Topic: Lambdas in unevaluated contexts: a proposal


Author: Louis Dionne <ldionne.2@gmail.com>
Date: Mon, 7 Mar 2016 08:13:06 -0800 (PST)
Raw View
------=_Part_40_569813740.1457367186900
Content-Type: multipart/alternative;
 boundary="----=_Part_41_1913225325.1457367186900"

------=_Part_41_1913225325.1457367186900
Content-Type: text/plain; charset=UTF-8

Hi,

I have previously raised the issue of lambdas in unevaluated contexts on
this list, and the
conclusion seemed to be that the restriction was now obsolete. Hence, I
have written a
proposal to rectify the current situation.

I attached the proposal to this message; it is only a draft and I welcome
all constructive
comments. My hope is that the paper can be discussed at Oulu, and perhaps
even make
it into C++17 in-extremis, given its small scope.

Regards,
Louis Dionne

--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/97f4407a-4965-41ab-bbbd-00cbf37f7588%40isocpp.org.

------=_Part_41_1913225325.1457367186900
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">Hi,<div><br></div><div>I have previously raised the issue =
of lambdas in unevaluated contexts on this list, and the</div><div>conclusi=
on seemed to be that the restriction was now obsolete. Hence, I have writte=
n a</div><div>proposal to rectify the current situation.</div><div><br></di=
v><div>I attached the proposal to this message; it is only a draft and I we=
lcome all constructive</div><div>comments. My hope is that the paper can be=
 discussed at Oulu, and perhaps even make</div><div>it into C++17 in-extrem=
is, given its small scope.</div><div><br></div><div>Regards,</div><div>Loui=
s Dionne</div><div><br></div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/97f4407a-4965-41ab-bbbd-00cbf37f7588%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/97f4407a-4965-41ab-bbbd-00cbf37f7588=
%40isocpp.org</a>.<br />

------=_Part_41_1913225325.1457367186900--
------=_Part_40_569813740.1457367186900
Content-Type: application/pdf; name="Lambdas in unevaluated contexts.pdf"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
 filename="Lambdas in unevaluated contexts.pdf"
X-Attachment-Id: cc2865d9-7002-4521-a04c-5895f547a5a8
Content-ID: <cc2865d9-7002-4521-a04c-5895f547a5a8>

JVBERi0xLjUKJdDUxdgKMzEgMCBvYmoKPDwKL0xlbmd0aCAyMTQ1ICAgICAgCi9GaWx0ZXIgL0Zs
YXRlRGVjb2RlCj4+CnN0cmVhbQp42sUY247jtvV9v8JAgVRG1lpRlGRpsgiKNtk0xRZYLPwwQRI0
HJm22ZFEh5J2dv6+50LKl9G2s0GCvljk4eG53+hksV8ki+9eJP/j+9fNi1dvxHoh1nEq8myx2S1E
lcSyShdFkccyyReb7eLH6K1ql2kR3S1X8LtV/XIlkzQyHX/HTn9Y5jJSzagGvWVgbTu8MuiPQ7/8
efOPJ7yBcb4QSVwllUDGpYzTUixWaRWLwPcbCxzLqB5bDdTKaADaUkZ/ulmuRFIV0bvk9vb2fYL0
geZKyDgPN0ESwMqKXERpIorV7e0KLkW3t+fIWcXY7xwwyvPo37pGpAFuylyuEb53qm1Nt2fOb1W3
H9Ve4y6L/vbll0RtXcRFnl6S/PYDCmybcTC248vfOTse6cJq7sZ7fWweV4MF5mlV5tFbO5qeb34D
NDqNV1+9SdfnVhOZjGUJ+hCJ197SyUIsHJoZF+9nbB1nZRYuNVuiHqd/2bfKNHFt2wuHPWGZJHGS
iHD9axZLAqssllmRIs4qy0EzEGwlyziFL6EKMK5I8+j7binBymh0+G7HmmxEZC7lBDdJEQvgfwrD
ksKw5DDMijJSTuOiihTvyfDaPTLwCMjryC7h54EPdmPDiM3kTNzttBpGp19CIED46v5IXHRtVNM8
MsoDBsdhKSKNi46BZuAvmE33zHOwDBp7ChxcHsz+oN3Kuq12cxGomr11Zji06HGI2QdY86oe+wE8
Quuj01tTQ2h7LOv4qz/CSc/ccN+3IPRLXEO6Gq+K7dVdoz0ho+uJyM4z4mTb6hhErtbRD8tSRnrw
ZIaDfvTEx58SIefV2DkUNUOqHdo1hyrRevZuUCGJEaExrRkUZwfuHw6mRi8deFs7czw2ZFHYAXfj
mN7Ya/BgB+ry0c76g9qBBw17n48A1R+pXvdfgWcFkgoOfPScVPfnYdYnRx8DCjmUXPAyMAoXvOJU
8PCQCt6aCx5YsKxEtAnxgnmMF7dOAZpRHV8Bnw3O1N4GcE4Rqjwy6AU396bzAYj3dW/2XeBIYQZQ
8D1r7c07o0rzJHNSmXhvpZCD6gi8Jm0pjhABFcZj5ErZ0UM0pOwsuBD8hagkuh2bLW8PCs+CMxBi
PXkSHwGKP7XyTDAOT5Scl2y35DDHdQsJ20zC3fkEVejmpx3gqcpZkvtiAQunfx2NI1PCjkwJX3TW
heQIHDvz6+jXA8IfvSro5yKvor9bhHJ5+YC3tQM7ZSm46KCGwO/c1wA4+Ro2nYZ81y5sIDd7RRUM
t3Y21SgNi9pMnTFLhNcjwaRrdHt55EUhryLYn6KkYk3FM0FPD2NISkA9XTqwqIIMChrqjregl23Y
WlvGfDjo7hN9aPEj3aktewFE6Xu2rIhEkawv+g4hJ5Od5hJ0u8WyRyNHXvI8Au6AtgytCLO9it5g
ERsdGre1VN1lkZHZERPAfJUlQpCXCIH9gJWWruQn1AtHEltPrPNREO422l+FulzrwJCKz4wuXgJo
9kECGDCmGEH4pO3N7Dy1SGGIW0sYoGCASzOm+j3mFMQhV95H3EhONApOjQWSzo9HZ1WNSAesuQh7
4EgOGFt7hFqH+Z9lbA2khTWK4kU1HkL1GG9A44HKxUbhpAXgVVauQuey3ayHyaXrmYqLQMu9XTvV
bXsGnVUh3PoSgRustq09pTZqIqGI9pZRsY3jt4VGHUZN3Kr7ZSAho153vV8O9pwqTR3rwIljBZCc
Xs2m7lkAoWMH9jZfA0CvWr8aTAvtmEbGOfduDhR8GfQAFYzh986Grq89itNHZbi2yyyUJjwI8uNw
1JP6a1I/w7jZMk5jdoO/KqcWylTPtaHDQPdpBUaS3G4J4bzBfsr5Mjg/P3M+AKndlqHdzoygQCyD
2THzs2PqZ89/WpwRipSj9hlD54a9gl2ImzHuEp4tEIyzBa+85tioiAnGq5cXD3mYh3Rxg6lpEMMO
64FON2e41pNR9/7lkVwOiChNx9+DHjS8UqCt2rGfLyxsKGU6cC/WWohqX4DDNEV9LOViSeMU4ChG
uKP5NuGqQQAuE/d7eM10W+pzSRSQaNABpBB7vaGRE4+4NaVXrYntX5zbX8LjKJEyvC/6YTvnJXiy
inJ6hKwacz91bHluLModWcHjUmSXhvHuqtJpNHHgAg/p5iRbV3F5emx5wV4kcQYNbvrBfncJocYX
3dxcdbdoGMESc7rlmOrpxIdFMl0/aIURUrEzEDj2o8JBP0vWkRvZpqb1SvQw4mhoPTSmpOLkXjzU
HxU6wt813hIUjkD/yn94BP4jWwoJlheXpnwAY6Pp0yqi2Ra/wQV+e2/8AdO5Nq2QOei8/t1s28Nz
Y9a0AqTOAxvUPoc2MQ4sG79BSnqD4JYn0fuetzaoNquAqOIiS//44ChEXOUTnykqSMBdEJA+5wHB
aVDAwx/EPh+TQ5B4AeIUjBPnCf+QuBcQ+jNBiqt6ST1JMsFXr2DygkL7XsODAbo6bRR/Ov3AC9aO
lg8H2/ulpsIwhDvOg9GXWBoJWMOgtKWqSHSs/x487t58mKZPPx89Q6Wrp0NQ4Q7KPU7huJ6e3i+D
2KY+8LKFFzqvHOl8ofKdtY1WHvYLhMXNjekGvXeq+ReUZpgTu+GX+EriJAnyJV7iCwj/o1NcOeGi
tmlIbqxml3SfE4sk6OvPFgiZPh51p1p9PcUjwTiONy99iD2HGHv1vxB8F/zxOWn29eerdf3kGLl+
XYuDMfpTkie/X94/l8TrawobsPUfbBTWmcL3N0RY9MWcBUlxn1zXzv0/iYQ5D04VX31iTLwcxf3I
ftb4cKinvzdolMdnMa1OrxIcbvn5KrPpnbez4dXUX0VHCnMpvQEyCcNPFv5UPcf5dvPiP300GjwK
ZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PAovTGVuZ3RoIDIzOTcgICAgICAKL0ZpbHRlciAv
RmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnja7VpLk9u4Eb77V+iSLFXlofmmNLGd2q2Kd51bHKdy8Lpc
kAiNGJOEQoIjj13+7+kXNCLNcUYz9lYecxHABtBoNBr4PgAKZhezYPbzo8ClfhDMAj/FH8i1F7OR
5NXPj356/ejJizCbhYG/DJbh7PVmlkezPFj6QQJfxeyNp3pr5m9f//mgd/bmLI1Sz/a7SnOBn6BG
90MdDSSvDo2eTWnqbHGCHu/8fKTEq9V7/Y7s+TVIg3urU22rrk5R8XSgIfCzpXN1lHKjgYQblY0d
d/z4VHemo45vZe3zcbefPp/ccXiT6XkMVUP5IQ0DybWGH6If7j382I/HOiAAwj+Inn8f/tDqLIz9
NFl+PdY701pdfJtgB1UYpRSuj+cke/MWJbe3esLQ27Wj3tam6exdAuf3U+NRj0+wm1v8x9i+wmjh
Kfh0+1GEoZ+kyTBwWm37tvkumxvsE/qiVdU7Grtyu8Z33JlWxlQ3rc1bz1RXftRmM7E8A0VeP3Et
Pb1rxNxsx+pEO6Y2TtpqIBQmQuLz8VYEvhXjUtE/kID+Jy/i8BiGZWdKWdmTJ/PjjYjyZcdpY/ac
UXMXcefntL08XW9VK3sMhJHkCtOvDlsPVSbAe3pdI30+HCpQhHRkWxT4cRSzcX/flsAEzpIk9+wW
rcKcSxUnXVnvqvLXIEzQfJToD6rmLTDJwTw7alZ1hnO7+Vm08EzXlatDL1JUaFTYiNTYrW5d6wvT
lnZbi7aqfD8HJURXxnwnCZd+mEYwKBrMxrTvtFpvpepg3EnqL8KFq/l4SttZkiX+Mh9Mnm1V04He
ekpnGkLIpF/Vmfp5Hroaar3u675SVk9qy/0oj26vbVM2xbtyMznYyM+C/NBtA9MWxSFwrQZdeSVf
ptU++DgMvNc09VEceJyGMMO7ypQUr/xpddOVlzQTlSgoG24Dc8eCNxJ5wSykhUIZXn8/GQkF6/+i
GjVejW9lLWaRv8yy4WKsylWr2qv5IgGnnMXR0ttvyzVassXPhbdrDX5dloXuUJJ72/Jie1ZpMZdr
HccV1iGvYEExDz1lFX90tu3XgAdOE4YryoGmchSStNZWQa+wtdd12VxIFfAnDWNETA4qC98V0wpM
3ArULapd5uzIeJl5675tNcwViFgAnbm1pCquXGttOy7dw7AGGmB0K65OjnGWg7zvXBfzMxi2+yo7
Lt5voVvKmUaKGq2LbqTdUhixRVINxxB6XV+BNy36ZMITm9bU2CYD52N6vdihUc0SCDwZKMUe1v1i
KBi1EAYv5ovYMy3Xut6SIrDGGpZeaMsZjtHFF6ZjGUDMsA71mGOP+cF5VIGOTZRFl5veSn2YXlVV
V1NjXrdaWY6ROBYPxonnKCQK2dWQ2WNfpq8KrnPY+bipYSntxlfSAHynb43u491kFIh9J9P2PRj0
Cahf6HVlr3Z6CvcfGPgDA39g4P8vDPzAwm8isbJz/a0Bhmb7BohV5XhCtIwEF6NF5Lb26ICsC8+y
AJDetuXaloYgKfQ4jbxK1ViNwadQnehklowVOAUaVCPy7RgymOoSQC28lw3gWoelVqtCFBgUijU1
Ikx/qMT6CDEmmYTiXf9ynsI+0JaKSDVKtqYqvsQYhGJFXTCeFeoxFzD14aoN53aq6wSZaIDST3bc
TyIYdOgiviZV598KhW66xtkBfyrXyn6ba8sHzHjAjAfM+B/BDDmqf7773fF/K/U9bIr3RsvM3f9E
qVwCQCrHIAJR+FxXfd1dcZ7vFCDTGIStZAlQsEeoUXS+EgUDUGQReHrtsqaWHCw0gmT9wUrLwhyr
xw6rik6Aeynn66MbDpoV3zas6aycBw4xAQ8JzBDf8pC8usHzI1aR8yN/lE1XFpprKRatK0bIPKBZ
