o+PYcGl8dmVqTk5Po8t/9P0jx3+2u6T9wZ/NmvFPkpbtWrd2ZzMv2qHfgyUxAU+s
yCc475AekBI2wZhA2HhjPLFabbFyn4LjrIpxxS7FMQWriGXaEjlOK6d2B6AVVbm7XGZOXFRkOTgX
i1t8Y/fjxN2PjWNNruGq9n1r8l5WcXrpCzKtRkEkiVUd020lm7KYB2KUdTPHu8Is+U7J9HCb2VxV
W5dUNeRLU8joPC8sXmX+KGlHFtQlFG0w7zDPmRlzhlzjl0r1+iSJ3JcwTyWIJAh6hz9BUGr8KAEn
qAJxsTEoABIlwVoREnLUWMK0nc6ojYSJe+jUnb2GQo8BMK3JBghP3AlTBAXqLjxfdgcOhQMdAxkd
LfXmWN+q9UVPPAHmESeEPz56bbqlWaZQSQ5KOY3i4P3khMjXafQIu4p9HknRtlcQbpOwkgWsFjgp
MkqRRIoJbmNY8GI0M4NgI8EMATOLEAdyihHLEolXOi7dJWWkgt7klzJaMP4IuO1y9nr0pZUujweb
Icn9y8++u591cli8f198mp37nd/PcxsKsUmOTdPMr756hllNyt/BTzwS/nr43odF+70Cv8fsJBOA
EZIELbAnMjJ6zQVMhHEoi8QtxQAZ8Arixu+dPEl1qAjk5ZCkHvbBiq6eQyx4rofVOr80KTYpLYmR
gv9Nw4xeq1GyCkNMUqKJNcpZjOJZsyTWmixjpXGGU0bJKWncKXOCi/EyBDCa2S0VpABDOTNvJpfM
V83EKDWbpUZGYdPpVCr5KWpPY1jVaXUSVici7rQu3qRr0eEWXZ/uio7RCdYU/y71MfUJNdOi7lMT
tU6tk8QZGIUEuTxe4Bb1i1ucEAV4PLDh+dFHBNWBs9THQQWosUV0myAh9Etzb77y3BAmYAakg7Eb
6GUHabEX2gwehl4eyLcZmCdqMRv+TddYZ/gb7WPtb/2y9ndY1j3WhTd2jXX99JpQjzfUMtXhNzeF
R2i8hB/ahCs3RajwyKbwm7hSlJ2XgMfxoJMOVCmkTaTMphDWZrRN2/bYWIcPofR4lQ+pZ2Gh8dKA
lTNo1eAVvflRfVzygKCLNt2Svf1TU2zSMUO28oC7fHh5toipnscEdsNc3bGhZuXsqhzyamC40pzT
8bXWa0eYlSlNtW6ZJLu03OhqLkzKXjMfvOaK4BjqK0vEuX5TaBuKxUMc3p58MJkMJeA6U7uJNOl6
dGQmZm8MUTYoFIkNXkuL5ZjlhOW0RfKu5SPLooXpt2CLJd3QQHubsGBk4Sz9lgnLrOWiRWpZWLwo
JFqS/RaLOWCL1QQkVuUu5TEloxQgE6A6R+2rszcS58EWL3na3i03G1gwr4Yl/COL2ifR3BYtWdvd
nUde7lv3yLhPfZGb3do5A9a+YaZj01HdBXnd5GNDB9/YVkSSn/z5bGH+qq11mp7R4tFHh4ZOjJVt
2KyqvWttaeeD78Ds98G+rRGxpEdIiImhSPI6ilQoAUGimxDkdfz4p+CRXIoCx4/w+wAb2VAEc6Fz
wGsrWwa8rheyd6UcSyF32g7ZiMKWYMuyMaWJOF7jUyrTsQ+lzqaSVCodsUaTCnDMDemgwuGJ8gXr
lrD2TfjbHnU/Orw5rrDDKww3pr9yQz4Sqto2+Fbvbk9ny661tWyotlAJIVNfvXi7hNw7RP6BznkQ
1jwE8lGKjp5DWYvvvSTX+vmFxfeEbrnan1LqR0id63/D9a5r0cX0uyZcxAq66HUxLa4+1y7XMRfL
uXiX28W4XOXxKj9Sc2pyVY21aq+avKv+SE04NVYXSgPxKRkMVQVXRBdguXGABTEVhC2TUZe7ZcsW
cfml1No7/7JyxMZd1xF7pJLUpCMGlcXJ2wrSjM9RbnyD3og61ePL7VplIHpnid9V2V4Q9yytVbOc
fJvyxtN7T+u1x5e0J7OwxJjeUGTtH3I15idEdChS79lnrx253WdIcRs4CdFnIKkRIiwkYcFnQCgQ
8RmsxMhKGPaG05BKIObWgk/BXjSOdtHXnuA4EAKtyAdHcd1lfJ/7+3zuL/mM4kI5LqQ+YzX4jF89
8jAex2OPhNe+E5U/apfEmMUrpE9oZjWEVRvV0+o9albn0+ttEpLsQxBWA3DQmcwQSnPQzCuGgtfh
YkQnDeIZwu1sFvfi3CtShjELbaPCyt2rXa9ct1GSt8M78oO5N+zPzRYqgu+OhbvYZLYJ5aF6dFyo
2uGec5P1Xlyv6lAFVUxTWU/ZxjKm0IYlSaYkCvVYRVxC3I64uTjW5ctPCWjwvOakhmg0CQ1Sn+S1
xatIAtYnQ2vySyQVDaEEjBLeSyAJGdriQIqVqw5oTSZ5APFSN4QgUnCI3nwKKKKRL6ZoH0xS9LTp
lvi3F0cODLBHPEey3wz4aEQcCY9MwCLDbYCZDK8+OFipXtBtWVPaU20nhvKVY/7182uczr6HxrZ8
K4ehQOcFKps/s7lbgoW164TkZO9ATeH6QF64K61hXUV8U2tK0x2d38toLrPX7PvR/nvePrJsdCC+
qjiDkTsrGtO/+sGvfsO8u+WxweycwW9umTm+Nt3Z/yhEnv3hbzB6sD30nLBLqJKDgyIsp9H55dJ4
GoIBRR7AQkKyHws6kx9jVvKw9EHZI4jl2Fl2nj3Jgjk8Lnk0Bj1Kkdhl7g8iGL5GNdLpBN44IXTF
YIewwYbx1U/Ce5/D8vBbjBY7w+9/uY88cC3yFvxXENM4QAbz0Iyg36rdpyWjMdtjDsYwxAwBtHFh
8ZJQDIR5Ng/n5Xn47N9JHBKvCqtUul0S0CEscSi/0KpaVOMq5pjqtIqoVO74L8zI/QXdwAhKh42j
Rz69FA3oSyMQsdcjGo3I1hWK9qKQnoXRPbOZIqJLQ04TjXuMseXYxCRWb1rhdK0Y9HgGV7jogQ6W
v59TnWXIrFmZ6VxZnRHoeT+8KjswXof7vKuKEshBklDcWYX7fRMtWYdMucuKws+UrqnPVhBFTl1v
WfjpDd2HQMancRe7ivlU3IdmoVhG5CzCHJgKyYtWdhd7gj3NvgGsFvSxfha96MYB3I8nMBuA2ywO
4fewRBtBeLBKl3ML3QQPWAQKFwHowUXxYhLzK6br/vvD6P77Kc/pWW6TZDUqRx8LgzOle0vJYCkW
SgOl5I6CAwVkUwFuKugpINOuPS4izd2auy+X2Za5P5NscuDVDjyox0Nq3KHGdJvIdtlBGRFDzTvJ
IUKKEvLGvHwfT3gejRkEA0YGbKBOv8Jk9icYEgyKyrSx9HTlGI28rkQiL6Ioip9KSOCy09LsU9ky
bkoiKOeVhN6uAjJQSuLFoGtLBBSIp3bifkbP8ADsOWmhB7yvrvSWw7w/f6hXRA8RnLgwciqVBu4g
chQMliu65WyTd/vZ6d0vT5fJX4txLtvceODR+uHtnvXrPGM95Xvv2Xaf6hVl4M7Hurc9t8njaBxf
1va1diee7Ll3qKh648FGXcmamtSd2+tWF8Yejy/u9m7YtmNc0zvXk1PSf3dj8XCnoGXlFas2RGxw
Pdjg/aCHHLpfqOlkcaOmW0Ms2h4tkWuxg+mAMIKJZUgGHoF4Abdp5domDhk5DiB/GyNnmqKxhpxM
cLMc4SirkxUaP8fpCQ2aiJZoO+S4To6z5GVyIkf0hMnjAZ5QG+7UUZAFOoG+u19CPcZ+MxdxHDjK
OZsdezCEfFVMMfaQH78fbvkRVsXojTqp1GA0xWDjWwAchFhvnddk8tZ4Y8n3rstXPcpGR4W1UXUe
lVFJYZbFrY4j9YYOA0kRIMxISUFjJkeqzTrO8wrBhJHpouk9E2My5SrHriowFRISERHHFM8nTI1n
4IwMLnXKJgUpWZKMaDAuygOVi+jZjIiM8vNB313OJYD0Zw53xVcBEAIA4KcH4MmEbRJ2vn7n+NOT
tZq/UWbUB/2+ydbsrBVb/DnN1YVxIRdju7Y3yT0/OPrsVgGfH3rhTl9Bzw6fKaOp3O4MzDRWDDc7
uUSHkfz83vAqR6Gw5Tj1ZWA/ljN/A3aO6nm6YGQeIEQue8AFOECKpRCtSSFYo/GsiHEuRw+97IyH
XszhoxmXwqYjmZeY5WTXtbvJrojsNIPszAKfZWiZkCfTYJZoWLxaS7zkGDlB3iDvEmkL6RNPHN8l
H4FRB4hDYuSI7ZMwWA+e/HK+iFqp7fiBE5u55R/DoJHzRRP52wvheraAfe7LVexzx4/T8Uww3gLI
ahZuE7jp5D3JxJfcmUxSkwuSSRK11MsMZv98Eg6K3phJTSpIIjSQJIk8FJxIxBsT70w8lMgkJeYk
ViYyykR8p+WQhVh4EFQND+KQoMnSlGkYpQaraXdW2p0aO9SF6hn1XjWLxW4wzsJleAdmEK0zAc1M
gKALEcNIEdbgNi6Wa9JqjFqtRo3bEmMTm2Vqo0wN6pJkT2qWYaMMJ8lAkzLtmU1ZyJiF7LJYRmvM
ms7ak8VkZWVrs9bLcL4ME1liYmxmFsdotfbYmdi9sSRWjZFGVB9QIJ0HECk9a+jr7XVhCvp7Iarc
T7VH1CZzRJ1uU6o++moq+ie+pIq8qnKKmsbk4vS0dClspIyBXTeA6ykqrsLFBiBxXGwcxREQmv7n
28dijHKlHP6Mivt//OrZXrCRMUpIyfZ/d7fUIFcqYlQqJhjC/81SzzscjlRrgzWcA3r6uLmjf01S
Tqa90YifDa8yNtgzc5NX93XGE/qbJAbdBXrbAn7BgNKRE20X2op47NN16ohP3akmjbJuGWlkuhnC
ZfFZRMgKZBGUibMyszKT0ZhgDBgJMmKjMSd5PKKyLRm4JaMvg2RkZtrjp7Qy+xTV14iyvnMjtKMg
nkb0vVuuh3dGIr63w6CgelEpsf72o0ZHocfEtizf+/L64bP3NDXteXlD8Mye5lczQE+bp1syMlsm
GxsmW5zhrk/Ik2+G/8dTDQ1PYsWbb2PVCUE4Ef787RM/21lQuPOnJx75yWxJyexPUv74x4hOfSu8
ivl3EY9MCeqtKftSyGjm9syDmUwilbZKCHJcZrgp3Q7scAAc0UkknvgWwOfHgIHQXpn2hdbhcrQ4
xh3sMcdpB3E4sPmLeIT/HCCh8gMw2tVbGkUjhkLqnigKKS7MZURcAo7KJoJqGtCZRBgJRuxb7/e0
ZlS3OTPbajKNWdU572P57fAkvOpQ9wbcU9ZblwObkV2/phSvLlqWazqU1TLhC5+s6iwWMUrRKm/4
8brxQHYEcw+L70/qkQKpUYdQOCrdLj0oZXbJsVweg8fV0nlyksBHqxrnIDZB7FSMRKuyqlwAwFiV
CiulUmymMcLSK9nrbwwiC81z90YMDPboPCY5tjHPvXxtktz5d+fD82EV/hx7w9/F3sPMjq8OHGVq
rzWJezIPc6oAuUxD+4U1M9K9UlLK42nLHgvZmrAvgWwz7TeRbbH7Y8moAm/kcDeHJQk4LS1pzBrj
jSHjMW/EkJgYlKEfMxhQf+oEBNNMauq79AeYNNDS69VTZhlOnULmSCTvcYmb46JvXqJoH3zILcDC
U1glufU9sggeWJnNNJ89/+TTe9vTGwbKi3p92bIFuTD+xIbRb81Ude5/6vgsT346M/DUvXvu3rus
YlWpJbmiu1zXvC9Y5u6d6177+Pzu2bt9X6f7cAR00QtrTkUl6Glh246YuRiyQzYnI8P8Nn4/z4wk
3JFwIIGpL+4oJvV5HXlkWc7qHNKU3pNODMBgj44xoDGv45jjBAghe9HxHpXEpDLlmELhGruUdDWJ
vJuEURKXRJIKpgxmwRDrN5s1WVMpMs2UZEI5qyTXgVfUvzo9Ue96gyuem5mypLXXI6Him+OgP1Fg