Uq1CyoA+B7BPASh/0TAwBNh8KfgIjVvG+tA7IhmoopO7iZZOciCAiezXzjBsPjEqOLtv+qrRZEcS
0LkV0zFTYWlJyE620Ck/CY6uQJCgZIn3I93UYRH4WSrZrbIuJ6Ky63rJQsR1wp/wfE5aJ07LKC94
EmhQYAfNJJndTJ+UgWmQoXnGtueZ82N2HCAsoLFDStxLIaUqd3izxiwICrba6tZc6EabvjtSAnGu
yka36II0j4CjFVojN4sX7tKDqvIpHLL/6DvpU4mePV8rVWJjOzkaR5X4iC7MSljTxrhgBnMPlwB8
qL8mWavD9Qrys/7jx0oXrgSGIVcAwgnXpt6VFd6hogrdtqY9n7pBHO0F98bKS722sIR+6wfXO+IH
bZqXn04xN7zPS6cX3at1fK/Wybj19wDIl7DK1GkR8B0h8r7RLFfqxFX0RYnbe3CJe7zgrW6KsWhw
krjjnwf4kec3oMblqdP0uzusOmoY3bXhs2d3bRmMZ/MrVPFWfGn4RBYnS3c2ThZ8YY6shxM+Kldl
wZ98yw6ZteqIE6QRvZKhyLXki+7cgw2UGELBih38Lo/X3B2O1VGW+UF6eJyaXDZfPBst/Sw6vC8R
VwE7uv7w2OIGvCC8qfSHw1CAFnSlawFDJM/HYepneTZwfcX0BVGw1f/sr185EAN7K7zr+BrjwKFU
VUu9jVx7jDAeKqNdvSVu5q5Vhq8uMqkvyoZu7BcxPSplMLBGHiHjLPJqY0ueU+FsIGOqmLkrIMzt
lDwkSImTyyRSjq2Ps3iaDGahtIo9tJhY1J7bmlVnKhiiGHhFtEP0lpLi6wy6dEipxNcwK0zImDxh
N4vFFF0EKb/NYI7pHBlagkVEqEDc04MM5oidQcpPGwfKt1gwM5ITAD4OB5GQfCykWVvk8nqXU0Dh
40kr5WvdIjUjGoT9Ne8bJknSHfEiTNmlUwyyt1ueJCGIeKqByjJf+dF8IftLYu8vvbHXyPbluyWp
Ug2r1B/YbtVcjOGHyoWwWT6mYJZu16DfV/JeqdqCVf215ic70l5IJVNJPnPPpdTqvQxIdPG6AAGg
3dmUF8ZvhbBQalVWh/vBquzsEPmO9oPhHhJhdsgYnzNETSYvN5zuNaetrs2l5MlszCBcNmZ/hiee
plCNvca9wV0sClwKIbuiSOV/Q3DaN/pSVb2SA/rYDV8z1OyAtTRFJxh+Zfq5XHYR7acxIG8/F4z3
ff/tbfq4rRk/ttdecdkdzH73BCcP503GijHP//tw9ZX9ozjb/Qmkr1eV+18JuLt1Nd1/TI69+rXd
PwoWfpwBUCaBv8hzNn+I4396/ehfcogmXgplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8Ci9M
ZW5ndGggMTYzOCAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNqNWEtz2zgM
vudX+FZ7plb0tt3D7vTd7Oy2O2lm9pD2QEu0zYlEaiUqrv/9AgToyIqT7CWiSBACPgAf4IST7SSc
fL4I+fnu5uLyU5RPojBYhatocrOZrFJcThbhKghT2Cknt9PfZvMszkaPf3tlJS0FPTZyTwuratkF
s583f8BX5lESZOlqpOm5M/e4okdp9CvLWndK39FS2VcdrYz2h2xLYVpeqa7rJYtVqrMBLf/h41J1
Rd91svQq6bnfqYol9qa9U3r7sq3eiNG3aRnl4eI1Lde9PXFu4NFe+i3Tb3d2ZJPpKzZzLf2z48Od
0GUFXgyszM4Z2clGtMLK6vBEZJ52871gBw+mp8VW3bMh9WkONEZpK1veY/St8dgeRtFqwY1WFVZ5
CFXnD8pel0Kzk9rsf/cGxosgXC3JwO9SvgA9R/3Gf7Hp28Z0/GI2L9mzH/sg7o3iWFSiXpdifgZ5
+asBTR1o4duiaaRoMZnIRn0CWqe2Wtjee/AjzMLOeMuET4a6qWQttRX2Qe+gPLT0qQymnonl8T7f
lEWF+XD09JJtAf0Dse+frr6+/cjW6vL5r1JCCL2tjtksa/AmGuT/OcvsCGstFdxs/UsBUIr24DOB
97t+s1GFOlq68QcI2Tjq2lNT21eeE9QTVXvGQkyk51zfPaTtKH88KiP0B2GFctHWlSRQcTak4nkc
Oy6ex2GQxCmZ8kXqQgKeSZJM97N4MZW03khZ0apSd4N9BJdll1PikSRJAUZ839PZejaHF77QStEZ
LdaVJEmHKx64IiGJgZMogk4+0lOpjZUlO5aEkygNkjSP0TFAN42CKF2QS8lsHkUAxd+taeBuNDWO
lZMFkPVslUzBgAjomph4DBLoSkBXzLpcxJNsNW2cMsCBlcEWQdA6TW4Do8aya7GGj1QHPtCFwYBZ
h3TOyYUnBEK2nIoeqJo3K1Gg6jtW1/U/wijH1MRd65WWUja0umP0gba3bC4w0Zm8o6+FKVYlsGGL
joQJ4Q27D3ijSI8w8QvlF640yxqqKLzeyYIpBA9Ey3cgRUXhQjZPIahfDGaRw0zeu78tghGFAJes
VK20q0mnsG9J4uBN2W4hR7rzLgnOSKMdMpg/O7bcpVtVEToUJhAs0BAUAWZhqZNsfpTAMJq0khMd
yXQtKAfcR0+S2WuiRu9OGtGQNk77W/QCJibI4EmLYxMurj9fgC9f03iV8zENVLD5Ewnvzcmuf0Id
xMPchU4WL5LT+r5C4gjj6S32kKBpVR1An5klMToJf0vxkwSyIAriy/jNuaKIFnkQreCbTuW1rB2i
90QLVJDJUD6Ng2iZe/ley3tR9dAHZhkUHqRDFk+hmuAFQMki1wjOfTVMgjhNvJpNa2pMpZzATpOF
G8NoCzsv7uAIBJHddvQqXMqAn1GQgwMnmYMwgBcUa+i7D02WAlUL9O9AL9pwlkHnpXAKjqfSZzlp
7oMxZKaUmemK2XsG5GS5ZyI9ffxFhCVbhbT8HD/lnp+IdFJPUJB8nahoy/G54HPfMRyHEIVRz8LD
9xXUAja5cOEpL+PEp1JycUNJx0w7rhxU25EwEJxXznyY4jiCR52iDo5bldK8gsGYC/HxvFNA07DY
Vx3iVFilElttOgu3CPfNyfFL0VSsbWN6zaWswDXdqZIrV7Akpussy6eUsixbGAbul322BXFYMg70
2wJDjPwMD+JnF/Z4Smz2Qve5NpUbklIw551x7cdhdodbPEDh2V/CWlq9F5VYg+OSXl2fQVH+deJC
gwe9lyiAy7oT4XyMZUcqMFfc1TE+Ts0DPmdpGsOQosDuLGEkR7LobDlvHCsQQ7hsPoNUHgWr/EhJ
RwY5VQsDz4BAAEGn0AYf5L18Smu2yPyFWqiKEAPLkWvgR+h8AetrxWWAHTSFgHyvYcIkOUIRL0hr
j7fxZw0KulaNbdC9UfMa4AKgLaNgsVycojeakJJBZTtuGsxe/oeOiwa23hTG1m8fvv2PuSnnpL2W
G9ki/3QnXeeFXL11Cbp0+H4RGtrKaSMDbgmnf5reF+IHcEbDPHQmbFGSB6v0cdhQ7Wsal97iYzGt
3VkpW03btbSCswf/bKm91DVTEnaMNe3BrHG+D4//gQGYrILVKCA7a5vuzeXlFsLerwMgv8u1ARNN
u70EchRPtOtTAGMMRYgtYhUs88wPr8OrH28u/gOuXZE1CmVuZHN0cmVhbQplbmRvYmoKNjAgMCBv
YmoKPDwKL0xlbmd0aCAyODYgICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp4
2l1Qy2rDMBC85yt0lEgsrV5+9NhHAqWUkhh6MDkYy5bTEtvIKv79+tGGJKedHXaG2QFkEaDdCu7m
Y7piW64RB5pAwlFaoUigCBIKatwMynD2rkQSHskxfb3IUBZoALw/FUTEuM6dIYGUEh/OJ19vplO2
lfLalfOIRjoe1bPpZ+u+T40dVTrGz45ojvPKb6Y9wgefNyafSbNcVK1bwMfMtkQLbBfV+XzxeZuJ
xv7ktlyYp/X6LzcgjtwUfgL73fR1eJ0v4AA0iuMRSKpVssSsve8eGBuGgbZd2QQkUCHuvaGts+zL
F5z1hRCMcDxYwZlpi551eVe6ngngijVTdbQz1U17//O+ecEVlSBREApJVSKWDOpG+5KufgFlc2+z
CmVuZHN0cmVhbQplbmRvYmoKNzAgMCBvYmoKPDwKL0xlbmd0aDEgMTY4NQovTGVuZ3RoMiAxMDc4
NwovTGVuZ3RoMyAwCi9MZW5ndGggMTE4ODEgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeNqNtwVQHNoSLYoEd3cY3N3dXYJD8AEGh8Fdg7u7E9wJLsElEJzgrgGCBQueR47cc+79
v+q9mqqZvdp79+pdNdTkqhrM4uZgU5AM2MGVmZ2FTQAgqSyhy84GYGPjZGFj40Ckpta0drUD/S1H
pNYGObtYgx0E/mUh6QwCur7KpICur4bKYAeAgpsdgJ0TwM4jwM4rwMYG4GBj4//bEOwsAJACulub
A5RZAApgB5ALIrUk2NHL2drSyvU1z99HAJ0ZPYCdn5+X6Q93gLg9yNnaDOgAUAa6WoHsXzOaAe0A
GmAza5Cr13+FoBOycnV1FGBl9fDwYAHau7CAnS1F6JkAHtauVgB1kAvI2R1kDvjdMkAFaA/6qzUW
RGqAppW1y58KDbCFqwfQGQR4FdhZm4EcXF5d3BzMQc6A1+wADXklwFtHkMOfxkp/GjAB/rocADsL
+3/C/eX9O5C1wx/OQDMzsL0j0MHL2sESYGFtBwK8lVFicfV0ZQIAHcx/GwLtXMCv/kB3oLUd0PTV
4I/SgQAZcTUA8LXDv/pzMXO2dnR1YXGxtvvdI+vvMK/XLO1gLgm2twc5uLog/q5PytoZZPZ6716s
fw3X1gHs4eDzN7KwdjC3+N2GuZsjq5aDtZMbSF7qL5tXEeI/MkuQK4CbjY2Nl4cPAHICgDzNrFh/
J9D0cgT9oWT/LX7twc/HEewIsHhtA+RnbQF6/UH0cQG6gwCuzm4gP59/K/4bIbKzA8ytzVwBpiBL
awfEf6K/ikEWf+LX+TtbewL02V7pxw5g+/35z8nwlWHmYAc7r3/M/xgxq7KGnqaiGuNfLf9HKSEB
9gT4MHPzAJg5uNkA7Ow8XADe14Pff8dRBVr/Vce/fOUdLMAA/j/Lfb2nv0t2/4sDdH8tCD3gv2Op
gF+ZCwLQ/UN0AzZuNrPXL/b/Z7r/4fL/x/LfUf6vRP/fimTc7Oz+0NP9afD/0QPtre28/rJ4Za6b
6+sWKINfd8Hhf011QH+urgTYzvx/dfKuwNddEHewtPvPNVq7yFh7gsxVrV3NrP6ky59yrd+LZmft
AFIFu1j/floAzOxsbP+je90uM9vX58PllZN/qECvy/PfKaUdzMDmv7eM43XCQGdnoBfi65BfETfA
h/11Hc1Bnn+wGMDK4gB2fXUBvDbnB7AAOyP+nigvJ4BV/rfoD8TPC2AF/oP4AKym/yD2V+QMNLMF
vT6WFq7/yDn/I/9z1n8ruF/dzcB2r539LfndIKv5v+BrSNA/9q+BLKzdQf/ScwNYrf8FXwPa/Qvy
A1jt/4GvnGf9JxXXq/L14f2XmgPA6viPmucVvbIP/K9q2LkArM7/WLxehYsd0MXqn/peE7h6gP9x
4HgVeP4B/2skZm7Ozq8P0x9L8zqvv/EfryAI5AkyQ1xeAJsJhth8DOm6qxcn8mDenxSeo97XyaBn
9ll2/uT2gAqXSl+X837T+VY8dbQffW1Xmu5GbIXs2ed7exNceEeyWuej75NxovrMfifi0jTu8FTx
d/HGIRIEYmZNsQPfZydf7SBb6HbIHgXqAic3PlTVIqw7j0FZz8ahytXxsIV9tYM6HkWkp8pZ5lit
GIOgsq/Uhaa58/gUsK7MJPAMmBeeaF9vbucw86d+kSkkMiL6ncRylvjobXHE3c97r1drcrj0ElAR
6OGTQN9gjs/Q+EgcpingLfqUl8ZsCi/m8UbGf14JGUyaV9QmoPBXxXcOqWAWzg5U6sGi6s33MMt2
ttM2m1IB0NCSNcL7hFKXy1ok11KOlhvnElsH3D9Tkmgk6UKaM37qI+09OdPqYfBNiscXYI/9NmlP
eiuMtdOd68/zdA/LWgWckVWCSbWA2KBcUXmLOzuhUegnrT7qEttU7KM/9KuQpfQnsw20Tbhvqau9
wYbAIJInH57q5KOpatNh8vnpc0lPgtWofnM99g1O8DS6cTd/xO60K8cLZ3IL748QJnkOPAnU06pc
vs8KGZts89j2LsRaUDrTag/muifkxDNDoqhzz7ndp5Wiq2pnmCdcpyD1aLlYJMO5KJZMxwDj6Qli
0ZygPb6zPAHwkUCrFqFbsVSynr59phHrZ2Dz3NpBwAJXOnyz3TXX56R53H1XJSF/GjKdrNBqDyUg
vyWmKnyfk9W2WmDWZAFur4177Qx96LmhS4OTOsXzdN1IKOVTAuisl6Q19f4ZRk8xQFXuItFZJlvo
p7RC0cfHLEGirRkWFf/vFYHac/VO8EoKjMYz8DZzTTuIri/v3BWXi8g+gQzc4DOVLtSc4oS0k+TF
F0IJj+/5gV1wxhu0NMcyUq38spTanSX3Yu62UaOubSzSxL7eVT16RdbZgnkqDchvFclY+R4IKC7g
Z9Ar5MRXeLsXREUoqvI+5OK5nqSNeggyzOxH2HEj9SDJyKBI6Ow9sIdqkJK/DEEVczA0nxDBfp0w
IYrhE9BN6Ai6tNOqIoRrC5EvuhbV96iCItwZN0Og0ftmUkYwU5HfvVGP7GIuB5IpTafFbWNwOThE
mZ0O0jTn/yoB3CqORn8fuqIfNw5MpEqz/Mje+WSBBmdwmArHdoTAe0oKVJ8ywqDLelLCs8Gg/EJu
77HB0UnZ6fDFeZvKN/rXjCbmqRJcSrLhtE+VbpnJrweuIRbZVA+sluq9VV/VOw6JY8u1Jo8rU9te
mfo8JKQgleoyCxvBOHNRygQ7CkaekyqSfkuog3if+xsMhvuNs9N0ghkkLCYNtT1UjtLOosdqGtpy
hxoCA5OPhmrRIcECh6g76+39PHYEDmym/GH2hl0XP5i+s66Ulxi8o+Ih1GcM0pKOohxui1EufHtC
hzL1kUXqaVupbqcS3+CGYVvszpuTtqyUZjqVpzTkgiN9DTaqhxqGkS71Oss20OQjvtTmC+vHz1Cp
tnSYo0lx8bYZ6I51qK4mt0ZHEgMP4fg78w0GckH+x++wjG8rviQ1veDAP2KZUfei+dNhk68gKrgv
uqCi+WWM8DsteBxMb/nsFvCEYdZOukwmYyiHZCLc0agxDzi+/0YbSROVqUzzkbcJox0jzVVv8/GN
gTNJgC93qnJZGzdF43uG7jq0HpKTlWOh+pjJVKm4mEamTqUrCxvGlMSTse5PPV8gb7/nj+ZSeLL1
/7SihK7adNMXW/HbPlymWAhGHDWXT5RmQGAC2PQcGB4MubP0uXq2w+NUIJwn2Ur3vbMrqiv1Mw9n
YQYpIH1rHLmRTEiFCygVJqtQ3MVtlkKxcaiTp/DC1g0nQl6TavG9o+kqjBi4sRU5tM7t6l8+QYfA
xvKsj/lu2u7WL0pUGjbTkPQZwJR5rt3ukuvdm/q0L26GEtCJIks6h1w0LGRmVzF8PtVC6q0hKddq
Dt2gFFvO8yY3bdx1qJfMAGrNcFq34LOd5VfosU+2SYbv6BfeOC/fwPDRnneIbG7xyuUXdJpADsbB
dQXQDrbQYzgjduy0zMY15suOLtRBlRRB6/lnS35LR4zWYnmDIh0t2bnNmQ/jt2AFckgbLNuRxkqs
Jr8PknzS9xyf8Kx16Jd0omym1LTuYEG/tr7TWWT9Yb3PECyqaLIymlc4iL78TPTL78hScLIn8SNa
dbJY8acYkQW5usDqvu+P9+cVq/YO/OPsmQ/M4T/3Cx5xKvTRk6Agq0+HUAaQv7na8CLBcw4pr3vt
eJeGHDBti+pdtIodPKhjq0pYi1ztTX8vOT9ZdY/Qlpk3ELeybQBntNTCbKHn8L0hg4XKfHN+zgDb
M0wSqSJPqOZexs8F5d35K5Jr8ad9EBrAgY+eRCr3eNPUcGQ5D+6X0PmEFp3l/s3S/QZdsclbjvTo
9udi/FVvU04Ytl2kLzfM+Jra9T5ddQh3xnLnCdFG4frdICw7iZGdHZT0OJInrhiVH6GAvd6HCNx2
EZEeYVB+Gada8jRzFi2b18zmaQV+fhzljQK8DoANfnM9gojX4DEU0/WCu3aNgDM2RZgsbmCyi2Cp
4w1eOVr/gq++etZ2gwh3kHwsVkhlrnPrDbInulWtlRf5rq32F43Ptbzh8kh3mlafgZrJN9jr4O+j
QT9D4uhqkXXMXbTk74TPDR/mMtGVfedgshLNFe4M3lWqo1bJegWitXKZ06FvqsTvErf5UODa3RtE
AQxtP9fyaSNm3kGeX4ifCwtP3TnfALT3jAJuGfbtPW/oQD+riS+FDYbH6snvXwoGJFryTPkCp9tn
dFEWMpUr6j81xdRgLpXtYFojOsZtZUTTjzifVyAX+O+ts19lIfUvxmfBCQkGmDPVGc3xlOxb5DKp
9jpOlvte1Np2qfN18DZfk4pYI0XARrQ0gABGPSGNObkqs0XEYp31VpiHuSZ1+hIy4d0bTErUX+21
iHO6DrGaJECBXQxU9WQOYM9tTkUA+k3/lTZVt36Rfl/Mc2iGhZYgAddLdOzHPAI1WJv2q6SHkMbE
KFjLznAyy/RN8MYaCjk1iRYhdm+XVWRJReca3ddcAMfNYftifmNPQ3BRGRNgu2kr89NbfP3piKRJ
YwPROB3XL0KfQ1kF22ORmykO1Ilr7Nf7a/Oz6WtvK7CzpeMMnD/rsCP3zc0kgVNKprEgvHYXIpfp
JcajLgy6xVYsg45iphRE7QHSTk7LKSHXfFxGCzNjO2g9M1L5LcTAJ35e5N3itt5pn5rRsmzMKj3y
JmMTZucVu+V4hvNOJ8j32fh5e8TLHUtRha7Ib5QkIS1nEQUcTBUQIh6UOgad4glTRpy/2XAbDfJD
V6qoazcqoH2r4QXhbF0mOHykPtmeqsd6N5zq9tl1ISCNdPVNBB7XcFv0rpAThY6rhIFgoXj5HYzh
04cPMKQfb4gs8Ec9vLx85bALfY7DtPxxhex6xoEvyj9IYDKQIboDMc5cVhfbl7bQjGe6Bh8n50Vk
JqMH06Pck9TCR23Q8l8wCKGSHmpzeXCo88wCoSmLR/ybE5DSo768PYBBgQZBzUYmhtMClzXYsy6n
QOGAg34ZJDcUFyNrCvyj41CvJo8EppTmYH8EyYuSJP8d9eEkky4momcbimDG5c/ViraxKGrceJE5
Y/LBlTZfnqTDfphq0p+h1aEVUMSGNYo0exytuz82bvtS4bFwHScziM25iK4iWt9FTDlCNJkO7Rg4
I8Tyo4pXDWzpCd27M1aOwdYpSe51pk4ylpOs8kHFY6cR33tFs3hKzi4P59O879EqT/VbNpDfJ4xw
JssdexjDU7AkQs7t3RY4WJUSxSesGAMkwdFlXxJi9LGknZBwx+qqI5uwrj58KveB4zep5dvCQYuP
3hlckcGUolF6P+5rPP/CMlpdkOQOPN7S2E8X5NWiHrcVhN5VQpaQMDlztS32Q5Du30drDjSIkFNH
GZ6gkMk8PtVFrw/3XfOaOnfz31fDsKqy7XHn0oabKy6AxDnCVNTpmMzl+1GeEtDPiRUH+Ygx/+7J
aCmR+VRlmc4vg8QPaT6Z5SpRx7oKB1g8G0IkDOkRXCZKXEXoP56jB81VDTg7az5XQZ8Q8RTcQB1F
LPOPyDFjLZA7nKpiJI0bp5awP2ph5p1Gxs3TyOI4fw5j+DEknTICdiIV7ImY75xiPcCI6+A51i9H
VkJfOEMHt/URtWoiX67BVxTKRKZ8FBHuQv+xxHfREkWVkJdvvh9NQ8lGNgO+S3F102+aU5sYf5TW
GiEnxh/6YkC2keCC5SH96+quum75hKejSmcxFikMS40PAeW0UQiZ2tOOJoioDHHhugb9zF/Cakd4
S6apaJOCw6DdkGkvYK5BzBlEV45qJ/ONYSjqHe/TcuzKkkkxUoOjhih1m7Xvl+h7V18IffifuKZC
90S8ysL3ObO8eC6j0w7NhO+n0VtmKj04uDbQF0N7zVlNz6T89enr7uEsucoKOQ+f12VpIFgdVYL7
qdFSSZYFa7pckw9QINMFIGPwHQ+PkY+x7/v9PJSzcDBYIXwQSqaqAz+wsZhWpO/akOvtxokJRRcf
oLy/ffH2WrD7Sv/rmeIjYPXiRrEQa2o3uHddyx48m3kGv8xRDGEGle5HH5i7+807eUuAQAij4ef5
zWqIzD0ZQgG4/2IoGL0ib+9QVgnNa0xzhfdSSHr1fOel1ylSx1+yqeje/h3BlfA30C6LOfUD8gGb
yK9SwU2snvjWVqq9H0aTUAUiTO9yWEhkHtdSiiGz8qkhU2QH8DqwbbqZaCDOcLVoJjWqK9nQjjOJ
YqoyNGomLLsNdtv6H6Myv6/PvGG04mMJxyYfLWsSTfzF5QfDODQ+el2YcW4uOb5QKHj7nVR2sLv+
Q2Dx8JAepXhTEn5hReP5LDrISbpdBA2qR12pEuH9S6DikhiV77KUTk1m9Nw1q6pKI6zRdConA5vi
zV7Q0eDz2nArvd8cdK3CkbIlxSwV9wPfD+NuyypJFw7JZl4mxdx8tPk8UfjJzskp+oKD1AiuDeQH
1DV2Ssh+cEdVWnsrHo48ma5ZrurPJf/IVnbAhyN44OX7PaOSIa5nnFEekrkUehuSt6UrQBzAIBDF
COz1HGtUUDVLw4+1mR55A/9tpIq6qEdIyGOnXNhWNGUSevXFRqxa1ZfY9hY3gOuDzMtJmIsfg+7z
wJJiqU1Z5pWZo2GAfyafUK/YbkJfBmfLB5v2fY7c8PfUqZD8vCqTF1Te/glG/X1RUCL2SgNKKrv8
P70ivzf2EYSdwEMAgIv0sFNkWk/0UiyiEwsQC/xduXUWXOq3HJXncTO67e3jKPAelKRoxureRPB6
4270TttbPoAHrFvUG3hOq12Nk83sb6o4WxhSY0NJnrD0fPBzJ4PwydQL6f37CWqGQl/Bg+MW09H+
CxbZwk45n1qxFQarqqXI9Va75xWliEZnzfp+HtPtCxXp4o8k4LPkHpJNyx21o3DK4UaMQIRWKMTf
9EOr8t4lpVJ+IY1XZ2wz09quItHU3Iaky6Mna3mSVjQyX6Vu6qW4fNGIZlEcqsyn8eV1CveYl30m
WMp+yKPa0o6cUSnsXnqxs5/lceIwkA8L2EqP6ViDmOg5KaaIEANy0g8iFiBBqvAeKvA2kr35us3O
W7G/oNjkzSAtiL95PzaBj2ECpnYhxRpVF6WhxsXz6sOLqNTVSVfWXq73k6yYuCeb+JJr2XNYYUHD
9NlgaeH8akvIgHXwJHC1SbcIp0aUJwk8dTawLWv8shFY8LRgf5FMctvQeaJiR043t5ybdq7++FVq
vivPkDkc8uee6pUFPe2J+xNX1FRVn7SCdsCkPn+PfYkgVMSJcwKqMxR5LOhk4kSwydNo9ix4TSU4
YzzzqDrRhlen9Jgyu3E2CXYOLmVxrHF0pENCW5YuYMt6D09/T75MR1xIrO1wN1u4nudWtA7ryBIC
I4YKRXNMtuI7ZmEQm4qLEvfNMsTkUaIS2ZVbFHMcJM+CpbH7AxSi0gG4RLqubbjIX56+SZGcU/fH
pMcnTCQIJbWf+5g+P/syXCdBKSxEt2bDBszwZeL54hl9tBCcymijWL7rH3fXQcUVjtcNLjhYRnyK
7BmPXgyWrCnng+UrvNXHGgBkIWtsfZvPKWaDzzruiiUIBJ9Xazx1dYcpoeTBobzRSHG9t2sY89tI
5QpmOwKjjBqkPcGdsHSA9ENHYNnmG4qTzy6GNOl1qzuGObZXp/0aTUrnXicbxi82d18y1BdbhM53
AZfj7fPwzqytVX142ZZwfWteJLsbih+YcBL6wdjcGnIolIr5aHj6NMiL1fgH12ZDyAUEMJeCQtnm
7WTobwY+bu4Miy/THjES84l5ealpfHcbwzhPmdL1fsmzP1rm9Fy8jrRWJI+tcXGLnk4yj25cFnbG
l2zQFb2y6wpOHdcO0DH3Wl/lVkBLaJw5tF37zvZ95g5Jo6PTSmNdsX0vlr4NByaQNHDxoZIwMrXZ
rs102+WCqP7FB/K7gLxPkwkNQMPxZf4r8kfIoozE2ncblmXQIvwVP6cnAOhrzhMW5MECHxZxPLYc
UMlWBNHaUwFHYuIPighZopZx/W9UEp3CjtPfcEF85EOnH4zXLJlAGDKD6MVcL89Q12ifUhybEPhu
y/XhCntNAz7Nb1mQUyht9XisWeg4HaChZQQ1GR0PdrxGb/plQcEtJh6NUHTww9QJ+xjSkPi2W2eB
QfttPKlyjevKApPGhaUxvLFhcwFbaFTtMbPsmO78nXfjIaOsbxJ8oYVxkrOhtGzi6ibQaTUnzjKh
zB5h3rBZ2eHDr3R4d7p6qY+sTdcrSqZVGAFH0YvmO+fL6jWCq7LZoqJAhQFtTbTtFy+jw9WaX62W
H+z9t7JMPupxxBxuT0f4RsNM++yJK5ilq6nfFSM7OZjTbaCt5nhlXrbegqUmTDQrFSTj36xdyYV7
qwPXrkfmSFSfPj5/WExBXzyOHPMczpEU63yJSVZ2nBTSj49lmxItfwaNCELpaR5fxzOGVqjrF9ne
WQ5NlcX+wsYJnsFLAcKE9lBUOqEaNZguXNR3by5/RmDYfQogeDlx/nmy/MO3VkCgFV0bRiVB4m2f
ljfq6Jqc6QVQtk5KDrXulIqHistVqasZvU7BFLIZsUv+TEUeX3Ihx6kZyKKYicE0XIMsEiiZ5IVo
lwrPS5tnb5GMRNMEHmMf2q4QCD2wfpkNrcDYdyP5iGLftw5SmQqEzM+EEmMXBEhIPJ7gnPnp0RV+
xSNSxeLshRSxiNyDN6m8tvd49IJeqv641WOY7KfEBu8E3lZYPB0BZF4vn28RcO2ta0tKSARVKH17
9JxgdzGuqCagM+AY29Xb69ZjmVtDlBX9ub5DFHQMIsyNaXJraeE7QkHj3HJMe+LDkHJiSh7uprlb
R9PnVEa+3naBHXRdYMWaquxr00QW/HaW9NiCJimIk2IoJdXgxrYOBfcBeb5Y7Ulf2DvwZaxEtZBB
UVLLKcm2ACIleJdyClv0m217PRIKvTLCj9NHWWJ10voRHXkUMgr1d7wXZTovnWuzEHPHC8P13yPP
M3fZGMUmG+c111U0R0Sv8WKKV8+CgJ0KVZ5e/u18BJ/dHJuLfFE6RLnP6wl+UenTuzyrmAvlUsbV
TW8daVUpf6Xjm0YhzTSV7lH7Loe5D4vuytJvwfON8GShcEALe3yDs5JAGPjBqCPAHx1fctfw+Wqv
PJCMYxaPwgEeUrJ81zhiV0aBb+Z54Hl8lMPnuqdU3wwdgz04BmcEwQJSdzSyHSIVs2jbp6fmUH4l
FFOm6DPCWDmbbG5Ob8T24dsPDSpIAm2m8x0hwc0yBJxreaV5xnR8eQICJp5e2npURPmJj7Bv1qMs
Zb62fFvLfv/DVE5NvwZ7uoL0B/lHcOB6NhIFBB2X/Q9UNBzB1at9EbU3q9LvQ3UOBd8c3QwxspLm
WdTk+QoJpd0+kzBYh9rvwn05pMrCHvDRHFJayK1hMCAPRmdHYZ6w96/mA4KCcghGNB0fzQxaaUki
LXcxi+ZrbiPIPllM85J35BAF4lJHVghOWq5NqLjc04UlO9s2bM3lDpypXUHS5rMnOu8GchFXjmQo
XktVG1U9fPpWKVOWArHjJeYtTUQSBi5ML9A6NK99hOd/J+Es2qahBcW31s7aCVHYFGbov4NaVohR
LCmvsnXomLGVNWsSs39GTv+LT++psvXMs7zAK+w6mTZ4yCzAcK3sp4AO5kva6PcypS9iWFHTI7g2
pUa7hfRR0c2FB6cG6kaVJAmiH889F+JauLRZ0trOY05lUmCBe8Vv+2bM9dmAaZtjh5sBgBP5qIAq
dCRIpJ8GDfExvImI1nPAAXwaVxFhGUPFknWPOs+lnz6lo6kMBba3xHSRWOTlthvIyObFRqKSR/qZ
UFFQJ9pB0xDlSvwgfn6zx+4lm7K+0TM6apgzXAPLNoPnVLFrVH78Vv0VvUe8O/Jpy19IJqVxNCeO
jdkRgaK8hv0wE/HPQUdIPWw6+VjHsB+scyYPeHVc+h+NLnd6WSWZvaBySDjHk49KbsvhmQwTpVgK
m1HdCTEs5c5xL9aXVVIExie4I3nCDuPjMf32jtNEAMGGAQt1fKaBj6S+ju1H4ZeZMCdfkRUwUMAJ
ASEkCMYISM/nVTmHGNwazAscMJBmZaIOH+j2xKnZuOjMReJmCRdj3rHgxFZ/XYbQz+A1GcmB76PR
ZWNbelrEXH4eHz6Sd1yxIimJKtHttrrsRpD+jvHlPZyL89g1r+dTRJ/x1+jOFk4xR61yE8cMo2BM
QnjYoieMAPK2KQeOB5xmIcdPsBcWQQQC9wJasNaBC3e1VQfMcaQRyq7JeENjey5BhOMqcpd8gpwE