1uvb851trbvX+2NPJW7rWXZHRx42NfZuLOl/dFO5947T45/+7vuOxo2+6hF/ut03Up8/vLKQvHEm
/PtXe20AqS09HXV7vn+3a5nHUrfjueDIc3fUhF8ONd4zWJ6zcspXM7UqP6U2CHx8EPjoj/LxBeFr
O5g5hogv2EeYO5gDDDNs32bfb2eGU7al7E+JsLM2b+XN7Ey0ZFsqLIxpzGhEY6cdWHBg5KAMZRyO
siTX2LziZASkXFJcVbCKrKlxHnM8TyFwgXlKe8yETSatrCBq/KLvoKmTF0NKMRjZsuUvvodesoA3
DroiyT9hp7986vnxOxd2VNbvfn2rf+fwirhTiXe2LrujPSfv7FT/N8crXk31b/DlDbV6Mpo21FQP
+9PwhaEXvubrPfXFQ2cwt9CXXDsWsPa01u/727t7+qomT26snQjk2KrXVfvvXlea0zYdsY+PgS7m
gH3QoEKBk4xJpSo0rlRySMVB7EXRp9Jo9quQakotlZhFiIFFiOlawjRSBTHZCxJIMYAMNqf/hd3N
5wP7QgPXrMwx9rW58D+H3w3/4MRjuBzn49S994pn21dBIX6BnWBgEwQV8wCdBmIl+FGEXJFjN/rO
ykZjzauf0PAycvbyMruKfQwpUaPgUEawkRw/L0gBiykYQlRqyJBJNG4ZliH2RbnkJfoqLP8HvU5E
cZDYbd/aXk8C5N0GjXT0pQI5fV+4Cz97H36W9Ifb8amv41Ph9q9H3qUy4W+QV8T5lgrpchQPYihG
1iQeLCel8MPkQeYRV/RcBx3Hj7LoegAdDZ1p2MyIMTP0RqNlBjlBlh+XLEeVqAX1oc8F89SKe1aQ
7a0HW0mwa6ZrbxczuhKXOjC/sPhvL8k1/kTxqfLnLixeBdel8jv0WKqP1RN/Y7y9scpdhd3luLw8
r9G9MYBVxkTjJiOT0bTSyFblBAokbPxE1WzVfBVTVeWOpzvr5Qx+rxvHu+PdA51+raCM82v7cyZy
ZnOYYABnBrAkUJDDKtz1TR1NwSamyejOWCnpqW1NZop7WpFCfNcI5hVgUq+L3kDIXc6o83dSNdDF
lYr5FLLTOxdRCSd4RtyLxEtC7csNu1Iceft8PXajkQoujgMERU2Q+PsffF1RYiGKoRhLg68rjTuz
ubYsNrGhc7h882Pr83JWbKzSWkwq56o93fVbO911k/etsFbVLcvK8hrvTViV5xzISHCbzCXh1805
Qnp2Y2FyWpywpSNvWffjNR1reWGgOr2hIk9lsrsS4vPTzGXr5wLLdw638ol1jc2Oqs2tufa6IaFh
U6fPVjTU35u76gfbnYd+s7bII5PvVyrZxpSS9Nj43Nqs6mmnJb+s4asfD/1yOvcbwYI1demG5LSI
f14Lop8H9owitM1CY9Q/j7Lb2YMss8yy2kJkjjgHWY+2on2IkTsfUmRkJKOHaBhuyEl6KFkhaI1+
hcKe+c2M9fat9n12JinJ/JidReIPq0CfwNBjVySeisCT3hvBk1Rmr5Ld7vcwRWJ5jqqWthZvOj5N
0qtWBJZXODKXb66rG2/Lly2olu0MTWw6s7Pu2rE3md/Wj7TVlJfXrSyuXd9aTYnC4vbS5LSGYJVq
9YObKt29B788/9ZbYswk6n30jCpV0EslUd2Xx7CPSrQR/fcuWQBPfsQGMBE78IloCSLHTbRRTXgV
cKgMWdFpoS3ZrNX7g/oZ/V4905jUnUQYGn3kMJUMcZJyQpBf1TiD9iKShtYjsoHbwc1xTCPXzYEi
m0fN280HzYyZo8dS1pgYXbKVs4J+vKrQ+a1Wm15HtU2hE5Rav263GZspblSrOb+Z45J1WlVAIuJA
D/DWSRWgxEOD8BIKmPSl9NceNDjvFV9g9johDHfaxLeW6YWiRHvx9Xjc4CHfdQTW3bEipYw3uHUt
h9z6cNZFHKPkk+MIE5dsVX11Yd03x8tZ2X6G2Xp3Huu6ttPSsrxKrqxsakkid0fs+RawKVtBnjLR
U0JOaTr2JXUmrU9i1ifiIgbzVreV0J9WkZNWbLXyQlKqHwJ1pTKkwApqEuqBBwqFk8oaQT1uk2AK
mBhk4kzE5EvoTCCOvgQI21lOwSvcin7FhELiVswq3gNXySoUIkMlfZwB+EHh1hYxlu8V3SL1GM5e
+ssXwB2QMXldCG95q45v8Y/iD2FwWUb7PWu8wZYy04nEtulH1x95Z3+1sOdHc8GHxpfHP6staByo
6N7Vlkaeu+fHh/3uFeuLqn17R4XgAiaPPYPx6Z7i3u011blddVl1+/8uonNPRDGxCsWhAaF+huwl
hIoEmYibjSPGuNS4oThml/aYlli0Tu1GLVOgxAUKXM5gtBqpT6qJWh1vXB35bYuhT8YY+6T6W35H
cvlPcZRNZ4t6eSfWAXxig4GHPjwcPoqLH/uPZzoulkyemtn+xM/+noSeDS9+u1tSv/yJ/zy1/+L2
0i//AytEJUFY98me3Dzcp634Alkj/9fy7uHfGJb+92LxS9CIf4BIh/7TC4lmYvo/Gdcevum/PjC6
9YPZd1AdmkUvoW8tfonmIOyZw504gHZDzl70e3QBTeMVqAhSu0EozkGLQfDF59Ax3I9+BdQsqkez
2ISakQndhb4F8cY8OoIeRI+Btk9DTO9Ea4GqQVuQ+CMPlI3+GXfh3+IwmSXnmUSmHQDcZyCxSNIu
OSX5SmqW/kjGy56R/WOMG74/kMfK1yuMii7Fz5V65c9VNaq3VX9Q52qSNSe1vHaD9tfcAZ1bt0G3
R/c93Wf6q4b1hsNGs/F5ExtdaQHqpw5Z3HUOuWD7EJPDxEEe5VAi7rzOj/7rvMFICykcbSUDpx6h
Aa2AEY7QLNSZj9ISwE4norQU6BejtAztQK9H6RiIpAujtBxpcGOUVsIcVl3/z7FcPBWl1WgcPx6l
NaiKcDA6ZuWQukhWRGmMkhlNlCZIw2RHaQYVMGVRmoU6Y1FaghKZw1FaCvSzUVqGPme+H6UhqmIX
orQcJbKXorQSlbBfRWkVWiMpiNJq9C+S+SitQXdJx2rHJ7ZPjg6PTPMZg5l8vttdzLcFh3j/wHQ2
3zg2mMtXb9rEixWm+MngVHBya3Aol29urKlvq25vbFnBj07xA/z05MBQcPPA5EZ+fP2t7ZtH1wUn
B6ZHx8f45eNj423B4ZlNA5PVU4PBsaHgJJ/D31bhtmRncHKK0nm57uLcghuFt1X930wCZj48OjUd
nITM0TG+I3dlLh8YmA6OTfMDY0N8+/WGLevXjw4GxczB4OT0AFQenx6BeW6YmRydGhodpKNN5V6f
fu345MR4ZA4rp4Nbg/zygenp4NT42Mj09ESZy7Vt27bcgWjlQaibOzi+2fXXyqa3TwSHglOjw2Ow
8NyR6c2bmmFCY1Mw8RlxRJjNzSzzjY/BxmyK1Mnmp4JBnnY/Bf2vDw7B1CYmxzcEB6dzxyeHXdtG
N466Iv2Njg27bnRDe4mO819rjWpB+ybQdjSJRsGyjIC94VEGWKBMeOYjN3yLgWpDQTQETz8agBrZ
QDWiMaiVC1Q12gRf/qYepsRUEJ5BeG4V29KazdCqBqxZG7RpB7oF0V+ijYr1B+CahtoDUDeINsNz
Em2EvHHAE39t/GZov04ch5bQ/8Mbg9Ll4nNcbDeMZmB+tL9qGGkQcsbEMSahXo44q7/Ww18v7RRL
pq7n58GMKMdywS7+uZZ/vdf/GiciPB8We5kW+47UHBX77oAaK8VaAbEl5cK0ONqYWKv9z4zYAiOu
h/aUZzdqDop9T0M60vM40CNRfm4AXk+KMxgS2y2tbQpG/lPuU9mbBOkbv4UPK8XZbRXHXC7mT4uy
RMtGxNQEKgNP40LbxG8u1Lm158Fov7kitRlq/p+2mwbNmBD5GBR3eRjqRnY8V+xzM0hWc5RDY6K8
Uw7N3LTGCG/+kpT5xGdEYzbd0g/dWfqkbZdmPxWd/3pxnAjXJuA+DnwPitzOFXOHxTWOwh6OAnXz
/OiODUfzbp/N0lxuXc//y7EjuAKF7SCdf+YjDMkZ9hr+IpBh/b0vw/o7X5b1qq/QeuizRz974TNm
45VDV8jrV/BTV7DlSs+VjVcY9tO6T4niE9+i9b//Os368a8rrb/5dbL1V//qsyr/FQv/6ou1/vKS
z/r6pR9f+sUlRrjkKfJd8pmt57ERVWE96sAGQVXJdHxU+WHHv1R+0PF6tRzHAkRoh/sQXGTxIo59
SRXr4xdw7FlM0HnI5GgBNp39oNK6gHXCILNo5T7kPxQ+DHw4+2HoQyn/QeCD2Q9CH7DaD/B7Jo+1
74fjP9z1Q6bvzfE3d73JvPE9/N1AmnXiAuYvuC9cvMBMXJi9QLTnreeJ67z3/Pj50+c/Oi8592Ka
lV9wLwQWJhZmFyTi78UWDJk+7lXMvxp4dfbV0Kvs7CuhV4j2Je9LV14SfzzjfN5vnQ3Nh0godDH0
XohxnfaeJidfDL1ILr743ovEdcp7ipx4AV98/r3nSbUWa1E+1oAJQXDn4OLhmoALQBrmBBMOHO8/
PnGcefiBNOtDvjSr+0HhQQLzeOmB2EQfnU/WAxqd7xuWRav2/tP3v3E/I9yflOcT7o+1wE2l9Wnv
c93nvW/XfVfuk2hfwypAZiqBJ18/kma9d+Wi9aN57J7H1nnXPBmf3zVP0DHuGH+Mof3yx8yJPv6o
+yhpOdJ3ZPwI4z6MtYeth12HGeEwZ/Bxb2AlTFaJ3HAxsEHKs3G87xwlhABn9B3anWY9uKzCemB/
pXX/ngrrvmWL1hN7MbeH3+Pew7jvwbt2Y2G3XOWbgm0YB9kagysBmzviPeYOmYfpkMKG9kNZH1zn
Fi9h2Vlrmk8kBKsh0bd2td+6xpdn7YHnanga8vUdEsx0sPlMxwKOecVSYdUy+ByOx+azhVZhAR5x
Gb4FrBAc0GFbwGK90rrYSoTWwhKf0OrI8L0bwB8142ZfkrXJ57cGFrBFWI2XAcsbYWJ+uBrgOu3D
H/mu+MisD8fmmzp0WNvB5Ws7CAYZRhCUar3aPu0uLavVurQt2nGIwj7SLmplXsi7omUAjLcgfDIW
S/ACnj/TvtLpbFqQLbY1heSBnhA+EHKspHehdXVIeiCEOlb3dJ3B+Gj33iNHUE1SUyh/ZVeoP6m7
KTQEhECJWSC4pDOxqKZ7anpqesZJPzhKTCGnc3oanmJCLIELOZc+mCawc2p6eiqaAy0gNe2cEe/O
qSmxIRZbIxgAup4CiwoNpp1TgPfpA1rQAaElBnMGbaDuVN+UOLI4BjzXTonDYiAQVJieikxkyty3
FqH/BSWZvy0KZW5kc3RyZWFtCmVuZG9iagoKNTQgMCBvYmoKMTIwNDgKZW5kb2JqCgo1NSAwIG9i
ago8PC9UeXBlL0ZvbnREZXNjcmlwdG9yL0ZvbnROYW1lL0VBQUFBQStMaWJlcmF0aW9uTW9ubwov
RmxhZ3MgNQovRm9udEJCb3hbLTI0IC0zMDAgNjA3IDgzMl0vSXRhbGljQW5nbGUgMAovQXNjZW50
IDgzMgovRGVzY2VudCAtMzAwCi9DYXBIZWlnaHQgODMyCi9TdGVtViA4MAovRm9udEZpbGUyIDUz
IDAgUgo+PgplbmRvYmoKCjU2IDAgb2JqCjw8L0xlbmd0aCA0NDgvRmlsdGVyL0ZsYXRlRGVjb2Rl
Pj4Kc3RyZWFtCnicXZPLbtswEEX3+gou00UgaahHAhgCHDsGvEgb1OkHyBLtCqglgZYX/vvwzmVa
oAsLh+TM8JAeppv9dj8OS/rup+7gFnMaxt6763TznTNHdx7GJBfTD90SR/rtLu2cpCH3cL8u7rIf
T9NqlaQ/w9p18XfzsO6no/uWpD987/wwns3Dr80hjA+3ef7jLm5cTJY0jendKdR5a+fv7cWlmvW4
78PysNwfQ8q/gI/77IzoOKdKN/XuOred8+14dskqyxqz2u2axI39f2tlTDmeut+tD6F5CM2yKm8C
C1nAVrm24EK53IFLxhTgivwMrskV+ElZnsDPZI1ZM0brvLB+Bt5wvgRvOa8Or2Tda6dsN4HzjDW3
YPoLPPPo/wqmf6Xz9K80l/419srpL3DIo7/WpL/VOvSvcJY8+tdg+tsXMP1rZfpbrUN/qw70r3E/
Qn8LB4n+OK/Qv8R5Jd4/9hL6W3hK9Ed9ob/VePpbrRP9cedCf6v70t9qTfoLzij0F/gL/QV3JfQX
zY33j//ORv81mP419rL0L3BeS/+i0CaM3YZ2xHv5anPT3bwPLa6PSnsbXT2M7u+7m6cZWfr7BNvk
4rwKZW5kc3RyZWFtCmVuZG9iagoKNTcgMCBvYmoKPDwvVHlwZS9Gb250L1N1YnR5cGUvVHJ1ZVR5
cGUvQmFzZUZvbnQvRUFBQUFBK0xpYmVyYXRpb25Nb25vCi9GaXJzdENoYXIgMAovTGFzdENoYXIg
NTEKL1dpZHRoc1s2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYw
MCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAw
IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAg
NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgXQovRm9udERl
c2NyaXB0b3IgNTUgMCBSCi9Ub1VuaWNvZGUgNTYgMCBSCj4+CmVuZG9iagoKNTggMCBvYmoKPDwv
TGVuZ3RoIDU5IDAgUi9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoMSAxNTM2OD4+CnN0cmVhbQp4
nN16DVhU17XoXvucMzNnBuYHmMPPIDPD8D/AwAyCCMgRYcCgAgIGUBwQUIgKw49/MakkMTWiVvNn
vLWJtvW2t/mpg/EHm96G3tukfTcxmjZNbq9t9aa2SW9q9d5nmt6ow1v7zICYpL3ve/d93/u+d+Cc
s/baa6+99lprr732PjMytKmHRJBRwhG5a2On/+1TP/sJIeRNQiCqa/OIbdfqS/MQvkwIvWetf93G
DM/FPxLCZxOiFtZt2LbWuPjTpwnRFRCSfKO3p7M7rrzVQ0huBvIo7EXEluDDaix3YDmld+PI1j+Z
Fx/F8k4sH90w0NWZ/dV/eY4QVwqWl2/s3OpPUEfxWN6KZVt/58aesfVfehvLhwjRdPsHhkfeI1lT
hBTdYvX+oR7/CeMnVwmZl0gI93vEAf6xKwJBFStTjhdUao2o1UVE6g1GU1R0jFmKjYtPsCTOSbLa
7MmOlNS0dPL/7SW8KbxJHhQeImayTXnedfHzSQzZQsjUH1jpzjN47/9dKTTKE+IhlXxMPppV8UPy
M/I9EiDnZ1NDOmQy60EUuUJukNf/ElfkZ4UlCniJvE1eI6f+Ah0l34Hb5J8hHv38DEIMV04uQjvK
8zziNpF9cAu2gZ0cBaNSm4+89cB/Aa8ymCKXUbqnyGXyFFSSy8IwF48V/0xfI1/jHqLnyBso8zK6
D3FT5D3yJuRBFRkmJ8m3FAbD2N++2Rw5Qr5BDpFH7mCF7wa/LzxETxPT1J/IafJ9RQM7yBjpmGl0
Hf4IB3BOxoMGpm36g+lKdQ13Hz1N6e0nsfA4WYd3J/wCqfdxCz8znOeDA8FeEMiTKMH70ED2I5fv
Bs8Gj5HV5Dj9OWkm/4FyVwom+A4hclVrS3NT4/KG+rplS5fU3rO4ptpbVbmoYqFcvqCstGR+8byi
wrn5ea7cnOyM9LTUFEey3RoXYzIa9JE6rahRqwSeo0CyqxzeDlsgrSPApzlqanJY2dGJiM5ZiI6A
DVHeu2kCtg6FzHY3pYyUaz9DKYco5RlKMNpKSWlOtq3KYQucq3TYJqCtoQXhfZWOVlvgqgIvVWA+
TSlEYsFuxxa2qrjeSlsAOmxVAe/m3rGqjkrkN67TLnIs6tHmZJNxrQ5BHUKBDId/HDIWgALQjKr5
45RoIlm3AS61qrM7UN/QUlVpsdtbc7IXB/SOSqWKLFJYBlSLAmqFpa2PiU722MazJ8f2ThjJmg5n
RLeju3NVS4DrxLZjXNXY2K6AyRnIdFQGMu+/Eocj7wlkOyqrAk7GtXb5TD+1d7qEgJBqdNjGPiY4
HMfVP9yN6QxjVKnGjwkDvajesTGvw+Yd6xjrnJgaXeOwGR1j4xERY/4q1DCpb8FWE1Pf22MJePe2
BowdvTA/PFjv8tpAdMPKlgBN9dp6OxGD/+UO+zyL3dQ6TVP/l6oJKgLVgTq129nA90zIZA0WAqMN
LaGyjayxnCCyy9kaoB2sZnK6xtzMakana2aadzjQmrWNLWMBPnVxt6MKdbynMzC6Bv3pPmYKhzGg
/5PF7hiLMtmKXa0KrQ2lWtzdZwsIaagWbDW7AXoKazJmVAr6P4VeVy3YQZopylbsQDaMT5WjqiP8
v7k3DhnYcrIDNc6Q6ZtaAnIlAnJn2EZV43kubNHZgSbqq1TMF3A5/IEYR8WMPZlYVX2NLUqTcLNA
zKIA6egKtwq4qipZz7aqsY7KkAiMl6Oh5SzxTF0eL7BZXvaQAtJayYilRehXaVVjLd1rA9YOSzfO
tLW2Fos9ILeigVsdLT2tzNFQQ5mXsTu70mOALmpqqW101Da0tcwLCxKqYOz41KrPsHG0WEJs0OUC
mlSNrYVauFYkNCLC5kXAUVGKz4A6VYO3ERWuYJmrVpTaWsBCpqlRjECmraqnMkzHyncxFZg7LaqZ
5qZiReSzqMZib7WHrpxsitW2cMfYQsOUWjNdxaViJEAcRTYKiukyjvm8rcXR42h19NoCcn0LGxtT
j6LlsDIUnYdt1XRXaZayUE3EjtXTBabMgNdpma3cQLVSninWfKZ68XS1bUzjqG0cY8wdYYYEJV8c
IMyF5XkmizL72Xx2eDtxEuOMVubz2Lgss7ncy6btmGNx95ijsaVUocYI8qDlftZXFKmF2qaKnGwM
ZhXjDnisYVyGxxrbWs7iaml7rKnlBAW6qKOidTwF61rO2nCtULCUYRmSFWyswDgtx4JGobeclQkZ
VWp5BaGUuyaAKDjNNA5I1wQN4YzTOIo4PoSTFRy70EpxvahjjN9Vtm5mnwdae8c6WpmPEwk1gv8Q
AMcC1I5jwThQVURA6+ipCOgcFQxfzvDlIbyK4dXoGSBBTvb9Y8Yqx8dxOWzVpKQSH91CMy7eapI7
DsRVekLNJ191j6uEX5ae4CiCZJxjaIGhT6hVjlulJ4DhPSa7KdVusldSWzAFDgV7heZPX6jkzyl8
d+Pqb8Q8TU/iybKzJGLqz7JLJEsNK4klz9Jh8VtGLbzVAjHqNpsmT0M1Kp8rBmJkvb0mJkYd7RM5
dRQpL78aVexytl8FV/tV9+Cg8ddX8/OIE2L01IH9muzuJCoUpDHYvYAKxrIv/cOjwW8Ef0G37Xr9
4fLge488EjwPxRW+8iTuH1d+5+GlQRRo4eZjvRsHg0XJC1hmCGQXChvk68gcsvosMUx9eFLUkiXm
ialJOVGMqDGbrTusR6z0ghVcVp/1uJWLmOO9gM2Q4OWUjBr2liORkMTXR0QZ1QbMS8vLyz0osRPl
dre3D5o8LieT2mMqyKXp9iTO7FnAedxSrDkXHMkqs2k/cJRCBOV5jjdnFdeXxOdHWorS+jZxpY5l
1cWRESXeKnNJ+0KHqPpIJT7/7dtXmX7rp/7AP8kvI9HEQVLkmJhqktqR6k+lCdXa2DqD0VonSKT8
ajkKcjWkN0Vrybl0bsEC6gkrDruPScLSAso/WTX21u6d/7Tbu+ixt8aeeOuRsuC/fGnrAzsdclvh
gs6KZJr0wFtPNy5/6vyD284dbGp6+tz9P/xu4NXOvW1OZ9teJs+u4L38fr6BpJBC0n6WJE9dlhM1
ZClnw0dq9XnMaymZ558HOYkm74UoiAorkL3lKE1ETVRGXaLNKBlMFnedlsnuuTpbkW4cxKBifef0
QNIdqEv0goK0sFZhZlh6OjOu/flrn12f51uxOEEFqObgBwIHJipwlPec2LTuYKcreNE/kNW4MDNj
4fKswqbiJJq8/cLB5picxYVCxtyS+GAn/2+ND6eoMwrmmdevanrq3P1nX3Y07994374mh3PlVxQf
qkFbWNGHSsihs2T+1IeyFj3dbmSeRCemritFt9ea5c20suF642011kxrptbsVfRShyzK6ssgryxQ
RuUycJWBzqt1mwVXQ8pPs8CfBdYsVxbNykoxGhsEo86mozqdoiJXu/Eqe7bjO6q4GG2NDjdk/HX7
ICu6XE7jVSMqzTlLaUVJHNPLXOaMudy0M8Sqc7mwN8Qmcbx14QMnh9d968Em8ycRWQsa5+Y1liXn
Nw8vrNzZK5eOvDDQcmhrg/E/1SlzvVnd3Zm168pqHx+sgtJlD9zrSqrqb0jNmZek1VnyU7PyrbEG
Q1bNQPPSbc059ur+ZQnpniSdpzQ1e47ZYHTWblZiRSnqbxR9eS5Go92n8+PECLLEyhSXiopTG/HB
xYk6sqTQrfMmT2ZeyKSZmcneV71Q5wWpOpbpNNMcVxMbW1otyJHGGqFouVabWG6VXNIOab/ES5Kp
IdGYXl7ndhFUm9t91V1+FdVmwujCHAxh59X2QeObbqZQt1vRmFMIT5ZyYMpiTqVOZTM3iZpNincV
mfWotLR0hx6i1XrOHCMpmoXdy7avyF008rWW35szStIcRRnxQvBihDz4twM9z/XPV0c7Em1J8RkZ
OUn39WhV847/04GchrKU6pLClrLkGGfj/cs6HmlIBb6opM5t1jtKcvTVm1a43F0HfMHNaaWZZtUh
lVbF9/b0+KlIKUb74qW1ubVrPOhE+9EZ/w53yRypkvPA+yoFP4VLuKIJslAv0KNCQKA7BOgQwCrA
NQFGETEpXBB4IErcAvQevBQHYpONBfj9EC+8+WmB4ufxU3+kjwvzSCxpkj00g/l3RIQPw3aMVu/l
1Jwg1HE+boDjODktu+YoB1ykUIfSajQqg6mOKAHJ4zJ5UMcY0Z2DYRi17nGhzoXktLkmx1xPkcfs
MTtMTJ2FqGOAYw98efczLYFz50rLE7ISCkaidu2mX/pBMPiD22/V1WpU3zWZQmtZE/rRKhx/CvMk
OcsqpHov2cEuY5yxF/mLwFU9qb+gp3l60FtJVl1ctDG/ThAlZewYbvAfxRpk8VIJOfl5dpwhaN3Z
YTPWU5BWgHLaUb5YCDuG2cgszy2hgsDx+cfvX/t0pwvjzoa5a5oq4ygAxKto8DcZCxudhY3Fc36V
1VSRqcksKDT3rWw6eG7b9reebpJyazzadHdhPOy5aavbnkwd6/c12rPa9nYFD6SseJxMr1V8N8YZ
B+k8S6wYYdMwuBLvZcd1B3WkHkg9mkr9yiuQej1VuJYK8RHeC5EQGY617C3rMdZGxqvq5xijDZFs
5G5cZT3Ty5VieyXM2k3TYzPZZ61cEPJ/bklM7j1zPY2l9uAHs5av4he3rNnVnEZ95X21WTmNw1W3