RZjVGOLzW2dFlwQEl7x65QXr7sd9sn6eJJt5Mz4/ejBZYLzKEoJ9u7UOg6LMRUVFIzop/BM0idCP
xaTDIBrKvXdJQa3n3xq+QGlj7bOfssKFqy+r7pjbOg8J3zQH7zQOOXK89eeB2ZjIld2zyKZGHpO4
k4ijXVX4soYJ3FFY7LidYqJD+MIcV5hsddORYBO5yOTwDXR5WJSX3Lcl4ROOxzoteKSBa7rXNfHW
66isvQxBHVrTALLpQvaapdbQljuKabGm5VGMxpZUNKLQcI57J6WK9skWEyX6CclIsloeM+lIAT6l
1bGEI5A0t+QwKfWDVSKLIHTSe5sGJNrdljjofbz6QXeTk5yot6hH6YGG364cZn8cf6ES1oLGjpGT
p5ypJ+rSk30HrY+WNBN8l2gewKO4vrimU7uBWiIy2Rbv7Y8ztmvlN4jKOmz8taOX6qwIDh+FcPzH
fHvemQ6/f/aeVB+LUoJ6VNMy/4VhaabztZQ47EhN9GZDuhizP76xkavSo+14jqTrsS3T5Nrl2RhB
asoUgmjb19wquhXU1RSzJxAN1ltk3S4bnoTvGEfLuCsirG2LrqMZNQTbmyNHlrcbY5dwoklj6Jlh
GAz5LLgCdBtf+Ii1Pexp7/UK1uWKqMtdit9Ud+51E4AW8xm/WpbJeFy1z0LoMogOuzfISzMUdNcl
LNyAiXaEs+YijJgu8z+H2aK9/6HbQ1oKYT507mNcPoRb7/chtWsxiH9GuuWzF9pVD2WhECPRUbzg
vNYxx97+e6P3tTDDk8od+sqneMYFucx7STRj5pqVa7zfRnrHlJsHCMxmaq0qfdOhOdjFxxc/ztnV
rCEs+g4om828PL5VzIOFEM6K0wnOZeTBP1OqfA4C3CS4YpgIOn1228+br1Qssh/OZ6AMb+fnfpHq
4+TpHKhfsNzRO1K4cj/mPCIYE7mKhtnrs2JcapNyacGRoaf0vIRDh0xLxfcd0+u6YMGkrIgNNFCf
XPg0/VHXLF0DerZqgbTGRvxqL2IQoQuh6Nl0kNW/oeca0PpJ4gact5j8QZUZXGFmaiKuZ4oWT5Jq
9ktiQdBKuyapcHp5I45y4P7ixcRcd44DdmDxqhLIgrZeeorbQ4iIOla0uMKilXAC/enZn10WKnlU
sVWSsczIX5PrDe0Tna2ns0VwbZJjRIN2zVqb3QqUSSAufyOU4h02tiHxBCdevrvq3kbMGo9tXZXN
14DBRKMxmmkkyuQAOwxTVi5JjeV4I68Z5Qas895HlvaIVVPNqUXYEEeExV5IzBR4ic8nro8m+OrE
3Il2G9q36JkchI6sH5Z5Q5Bd6N8u0IoCqfyzuZH0686WtbyFMg4pSQDJh+KQgUMKvLll+u0bVeG1
5dDmHpG0WReLKmQYT7HvjCN5rbMwqp5zflbchl5uymd9XVyOZ3xBapD7AWMucZm5laVlBdFLVq48
SSdYXY3/K+NGn/RHuvgeDqmR2HdTiKhBe0dJ6u9htG7DYpgDGO/4gvNH5DZULxI5lU/By5+ENEZM
7xZDu3qpt4eqkyDEbqpL9+VIdFllKS+xhab9Ua11qRXt00b3paBKOrAbR4yTJ2JTQbGW4QmaEQZw
2aU55TTwOOUkPsHYxeUqtwOlKT2DQw/FjwMvh9QNq5PwIoZzquhtvsm1z47qKOhnMbo7ejzdJqSw
hS7J4Tp+ljMYg7LJl8zkx/zj6DKpBfa4+TjtrD1hlpLCjDNvGik3LkTRS53sVp/6gR1VLWqiQuuw
WbEQwTJB0mrwrmv+2Pnv5/JMEwA7kU3J/YFlfdYFCw0tU31uK9E73jCFVLoM/VQB75DJOeTT1vX6
3mGz0ssxEM+83JdaFSH5Ma2em2inS2Chj3N77iyj/fi0cNIQsegqbOU7a7emtxOK+mOZ6yW4fL5t
MjBBtKGnhI8cP0rBVZVWKKRJ34vim/g1vN57U+7nWjSKCrTe1ovElIYc3WJHnokQhIgwtgEFsEQp
/pz5u7y0NDvroO7K0tuyS/z8TAUhp82up4rrmm9TnQePY9aGib1ucGf27aVNRmewDEnfjLdLr8wi
4phk9BbVq26nxpo29XhUCoJF5NEMWqYZ9Dyoan4iXhC+XUSx2pcmFLs7wVspePdiwpLWYXNaiH1a
e572y3pHP+sQVkvB5RrJ0tnbf9tOGIty6IhQ11Y9jUFffsDofmK4cl84p9ik1PZLKZoLXRoP5ddw
x1OrAk0FiAcuKPLZY1ELmdazn2la5aCXvuKZ1//t8J8DkzTPeQ9izMtn4WrE9QqhaPQzfNjczuRo
9G6Fxa6naa+StUS7Z2gVA1ogVg9HhczGX5wn/ejUxmEuDNHjZF+8LpTT6VVEnDN434UYpKSgVdpi
/cInRUNOtU61e4lM4mBhX+t3eYTqaZNge3Si8z8Qu4NY/hBSwUKnDC5uJ7bt2a3BnXjKlUylhmCb
dv/s2GIpa2pEDo667RuGepsukQVz+rW/BBy6hFoxqWxkH3uKfk3cD/1YvYsk3tVdrjNtqir2y1x0
SqgD8BRM/9VafnrdkG3Kcbyh0Rrr4Ycl8SiXtM+48KR+HBMthQMrG+sRya0bvXyH3IxmXDCWHXyD
uLPHihw0KWEcX1MJulxpq3YUtWIc/kybMFA+wR7KQb+eCJ7Hjx40OEBu1ZoPEy3+6B3ZKHUz3JRs
Ar2/TV+ucRZHyvNkLqYuQxcFIdCmSrG6mRwYl4EbybqDZnSp/kj0BrkhGWxBJB5COaHxNQo/2l7Q
gv49y5IgQDoewQMdIfQdU83lRVCXmwpPYtr3HmoIb3bDpJIA5rA+Ko41Hyp3YvaaLH5Id6WN3mND
CL4y1cIkugumt7dVxJ/uzKyitd1UGTSF0MJIw0Je0plbup0DoiTmSN93gxUkT5GmCrryJUbEckr2
vrwPpSpdUbRiYWyx7dTN4DybEK6SYt62lNZaDBhacroRTCSUmUaop7fALW0wUf2c17z8WYfj/DCY
mK4bw5C3gIEmQxIGeRrIcZnk3SFgnJ0cTvDt12MkmZH4aETXXrYJBewIkXzZpCJ4H4W5PkJ8LWQE
Z04ntGagy36xRBittfgYjgtL3fKWxSAFc3aqxkWofCB9uLBqDKXg/iNv5TeS5CSIsJxmiAaO8yXP
nRl+rhAdXX/mQWqDSFEP+UFZ+INz7/Y+o+9D7V/Rus4gvaVeXJR5PHGp9qdgG9F5jJa4phAFLjLw
drXRplzph1GS0mmkoatLYe/4AMIqGUc73ywpQ9ebzVDa2WaHT1xb98KMLATFMxfUAgOStDQt8g90
4ZPYISCDJl7sIMtGTqIdBIfqwr/nH69YKm6LHFFvFPoNKIa6VA8dSRbs9XSqrmptAzjePgRKErDp
+745MJB9yl2VNvNBt8+/+daqYNYfUgxQivp1ql8SY0At0pHvoW853Phg+rYRWzEh15B9uFp4htcT
k6mjwHe/S32mOnaGr+9NCFwJal1v9AdttVMhZZZA6mfIJAeWs/YN/ncRNjWj10jkiEQFa+AFe5eL
czPulibg4jYgm+cuBCfyBdseJh+62q2XyiH+J11IA0u6jR2eDF+ZouJcYpR81re9JSQlccT9/vI3
FzCOskoxzcwlX1R45fg78NJqVbre31w9swqqjef+CEDfWk0WoDRV6XhZ/+xLu+DDOMzTEramcKle
Ek0NGbmflLKmFKAup4M/8YA2buAEc/EoNVr+a4cu/D0FkXjf56Gp7m/cizy9x2Zn6JNRAZr9ppQv
dogd4IPMoRFPhFyz5kvuBNSJd/c+vZWiQTfxyzmVqbzUfP7dpYH1a5PmnLZrJBfjjKRmnZ1zi0ji
m5cRAbKSetsMcpnyIeXIvks70W2FNSOJOpn9JSvrK7i5+tdE3MuRcY/wgHmB23UR70toTzw9+Pwp
EluAxWAqZZU4Vd5+0ZcHQXX0xuAvhYeXcMmA5rdqEupdVQHP4x8I7RipSeQg9Q+jBNdqQqoKdR0T
JOrIQqgooN5FQPDzNwnHe7S6FavU6EQPO0bkF5BvAD5iqD3ByZQ/Nn33bPKLRlB+Pphmm292Pszs
VDDNlm958viAW8VbOh+/lqf01tKwWClhxYHNUA4pED1tzKbau3QhnhO22A7yC5cq4ICWz+U0zOy4
t9Qzs/qpDp3pifRe3ZLeY1AAMwjpADI6OJt07AfhOdw9alXOarQ7/iVbXErHNqdY8PX7y7m2pSGc
8LGrjn7IpD5Box3j7HjjPWX6i9onsuPWDFYXkXix5CQBWK0yVcJZPlWBheJYvl3L7/orfYfbBf5o
WcdwHy8pVXmg37/Vo7CWyGrK/2BLJnMcaEifc4Z50gy53zX0kmvN7IHqOHS5QSxHwP/GzyBtE3ay
8dz2zP1YzuVJv4PQWNQEdde43Z+yz0J/IZxc5mTtHu1AhNrnjXTUkBgKZpV7K4Pcih+Ei8k1IfnG
bhCes/Kkn9gu3ehijPI6H3IdgVXTWTV9FnxxR86vxV7Lpbvo1l86HkP3T0fw52daU2Pngwq1dF4X
xTaqaoEib06JjdbwPy1nf5pr+njMGbVEuRpkZoazEl1vMQD5c9OjrKl5xydoGBR8FMsZE9AkEyZK
rL14+zEf7KEsMe8cQje8dUOKQv58GxWUVDwR6bFMI2yUrq8g1fZcqpFQEW5a2dhvJzhEZnFf5LHW
dL78oyLFdJyRkfT+eYiLWDVZHWTW7JlKt2b7NiZ7VP9wpj03XGeyWnaePuFHVwXWpSJR81paczvt
LV3JDx/KDf0n7ZzTSRcV8JxRupAfhoJ8qNdigheh7K93qWsol7mkwe7mO7YKE0TvCQgFpui/aCMG
bn+5uX3xDu70Qdx4R06WzLkJVImbCVs5DDTgYnXBxxVlhb2txmVBm0H1Dyu5LmlsU9xQMFnpbuL/
sYyyuuEmgw/Nhi1KZkrrOuoEr8MuUDfvwNX0dF6pFBNuP0DUz9en01ZbEVzisqgRTc87brZgOdtD
oF57VpVlpV+4NDqeK2srnDwJy2s0zYy8vj+YX4puIiB8qEU4l25Cead60TzigLb9tXNwnWLd5PJL
g+rK9ClpckNfpTMwZqiuv5gNxsWo+CeKdvX1Ukk4e9DcGqWmJ1QPL1wNKTKBquu48lOf7efrwF0D
0hXd5ZSBLtKXmjR7m43vEJvxmatEF+fx66S1ay42hPmJdCG4GV7GpJuLGnDXM4ksoEwC3XuKO32r
7Gy/YJuMQhouWaSOHFUV/PJc5Jd8dtiWQCZwuWxL5gxKuaYeh8h8vVf4T/FnuMMIWQgUobeeqMwA
PsppeE2alvnD4PFMdEf4rRxmgu/yrXojObyByVdzDm5H5E6xO+Il7bRuQ93S330Lf7XOH70UTAP1
5Dl+djbmo7yRTINEELysU/eGaT8B0ypiTxtgrUPQ+hPS2vqW/hpgtr7dm3IKrjpGwX1Ir7TfUujN
Ng2H0syQjIjcEH+nj/aOfOdR5KfzjoZ/MdZ9m55voV54TKDDLZphPfLemxr4FDGfPrtwYl6zNWGz
6fle8UfhK36NoTFuLLJQGQwsz4VnjV8UBH1aTRXcSgfF3qV2VHe69MLV5hkzbfJX5vsmI9Ifj/at
n9+2LyGUHEnnrTB9mGTcfAgnEpppDa778F6ngjROVsX6CU3wdFatDfNNz62FEysfNhCFxTW5KAHW
dukMOoHTuJME4hbz7OK8TJs+VqLPUeq5+f8Al6gffgplbmRzdHJlYW0KZW5kb2JqCjcyIDAgb2Jq
Cjw8Ci9MZW5ndGgxIDE4NTEKL0xlbmd0aDIgMTE5ODAKL0xlbmd0aDMgMAovTGVuZ3RoIDEzMTM0
ICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjajbQFUBzYFi0KIbi7Q+PuTpDg
wd0tDTShcdfgLsEhuAZ3dw/u7gTX4B7skZm5M3Pv/1XvVVd199q69jlrHyoyJVUmERMbI5CkjbUj
ExszKz9ATF5Ui40dwMrKwczKyo5ARaUGdrQE/ceOQKUBsncA21jz/ytCzB4EdHy1iQMdXwPlbawB
Mk6WADYOABs3PxsPPysrgJ2Vle8/gTb2/ABxoDPYBCDPDJCxsQY5IFCJ2di62YM/mTm+9vnPXwCt
MR2AjY+Ph/GPdICIFcgebAy0BsgDHc1AVq8djYGWAFUbYzDI0e2/StAKmDk62vKzsLi4uDADrRyY
bew/CdExAlzAjmYAFZADyN4ZZAL4PTJAAWgF+ms0ZgQqgJoZ2OFPh6qNqaML0B4EeDVYgo1B1g6v
KU7WJiB7wGt3gKq0HEDRFmT9Z7DcnwGMgL8OB8DGzPZ3ub+yfxcCW/+RDDQ2trGyBVq7ga0/AUzB
liCAoqQcs6OrIyMAaG3yOxBo6WDzmg90BoItgUavAX9QBwIkRZQBwNcJ/5rPwdgebOvowOwAtvw9
I8vvMq/HLGFtImZjZQWydnRA+M1PHGwPMn49dzeWvy7XwtrGxdrjP8gUbG1i+nsMEydbFnVrsJ0T
SFr8r5hXE8I/tk8gRwAXKysrDzcfAGQHALkam7H8bqDmZgv6w8n22/w6g6eHrY0twPR1DJAn2BT0
+oPg4QB0BgEc7Z1Anh7/dvw3QmBjA5iAjR0BRqBPYGuEf6q/mkGmf+LX+7cHuwJ0WV/lxwZg/f35
+5/+q8JMbKwt3f4J/+OKWSTUJeQ1VRn+Gvlvp6iojSvAg4mLA8DEzsUGYGPj4APwcLECPP+7jhIQ
/BcP1n9ypa1NbQB8f9J9Paf/UHb+SwO0fy0IHeC/aynYvCoXBKD9R+h6rFysxq9fbP/Pcv8j5f9P
5b+r/F+F/r+MJJ0sLf/w0/4Z8P/xA63Alm5/Rbwq18nxdQvkbV53wfp/QzVBf66uqI2lyf/6pB2B
r7sgYv3J8u9jBDtIgl1BJkpgR2OzP+Xyp13996JZgq1BSjYO4N9PC4CJjZX1f3yv22Vs8fp8OLxq
8g8X6HV5/rulhLWxjcnvLWPn4gYA7e2Bbgisr1Ji5+ICeLC9rqMJyPUPFQNYmK1tHF9TAK/DeQJM
bewRft8oNxeAReS36U/E9yqjvxEPB4BF+h/EA2CR/xvxsgJYlP5B7AAWlX/Qa6Tm34jvFQH/Qa8d
jP9GvydmMfkXZAOwgP4FX8ua/g1fFcxiCnb+x8/1223jZP+vhNeQT/+Cr8OB/wVfmVj8C/ICWCz/
BV+ZWf0D2V6ZWf8LvjKz+Rtyvsa+Puv/cr9Ssf0X5ASw/IsW2ysPh39ovzodXrf7Hzc3gMXxH/dr