v8/VOO5ZNDcyYq4sSw/4Zf+hltsNynqBttqv2KqALJVjppeIQn8hSNoc7wX0qrDYMcoSgWtsjLJE
mInJ/FeXiDvrAwJq+wJQjKVSq9RftEQUhleIjhU1CeyIjQavcQLEo82ArRC9Bztzgxc3DDqbKjIy
5Cbn+hFq337+mSYcfqG50JOhcTzUyP88uMZWlpBk8Xc0Pv3mtokTyWx92NuUPI4228F8kp+PNlsl
51qVNSFG572ELsjcUv9FVgPvteSpZJqsmAvHnczMJcWYI4jhjrnaryrGYgNXciJTeMFTBotuOtt1
TXAoJnexYi4cGcdB8AYIHCfMe2lL52PNafz821+fNhitvDWRXDttsO1+eeBQCz0ezjdyMEYnkXRS
dzrem5CQ6jUyCdPTnTXGTFdmXaYvcyDzSKaQYqoWTMtTUiTrcq1RaiDGeIiPV+KuslxdDQVddDaU
HiMvWkyYNb/mgD1klyJBz3Es6Npzgd6z6ZWd3sZ9E2tHT40U3r4nrnBF2T2rY0CMWrjh68PO2qJk
Csc0/TFV+36+//A7j8xvPXppl6ZyU3N+eUVsbu+9xdz4nPJu7yOP4DjuxEg1qZMLQfDSV1XgV8El
FahEWawX6VExINIdInSIYBXhmgijiJgUL4i8YODNpBGjJQayu6Olm5kheq7dDKGYidMinr99/vxN
jp9/83X0Awc6/XexXwu59yzR4tydw1zh1TkwOgcsFp8BDIZ48FIVzqM8jNhMs0ZjdA2NbojAWV8X
LxggFKbcLKe7O3a2D4ZcwM6iZ0iR4fRSj/r0mOEXwQ+fey6p5v6Vee2pUTnR6Z45ET/nHri1k3vg
B4ML+pZla1WneMFoy7c1/4DFGWbrIrS1jRTJSUavwWDx1iVCYrJULUTXaY1GrVG2oNBxoZCO/WNU
NzKbsuDxOYvGCqFE1xg2Kl3+0A9HZe/OH27v++bmxfrgbyM6WgZ7f1W/IRIStNXbXoypf+LcA7t+
9viSeZ07l+gbu743Hhzr6Y6s3d1XHlrj+G7Uo5XFQCEcA7Xey+J1kYr2A/ajdupXXgH7dbtwzQ4J
kvdCLMSGg0nsdAyMjSOxotlqrOeMbAzlnvLPx0CYDnd3BUOcX+iVcCwc7IIfzgqF8ZSjwK0JB7rl
dPVMIPx74c3getvC4tzIUCzHtUrYLxwkmaTrLMmY+rOy78Ap/2e5iEGWVQkJwiqVM88JqSvzjIAZ
vZEabT6zxWLmbUKeQG1Ch3BUuCxcF/AiPl10yBSDYVu0Y4DAvF+xhtOZipGB6d6RnJKGhokqTAlb
hpuOhJylcVtrSTSAtfvg+b1ngjeONze/COoTY+ef6UoM3tLPb926ZP1Xu1yu7mffcS3pyO9c8oS/
auM/QsSRvwXtKz3z+/avqM5plNOrRl8e6D+z8x42xhXk63wrP050pEHO1umBp3oDJso0iuNFeF5W
URoRSfW8WtDnqeGA+qiaqgn/kiicYKHd/Xr7oJPEGZf+zhQFxS5PAmJ8q9udwFAY5U0Ok32u3YQ5
ipn++P3gIOx/H56gxcFeOHSZbUYvh/RcgnpWoZ7LyMazWPhQrgjl5mRpVlumu43l4VZtdBsp17UZ
tFZtndanHdAK2mi3kONLwZSbN/qUlDtPx+XpZCXzjlYy70El9Q7n3e3o+qGUezrjnlmFUlnCXRjK
t4W750RI87FJgqDyPvnb5/a++zc+M8yJyG3YtuLgEfm+sdrSrRtXV6U3Pf3W/WOvPbo0Kvi+tOtL
y9aVJbjbHqyteHjz2lonHOx41l/mXvP4apdrWbF1Zef8e/JsBn1S1vzmoaV9B33ZzpZHW9NXrrLk
liUXLMqxGvXWrNJ7t4Z0g3t0/hju0QWSLEfz6no1cG02kodREhcJH4liYY6Nrd34VigZtJt3Qzq9
ITx0s+sKtjfinq8X1za2Bz1L1JBSHog4Nx5lKA+ABwIxroD5XTIeFWGKCpDivPzUaDvgKuxITp8r
YSQoLAew05pPIS3Y1HCv76s9S+Y2ywmezKhgE2T+O7f45r7XlrdG/kQTZc5am8e7mLyxKO85lFdN
8+Qdaj1QXq/jYWA9DzreyW/n9/CHeaFEx1v4lfx6/gX+FV5VoqDf4C/yggVpSpSa7Vj3EX+TF3lo
e4NepB9R7iQFHa2lK+lhyu+hr9A3cCLLWQU1PI3BJJseEIEXR8SdIndMPCneEDmRxZGpX/9rzXpx
u0ibRChhFCkiffO6CO+IV0T6igg7xafEYyK3XoRpghiRXhQ/EilbT2iK2CR2I9djonBThMusHbwg
wlMirBShUgSL6BQpzpSv3mSsTorviBxWFIigEwG5K2sV67NA5K6gTHRSBCYd3SOCn3XZLdJpqXqR
xRUR3hDhgHiUtSoQK7H3naJwg2EvivSkCNhuhMm5konGOvlIvCnSCyL8SITDikQ60SLSImyyXdwj
HhblklfEN0RhQASnWCLWimxa6/C9EmtfQKaqKRHofvG8eEnkiGgT80S/yOMU9+EeXDndccPq9nYf
Rlx2IciuwfA1G6dg70bMYKaRTsS4VrPX0NBVjB2IHZodLuwsXJg5IfiLYDF/mn/2Zhf/7JUr0/MA
AuhXHOmT43B3xOKrLPiFUWV3pGYxlgrM4Lr8gpojAhABTEo5NSa2hmsjxIhLJVdJyCS5QC4T/joB
No0uI0Pg2DRS9hUozVXnakXQodB0wskkPPTpDkWGPfh4EfKxSaKs5w6GpiHBrdlhQlxXlRDYHt6S
7QE75AfPz8xhlR1lz6MrT+fa2NJhm8BVUccgg4Y99WxRmVLK+rS0pFwVWZXnfsMNf+8G2OOGHW4o
cde617s5lxssbrjphmtueAEp6BE3rHRvd+9xc3WMCJBA54Yff+SGS2447H4Fabj9bqhFGlrO6pxu
Gmr+ivsia37cTXe6Yb0bfIwKCpQODG644QYU4FU3HHMD408H3NA03QXvhmdCXSDNSdYR7A8xZx3x
FndI3D1u1slNtybU44+YzIAS45BGmNxQp3SIAq+bcoN8/AqTCgd13A1PsV4B+6x0g9MNVoUKZbro
hvNMxDsdqErcIQ0wfdx0q0PiFb3h/shNQ6KNKCNLUVigJO+wXgD7mBk3lVkP5W562X3dTZH/UTeU
u+vcO9wccdvcVG2LnbPKlpSXRJNUsWmxablWLsnAnMbtLvewFcWjnH66V4e93jd7foR8f1bx7jnS
3j74edzgnetzlQrWp5y0ut1RxSaPJ3QWggkQRuwilVqP23wHl8ulp6VLsUmg5EPRSRArxRYWLeCK
ou0mwcJh7DRHa6JMRlXwp0Hc+keJMRLHUT74Key5pY3VRej1kaqIiAjhz7CbW+HZkDPXXVedJJcW
RN/6IxcVXVAqJ1XXzZ+Xd1/6reeFh279wdqWlT+3IM+cnZVm4OLZhAH2IZ6/D9ceFe5IxnlN+bgQ
XnbUroAGlx2Bn152cLbgH50LBlxqBoOB4IOQ+Rvu3puvY2tlT616DvfUxeTvWB52XcnDrGwKNSuT
qdhLSGSO90r2jWyaXdJUsrPknZIrJXxJCRwueaXkYgnXVAJYcJUAtZZgugGBkgsll0u4IyXQUTJa
QrECd+Ek0haZF3khklf24NFsM+5R1cfb0zi2D88JbcRxaxfrYUcjoZPjGWMPKQmpCbdNylbvr2zN
pVjP9AnVDJHaxEWY0stznF5P4l2b9YLDGx54JkE1Z1GDb17r9qWO4O8ZWVaVJ5H+5Q38tuFFbUVx
oW18iMpZ17/o9vHp8xfhN5hrReMecctZkjb1k5e1ZGkaKvNlzLdYXGJlfP+zvAARiXFYktgjZuWr
5DwyyMzLlDM7Mv2Zo5lHM1W2zOuZNGnlpBbytMCSM6qN9xl4h49lYMrRNqqIndtNnww7lYNOquJn
p7m8FCVM6yu8RxZ+s2Yi+Mm3x4OfnGhtPwXiiy+CeGp18Gdze/+mZ93h3oK5vV/t2fC1njz6478N
/sdk750sd+33g58cG3h5tGo6y6199Az6kB4DdQ3GYCP55imDEcfDscNLA/MfsGER4nC0BHFs+Pj+
UM5HxGQUHImCjihwRQEQUaQGo9Fl9Bmp33jUGDBeNvJGY56xwziJAKecI9vL6QDdQY/Q4/RVeo1O
UY2BWrHIUVEEAw0tqh7cX7PlZh7LUYfmeZRZzLwpNJOdzkzMu2B6ykIR2LmK4M9vfwIFkKxP0EXo
tDqtRc+WGJx6W3JWp+dmZeak+Vzc7pnvOoM41ggST1rOkripy8qMiVNGhVsxAxuwYR771BOHxciV
xHLAAnkW2UJj2ogqTyWrOI0q2qfmYnyqqLAdV7crZpyxIhpRD8pnnbD1cHOrGG7wvombj99+HYLH
IOr1/uB7i7Z+u+ftT1ufGSinbwSCH59cJTy0/Pngpye3BwYLb1Uv2H465JfBZXwbznEPqWInlyn6
Au8l1BE7gHFV+6tB5RWEBdWTiRcSaR7uc7MMxXUpduPCuuhYs9hAVCrctJe7Xcarsw8JPa5Z54QQ
SvRBOYAphaLCu08NcVriu8iux3iJ24LoGXdUDoxp0/pvDldFQryhq97dWGIHoPnj9697eo3Lve7Z
DRteyBPYsRRoKV/5yKuDGXJjVmHj/CT20aIiI7jMuXS9bF94T+Ki/obE+XGJCX2rGx7/H9sefOOJ
ulXrzEWeDHXKw023/nXz8ZH53K/XPrY8OavlsdXHT9gbx1AvHrTl4yyfJjH0fbkumnICLOciudW8
EMNjrzFAVLCcRJLValWMWhXJq+VoqUatjlVTnVr6sfSeRA9J8GUJ1FKslC7dK22RhGekb0tnpA8k
XlIy5H86V6OR4CeM9gOJC1FvkSAj1IZ+gnUSnJHgWxI8I8FWCapZ8QOJPiYdkug65EjnSeiroJLg
0J8keEe6ItHXJDgtwZPSNyW6U4IeaZNEmyRYJEGKVCBRs0J8Q4LfMnI4Jb0m0WMSPK303S2NSHSR
1CjRAglSJZAkoBL8zy9kvEmCtRIg56o7nHkJen8rfSxR5IzUL0tAjkrwhAQj0k6JrpGgXgK3VCHR
FIW3/B5yvy7B+xL8SHpHoickQFEOSPAwawHLpTUSrZSgkHUARkWWK9INib7L6OEb0gmJPiXBZunL
Eu1m5FAgVUo0TYIYZZDz/oPRA1L/gwQnFS3uZOQodDcj80o0SsLgwrgh16NSgPEZkZ6SuHrGg3Hj
dmLxpPQjHL/gl6CStWSSYCNNgJ/kL+BSoQbqi4mPhEghOlqFjqGkJ5iduKKK23HFYvFmNebx0wnE
kO8vZCOzc4/ZOYvvc4TtX0z4uW3CNM6pIIzvImQq3uXc5fyRcXLSSH64S4gLF/Lz7Bz+gV0ETF9Y
HmPnNz54+4MHg7/AJXEVJbefiIg16QC0ptiIPfA09AYPseycu+ioLkmjXNr8akdw/UwMfBbnjYkk
Er9cS5QvIWDkolbqiMloMFlN1GQq19XpqC7JnwQsuTuaxMXi5prP4ylvpD5f7EDsjtjjsXysLNlr
YmOJ5JtRa/ibt3Kq4Maw+Nag29U+z6OcNGAMxxGEP32b2TkUbginP4DzDcGzwW/hcCZ3vrZzoatx
aBE8GHx814PBL8PDFb6yJBp7+/fCQyUbD3fWPbK2yng7wL29rjvYYS1eFlrD+G7MiHTke6c1cWxA
qonw13DKYruHQUSpUHMarU6lA9xHchrQilRUI8CpeS0HoOM0IhF1xgM60ClbJm1kjU4XqRIEqqyK
c+q4I5ggXo+Ey5FQF3kkkoJay/G8RjBwoc8RnuJ4V6yHna7GsXF7TB72CT0M4WoW6zHuQtviTTWT