J0cze9C/5nyl4uhi86+E10Gc/gVfB3H+F3wl5/IPZH/N/rPZfwnH2Mne/vX5/GO1X1X1H/zHWw0C
uYKMERbnbIzfBZhXB7TeVYoQujDtjAlOU+1oJtExeSzatzn9QoFNoKtI8/thfyOSMNiNtrIlQXv9
fon0yeOoqRY2uDlOueXh86NhjMrkTgvCwgRO3/i3I5GaXmJ4Iia197ufn+w+a/haQDVBdshQZdk5
8aIo5WDeuXyXcq3pLV4eCZrbUd6t4JZFfCyeYvqiHqHnWzBDlW2UPotHDuPIRAxHj3HmijpzfTON
kTn+QioTw4Dg+fMLR56Hzjp75P2s+2qpGrtDJz4lvg4eMdQ1xsgktYfofqIM7rxHYX6UTFB4vimx
wVyDUBsq0I6ziqxjUaB4eHxjGO/A0FesGHVrMijKWHmTSnTwwFI1sx0PI6uGp2Dqic0wF8FBuX3v
Ccc9vGwmzd5fuM/C8ViJPTi5J9aSJOCaVhimfT94P3GeewE/p6+Xz2uKpjb2xft9zAK7UbajbpcH
0BX5uP0Nz9255/i4lDVchu6VmvaxkNoEBNEgBXCIzYws8x3Mx+MMzYG+cowXCyFIwqIvk29kzUeq
fsh0uKO89ChkHBn7Cy8ZCOzev0d6sz5vp7bjFLBgUqwLmoxMMeeX6bJ+Oyz7EEbBrppTqRt/1Jsu
aoQhPFIqD+lnE1DNU1EIBH5LDM2hIWgM/nRVcKtEzD9WO1k0FYJ4YFIhahL7eVK6eOIk8IOBS4g8
annJOIhCXPyULb2EQzMutzOUeWTiskOGGYd7vnyGWCBJDV9+8Cd5nVCAPR4tfqmCXz92RiLSpj9F
qlCDjnnXjVnOYB1DkvqzS8XL+RbCYy1l9HbPxKbehqYCs1gercaU3qnC7i5RVlt3Iwc6CvSMiPCF
pSGaQ1eRfJBSw20xYnukm6mqW+HGXIfROvpoz0c+J2LbyL4bpc2B6EoFJ/s5OjlBJ7OiyFm/qQHx
scXs5i6lmXCDAk+8hkZS6M7OGYRtpsIxd3X60WUSjtI9r5utD3kuuP7uO8r8b2YHYVtIUeY2Rpnj
J7GNXZuLcXKd8b4WE9Cm+GEI6AiEcS+kcMkuz6TUQE4zuD+iS7Vls0LSdXrba5fGhfHPV2ANGudA
4ogiF2XzSGvM+j5Bz+1kab40paroI9el8X2H1tFJJbb6bIxrExBcFe076CetZxWkABHkZZ0cf7hz
jHSThc+qh/9kKoeUav92Ye5tQquv4vcXL7il1dHjyNSyTlRIqHeQAbRDNEu7pL5fu0yr/JEfWfKM
Nb/6iyf1P+EX8kL6D/1S6aPVQy0MaB7DzHn7fXGqI+WR0vYMM45sgpx45ZKvJkIFIMijc+FZlLYS
rc9w5A4KxNOA1U0egieAsapjaqf/sdW5zpmPRbkYryGuw1SR2FWePKO5JJtoW1eBdJLTWJ/tpeZ0
m3c2p3hUw4YdU0p270vkBUyl5uH85r8HHXGwMtXRC8so2MwwXKwhiWu8y9HLUTmM389r0Yto9tMQ
+hjGsgV7T8QaLvoHMGWnzq/hRqGzH3mmg/8su0A3mXI004R/AmyMPZds/iT2IM++/XGEy75cLuqS
Pxdvu+bbwK/1svZRr/Vn4yyMefmP8IXroZhkpnyGQkqHFZ5wkt+KbsqEoBd2kzAT6pNgd+A441qJ
ed1Bb9ThGGTwjqHv8S3Q8ZEEhBg/eJUblAxAqgtVeKFjrHnRveXDTZTKZMIyDGAYnwmG+cp+1xpt
lQLevR9LZ4Owr0oo+nnVK6RTcjKyJjweOcq7qaQDabUfDUNhBRJXuppMKQzhbiaMib/ny3cWNJPo
NNSi7XOLDlK4S4Kl5SMo2MM14ZoTyFnT4iyGbuHCJIs6Q9ISS4WplCCRuYksaW9A01uY0dfKxsJr
TiSpLU99XLSkb5wZIeTXJqpjEiKyHeS5SWiUa36o7V/QyegX86rpt7y+vy4Nw2gxSWb7NsrP4vsL
8ImMEasfoW3F80s2ivIYwxksH4eGB6A9QfmL5dyRVHld/SYyDwTZO9I3kG52DBu7JefIUzK1Cd4i
R9Aw8LvOt+Ys9hOzS2n+OsRKaHSclaZzDIq2WoYhjl4ArkTdKBUdSgGzLLE1l6Q20vMHTiURzHgX
M6MO7w/3HGAJzwC/Ol3UPKuf7rcJKth3lMTTj1C6ElmcHpiB323dVVg07w9QmOBbfAuBhtLQu3Vx
VmZxxSDTC5rWRp89XbvUhgI45vQ5MVYnIvWcW+KfbdTFO8uMIpPwLkzkDJw1lGt5QlNN35IEKcpB
72XpNd+0SoRWOL41HGSSaYvvRzQiHssNzr3UMYk6KzILToyuDo/6LuSqcFyUs2a7FeUAlZ/eJCXn
s6iYZyZ0mTlt8+Vq+iirMJ2gE2JJ5t2ZDIOeFcIYKZEM/gM33lC3BT5m5JyVLx85jAIS4KP4VJdu
2xlg34zbxUME1VhAcK3c2TN1BFUJQizvB9wUfdhnB5H5rz9NZfsYrsrYyHzLvhTEqVrff+vd8qL4
4m2ITh+kT5xRpwc+I8O+lxkFpw3ZDSdZyQBkawCmbVkhbvSq95AonjehYCkNbhdgAyTuBqVVdZCz
AJq7jjKhgdzsHqvCoYpdyg3ZMj3PoJOcYuuYoJH3qNfJo+GqDPyTmJ+0sADXeR40ohqSu0NB7bGn
k9zHRPkFn+J2cp4M2fZpRKiT272Wi+2gVV43RUC4x8VF9LfPWc4f6Ui6mcWDiIg4shd3E2QpE/Cx
cvfhk1sBjBze1SmJU6sOPeniuC3r0yovoXF53WrI9T4jxlWwJew/Y/ypfB/dxPXka9FV+T4snCl/
aZ1Ntze9kioweNTj4gpOoNhadMbWDdQer6XD3sOR3VbNMyCq9bJuSi6TJ9B6YOSlzuUBIveZUD5/
XU1ANHBk0cTwXXAb7/Du+I5XAHdZytmoLOtBtyg4ChGoKd5qItRiQwA6XNJJtV1MIAAHMIFQ3yvF
yr0YRX0uvaGwhSbn7pD9giJHqqQ1/MPdCCU/UyfIeOrW88X3mI4KV25B1lSRHXW13HdzHUCrMFOr
Hl3BVAt6abP3zoy4cEJSKWlyi1CzsMQRaqZZr/5wPI20xjfpxxRPd9/x4FSF0OnEgGVZa3K9zVl3
0OheZCznEByHc6cmA6PLD13qPEbwGLgbIawZqnAXLo9N34xcqQANPj2RM700lZxhKRBGzIUYibdB
GxsxBI6SZa0gb4oeOupfu/vpteGmQpeuxauwJNtzfjvaP8KR/1WYiDMLkTov6eI9cArioonUv/Cu
1elUGiWxHYCMnJ+vz7evEB5QigYGDKKOycXRMEER9iKMG2OjF4ev3HJIeeapQeLv0aQsZUdZd1IM
GAi9iZrKmqPJYkptfOuz5rMiedfuIq+oFl0h7iCTNKxM2Fz7q8vfAxb+wbdNba294Yq9XAM/plzB
4cdU5MMFqnc7laj/klnExTIl0TzjxqVQ5m4wwaXNgezXJfIP6eMVKDOoWYDGEvYxUbRC9VEeGpkq
2vrTFuL+1MmLMmM2JenV6I1bZsss5RlI80FJKvPMQqVaBLaTFncj9sHyKk2fNXkGK9mGgKa+flNG
8hUWDq/c7xXvHm4SeXJYeLrKBIdtmPZUqHzCdtetE4lkROuJ3lvvQr5wi7AedJt1YqlI8lVmqs0h
eUTT5lAnnVH+CIz25h++MusguH25jpJ/Me/cgy3MRFog/EkVLfkGVyPgZSlEanPAucEPRvijKv/6
Eb8MyFalb6R+EPXOe5MvtQQiImt4VUD7Vtd64Gt92VX/2pvIIzis6fX2jTl/3kPKXx0U5CC4CUGM
WQtiROJz0zXTgOzEqIjMYcRyjCK/WiQlF0KJOr6C63FKhZaAJYGcp8KXEHJzLegWLQeoJ3l7goVD
iYran+mzco/k+2Q/6U3xGFLJINVFQmPGh94gMQpzYHRuufIknnNTEHa8AMkuwwRDtigGMB+eEAcT
Bp3ycMONchpZ4n5IddSsUAA+KN3qFel9NNrYmqW8sRdspxsVjmbJJ7jlixRItcEUVUc7PFrkKWfO
4irawhOt31KRBiTX5PEByfE0yDC3qIld0dk+7RYcldolWSQIJgb9jGAC6LC1Bn2paF39oHtanrIt
CYRqVnV+P5ULPqh32Ztyo3gySXl50z18GoRG5TD0wytVDwp0H3o3rU8bebqEwL9zAWRv/iY8ibmy
4hGYtbMllTmXAfe+mr8v27L0V68DcJd3f7FdqnlKI8y05UoGvTV7pf0ob0QaUuBj00kkk/DJtf47
pssjHBgpT1VKEuBnpNsNG6T5egsnmlOXVLSniq9uvhCSh0kBa7Y9tewkWE1x3z2l6ddqcUXFxoXc
hFMUDQchoVs5v2I88m8mVBlJ7GVp6Aew1U9pnN0bMfqTB8vaSLKaGEUDCZp/4r+MZK6ZckoZjJRa
xNJ67PWM8q8gwCXXPa/pM4FkGhaMCBKGjX1nhbGrMh9HzAZvHRgwxnK8w371GdY5pGb0qVbjpu8T
MwIdC93AkFXnkyP2z01UtReSHPiPn9DyMvPWwqlz5D0XlgsHODLFLQbMPn7Ry7R3MhH6cf7uFtwk
QmjYfhKKjWAjaTiZbGxxrZA6E35Hav0x55fzPPYsHXtKwnJy7DYlxTEy9/2kx/Mp3GPJ3mZ5vZ6k
87X6T01ixA4fyxMEKldo3U+1M2jHgebcXnkYYogz2CvksbEGFpZi1aduqM0rVETPpHQTVNb1mrOS
aYosEFjyaMluZd6DWDN7Xpc6dm3HRUukYOmcQF/K/EyxYbVUelf/4l79h+K9RLorUnAmJKQjp05q
ogbEjL7VTqivxjREzJLiQ5yvT/l1K90nCPBzE8IFFdMbGfW+LF3TSjUtnhkWZoJA42CccF849bch
jLdmPKe88jmc44dE8O77fPxbIzUb5s9W9s7XqUpXkRTIQrFZcEY+rhctW4a3LfnDcj2N3zMR3UqC
iuP8K6/GuVAnVd6zeJgeKYude5aYDHXCDczfeC1s2dcckFVAcbY8ZU5GX7dEmCrl2jQc+3TITzMY
0DAmoZxwG7Isa3qYLYwOng6yhE6mHI6Y79Woek49H8sEuyNOOgSFzdZvh23MmePCF67VeLmnynnY
iehBqEyZUdKF87srqMrIrboRmRtkfI/vjyWug4zuIyKhm1Kb8JqQ1YESwf6lxAod5Qcjo4TjRSvk
xbdJ3ZO35ty1afBCDucP3U7XFqzFtUcoaAalMOUHVEBbqC6i+sIGvTnnDMO28slZeM+Hk7uGx/fD
TQzOEdnzZZ3C1VOXec6mIidxYRvWYrvR6svOt6YvkI7ZkhduF7s1O9fn1Kcely7Kugw6YTKxOXaN
CAxNG+8RT7esrBl/mMtbS5hKI1khFqpIEVeovy2r1Uap4O1OuVMIxC3MfUmXRQvjJ9T//k2UrLgX
V0HYRwY77HSPZl6E+cai00NAaaD7q/AOJYtRzhaVsUqtb9CGdSvZW3r/rYuUbD4sLN4w0hUFVCdD
tfTDFLZ6JFLqE3po0DcFA+oCJ+nP1/cBDC9zrEV15Ij8iJDRJriqsGdlJd3c5eou14rkEvMP3sQT
ZxdHgpJRPQJ9pFmok7rkga6sWBDoW0+Iydc6Hh5+X3qu1kiZA/CQjnmH+2nqdeBru0YNgVSfTJC9
Wryjjbb2ZTVnSo7Us9yDLiBvcsKHFNKDcm4YpQEToBMw/N4bS6H6x72yDeOt3KBOaAYWS9GsSS8s
KPfAW6bdLMR2Beg0TWxMTeMW+6gJzIPAUNwIYe9uDUYTH0g9ynf5pY5EaiqdVFjyvF3iP70bJ+Qy
HbQ9QsVrKTgR7/zFPYBFeubvGiit89BMhjJpRkdlJZASaWzjdpCA0yQ3K4Zi6LiQbHMmKCiPQ49A
CQmUFU7yjnwB3cPBUk9oHh8eqoXm5D0fCxZ26XqLUJqyAhcoI4ER0QSMm8/977Q3YxDLOyw7JT0W
ihmxb9J28/gQMGkYhfwtj4hydezs3ld+xAnFwxILrzxhROHGX/p8oY6/X63L3l/kcdc4srPrcWVY
QxT2Km7L9FbdTtrrpBWJ0q3A6DTqWlkyZlbHA7rSvGg007Pr2ZlLngSYSMtJ6xR5lx0tgTTEz4PI
HXfZjWdrLnjsFC1D/J+HJ1q517LnOT/cV+bNWNife0kHQEhE5lldzZynOJeFVhgxduumuBb7+W4M
oGkHvm9IWrcnksNt6KT5RcoxzP8xT4RHLMpLi8FwN6ldhUJqW0Tju6N+mPiaCXJ7LRn8HKvPJr2v
0w/oZfcro23cSr+kSsKjEnvtyeP8aoWwysx6qstJ/E9wEBcDBOpa1GajIdzRC4rte5e/1mc0x9ir
DJbw7qIhUdylKo4fAWCFrKmxkqcnN9M2Q9UX8kWhB+ZPH28IRLml9hCeBo5EE0geB0y0TqLrsK4j
m7QkPCGq0o4DA3dBmhgthvuZlpbKRZjcTzBgm8IA31hJgZpoAo6Z5EcdqOfVTQUqnDVlGAOXMbxV
//Aej1RqibII/hwLQQBq6AHheQqRaGFVg/TnvASETK/ZpdQKU9kisIVrHiDqxL3Lqq4RgDjN8Wux
xsvq2AJBJZcpz7thy77lQ9WRQ+JS6NKjTsFOaTHzW/3nLn3cHAGyemwzuhFAz+dUU90P2MWWK0Ec
y75Duj+C3ftQelkAMAWn/tpPBS2JjPsmk8F6lx3cNl+SjitmFjr3mwgkunkhpGZ10aYwUUxrC9ze
+/Bo6WYhoYVDwh6YYGjScLfIiBQ+SF3LsJwiUnqJEUeS1W56ZiFv+byVl61BFGnQ4b/Jwm/vQo6J
sfHEGimXVM5e4w9XjcCJa1AyU4XFGdtdcm56SlHPBddA8pbgLZ3Wcusb3MafSY/0tJbG+TuhBtKn
qAh0/bjYrCc/5WeGOvIaS76Doy57CFqsU4OPh5AjVOCrkfISZACOtQGzWX7NB7XQ1iK8IHRADU2/
2PMVmzWOD+wSb+Zat01RIcp6CawMuyZtOrkBFSjOlY1xeSes7ykTdQ3z/brLmp9dgkLVdbvkTfaO
j5Tbk5/XTGtDYSfqXPhXVymGUaj19+Wb36XSN3DHXD9uGsh3T7k9SJk0XcsRFXCTVVORyK7Zrscw
pmxZ23bhkMh5aYozfHYYMtGU4i6vdmODNSrBgtXihJaVyqum+H7CM7nHMctkj4OGFsNJbo08JpIo
c7mIQQiTsEGK/Y7ZCzJKXHYWcnjFxk8nf+JdrouR62XrEY4/2WNAtyaLVUL3UEcf4VeJ9VY2x1Mc