GgZo0LigpKk6Zl67hT05z61g8OewN7gLXB/8DjdMu2A/PBbcSl1UF3wO1tz+8+23QvsnQYW21JHl
8lwDB2p0DFGrpGtyJCeI4QMRjc8nDAj7hUvClCBcE0AQRN4HnBg+JWE2w0UhZDLjWyaWtw8quzWz
PXzv5ptu/Yxev23kVggPXQk+dyW470r4PHOT8Cb2/xU5JZFAAsC92nVaKmhBi8oFnUZMI4XESw4S
XiQ6o6JUoxjBlOqKRHG9F3jgw6eb/PTvFvjtsAco2KLja6haC6BWawwC4cPfe4pdxUypzvbpI0+m
YNQvvk3Mx5QJZge1ctip6LIieGkbO96EhyE3uBP+Bv6tKXif8Oat78JksO32BgJTn2IeXYb+E0E2
kHEt5uNq0eMZ1xnKTwDlPR5MzCNdAf27gcKEswsiry/XBiBXHyCT45q6/xQC4uTZH/7b9c3agDp3
XNRoAppJ/TjHKugkR04QTpObmwun2W+g1RoxN3QF5ASSlw/RzNrADI9/J9+GnPMTwAevBN+7+H7w
veCHoCFTXMmt17iSm69zQ7e+ouT8uH8wfcRbLmX5DKUfE2voN73n9/42ZvrHpFOfBpepnkOrsH0G
nf7BLCHqBcFlZNGdn9B+5jeoGfQPpFJYQXZzc8gu/jekHu9d/DCpwbuUFpP9eBP6PIlHfJNSF7p3
YH29Uv88cTAYcfuFHyPNi2QF8ivB8m7EG/Edi3S78d6jel7BadTYl6qYNCGdHtvsZrzx7VHgYcSt
UN77VcXMRiSbjJJfQgp8g1bQ33ES/q3l3uVL+YAQI2wVTqq0qhbV99W5ar86qEnSrBAfFn8kXtat
0o1GpEV8IzIucigyaPgqZqSjxklTiun+sBYy0EFDeqKYBbtIG3r1/aqvE07BJsKKGV11zOgNiAFL
EG7Fk4EwzBErGQ7DPIkhT4RhAWPUt8KwCvcYJ8OwmtxPfhyGNSQGFoZhkeihOQzrUIaumV/U58KO
MBxJBuClMKwnC2giO7LBeUbIJG0Lw0CSuIQwjIGAmxeGObKAk8MwTzK4L4VhgSRy3wrDKpLG/UMY
VpMb3IdhWEMy+F+GYZEkCnwY1pF5gi0MR5BVQksYjiS/Fk6GYT15QPXEogH/tqG+db0jtoyuTJs7
L6/Itryn21bTOZJtW9zflWtbuGGDTSEYtg31DPcMbe7pzrUtWVxRtXxh0+K6Zba+YVunbWSos7tn
Y+fQetvA2rvbL+lb0zPUOdI30G9r7OwfrhjY0L1wuKunv7tnyJZj+0ytjVV/EW5Fz9AwQ+Tn5hXl
FtyhYAQ5n2n0XwiEo1jXNzzSM4TIvn5bc25jrq2+c6Snf8TW2d9ta5ppWLd2bV9Xj4Ls6hka6UTi
gZFeFPu+TUN9w919Xay34dyZ0SwaGPIPhMUa6dncY1vaOTLSMzzQ3zsy4p/vcm3ZsiW3M0zchbS5
XQMbXX+tbmSbv6e7Z7hvXT+OPrd3ZOOGJShQ/zAKvknpEaWZrUHvQD8aaUOIJts23NNjY+yHkf/a
nm4UzT80cF9P10juwNA615a+9X2uEL++/nWuO2wYl3A//73WGN8GiJ9sI0Okj6wjvWSE2HB+d5FM
fLtxMcwjRQgtJz2kG981pBMpshFaTPqRKhehhbgGbMD3HQ7DSqkH3z343qy0ZZRLsFUF7sqWY5sm
hOsI++rYp9B34j2C1J1I20M24nuIrEfcAFn7V/tfgu3XKP2wmj6k78faRiz1I98KLG/AlgsR7kKq
foX7EFLkKPL8tba2mdb/u3QrFJrhGYp8lI/pL5cUfCGPaQ45/0VP/z0NhWyxTuEyovAOUfYpvJuR
olGhqldaMh2NKL31K1RNX9BjHfa4Ftszjd6h7FJ4j2A5xHkA4d6wtu8jmxT/GEZK1m56bMPY8+dt
w3xyCL1y4DPaYtJtVvpcquBHFB9jdb1KyU/m42rkIluUv1ykuZtzV5hvrgJtRMr/03YjOGP8ih57
FHuvQ9qQ7XMVnhvRmkvCGupX5gHT0KZZYwzp5i/5oFd5h2bShrv4MMuyN2s7Lf1wWP61Sj8hrfnx
OYB671G0natg1ylj7EMb9iE0Wz5msXVh3GelmZbl7vH8v+ybC+dt6eQ98gXXq6Qe1LiQu5TnceDl
arhwG169DcbbMHAT5Jsw+vGBj49+zP379blW1/Uj16nvGriu+a4NXDty7dI14XdXbNbfXimzvn85
3fqvl8usl8p+1fzrMq75VxOQdKLU6lqogyT2QRSfNrxlvLmpSUiSM+ITvb/kpqzkIvwLX2p956eJ
1p/9NM3a8faBtyff5tgrgMDlt9nnpJffjp/jxffJt7WRXsMESLIBXv1BmlV+JXOhV34lOd07AXbZ
cbrMSiZg4ozWSs4AOWM7I5/pOOM/I7DXgTMXzlw/I0yATY6sQbpTHafo0VMXTim/J9Gf0um9hhO+
E3ScC8kcT8rxrsObI/vxCSh5vJyRlum1HncdLz9+5DhvOA7ycb3kJS/5Xxp9ibv80vWX6AvPz7U+
X59mPQsWSMDhozgJp8HwHTD8HXwfYiGalBIrmOVd9aXW5w6nW5/F+2t4jx6GQ94M65Fnjj9DD3rn
Wg1PWZ+iTx5Isz7xeJp1/16d9St706yGfdZ91LdvYN+OfVP7eHlfdKzXsBfkvTqD17Dbupt++VGD
1fcoFD7sfZhuRiE24T2C9zDemX6w+IHzww0/vOv/nZ/2+qHVD2zfOeJHpQ7011j7vW5rAsQ1x3vi
mtUerlmF1unEth0+t9WH79VtNdZV3nTryrat1jZvvjXaHdUsANfMu7nmAQ4MXDlHfY0gN2Zke+XG
pGR8RMd5lzdkWBvqEq31eMfXZdbR1rq+OjoBUXKmN9W62BtvrfHardU46D97UQkguc3NJjA0G92G
ZgqkGciUdQJMJywivoxyGb6N7MzUaLFZ8ix+C281lBt8hh0G3mBwGeoMA4b9hkuGKYM6hL1m4DF9
9hEYlUCACTgw3tTodNZOqKeW1wbU9SsD8FggtZE95Ya2gOqxAGluW9kyDvCV1kf37SMVc2oD7saW
QMec1tpANwIyA0YRMM4Zl0hF6/DI8Mim4RFn+Iw9BJFpxPDwJoZlKOc0iYIeHh4ZGSGhJsPOYeIc
do5sUloAgmQ43HqYkTNu4X9gTyxvco4orBjh8AijcTIo3BlRkIyNcmEPw3E41/8X/eOm+QplbmRz
dHJlYW0KZW5kb2JqCgo1OSAwIG9iagoxMDE5OQplbmRvYmoKCjYwIDAgb2JqCjw8L1R5cGUvRm9u
dERlc2NyaXB0b3IvRm9udE5hbWUvQkFBQUFBK0xpYmVyYXRpb25TYW5zLUJvbGQKL0ZsYWdzIDQK
L0ZvbnRCQm94Wy0xODQgLTMwMyAxMDYxIDEwMzNdL0l0YWxpY0FuZ2xlIDAKL0FzY2VudCA5MDUK
L0Rlc2NlbnQgLTIxMQovQ2FwSGVpZ2h0IDEwMzMKL1N0ZW1WIDgwCi9Gb250RmlsZTIgNTggMCBS
Cj4+CmVuZG9iagoKNjEgMCBvYmoKPDwvTGVuZ3RoIDM5Ni9GaWx0ZXIvRmxhdGVEZWNvZGU+Pgpz
dHJlYW0KeJxdks9ugzAMh+88RY7doYKkAVapQmppK/WwP1q3B6DgdkhrQIEe+vaL/WObtAPoi2OH
D8dxedgeXDvGr76rjzSqc+saT0N38zWpE11aF2mjmrYep5W862vVR3GoPd6Hka4Hd+5Wqyh+C3vD
6O9qtm66Ez1E8YtvyLfuomYf5TGsj7e+/6IruVElUVGohs7hnKeqf66uFEvV/NCE7Xa8z0PJX8L7
vSdlZK2hUncNDX1Vk6/chaJVkhRqtd8XEbnm395iiZLTuf6sfEjVITVJ0qQIbIRzw7wQzvbMFnHJ
ScEL5gw5mjkHl8yPwkbyl8i3zGvkCG/AO+YSLN/dIj9l3iEuvAcvA+sEnDHDP2MfDf/skRn+VuLw
Nxtm+KcSh79lZw3/XM6Hf8qeGv5W4vA37Kzhb7fM8M/FB/6ZxOFvuYca/innGPhbPt9M/jkz/C33
08A/5Z6Yqf/8Xwb+lntipv7zf5nJP5dLn26Xr5/n82esVH3zPoyUDLHMEk9R6+h3zvuu5yp5vgGZ
MsZ5CmVuZHN0cmVhbQplbmRvYmoKCjYyIDAgb2JqCjw8L1R5cGUvRm9udC9TdWJ0eXBlL1RydWVU
eXBlL0Jhc2VGb250L0JBQUFBQStMaWJlcmF0aW9uU2Fucy1Cb2xkCi9GaXJzdENoYXIgMAovTGFz
dENoYXIgMzkKL1dpZHRoc1szNjUgNjY2IDM4OSA2MTAgNjEwIDU1NiA1NTYgMjc3IDI3NyAzMzMg
NjEwIDYxMCA2MTAgNjEwIDU1NiAyNzcKMzMzIDU1NiA2MTAgNzIyIDU4MyA2NjYgNjEwIDU1NiA2
MTAgMjc3IDI3NyA4MzMgNTU2IDg4OSA3NzcgNjY2CjcyMiA2MTAgNzIyIDcyMiA1NTYgNjY2IDU1
NiA3NzcgXQovRm9udERlc2NyaXB0b3IgNjAgMCBSCi9Ub1VuaWNvZGUgNjEgMCBSCj4+CmVuZG9i
agoKNjMgMCBvYmoKPDwvRjEgNjIgMCBSL0YyIDQyIDAgUi9GMyA0NyAwIFIvRjQgNTcgMCBSL0Y1
IDUyIDAgUgo+PgplbmRvYmoKCjY0IDAgb2JqCjw8L0ZvbnQgNjMgMCBSCi9YT2JqZWN0PDwvVHIx
NCAxNCAwIFIvVHIxOSAxOSAwIFIvVHIyNCAyNCAwIFIvVHIyOSAyOSAwIFIvVHI0IDQgMCBSL1Ry
OSA5IDAgUj4+Ci9FeHRHU3RhdGU8PC9FR1MxMCAxMCAwIFIvRUdTMTUgMTUgMCBSL0VHUzIwIDIw
IDAgUi9FR1MyNSAyNSAwIFIvRUdTMzAgMzAgMCBSL0VHUzUgNSAwIFI+PgovUHJvY1NldFsvUERG
L1RleHQvSW1hZ2VDL0ltYWdlSS9JbWFnZUJdCj4+CmVuZG9iagoKMSAwIG9iago8PC9UeXBlL1Bh
Z2UvUGFyZW50IDM3IDAgUi9SZXNvdXJjZXMgNjQgMCBSL01lZGlhQm94WzAgMCA2MTIgNzkyXS9B
bm5vdHNbCjMxIDAgUiAzMiAwIFIgMzMgMCBSIDM0IDAgUiAzNSAwIFIgMzYgMCBSIF0KL0dyb3Vw
PDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDIgMCBSPj4K
ZW5kb2JqCgo2IDAgb2JqCjw8L1R5cGUvUGFnZS9QYXJlbnQgMzcgMCBSL1Jlc291cmNlcyA2NCAw
IFIvTWVkaWFCb3hbMCAwIDYxMiA3OTJdL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNl
UkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDcgMCBSPj4KZW5kb2JqCgoxMSAwIG9iago8PC9UeXBlL1Bh
Z2UvUGFyZW50IDM3IDAgUi9SZXNvdXJjZXMgNjQgMCBSL01lZGlhQm94WzAgMCA2MTIgNzkyXS9H
cm91cDw8L1MvVHJhbnNwYXJlbmN5L0NTL0RldmljZVJHQi9JIHRydWU+Pi9Db250ZW50cyAxMiAw
IFI+PgplbmRvYmoKCjE2IDAgb2JqCjw8L1R5cGUvUGFnZS9QYXJlbnQgMzcgMCBSL1Jlc291cmNl