LDFcZ30EjnD52TMGA+7bhfFbs4zedrJaVW/pdTm1xnxcv1/sbn5MZnCYsMUzFcw1b0P0jcqd7d+1
bXCFXlVtNrtHRRM2Hyhup9U1WaG1ThxxZNrRMigSsyMWXkUEJM9f0R2l6mM9hDogJ4ZzJb2FRKWT
M7L0TZE30LXEbvQZjQ3sAW7jtL8lhcn97smyu6yFCzvocm+5xUIuGlruCY1IG1+v6uy4m3DRa6Ah
YlW8D9yhKj/Vr2hiYtJXCBzAmjutj0bW5LP91KNvJZdF/VRaewxR5uE+SFKPkzCBCG/VjzaoOdya
Iv0+0GceYPf5SMHvwWYqOuNOO8H0hlh1PlC73qjl8usnvxPZ3lDSpbZ1xQVnF0e1GWpNiYHzZGxo
g7gmKODswGa+Vs3IJ+SPlUuG32iF03YoJgQC7NhOzucKuxErDTSwow8+UzFRcHFeXXh80XthtXkn
QHJgHqHwLdDoyLV1AeLkwsijYh0nd5K0H8gBK1u1fTqV0jbE4xjQTkssjtH4sS02/Uhl6r3iZtp2
ApPBhMg3J5pAsndELaadzZSEpYCDkJzIDYRWYPit08e9OlVnk7fDeov6fJK9SZTBQuhJMvqY2E6d
MLFyP7wzTr66Ehxjuh9P8WWcVayqa5RLxh3M3YjkvHRanRsZ9rWzeN1LIrO/NbO0bU4YWuPBSzNc
C0Ow4pyUEdIyu8X5MRUn+KNo0eVaPtudF3PAFUr64LRw+JnUaGi1u3OQkJlG3miE1KSKl3ujv3o3
5xuPbZbfJbW0J6vHSyITRQob1w24KkUTF+3WiofaX3aGTggIfKHO/+ov1iQqFo5tIRXcoRjQfyyr
+GEf3bmMMFN8gLa9eYLeYJdypu2Oshtnb3tAGwXqVEQLLzujdaFYsoSq+xxj5RIGMXkwDZGCf2kr
HdkqmyftAGatPl803tNsW2+CisVP6nr/g55Z+0LOp8hEQtmuys7peuz6D4sx140ksYD1uD7LhSdk
bKozCp4VpxFS8JU1piAV6z3PkO2aPYs2u2nuNueD7hjkOeTzNw1nYGyHO/rPDwricveXomi9NZs/
9nTzrxh6o+7jSPYl2e1uiZz4eomlvtO0uSYeGsjOZ+ypfpb0xNsID+MYUQvap7bIr4UIfCGu179a
FzYZdKQydBmAqPphIYxVY8Fj8badGWPFbqTcGHseTXrDGfOcPTBX/YLD0LKCxH64vUIZSxxB2DyG
UMe64IdwwMPRYM1nISVWilHyK6YrWBS0GBF07s9f/MPNi4pn2+BkGYg8kyGHSOGUlbawDgOmuXM8
DZBjkjvmQ8uw4VGodL/yLSbVBnLnyDvuNhOVrGzCyNqSDDfHclaLoU8PjUX2/sR7aOeqxlZ+2kLx
Oww1uS96JpDOCKGVZ8F6MnzvQ8Wh7ZOSbTPkJlY0jWp0uXAaNTiOgL3agEtj+tXFmJ666qVkVW/i
/Zz0d6fuvYHcaowtUsofH/KGkCnqQNbrumY71GJtCPj1ftGmigHOlpRQNCAObCtktVKGASpqW0ta
3HEsQmGCAYEq1c6RF96tp77HL3EHOUsshEnj20p5gVn7fF9+haGPCjfXvfRvc9J8NKjbtSPZezHd
JvkEWYS+mJ7uXQ2/7POuZw3F73N4bq04w043XtUypV8Jn33sZFJWSc72Gzq2nfdtSUI4YXXGXPSO
DptGNFThnk/2bokhJQuNsJdfVRyXn3SGvsYp5IXszUZvk3EZ+hwrmdcQSFDFGpR5hKx+7LFlz+AM
Jb+Hb3xfT0KxPuK/cZNqdxX/zjatgkHNedOJCFpM79nCRBxOMPpUWo7n6e2Qri5Jz2rZVct9NBpx
5+MX3DW9vQirEBX9pOoy4txcAygG4RVVD+uEyoSNMPUyKDmMmGQ4UmiOKZEYUdEvW/iu5s1dHeWB
YzpIEysdm7q+E16FyjndlIOIqitN8oRsy4iGtmD2sh2iI0y2VPMZSj6HaLa+oQVkXhlYIT3Xw5ev
HcH62BuytJK1Ia6JxNzyk0nr5Ai7NH3w3qAnwWIeVoC2e7wcJBi07MpFpfHggoGAoOrhT/QN8Ctd
wLsxrn6al6mFfCeCx0s8crnSL+LEvC6gV3sJTeVZ62P2GyGREH7pO6QjDowwPtBknBWb7c/gbpmw
3WoOfV6jCs7JOJlGR4niDxT16E+wLF+WGz9w66gjXBq/TyWAZbGhYMPlMe74TGCZmDSgL7qALwM9
Y2IQFgE+73pMagrJIue9C1xIzwWppwf6iwolF4naKhxdWkJmvFU+eM58/DWASBrwmEiKoXLOuo9N
Mn4+7FS0JmjlqOmfoyq2vH+o1aPsIz+KqJSSQA1IfwwITT0zZ6NQECvwosfwbQ8WEGQ70KsJHPMU
XNtSAnX6weNA5KA9yHV4FpVTIhhuDV6PdnBl+5ou+8LDcmjVG0G1O9GLjjhyTih975wu+BW2d9Wl
JNLoeachlQt3Uy7OfB6T3j5YXSh1VcUHt7Stc47bt5XCOG3gJxwtWgVKQ37nzI8t1C/eF/zl4c4k
lSCSLN0Hatk5ahIaWPClE28mKmMaTERO7LfVvMP6RCpgX1sp3pNafy5ljKgI4J9BwRJp/ElhvWUX
FZDKrpqJs1FXtonSU9Qqr17PTCe89zEbHm5MABux6xDfG5ZQ1kWm+ZvO3uR0w+iwgEoK1eyDtSJF
FCSaLXLqQS3MpepSDp/RCXoDte5W7TcLUZnRZwTx6wWeHz0TaaLtgYEfD1sKwhBsch1/rjhUJZiW
PL4jAnC1025od04fFgYyLrler3ZW0Lj5JIdnwk3XbCasf4dWXOr6ZWwK0DtKINzF0p+cViK1JuwO
1bBe5m/ns39g7fluqJX0AWJDJDeAZIiXng+yJx38VczoSdAeoUxcfYry4PytcQnXS3TJxgjmuXnZ
hp5ei8Gb5CubCAUNgZPGFR+2NrXZfuj8fKk77D0ICEunGk5Jf7qWHbouucprG5D74v24BAUgIwHn
jQGCfAbO/FXQlXI0akpoD4JSlHLRkB+vtVyKsoiWHG+GgL+RuJ33e7OB3r4IdPg7IGrcE1Fr+5nQ
hS2kwAeckcDlykYlfj28p93jGN68dwjlZD2VtSeLWCgx829L6jLMH6U3Lucenw3isdkDMvEnsy43
zom5KHWwGT/ymby5ZyeRii+kSep001prVNtUqUwAfctGkEc0yvKEZC1N3vJpH4/FMkkB1338lb7w
uXQ6YHKOvk7gtGDIp9TEvOorOr09UnzwMN3OVOUg2zsqXmntj9h7HybxLYTIxs7zKIVSRvdRUSJh
zuOkuO+gt4wrpJPNFGJI1XrFiBJCPJ7NImQ2klB1KOgJ4sYZtPJd2JhgCXcbkoUOzQ517PDLAphu
uejKXop4obPaBehKezu19CeuIc+rR7E/xZI7Nb0PSciLZzysl8OEzIu0R8qJlOtSdC/R0RtC59OG
V5o0jk/a00yg4mo8QvqhF93M5294O+TtrJe4ddtkFhQA3d2H+USkTyL5i5rzTCn8JlbzChVIG5DY
kvuUEUwNx2cpdZ1KY6ybmCK+6wPN0Gfp7JJxy9wwhcyRQ7Qq6TWnpOVOUh/hXjGXvWZsBG3Pp+1J
X+9I0s6WJs6H7GZQ/IO2Cy+SjnYz/1191JZdsptTXGjIj+nw4ZjNKIw3kNE67szM4xjBVEhtdw9L
VhUcCRzfkY8V8zh/UthWY8i8E9kaTqBBCLrjQor4PtkgGTqSnCXe+SP1BLdTbqpLeKoVw16iN5t7
mFh101Rcc+htkSkM4jjpkxVTO6yCRlcjbODOwnJAsy7E0IWsdr0cRR7S8kH7bBSmqmAFUa8Y2Etv
B9o9iMux0ohqN1ZqNjnINIrgVh023sruZ+LkWeysNV8Dldbm3qAuYN+JMCI/A/Xth7v12KajeZNq
69y+PNhr504PHMNZQ++9XG0xr1VZThgEyPKV6El2ma0+EfF8jhHKNHmLbcwWeQovmMItib0rMq96
+zqmWwZKxGcTtDhvWqX5z2uyCKLnW1+lst3zcb7WTrGyH8ILcqxnqQbUsb8PHMbxDDQ+1pWpv7KU
QBPB4a0DdOJ+m6RZ+ZlIiL9zb6CqdN8nkriU3XQr8ylOjd6N11a7pND1Y9OhkcX1XRjAcD/gW/YA
m1NKyazy1WePN2PbzJ4i/YS6FYfq5nYqbTEE7b4fl1pFlmDTSWiUmgRNmVQdapEJy4HsV+pTCy58
4SMX7syPyPZ1fd8LN+Q2wgm8N5sN+QMme3ny0ftpzy+z0zQyHFNi1BaMsA9zr/A+M28CFuFsRSfq
uPPHjnzicYkD4UsoRgU/8X21MKzsIP3+POrbO1RQZKYolZj2HZXFUsR2mTSYMddsT7UxbNf5qWc0
Kdxq+EfQ3BELNxO1CwqSlIXXdcWLhMVwAuRUGch+IgB27sMFPCyV3tQqHtHNjrGqjKbSis7YVZYt
JNtGwymY2ie/eGKoLaAzNQ7lcRPjpqO/XuinEotLxK6nk11DXSzEYkgNs6c0VSm/Pia3WVI5iuGT
9dsY1ljS+oNQ4p/zfGdclqIfUL0vWcbCy5F03mHQGJWweemeW5RAeDsTU+XFBkfGQw1hpAAhm6X3
SoUL1HKbNdD5E9zRlcWlwheSZxPW6D31+fEZSLyHdOGz+Cgv0vX7DThgq8GFBY55wKX9mtXYbO0A
rJcDhR3bXfGWsTK/n3ZM/VBxgwwDh9Jy345u416yD4gXb7Ak4PFIHqRE5C99WvEBiQV2sfBl7JnS
u1ekdBVCP2gXB7COqCjdf9BfXd/7qPREHJXuy6t1pX6+wGaGHH7WFLRgSZoRYCht+DCGr+kxlmX0
2X+Z490yfJWmIQ7TQeNa+UwaebbEWFd2Uewv8ZEIkOqP2w66+RH0DLuqS7rQ2D2FmtSvrV/zbigI
t0kx2jR30JNaqu+JHzXwxMSLuteKfIAP4y5XscVDJl6l+PvwzwcTPmu3K8T9QZSm+rGp1YtjGS6X
9V2ktj0TjjaTvbUrKxAj7L7xg7RDzkzTwaYURcZbrkMJDOK0fGQ3ljPFxG99Qt8lP7btHhrpVIet
SVBhaoZeNngehawLY3KcxT5/IvKRR2h9G/Ym5jjVNnqlIAUOTlov7Nu6uXNBbZXh40BV+0yfJ1WM
9WOGN0wYDf3CuvdDXyQ/rkD2s5tQl5V/UvyPK4/mwlhce53s3uqZpIJQIrEbql4J8qBmHk3IJwXB
mEXrj7dGOfKpKqdU9eb0EUJvNlTpqGunRYQzxMsQKNNdoBVVVXuuPGUMikZDLHMomqzSEimhpMLa
sJJRwOhIHYwrOygVTVF3e49n4hkBmRpdnG8YmHzCDORz12wTyHnUlGJo3AbY6ONw0PFy+0cnPXOX
aRpxNTGyXWNQ8tswhB12xamTlSh+XniUcBDpy99JsHcy1RXdptw9dxw+Rgv7DxlaPfiKb926yOs2
msuoIHga6kBEssuG0+sxG1Nzx19yJH2FGVDdtYOD01Bphq42coH7VAkQWonWkbpexvbKXkgIIs/E
nFRR4HPmNYfwbHjOM42V9PbTdVxK0sAYqnt/REagX+ZAxHQE6w09nR/Y9mzTkeTaSEK9hQ4jvdxC
D/kCv7uplHgVOUN6wVX/hm+WaZTW5+fQ/BCH3gT4ze2bbPqF+BILF5Ilbaxi0bsXSpscGEOG1Grh
G87t9LwSF/2Z8Q63n+Ih5Vl4tkJ7l1/2+pny6e8nz55wSTNu9rJxGp6DH6gepVaJ18ZqY8mHFBag
vYGmixsc6Pb++6x8W58qJPaWpIpDmzZOiEROXi4LD9u8Pon/FJXVgMjRFuobC0d6absn5MYFYxNU
GsfOQ7lyKMJPz2xkhmi4yoUQdlDOi46cgX5NBqTczcy94apX2I3aFtyhr0J+RMQ5+8x92OzOmhXl
tb2b653mkKobycxsgdvGS0HvrZUOv8oVZY8/imsAd4kwHy84HmVT7PoYd8veUYNHx4MqX4Wv+bPE
F0sbGepd59U33pHKE+QMAU0/305qvZIu1uqohfE6JwzrTfKjNM9pP8WeZi7OtDkEMohfaaI2uAC+
D5iGvIIFGdIOWtswHxF/OTDQipRIVSk8lcwbGe2cKA5nxFxJWfFvRLgFCYxBbxKoYjGMQKs3n/O8
wa2Dt+ptvatjqXa9VdnQUpwQjCrD56aYGO7dF3yAEmyqtGXsnzCFLy0J3hIZmPFr6wMK5htUekOF
NmKyJa5Fe34uPUZVjtRmVuFeA8NqnJ61cVJOhn8WVr2uSTshUcXgiOfH9ynoEuLs8owyIX7upyq1
X55QZuS2emhhXEUEuSUJ4zJE14B/mRsHPEMEV3/sZZDiACV9+/IVKn4eQ842VB5znI9v0/crRmE3
mhaUc3rKo0ta0L2tPutbhr36Oy1sUQJpi11wUMM0Unj8MZ1AET+CicLLC1oGmnwZ50DnPBImJzOe
CP98D6VeLILRT/VpdWuBdXqCSdceZvZ8MohCqpbD92KEphK57JNL/qvrrQxOyEsRn3ZtvSBdv6/Z
Oj8puprG5/rv0BqZdXCd38zyPMSL4HVb2Yd8sRAyJmJD0ALXFUkZtBg+NbTwE0/dKdsV4S5/YhOV
41JFYZHzMa4vnC9vvwJ/jT675pZo1I9gaV0YJ1VbIA8AcW8jvUA2xger7jv4sajuAcjeEtTnr6B0
jWwoA/aorvn2lG5FVkxD9ooIzL0ryhZuqWY6Fz0dpRCQaO+USOrWjVQGMthHN/Tvq/Emh+lsmCxv
iZMqnKPVzPa9BNqJ5yeJwC44zqJ1dqOlQ/KxngVOR7oBfsxIUBSpsZoI1BG98zfDoGRETzv6k53v
EUrMjCe96ziyDSZJfdxrLukwfXFHva6FQiidVIl0m9upXFYVD4w6Fm1sUUZVxuhJtarRIP8EJRkk
yonvin7AaXYQPEiLGTo1PsVG5JtW4ikOq8yXw7Q7HrgsvRGxd9HoVp/1e6LrxiCTqby/6A1GC0Q9
xLZ2jp7OnkFFS2YFpqO2o318T6s0GFP77ucsOxMjByGNbP/jdb4V6wo3ktwHr/vQvZnTGDlfx+5i
ds+mjw3G9Iu8eGJptw0/lGWGFZHrwPGoxt+yeIoNDJTH+yue1o+MEljjbiQk+4NoNrL921P8xEhi
QBlhh1bpvZDPKE8AtUdqx2kq8v5HdO14xxnKQKDChxUMk+dNXQyimAXzpGuJZsBsH7ZCHZSNr/Uz
9a5ZSpF5yK5Wh0uSZh+i4A2cPXvefWgZUqqIdMqJIdIX9mQN5FbjCLyQ0K8+bxBBNfVZw6kfYsUI