cyA2NCAwIFIvTWVkaWFCb3hbMCAwIDYxMiA3OTJdL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1Mv
RGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDE3IDAgUj4+CmVuZG9iagoKMjEgMCBvYmoKPDwv
VHlwZS9QYWdlL1BhcmVudCAzNyAwIFIvUmVzb3VyY2VzIDY0IDAgUi9NZWRpYUJveFswIDAgNjEy
IDc5Ml0vR3JvdXA8PC9TL1RyYW5zcGFyZW5jeS9DUy9EZXZpY2VSR0IvSSB0cnVlPj4vQ29udGVu
dHMgMjIgMCBSPj4KZW5kb2JqCgoyNiAwIG9iago8PC9UeXBlL1BhZ2UvUGFyZW50IDM3IDAgUi9S
ZXNvdXJjZXMgNjQgMCBSL01lZGlhQm94WzAgMCA2MTIgNzkyXS9Hcm91cDw8L1MvVHJhbnNwYXJl
bmN5L0NTL0RldmljZVJHQi9JIHRydWU+Pi9Db250ZW50cyAyNyAwIFI+PgplbmRvYmoKCjM3IDAg
b2JqCjw8L1R5cGUvUGFnZXMKL1Jlc291cmNlcyA2NCAwIFIKL01lZGlhQm94WyAwIDAgNjEyIDc5
MiBdCi9LaWRzWyAxIDAgUiA2IDAgUiAxMSAwIFIgMTYgMCBSIDIxIDAgUiAyNiAwIFIgXQovQ291
bnQgNj4+CmVuZG9iagoKMzEgMCBvYmoKPDwvVHlwZS9Bbm5vdC9TdWJ0eXBlL0xpbmsvQm9yZGVy
WzAgMCAwXS9SZWN0WzU2IDQ4Ni4yIDU1NS41IDUwMF0vRGVzdFsyNiAwIFIvWFlaIDExMy44IDcz
NS4zIDBdPj4KZW5kb2JqCgozMiAwIG9iago8PC9UeXBlL0Fubm90L1N1YnR5cGUvTGluay9Cb3Jk
ZXJbMCAwIDBdL1JlY3RbNTYgNTAwIDU1NS41IDUxMy44XS9EZXN0WzE2IDAgUi9YWVogNzguMyA1
MDUuMiAwXT4+CmVuZG9iagoKMzMgMCBvYmoKPDwvVHlwZS9Bbm5vdC9TdWJ0eXBlL0xpbmsvQm9y
ZGVyWzAgMCAwXS9SZWN0WzU2IDUxMy44IDU1NS41IDUyNy42XS9EZXN0WzExIDAgUi9YWVogNzgu
MyAzOTguMyAwXT4+CmVuZG9iagoKMzQgMCBvYmoKPDwvVHlwZS9Bbm5vdC9TdWJ0eXBlL0xpbmsv
Qm9yZGVyWzAgMCAwXS9SZWN0WzU2IDUyNy42IDU1NS41IDU0MS40XS9EZXN0WzExIDAgUi9YWVog
NzguMyA3MzUuMyAwXT4+CmVuZG9iagoKMzUgMCBvYmoKPDwvVHlwZS9Bbm5vdC9TdWJ0eXBlL0xp
bmsvQm9yZGVyWzAgMCAwXS9SZWN0WzU2IDU0MS40IDU1NS41IDU1NS4yXS9EZXN0WzEgMCBSL1hZ
WiA3OC4zIDM1NC44IDBdPj4KZW5kb2JqCgozNiAwIG9iago8PC9UeXBlL0Fubm90L1N1YnR5cGUv
TGluay9Cb3JkZXJbMCAwIDBdL1JlY3RbNTYgNTU1LjIgNTU1LjUgNTY5XS9EZXN0WzEgMCBSL1hZ
WiA3OC4zIDQ2MC41IDBdPj4KZW5kb2JqCgo2NSAwIG9iago8PC9UeXBlL0NhdGFsb2cvUGFnZXMg
MzcgMCBSCi9PcGVuQWN0aW9uWzEgMCBSIC9YWVogbnVsbCBudWxsIDBdCi9MYW5nKGVuLVVTKQo+
PgplbmRvYmoKCjY2IDAgb2JqCjw8L0NyZWF0b3I8RkVGRjAwNTcwMDcyMDA2OTAwNzQwMDY1MDA3
Mj4KL1Byb2R1Y2VyPEZFRkYwMDRDMDA2OTAwNjIwMDcyMDA2NTAwNEYwMDY2MDA2NjAwNjkwMDYz
MDA2NTAwMjAwMDM0MDAyRTAwMzM+Ci9DcmVhdGlvbkRhdGUoRDoyMDE0MDkyMTAxMDIxOC0wNScw
MCcpPj4KZW5kb2JqCgp4cmVmCjAgNjcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDgxNzc3IDAw
MDAwIG4gCjAwMDAwMDAwMTkgMDAwMDAgbiAKMDAwMDAwMjY2MCAwMDAwMCBuIAowMDAwMDAyNjgx
IDAwMDAwIG4gCjAwMDAwMDI4NzcgMDAwMDAgbiAKMDAwMDA4MTk3NCAwMDAwMCBuIAowMDAwMDAy
OTE3IDAwMDAwIG4gCjAwMDAwMDU1NjMgMDAwMDAgbiAKMDAwMDAwNTU4NCAwMDAwMCBuIAowMDAw
MDA1NzgwIDAwMDAwIG4gCjAwMDAwODIxMTggMDAwMDAgbiAKMDAwMDAwNTgyMSAwMDAwMCBuIAow
MDAwMDA4NzgwIDAwMDAwIG4gCjAwMDAwMDg4MDIgMDAwMDAgbiAKMDAwMDAwODk5OSAwMDAwMCBu
IAowMDAwMDgyMjY0IDAwMDAwIG4gCjAwMDAwMDkwNDAgMDAwMDAgbiAKMDAwMDAxMDg0NiAwMDAw
MCBuIAowMDAwMDEwODY4IDAwMDAwIG4gCjAwMDAwMTEwNjUgMDAwMDAgbiAKMDAwMDA4MjQxMCAw
MDAwMCBuIAowMDAwMDExMTA2IDAwMDAwIG4gCjAwMDAwMTI4NzggMDAwMDAgbiAKMDAwMDAxMjkw
MCAwMDAwMCBuIAowMDAwMDEzMDk3IDAwMDAwIG4gCjAwMDAwODI1NTYgMDAwMDAgbiAKMDAwMDAx
MzEzOCAwMDAwMCBuIAowMDAwMDEzNjUyIDAwMDAwIG4gCjAwMDAwMTM2NzMgMDAwMDAgbiAKMDAw
MDAxMzg3MCAwMDAwMCBuIAowMDAwMDgyODM2IDAwMDAwIG4gCjAwMDAwODI5NTIgMDAwMDAgbiAK
MDAwMDA4MzA2NyAwMDAwMCBuIAowMDAwMDgzMTg0IDAwMDAwIG4gCjAwMDAwODMzMDEgMDAwMDAg
biAKMDAwMDA4MzQxNyAwMDAwMCBuIAowMDAwMDgyNzAyIDAwMDAwIG4gCjAwMDAwMTM5MTEgMDAw
MDAgbiAKMDAwMDAzMzcxNiAwMDAwMCBuIAowMDAwMDMzNzM5IDAwMDAwIG4gCjAwMDAwMzM5MzYg
MDAwMDAgbiAKMDAwMDAzNDUyNCAwMDAwMCBuIAowMDAwMDM0OTYzIDAwMDAwIG4gCjAwMDAwNDMy
NDMgMDAwMDAgbiAKMDAwMDA0MzI2NSAwMDAwMCBuIAowMDAwMDQzNDcyIDAwMDAwIG4gCjAwMDAw
NDM4NjggMDAwMDAgbiAKMDAwMDA0NDEzMCAwMDAwMCBuIAowMDAwMDU1OTMwIDAwMDAwIG4gCjAw
MDAwNTU5NTMgMDAwMDAgbiAKMDAwMDA1NjE2MSAwMDAwMCBuIAowMDAwMDU2NjEwIDAwMDAwIG4g
CjAwMDAwNTY5MTkgMDAwMDAgbiAKMDAwMDA2OTA1NCAwMDAwMCBuIAowMDAwMDY5MDc3IDAwMDAw
IG4gCjAwMDAwNjkyNzEgMDAwMDAgbiAKMDAwMDA2OTc4OSAwMDAwMCBuIAowMDAwMDcwMTU1IDAw
MDAwIG4gCjAwMDAwODA0NDEgMDAwMDAgbiAKMDAwMDA4MDQ2NCAwMDAwMCBuIAowMDAwMDgwNjY3
IDAwMDAwIG4gCjAwMDAwODExMzMgMDAwMDAgbiAKMDAwMDA4MTQ1NiAwMDAwMCBuIAowMDAwMDgx
NTI5IDAwMDAwIG4gCjAwMDAwODM1MzEgMDAwMDAgbiAKMDAwMDA4MzYyOSAwMDAwMCBuIAp0cmFp
bGVyCjw8L1NpemUgNjcvUm9vdCA2NSAwIFIKL0luZm8gNjYgMCBSCi9JRCBbIDwzMUVCNjRGMDg4
Q0U5QjQ3NkU1ODhFQjVFREEyRDlFMT4KPDMxRUI2NEYwODhDRTlCNDc2RTU4OEVCNUVEQTJEOUUx
PiBdCi9Eb2NDaGVja3N1bSAvOTNDMDM0RTFERTU3OUVFMTA4Q0FCQzQ1QzFENjM2RUIKPj4Kc3Rh
cnR4cmVmCjgzODA0CiUlRU9GCg==
------=_Part_1902_562863222.1411492681683--
.
Author: Nevin Liber <nevin@eviloverlord.com>
Date: Tue, 23 Sep 2014 16:57:03 -0500
Raw View
--001a11c25bda34de4c0503c2a86a
Content-Type: text/plain; charset=UTF-8
On 23 September 2014 12:11, <jeremy8258@gmail.com> wrote:
> A few times now I've encountered the situation where I want to calculate
> the difference between two values and then get the absolute value of the
> difference. The problem is, abs() takes only one parameter, meaning there's
> a good chance the argument to the abs() function will result in a negative
> value, and then be passed to abs(). For some data types, negative values
> aren't allowed and would lead to exceptional, undefined, or illogical
> behavior. This problem is easily avoided.
>
> In short, I propose a new standard template function, std::abs_diff(), and
> its overloads, as such:
>
> template <typename T>
> inline T abs_diff( const T& a, const T& b )
> { if (a<b) return b-a; return a-b; }
> template <typename T, typename Compare>
> inline T abs_diff( const T& a, const T& b, const Compare& comp )
> { if (comp(a,b)) return b-a; return a-b; }
> template <typename T, typename Compare, typename Difference>
> inline T abs_diff( const T& a, const T& b,
> const Compare& comp, const Difference& diff )
> { if (comp(a,b)) return diff(b,a); return diff(a,b); }
>
Signatures (2) and (3) seem awfully complicated. I cannot imagine ever
using them in place of writing the much more straightforward one-liner. Do
you have any actual user experience on those forms of the call? Just
because one *can* parameterize something doesn't mean that one *should*
parameterize something.
I'm neutral to weakly against this one. I don't think it comes up that
often in practice, and the name doesn't really describe what happens when
you pass in unsigned values.
--
Nevin ":-)" Liber <mailto:nevin@eviloverlord.com> (847) 691-1404
--
---
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
Visit this group at http://groups.google.com/a/isocpp.org/group/std-proposals/.
--001a11c25bda34de4c0503c2a86a
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr">On 23 September 2014 12:11, <span dir=3D"ltr"><<a href=
=3D"mailto:jeremy8258@gmail.com" target=3D"_blank">jeremy8258@gmail.com</a>=
></span> wrote:<br><div class=3D"gmail_extra"><div class=3D"gmail_quote"=
><blockquote class=3D"gmail_quote" style=3D"margin:0 0 0 .8ex;border-left:1=
px #ccc solid;padding-left:1ex"><div dir=3D"ltr">A few times now I've e=
ncountered the situation where I want to calculate the difference between t=
wo values and then get the absolute value of the difference. The problem is=
, abs() takes only one parameter, meaning there's a good chance the arg=
ument to the abs() function will result in a negative value, and then be pa=
ssed to abs(). For some data types, negative values aren't allowed and =
would lead to exceptional, undefined, or illogical behavior. This problem i=
s easily avoided.<br><br>In short, I propose a new standard template functi=
on, std::abs_diff(), and its overloads, as such:<br><br>template <typena=
me T><br>inline T abs_diff( const T& a, const T& b )<br>=C2=A0 {=
if (a<b) return b-a; return a-b; }<br>template <typename T, typename=
Compare><br>inline T abs_diff( const T& a, const T& b, const Co=
mpare& comp )<br>=C2=A0 { if (comp(a,b)) return b-a; return a-b; }<br>t=
emplate <typename T, typename Compare, typename Difference><br>inline=
T abs_diff( const T& a, const T& b,<br>=C2=A0=C2=A0=C2=A0=C2=A0=C2=
=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=
=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 const Compare& comp, const D=
ifference& diff )<br>=C2=A0 { if (comp(a,b)) return diff(b,a); return d=
iff(a,b); }<br></div></blockquote><div><br></div><div>Signatures (2) and (3=
) seem awfully complicated.=C2=A0 I cannot imagine ever using them in place=
of writing the much more straightforward one-liner.=C2=A0 Do you have any =
actual user experience on those forms of the call?=C2=A0 Just because one *=
can* parameterize something doesn't mean that one *should* parameterize=
something.</div><div><br></div><div>I'm neutral to weakly against this=
one.=C2=A0 I don't think it comes up that often in practice, and the n=
ame doesn't really describe what happens when you pass in unsigned valu=
es.</div></div>-- <br>=C2=A0Nevin ":-)" Liber=C2=A0 <mailto:<a=
href=3D"mailto:nevin@eviloverlord.com" target=3D"_blank">nevin@eviloverlor=
d.com</a>>=C2=A0 (847) 691-1404
</div></div>
<p></p>
-- <br />
<br />
--- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
Visit this group at <a href=3D"http://groups.google.com/a/isocpp.org/group/=
std-proposals/">http://groups.google.com/a/isocpp.org/group/std-proposals/<=
/a>.<br />
--001a11c25bda34de4c0503c2a86a--
.
Author: David Krauss <potswa@gmail.com>
Date: Wed, 24 Sep 2014 09:29:03 +0800
Raw View
--Apple-Mail=_A55B5D3B-18EA-4B85-9198-DBC97D037722
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain; charset=ISO-8859-1
On 2014-09-24, at 5:57 AM, Nevin Liber <nevin@eviloverlord.com> wrote:
> On 23 September 2014 12:11, <jeremy8258@gmail.com> wrote:
> A few times now I've encountered the situation where I want to calculate =
the difference between two values and then get the absolute value of the di=
fference. The problem is, abs() takes only one parameter, meaning there's a=
good chance the argument to the abs() function will result in a negative v=
alue, and then be passed to abs(). For some data types, negative values are=
n't allowed and would lead to exceptional, undefined, or illogical behavior=
.. This problem is easily avoided.
>=20
> In short, I propose a new standard template function, std::abs_diff(), an=
d its overloads, as such:
>=20
> template <typename T>
> inline T abs_diff( const T& a, const T& b )
> { if (a<b) return b-a; return a-b; }
> template <typename T, typename Compare>
> inline T abs_diff( const T& a, const T& b, const Compare& comp )
> { if (comp(a,b)) return b-a; return a-b; }
> template <typename T, typename Compare, typename Difference>
> inline T abs_diff( const T& a, const T& b,
> const Compare& comp, const Difference& diff )
> { if (comp(a,b)) return diff(b,a); return diff(a,b); }
>=20
> Signatures (2) and (3) seem awfully complicated. I cannot imagine ever u=
sing them in place of writing the much more straightforward one-liner. Do =
you have any actual user experience on those forms of the call? Just becau=
se one *can* parameterize something doesn't mean that one *should* paramete=
rize something.
The generic aspect seems harmless to me. True, most user-defined numeric ty=
pes are signed, but I recently implemented a logarithm class which isn't. T=
he Compare and Difference functors may be used to access one member of a cl=
ass.
I wonder though, if it would save a lot of boilerplate to specify it with d=
efault arguments instead, and use modern style in preference to uniformity =
with utilities from the 90's:
template< typename T,
typename Compare =3D std::less<T>, typename Difference =3D std::min=
us<T> >
constexpr decltype(auto)
abs_diff( T const & a, T const & b,
Compare && comp =3D {}, Difference && diff =3D {} ) {
return std::forward<Compare>(comp) (a, b) ?
std::forward<Difference>(diff) (b, a)
: std::forward<Difference>(diff) (a, b);
}
--=20
---=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
Visit this group at http://groups.google.com/a/isocpp.org/group/std-proposa=
ls/.