n5h9y56Gl9AWRhrgwMEN3Dy2lh+0axKWtQxIEIQWQ+QYqgqgO6syyQlN1Qou48VK3ShTX0Ca8M+7
pAoarRr4KfOIAVSC/WW12lK73wzZA6ingzfgsgtN6VoNx9RTHJBtVbDqf4ZdangZA5oSh1cPRRXe
foP0XQHAR9IUfmNWXH0zPlUXGJdiX+W730QZ/5IgKg9RQ9+DiDB1q+mXnPLmjJ0ThZasqQjqU+Sv
E4FMQntcPsHuHI1rTRdwKYelav+c3EVSXzmNbvvOpbv1BOlPs8Gp4MaoxDusiTCKfOf3b52PPSD1
3GwP3nWcbS2eIe3Kp8BFY4ZdGjaoBBMJVzX1k5Tz4FM9OyYnF14jRoWOqCkFOTlR+u6hEzibHRmM
dnqbDtrKaGmZhx/qP/pVCrUETW5a5Y+bM/rJraWpyg7efX+bzfh4hwyh/iUXgW1d/3mCJ90y6b35
drY5gxMQ4nqq2/bHkhxDbTL+UgBvBHeVOIxTwzBPplD0F736vU/tIwOPaqa7ocVDPaZezPOJhV6V
fOvw2r1h6yjduTUGIaXfNRCF9iLpVWHSLdrfC1kge9Z+o6xFy/Db5cgcKUK0Ob/EGmM1uoc1nk2T
+O7nkhT2UTnYWak998tzZMcCTWUWSw9LlfcXLoQ8DzzyIyZ1e1+1O93ecHPrzvFusKe5rEtz3Ihe
wr4WpA1irP2HfafRlp/jqRsDOanckqT3Pok++/FOsM4K7ZuZDVQpYaMzs3TTefDEuE+qMHsbzJcU
N+qGDnQnfSpAxo2mVfnStVYKbDfcCyVLxtpfjsP53bWUmV6tffTFGL44rkdXY59RqeK9rhikV9+8
cFPyyo5BiFF8aopzgd3Wyr+JeD+4VjJ2TfhDITq+cHLljtfUtTYFs5KehVM5hm+/UkQMEef7tJML
oq2B9Rv/tz7OhseI6VDX0CaNw2aqTamP7dbYuidRmVIz/dNvQhIflSzSLUp7IKEoOQVRhhUtmqiU
2K2V5mwYBSQUzTdje1NJtnrTzMvHDxivTzcBHNRhxrvmfvuFWnu3KK67m6g5zay/kkLQmTTVxh0M
DGk4iZXeF54ju0dTZEGW1CuzJ3Ri+Dq5H8mxrgtAcCNTjcDSv+WRtCyYcHqAELHEppEpXdW+I0cs
tuIzGlDjh0S1KxCwzDzcoNe42OO/1Jq6JguZ8z6o0j+l+24u0XjVYX+SpN7yEG/FbkCdW/PdEqME
zINF0bCctq32mcCNjCwHAHsyCx7mp67XCjZN/6RClXaTRrMRGXtg0pUooLAD7TF5ZUAwihDwTpmx
e0YY3VI0JTM7PcK9nNPEsAekc9oyi3Fiwi/a3WAIxmlletm/lWsFFZinVLPpaq9ha8FFUje0LaFA
iTfFOfPWIyT7tMs1II6nwcC6uJNSv/NlJ2P4GO2dDWcOQ/7oGMt3cjKmWI9sYtnCADu+9txl7UM/
9ED2CYdXo8cH//xAO2aQbRt7RBelyVZmX5gNKsm71xtZR1CcMcBNBdWSH7P7VFZY6Vn/7ESIpwxm
XbyfkLaJB3qV/KZNzkvvbfXNADK9jA5uY36jQTU10rf36jeo9ioc3dUb9EaHVm/70Sw+bhqsvBlR
XB1EzcXaXlz9SsX9PcjdhQGmTg9bYjAyeh9Ncb7YuXIFo58DT7v+xwTp/RsWaM7Hy+Vo69Wz/f8D
GMN+dwplbmRzdHJlYW0KZW5kb2JqCjc0IDAgb2JqCjw8Ci9MZW5ndGgxIDE4NTAKL0xlbmd0aDIg
NTgwNgovTGVuZ3RoMyAwCi9MZW5ndGggNjk1MSAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+
PgpzdHJlYW0KeNqNtAVUE+wfNgxSEkopIOXoZhvdMLpBCQFBHNtgIzZiA0Y3EioSSoeEoICUKFLS
ICUppQiChIiEpMQ7fEKf//ed875n52y7fn3d9/W7+bhMzcQgcIwDQhuDxoqBxUEKAA0jPXNzMAgA
AkmKg0ASVHx85iisK+JfBxWfJcLTC4VBK/wRouGJgGIJNk0olhBphEED9HGuALAkACyjAJZVAIEA
EiCQ/D+BGE8FgCbUGwUHGIkD9DFohBcVnwbGHe+JckJiCY3++QsQhAkBwPLysqK/0gEQN4QnCgZF
A4ygWCTCjdARBnUFmGFgKAQW/58SgkpILNZdAQj08fERh7p5iWM8nVSERAE+KCwScB3hhfD0RsAB
Z6QBxlA3xD/cxKn4AOZIlNdfHjOMI9YH6okAEAyuKBgC7UXIwaHhCE8AoT3ATM8QYOKOQP8VbPhX
gCjg79MBgMXB/5b7O/usEAr9KxkKg2Hc3KFoPArtBHBEuSIAJtqG4lhfrCgAioafBUJdvTCEfKg3
FOUKdSAE/JodCtCGXANACRT/JugF80S5Y73EvVCuZySBZ2UI56yFhmtg3NwQaKwX1dl8mihPBIxw
8HjgP/frgsb4oP3/hY4oNNzxjAgc5w60QKM8cAg9zb+DCCaq3zYnBBYgDQKBZGXlAQgPAMIXhgSe
tTDHuyN+OcFnZgKLQH93jDvAkUAEEYhyRBB+qPy9oN4IANYThwj0/9PxX0QFBgPgKBgW4IBwQqGp
flcnmBGOf2GCBDxRvoCbIIICwQDQ2efff3YEkcExaFf87/Bftww0uW6hCzEX+Yfzv151dYwvwJ/Q
VUxCUhIgIyMPkJGXAQT+t4wpFPX3GH9k6qEdMQD5v6YlHNM/E3v/LQLBv1dECPDfWsYYgnYRAMHf
UrcFSYNghC/w/7Pgf6X8/+n8rMr/Xer/O5I2ztX1V4Dg3xH/nwCoG8oV/3cIQbw4LGERjDCEdUD/
b+gNxF/ra4SAo3Bu/+vVw0IJCwFBOxFELQaWEgdJ/WVHeWmjfBFwUxQWhvylkb/MFmcb54pCI0wx
XqizR4aQBAL9j4+wZjAXwkPiRZDmLxeCsEX/bauFhmHgZ+smIS0DgHp6QvFUIIKiJKSlCVdP2Es4
wveXmAFAcTQGS0gBECgGAhwxnlRnNysnAQBePzP9QvKyACD0N5IDAB1+I3kAEPYvkib4YBhXwtj/
WKSkzixubr/zz/gA4X9AMACI+F1BEgB0RHkj/vATLE7/QhnCZE5n7yrhPn6HEJog/4DSACDqD0gY
yvV3AUJ317Oz++0nUHD7DQm7AkT/AQnjYf6AhP7uv9nJEBBBtpjffAi7BPTAYbAIV4Qj9o88woh/
TAwmjPh7BCnCAXu5Qr3+4AAmlPkznRCB+92DkP3rbfaCYTz/OCowgan3H5BAzOc3lCAwwf+C/9EK
DOfpSXg6f201QUj/4F/vNALhi4BRTY5jYIoRzlURDfsVEDYfscUByTYZi91T3FUpqruuxJ/Fz7Ua
s7iUsEnl7cilZGma9iJVym+SGJEQRyWwad2V9XGRV28Up2BgjGQ4pxvDuiZerWSsQLNxXvDdJqiN
9UE8y6OcFQ18p+53rme71nwqGv0MZlGYy8Ec+zZLyx4m5Gycz/LLKE2Wx4XkmQ7D1k10XYOuKZCP
9jRpgpzDoh9R6zfXDh0I6NtQ167tMZY1MtweG29XvyAdPBqlQ4Wt2nBgsy6RVWjqb5Y4RDYaqDUR
vxEtjM0VWNoWLezZmzQkSQzi4aFcZb9S6HQH/9XoHvNjlNGXJdVPFxgPUXIbNg3RxyLvxhLZg3pp
t2/aSpYsG6FZwt78VD7vqWxfZumrhMq6KwE3FT8sgbeZxgRM0JS504TiqI/ViFFugePUM0GiFqfi
9aq5T9jl2cgZGj7IB3dl1F9kuMvVKCeVK3uD5s0dsSjRgerEp9HrEufro8utSbSt8ooy8OIVvioD
Tu7tLXuP+by/OwwXk94x87Tt7Sy5czHrRY/wdr4AN29tJ4U8yvLOs41SiQ+KC75jzflHT87dRgj0
/thuZ3/m6Bd6KUWEIY5VsfBLyLrNkNDj3tPU44QvI/mnFa/ypNJf9a9a3xONB6N4W28kpL+2bGHX
SMOsUdpXmgnflqG5UK/nzFusF/cBGBjRyCUvgAbxSZpZ1nwwzQr0Pj/e6kHO9MNLO7DWxHwkXoS0
IdNEuFEmu/FVol7BirCtWN/1KcmnFVPGDJOZCk7wZkV3oKUi1ObkjcxySR7djEJofpLXQ59rxFdw
wSJGPT9IIj8taoe0ZaaM5aFVvADPyzKSexaFc1p0Tb+ifEOiBs7l2frK3K0qxFUy1l92voU9mjd3
EtD8VJSA4idx2Qog/yY9syLeKQLQKgJpkYgyNoQcz9OxrNWbT6bRB/Ut/eAxTguHNuZdtqIoH3z4
QVysJf5I68slfYVVmG9W7crAwyVfJOnzAuMLx+Y8Jo1M+QXUPC52r7XHG8IirViMe+Y4KzUBDyHO
UQfeY8xvt9ccD6k9gzvLH3IChf3nGXNEteBCoj081FvhtQzNm95EKCTLyEj//lu1VpZ7gLkltr7b
M1WkuUGreCEipt2BdKfJmNiU711sNq7ovc3Jo3HvepIaiqf7ocTvV/piestA3RLkySd7X5wode+0
7+i3D5Kpg9vCTpIVzU86qo/xjyLtulf9JWa+MkWXWn8zJ+vIExA+3xZpP9MmkESEq6cmPfVzcbl0
S2+B9u7WyQM+3pSUNzf9y34aBD8+F3icCJMutSdbDvw+LyySaL0xzfMsM1fEyueFrM4ImH90QeDY
7/WJTeBBtssQoq6zQKXtbXb1QR8XsRLVtpqF7Oc67nSH796j6vmUfBk5TBLJHh5R5+zvz92Hczh9
DKxJTRBJOueJnjR9+nzmuNVCrv+11pWpnx42o0XawaKYMkoJye3MhEtjHBOqPGM2xBq3IPI5T157
Ios3fKOlN/1pANKn1eUqSYwa/XeTdLKPWTLY72GX2UqP1ItxWBwm9z1QnNX9Zem+csNPhlRKy4b5
53u2UfpxVsi1kIAmtpg7EglKXcZk7/uzHPorFqClwc1BG4/LGX/OtIZyUxSZqlSQyopJe955y2zr
oqas6/R6n8xi07P8toGyNS/vhlpTa+DFDCCUOa3c2IBHO+jJt0WiWY2VBXlapIYbKvhz7piYb1ng
EfPtZ/QZ14d+jHb2KAV5rXNpZmAjrZAYtqIPPHYy9WNqS7BZXEAoxK2crG/zului8LYy3G73nW+N
6awmEilV9LoO/ekH1kZXqvzr0aUbE3Vrlo5cupUNx2rlb5MuLvxQptsvo7/2NoAb1yiwwjK2ANe7
bqNXchml/gnlWcjP/n7X9n7MoHpYWO46aM04jv7h9TX6V2F3y2njy7/cdv+ZPfgUahxVlhOTgB54
gPFT78YcHJxMDAXH3gbRE99c7Fq6bTfhUOzsXO7sZ8t3Utq492rnjbVb4NvlDoyYdLb2ovmBS2Ta
G8UJfG4Fc6xPAR6IapV6fW165DOzw/AO3Kj6vOERHbcWUazago7cgP4SKkTWP3PacX5yb2MKRMoh
ghb70ki80e+BSuOvOs1i5MtWgGIOHd494WN3eel9yUGw/ompfYB4he7s9kTbg8Lj2Vl27cOP1FyB
TlUD6OHjlznnaPyjEneu0+2JqqaM1QR3XdkcTsu77DTtuYtlUjQAlXQO1e4OZFFFP+o4WaZLNXk2
3o2Auxm8gpOOnwt9yle09eD6LUGmFa92G5S9Gw2tst+dxgI2pniRWkc9rhdmJQMMMdfjFKTi/WJ/
Uje+gAS5oa2ZpVRqm0s5xpTGqvGJpOdgwR3iUg+6mu7a5XmQYUxiLxc42Hk8ujggbQjrfbdVXZZY
d5z5SvVlOE3NuceokU2dhjk/QDy13MJxy/aNV31Pxpo/aqX2H1a5keupHGp/H86VQ7Y/NNmpLxIs
ErdFaHOsH6grX2ngykhjecZ3l+XyNarykHM/njreJz6urgpwG7ro39WRsGywBBHIuWrTJN3COW+g
9pGGXEtBMsFxVxE8FDi3EqF3kUlrX4H6KIaXQvpoIAIZ8EAAdIXY4Cfyg1Mu43J2vNiPXIemvCup
ovhnbTiqJxUhTlI6gYJSzIWM3LdyC19lVS5oVXQe34FGXubKv5olaIKjgdCMrjsZMM8bdM3BPJju
Z7iRNDfJmWyHdbUZsxzeOtYP7IZE5+V2hsan0niE9Fa3t0XQcqjRY0M0G9YUWMKrmDan4sjN1HpM
7eiEfLii31xxyc+ge/PspDeAC0gkK4chW9DRSQL4bivZrytP3xjVu+zI01lL7GYn7bRYGjBjzJXw
c8qvw6Zt3qxu3Lc6+FmcKHuA1OR+3oWPuPP2c03Zz3nd6mfOY4Xyxx8wsV6qgZliqzf4kKD8Yuvn
jZw35Tz7GJTxU6s/P5wU3JuotiU75eBphRHLRHaEmV4qGgRQh7NP9Ef1i/nB5xPmuCWRVy5x3Zta
Dlb7pEVLThSiX/pCpzWhXo4qzj95gyP4KOxlJx2GE06CphmnrGRUXgUDgWvS0Hq5yh9Z5/GTV53N
TFyi1nXeeeKuzhUu5u5I53G6qJS8zRLm8eiZezHPjSlaJRMpTsqPAL2k1ZB/7ci7WbS5zEIZG5lQ
kXdNVs+wDTBr4wHiYXjYNNomg2wFf7/nfDy5506ZsPTFluThHPP3EZ3t59xxXT5cpWU3QuvuzLHr
iLI7m4nLjyU5+H8ftpI+PYboWEe9XskCeolms8kjd5DIicds+Fp7ttyjrXVSkQGqGk9uY87idUgE
tfabWlHDDdgK57vBRZTJfZ6Lmh2m+rfcLaWq92fsA/3LZFMu/Yhq24/m8AYvDQ8mKc9W28ZeXNtA
C7FXRiNLxSHJ8LEyVR5I8XKAgW+fXcidWd3wWgWiiQ/+S8vklLlCryZEsWnSuMI6HztTs0iHC07a
S2aUJ7TtG6H5XoE6WjPFFq5St95f9QmoJpWYPeoV9I5pQTmlVlRnqEH85s45cF9lpDbUe1eQFveo
Oan1Rafv11ho2mCbVKoz+HG5leFqaUCF2+UNv/dZCdHzpxbCzyYU3rUVftWmrNLN7WVvg298fF+v
P09rsumy3WgKpenJNW7xY4vxzhifzlsUMiPbu89cwKydJBDrnVGs8U4KnIiifcknmneBDHGC6DjU
i4t3vrfTSHnEp3pf62OK9Ifw3LLHh2K0CUvILu1bbv1JCkRJjGxj5kt9Tobf1J5ET+HR7MyPucVE
ahtRSmWUKia3l7VN8MQUzkWWqGckyemi36U1tSjARj+/GDMR8el9Pe483K5iZFIFSoy9HN7qLr86
I5B1TSJ/nd0YG0LmbT+HTn87ptdyJSLdfoqXyNxS23T8i0BTcpr/2sXJdskIxwdG7J0fTllVONcp