--Apple-Mail=_A55B5D3B-18EA-4B85-9198-DBC97D037722
Content-Transfer-Encoding: quoted-printable
Content-Type: text/html; charset=ISO-8859-1
<html><head><meta http-equiv=3D"Content-Type" content=3D"text/html charset=
=3Dwindows-1252"></head><body style=3D"word-wrap: break-word; -webkit-nbsp-=
mode: space; -webkit-line-break: after-white-space;"><br><div><div>On 2014&=
ndash;09–24, at 5:57 AM, Nevin Liber <<a href=3D"mailto:nevin@evil=
overlord.com">nevin@eviloverlord.com</a>> wrote:</div><br class=3D"Apple=
-interchange-newline"><blockquote type=3D"cite"><div style=3D"font-family: =
Helvetica; font-size: 12px; font-style: normal; font-variant: normal; font-=
weight: normal; letter-spacing: normal; line-height: normal; orphans: auto;=
text-align: start; text-indent: 0px; text-transform: none; white-space: no=
rmal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;"><di=
v dir=3D"ltr">On 23 September 2014 12:11,<span class=3D"Apple-converted-spa=
ce"> </span><span dir=3D"ltr"><<a href=3D"mailto:jeremy8258@gmail.c=
om" target=3D"_blank">jeremy8258@gmail.com</a>></span><span class=3D"App=
le-converted-space"> </span>wrote:<br><div class=3D"gmail_extra"><div =
class=3D"gmail_quote"><blockquote class=3D"gmail_quote" style=3D"margin: 0p=
x 0px 0px 0.8ex; border-left-width: 1px; border-left-color: rgb(204, 204, 2=
04); border-left-style: solid; padding-left: 1ex;"><div dir=3D"ltr">A few t=
imes now I've encountered the situation where I want to calculate the diffe=
rence between two values and then get the absolute value of the difference.=
The problem is, abs() takes only one parameter, meaning there's a good cha=
nce the argument to the abs() function will result in a negative value, and=
then be passed to abs(). For some data types, negative values aren't allow=
ed and would lead to exceptional, undefined, or illogical behavior. This pr=
oblem is easily avoided.<br><br>In short, I propose a new standard template=
function, std::abs_diff(), and its overloads, as such:<br><br>template <=
;typename T><br>inline T abs_diff( const T& a, const T& b )<br>&=
nbsp;<span class=3D"Apple-converted-space"> </span>{ if (a<b) retur=
n b-a; return a-b; }<br>template <typename T, typename Compare><br>in=
line T abs_diff( const T& a, const T& b, const Compare& comp )<=
br> <span class=3D"Apple-converted-space"> </span>{ if (comp(a,b)=
) return b-a; return a-b; }<br>template <typename T, typename Compare, t=
ypename Difference><br>inline T abs_diff( const T& a, const T& b=
,<br> &nbs=
p; <=
span class=3D"Apple-converted-space"> </span>const Compare& comp, =
const Difference& diff )<br> <span class=3D"Apple-converted-space"=
> </span>{ if (comp(a,b)) return diff(b,a); return diff(a,b); }<br></d=
iv></blockquote><div><br></div><div>Signatures (2) and (3) seem awfully com=
plicated. I cannot imagine ever using them in place of writing the mu=
ch more straightforward one-liner. Do you have any actual user experi=
ence on those forms of the call? Just because one *can* parameterize =
something doesn't mean that one *should* parameterize something.</div></div=
></div></div></div></blockquote><div><br></div><div>The generic aspect seem=
s harmless to me. True, most user-defined numeric types are signed, but I r=
ecently implemented a logarithm class which isn’t. The Compare and Di=
fference functors may be used to access one member of a class.</div><div><b=
r></div><div>I wonder though, if it would save a lot of boilerplate to spec=
ify it with default arguments instead, and use modern style in preference t=
o uniformity with utilities from the 90’s:</div><div><br></div><div><=
font face=3D"Courier">template< typename T,</font></div><div><font face=
=3D"Courier"> typename Compare =3D std::less<=
T>, typename Difference =3D std::minus<T> ></font></div><div><f=
ont face=3D"Courier">constexpr decltype(auto)</font></div><div><font face=
=3D"Courier">abs_diff( T const & a, T const & b,</font></div><div><=
font face=3D"Courier"> Compare && comp =
=3D {}, Difference && diff =3D {} ) {</font></div><div><font face=
=3D"Courier"> return std::forward<Compare>(comp) (a, b) =
?</font></div><div><span style=3D"font-family: Courier;"> </spa=
n><span style=3D"font-family: Courier;"> </span><span style=3D"font-fa=
mily: Courier;"> </span><span style=3D"font-family: Courier;">&=
nbsp;</span><span style=3D"font-family: Courier;">std::forward<Differenc=
e>(diff) (b, a)</span></div><div><span style=3D"font-family: Courier;">&=
nbsp; </span><span style=3D"font-family: Courier;"> </span><span=
style=3D"font-family: Courier;"> </span><span style=3D"font-family: =
Courier;">: std::forward<Difference>(diff) (a, b);</span></div><font =
face=3D"Courier">}</font></div><div><br></div></body></html>
<p></p>
-- <br />
<br />
--- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
Visit this group at <a href=3D"http://groups.google.com/a/isocpp.org/group/=
std-proposals/">http://groups.google.com/a/isocpp.org/group/std-proposals/<=
/a>.<br />
--Apple-Mail=_A55B5D3B-18EA-4B85-9198-DBC97D037722--
.
Author: Jeremy T <jeremy8258@gmail.com>
Date: Wed, 24 Sep 2014 00:36:43 -0700 (PDT)
Raw View
------=_Part_6254_1123045638.1411544203582
Content-Type: text/plain; charset=UTF-8
>
> Signatures (2) and (3) seem awfully complicated. I cannot imagine ever
> using them in place of writing the much more straightforward one-liner. Do
> you have any actual user experience on those forms of the call? Just
> because one *can* parameterize something doesn't mean that one *should*
> parameterize something.
>
> I'm neutral to weakly against this one. I don't think it comes up that
> often in practice, and the name doesn't really describe what happens when
> you pass in unsigned values.
>
No, I personally haven't had need for signatures (2) or (3) yet, but of
course that doesn't mean they shouldn't exist in the library. I added the
overloads here to more closely comply with standard practices, such as in
<algorithm>. I will say, however, that I've used signature (1) in my code
far more often than I have any of the standard abs() functions.
Also, the function was conceived and is specifically designed for unsigned
types (although it also works for signed types), so I'm not sure why you
think that would be a special case.
--
---
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
Visit this group at http://groups.google.com/a/isocpp.org/group/std-proposals/.
------=_Part_6254_1123045638.1411544203582
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr"><blockquote class=3D"gmail_quote" style=3D"margin: 0;margi=
n-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"l=
tr"><div><div class=3D"gmail_quote"><div>Signatures (2) and (3) seem awfull=
y complicated. I cannot imagine ever using them in place of writing t=
he much more straightforward one-liner. Do you have any actual user e=
xperience on those forms of the call? Just because one *can* paramete=
rize something doesn't mean that one *should* parameterize something.</div>=
<div><br></div><div>I'm neutral to weakly against this one. I don't t=
hink it comes up that often in practice, and the name doesn't really descri=
be what happens when you pass in unsigned values.</div></div></div></div></=
blockquote><div><br>No, I personally haven't had need for signatures (2) or=
(3) yet, but of course that doesn't mean they shouldn't exist in the libra=
ry. I added the overloads here to more closely comply with standard practic=
es, such as in <algorithm>. I will say, however, that I've used signa=
ture (1) in my code far more often than I have any of the standard abs() fu=
nctions.<br><br>Also, the function was conceived and is specifically design=
ed for unsigned types (although it also works for signed types), so I'm not=
sure why you think that would be a special case.<br></div></div>
<p></p>
-- <br />
<br />
--- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
Visit this group at <a href=3D"http://groups.google.com/a/isocpp.org/group/=
std-proposals/">http://groups.google.com/a/isocpp.org/group/std-proposals/<=
/a>.<br />
------=_Part_6254_1123045638.1411544203582--
.
Author: Jeremy T <jeremy8258@gmail.com>
Date: Wed, 24 Sep 2014 00:46:13 -0700 (PDT)
Raw View
------=_Part_6256_276749433.1411544774088
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
I wonder though, if it would save a lot of boilerplate to specify it with=
=20
default arguments instead, and use modern style in preference to uniformity=
=20
with utilities from the 90=E2=80=99s:
>
>
> template< typename T,
> typename Compare =3D std::less<T>, typename Difference =3D=20
> std::minus<T> >
> constexpr decltype(auto)
> abs_diff( T const & a, T const & b,
> Compare && comp =3D {}, Difference && diff =3D {} ) {
> return std::forward<Compare>(comp) (a, b) ?
> std::forward<Difference>(diff) (b, a)
> : std::forward<Difference>(diff) (a, b);
> }
>
> =20
Well, I definitely agree that the return type should be decltype(auto) to=
=20
better handle the return type of the difference operator, but I still think=
=20
all three signatures should exist so as to not pass arguments that are not=
=20
used. However, whether three signatures are implemented or one with default=
=20
parameters, both choices are functionally equivalent, and so the choice=20
becomes an implementation detail left to the library coder. My main=20
argument is that the function is a simple solution to an existing problem.
--=20
---=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
Visit this group at http://groups.google.com/a/isocpp.org/group/std-proposa=
ls/.
------=_Part_6256_276749433.1411544774088
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr">I wonder though, if it would save a lot of boilerplate to =
specify it with default arguments instead, and use modern style in preferen=
ce to uniformity with utilities from the 90=E2=80=99s:<blockquote class=3D"=
gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc so=
lid;padding-left: 1ex;"><div style=3D"word-wrap:break-word"><div><div><br><=
/div><div><font face=3D"Courier">template< typename T,</font></div><div>=
<font face=3D"Courier"> typename Compare =3D std=
::less<T>, typename Difference =3D std::minus<T> ></font></d=
iv><div><font face=3D"Courier">constexpr decltype(auto)</font></div><div><f=
ont face=3D"Courier">abs_diff( T const & a, T const & b,</font></di=
v><div><font face=3D"Courier"> Compare &&=
; comp =3D {}, Difference && diff =3D {} ) {</font></div><div><font=
face=3D"Courier"> return std::forward<Compare>(comp) (a=
, b) ?</font></div><div><span style=3D"font-family:Courier"> </=
span><span style=3D"font-family:Courier"> </span><span style=3D"font-f=
amily:Courier"> </span><span style=3D"font-family:Courier">&nbs=
p;</span><span style=3D"font-family:Courier">std::forward<Difference>=
(<wbr>diff) (b, a)</span></div><div><span style=3D"font-family:Courier">&nb=
sp; </span><span style=3D"font-family:Courier"> </span><span sty=
le=3D"font-family:Courier"> </span><span style=3D"font-family:Courier=
">: std::forward<Difference>(diff) (a, b);</span></div><font face=3D"=
Courier">}</font></div><div><br></div></div></blockquote><div> <br>Wel=
l, I definitely agree that the return type should be decltype(auto) to bett=
er handle the return type of the difference operator, but I still think all=
three signatures should exist so as to not pass arguments that are not use=
d. However, whether three signatures are implemented or one with default pa=
rameters, both choices are functionally equivalent, and so the choice becom=
es an implementation detail left to the library coder. My main argument is =
that the function is a simple solution to an existing problem.<br></div></d=
iv>
<p></p>
-- <br />
<br />
--- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
Visit this group at <a href=3D"http://groups.google.com/a/isocpp.org/group/=
std-proposals/">http://groups.google.com/a/isocpp.org/group/std-proposals/<=
/a>.<br />
------=_Part_6256_276749433.1411544774088--
.