mCAHm2XUKnF8fiW+zZ514QApNL0JeQzaTzWO9KRdp9VsaFdryRLi4UK5/r41ABwlir7AG3IVt1z2
2kpz8EGC1XTEkCSJwLJPuwNm8rxEPpGwo9smMuWjVkexSojKonTki352y7DjgXB6VwXdOhYT4ktc
QyqbIve5H94eKP7Ec0G/f4w1feCrhs36BK1cVW6TtprhjFIaUKTizYOiztpotfsUwPwHqfVft4ol
Cr/tVF0sv6k0MgvnNb15cDL2FLM2HP90fsIaUljvJL/qM/mJCXd9kHsr9fwOZbZ93ojRk/Srsn1t
Q+f8D8eJNxr3rMafOm+pppr66UQu9HXmJtI8MXlv/RGNwnAfTo5nqxP7LXWXYONuppMiRNo+mkwp
gveDaPY6hWlbKsi63cSaC7iFK1TijL7km9rKOJvpM3ZpMl27fdMq6v42kxwZ3U7WjY1Wca9gEsoR
8vk7K/qRkq2ZnGNwSOATxaG9mttM35Q0TALxt6osjKL7rifXtZc8V5+0a/kMBmXl5IxJdj9fuNuL
CupPSrpQr1A58KZrvWnPo4Lzvvmavvbb70I1w99m3+BuckZkYR7bnudTh/mPMtKub7B0ldrFq6vH
31O0fK+W6vB11z79cXv2ldyT18qx9WR7NKzcVZOfBZ+Sff8k2c/RltkZridHevNyzizNc/8swbsx
NmivDmJD0uQuSMq5B5Wpm0fp1Pvn4EMxLRyjb8QmqOaTGCKIFH1PuEtr0udoAKIatM8+hSbemrih
djtQYvXpa0PamOoM/j6HluNURFZDJnGDw8ObLjE7F1hsYjbuUlGb+As4qB6aMCq1qYexmgGj+FIn
5G+sKIUmXWT3KFHOq76i95Tfb97nWolcfNBKc1pIl9Y3AyNE2FvKAKSyhdZzpvZSmCpLyHAAbaDX
ibez0VdMv1llp1rtroqrVJ3oWOGzcBmDPs7qAOUgeakYgfvBw7HgK/vXWs5fv/PtbbPm/cSVr/QX
a7stSpd1BLQQzjVi+6fbdTkLXdvoCugnDlOaFp/BkBLM1HcM0NcS1lIV6Td3M11l5IP1KqBdcbYr
8sHqfdO1VN11ql0Sv556XEF5FDb+fW4Kb8xDw5iU6HnnMOPb2uoRuW0PfOzrlF5Yr7yTAipWBmT1
eIEzdUCL0fivLTpo39O4Ht83/MYN6jcQ6+NbklNlPOnl6crv42CnVi+E47Ax69/PJ16aDo51ar1n
MBGwP70s9A1RZKr6hN5mjZ8cFY8zyd8++DbPUuvFvDBLbEHU1ctZY5wB9TJ6WpYfVVVZlxARwuTM
nunxAHL921Dz7TRdg4PFcCsBiIQKFMubFW58rJ6vGnE+8LxXsM2Wq96nLY9yb+eFxGbqRT8Ek4L9
4oS89kVP1Sm8TE+OR36vznOzxzqrpIZHfU34WM0Pa7brLG69Tq3ihcOBKqv6k9YPUT9WWbMmex1X
GUFScT1vXoplPbmqmHQcfjtbo4mLeocGYnJnLAVVOsz3tpBJU8mKVa1hIvoIMJDCMZZ5D9v0ftMw
QAowbIAj/wDJgHC4YXp0oMlPs6udXkrl6i/g6jWr6134J+KKJoNUZnuH1Dfl2zK7K3KeBkx3rhh1
Czl/9bezlYphpfTp6hrcsmR4+Yknf97B/LpFGEzjqH24p3T3irhJorBg8hjuCtn1feZyzAyD4gSv
mweVU4eJLNmw5AWag8bwjRyDKRvX8WgBD+OGKaOnSqAfYGMgpR0FizqDIMqs+fJA/rzEOjVZUnGc
qAmJ7ufFZZIPyQo/JarsaL5ezuVQTaP6woEUuVbzkYg1Zlz28nRVcEiHcGjThP9oAdUnobf13SAn
IFQgZ/ZH4sc0FjLKZoWfXB6wrsSLtVRUvnIYUXpLuUhmopuFQ4O52JQ9q/a6VP7TvecXaq3ZIMx6
kt8T7p2TVk6XtVLztc/wQT6mxdxxohnfc2dVqu3KI4nQkv123JHiEpKNGJOtG5i9XdIfD2HI+fwj
jratUcGfrnT73usjrcoGm7pdC5uRyUsQmR7Te915EtIG+kRx9k1gRzEXA44yqhcquE/vmpPcbCz9
dyIera3ke5UIP6J71ZzZlYotn7hS4TCNcdRZHvso6zgxPvXlYf06iIGISLzSMrzfgnFFdOd9qXX3
a/cgGY4rL2FXX+qqfXDmHLR9hJDzSB9zU7rdQ3fM3M2W5K5q/pLOaB4VzTdlXX4yI+pTbibYHkF5
0y0LUqB8zNdlEes0xqpWu0ehKdyuk5+Fbnw/KNQvx0Gfqpuvj1uN3ZPS2qoe0q9b6tjXCSg3Yyqf
c5jHckwhuk93opmK3gubtw13PEJlWxGLbWY1f5p895GFetECUl9JK/SZhliJl016rb4MV+zN/RC0
N2DKOs3NYSGwyfTatCMSeoRRiV5wVZC7iiC+k/PiFuPuN/mvel7eTgfEnz+KSAqNlKYh36B62E8z
nIt8VJ679LLTSNHSUUMUPRaeJ3wfLG2jOEiha1vm9Agq+jgLhBnkdatUJKjET77Mm2T0oGgyr442
S7Xacr/ax3st4gdV+d7ouiVPUlmAx42RsV6D0eOox5BU1rvvXo0Z19BzD7X6GPPAL/dvz/N/Y3kn
ZEje/Hn1HbVsDyZD8WRs8O3LtFdbiiFmE63rG1R9tbSkSagn8VioDl2mjj0Ju0KGNqv7t/jFE0/h
shfuByyD03ge65jq7hRfRnJZ1Z9pgxQfk2xiBVd1p5ll8P6zlxn6NUJrsE2PR0YnR2r2y6rCDr7k
5Zj1IW+MgvfzwCvVziwuyZjBcv4juN8ARdPdAIk7+KmFjEtdt2LN2uDTEg+bVx/RCYxKNOd07DyF
UsSmfWbAHzuuT4Rdrq2lZ1swmSloWVEgARV+ElpkiwAfeOplwG3406noTSXCY7etQ7lLnrnSqzs3
qpfRrSxFKy3HJXGNJ5ud7LYZbZV0ch8GWlXOxpgiDl7sNC+/AjI8iVnmNFDr9se/DwkLlhla5KO5
R8pTcWIfo3ULLTH+AVfJsbwcc5xpHEvOflnw8XR7W2JlqLC+d5LmeNYFSeXh0bhxzmlBqu7WWxzo
3eA+uQsfqw0X6ApGVWoOjKuXQwLfRAHv8Tf1UtZ4AKnXXvUtPFlXqAPu170mPZ9Xt7UfSlSgfRd5
JDyTfDDbdW4nXRMvtcie9xlOI0DBPma4ZYFs6w8qIa8fVn3u07bDD7lKnYr/xr9GdXp912q5VZZf
ptg480FHpgWZNJhX9vED/mG19ykmqVUvM5JIbnBU1Q0nICvso/Gn4cMIPqhyMvS1FL7DGp7F5mLs
pLFjdsL0ToRlRfOD+Jwmg95zHvar1KQ1yRf6v9RVp/rfMWkPHW8aiXrmkiasGu2CNt3Z0X+cbCsh
/mw+Dr+/ykTXNWYsnZrFFVPsBh2+QR8szRo3M2CsWayjK7xSPr3Rq11VrBpeNX4wVOpWQ0Msz5pN
5XIYquKphBf+OuKtN3h/OtpgMf1nZDHx6HC4D/tCCRf3JVpyodC1KK1Im59ZdtEhmUllwz1l082M
t64zI/Xnyfj92kR/6oQOMIemHbtn3N/09LD63OXpwst4kmcTBczJm2GsVpWjlwC9K4IcfpICjFIc
w4toOx/Y0qVMAZCP5sS2Ryjr61jYIZhCMpvxm0m+u3Ed7s06qw04qUTfaoND8cg5h1vJ/GxAjy85
E6KZqUyiG0vdDjWMzykO3haEaWo5yw1g1Bqim2BP7oeSdwx7eU+ar3M5Gk28CxzWqlRZ+tqsUTC3
uO1Btue4c7iioxOtHB4fXMKQzXx33JFC81v7VUmmAG7KSwYnbKOccvwcPdS980F3E0aNoPmlLh+o
XqbYbwhe1CIxoJkhLvDq/coc3Z6dl2LaqRF/5QaZ9zhzrl3Li6xXOMEfdGMvpA+kyvOn4x82h7bl
/R/62J1JCmVuZHN0cmVhbQplbmRvYmoKNzYgMCBvYmoKPDwKL0xlbmd0aDEgMTQxNgovTGVuZ3Ro
MiA2MDUyCi9MZW5ndGgzIDAKL0xlbmd0aCA3MDE5ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2Rl
Cj4+CnN0cmVhbQp42o13B1ST29I20oSgUkU6UYFDEUjovfcqHaWGECCUJCSREoogvUnvVakqvYNI
kSogSBGlgxQpKkovAl9Qz7333P9f6/tW1kremXlm9szez7PXG86bd434Fe2RdjA1JALLDxYASQGV
dXU1wSAgCCQsAAIJATg5jeFYV9jffgCnKQyNgSMRUv+BUEbDIFi8TwWCxQN1kQig1gNXIFgYCBaT
AotLgUBAIRBI8m8gEi0FVIF4wO2BugJALSQChgFwKiNR3mi4oxMWv87fj0BuKA8QLCkpfudXOlDR
DYaGQyEIoC4E6wRzw68IhbgCjZBQOAzr/Y8S3DJOWCxKSlDQ09NTAOKGEUCiHeV47gA94VgnoCEM
A0N7wOyBFyMD9SBusD+jCQA4gcZOcMzvgBHSAesJQcOAeIcrHApDYPApDxD2MDQQvzrQSFMHqI+C
IX6DdX4D7gD/bA4QLAD+V7k/2ReF4IhfyRAoFOmGgiC84QhHoAPcFQbUV9MRwHph7wAhCPsLIMQV
g8TnQzwgcFeIHR7wq3UIUE3RAAjBT/hnPgwUDUdhMQIYuOvFjIIXZfDbrIqwV0a6ucEQWAzgoj8V
OBoGxe+7t+Cfw3VBID0RPn9bDnCEvcPFGPYPUIImCLj7A5imyh8M3gX4t88RhgWKgiTEhSVEgTB3
IMwL6iR4sYCxNwr2Kwi+cONn8PNBIVFAB/wYMD+4Awz/A/DBQDxgQCz6AczP5z8D/7QAYDDQHg7F
Au1gjnAE4N/V8W6Yw28bf/5ouBfQAoSnHxgIuvj868kKzzB7JMLV+9/wX0csaHRP7a6SKd+fkf8V
VFJCegF9+IWFgPxCoiAgGCQiARTHP/j9s85dCPxPH/+Rq4lwQAIvil30i9+ov3v2+EMC7j8K4QH+
s5geEk9dGJD730y3BImCoPgv8P+Z779S/n80v6jyvzL9vztSe+Dq+ivO/Rvw/8QhbnBX7z8IPHUf
YPEy0EXixYD4b6gZ7Ld2dWH28Adu/x3VxELwclBEOOIpzQ8WEQCJ/PbDMWpwL5j9XTgW6vSbNr/9
JheCc4UjYHeRGPjFFYPPAoH+K4ZXGdQFf41g8Nz8HYJg8JLD/jrICxuGF9U/+1BFQJH2F+oTEhUD
QtBoiDcAf/h4SxToA8bL1B7m9YvdQEEBBBKLTwHiZ/YDOiDRgIuDFhMCCjpe3GX4bcAHfvtAQEHX
iyYuHP9YDfoAjca384sm+Fb+tn8JHwbzgkEBkxNIqHSwc3Vwy2GlIrMn/8qQDMlW2qG5EP9QgTUZ
tlt11GYxwSg7a0r7udpkF1jN2rlNT8n9MGfuw47Pcg17rbfIPj+72poju13cxPn+pfFEnwOWWxOU
jQRPzFKU2KSK0d0Ed1mjqNrJ5e0du404KX3/qu78mOjJRVeiJq4V0qLX2l5ZkqVDzyJp+uWTIbbJ
rs94RXSX4a/cT26xQUvRlhGpehm3tGVajwAJnhVUC739fTPUXawdUYFaHo9WvnOEYqlVpftYVEQu
V5jOPL32M7fYYzODxsdOnVZh0777xTxPymG13rbT8vam1U3upHZxJ9skh2jwF9wRKzVqhk4pDZ2X
vxppP50Txk7U0CuXeIAx7UyHa7yeK/vE6qIVFqLtPTXeObLw84F2qqbFcE8w9x3dBNmz0uUvfnWc
r2I8HEIJm/+qTKFeVuWjz+LZ8HMIetrD4Zo9s88dMm4mZCGR5tRiLFc0IxncHGBOLSx81QOeVm5y
TbDuc+/lwnv7PjiRs6c7ra1KXFPuFVGIGJpo3ELNjG9GwZPjLbDgm1poelW0Ms7TbXHft8Jr0Uqn
1w1Z6FeGa3ET/brwgfpxNFIKyJ7zbKMtMjiGQaA54lbZ9FJX+B5bKWGcPUGJXt6L491A+rc9yBYC
YYBHSWD08SbudJMwA6gHQNXiSJ7fvS5tOtrmKNb7tJuCUG7yzvkPueZU/QAtETdF0OCpoXD9RBMv
XZ9PK99T+uZlGknqxRD4g5Vh3aRlfQVKJz9+2mnux1cf0Rn0Ba0nxEa3KC7sNuVG8YxVMY9/vdJS
IhtIJiD57HPW5q6wIzPTTpbsNXaLVhv2c7tzpM3170ospgXzxz2PBi7Xb5vdYv/KSLhcn535egGy
vY68r4bRj+cJTirg3LIX2m7yjNZ7WTamIben4rf3nWw6O777XvK1lq+1VWDn++VBjiXXSNvAdq1N
WVrPIb62rU4xxXYPeTo87wVtQS24QM5J36vNCcS9Dx0BtGlOjEYNIU+5SB760aDO+Ec3HCasgZCT
CRtAN7OrCM50fWcNYbiz0MZqEwNTqKjhJcT5psQnm8EFGiQHeR73pmcqhRo9nscID8fGuuTdsY62
S8j4jhtoIoNQDISI2CiRLm3QktDMnPQMHYO3+EamqMcuUX4xq6sW6kchs1ROsl5EELV6yfU7fNCo
ObZgtzJW3e9wzjDsi/QX5DuhWF6m3wBmpFHNukos48xnElDVu7mZ2Ro3TQ9mAu3rb9YHSNuLPM03
LqScFJW6s3TsQXcbqh3LOzMhzYcbvn7ZPLqCBnfVBXijwGBs3rNbDuLeYye2Ao7RPG4a0qbiCpGH
vXt/EC8bvuHQVC/z3Vn75+MxDpdG1/05TptdNw4rqnTJJf6uoLyVGy4QnYGHTDNHacbDd8E+7wJp
megQeRGP3+eoTfnYGb8abHEgDf30Na/MJ0JndJMrvL0d0G+eLbnUX7RwfPCtbl5OPpB2arnWOO9j
H/KboWfG2KIUIIwtE9a0BRDcJo9oXmNl6WCg9z752njNLzgvDLs6Zf40qPmWeMC2OzZ4weHYr51m
dSSJpzJUgtjIcMw82fsGjUwWplbIOVnfumUxqJmKs/1KrEl2c8iCj9x4jGBeacUzZTfk/ApoiLPU
7wlq+ob9Zx8nehG5SJrIy9aeKkXfFWAGu/bXuog2IHD7eyPWCwptdfJkqCtwYWmW6kCl7iZFVtjJ
CVvv7t4VopFbZdrQ9VUbAGBX7uebn8bIEdkCXhbaxjcDx94FAZO3UbSkHOkmQyyQooDqgGxRA6H7
wlIM2Q3MfTL31Ed8wIfnUFNNxkoiMW4btO6twwhsiH1AQNDsc73NUCErKByyuC+ycy67xfoWnf7S
w3u6wsmat0NDe7LK13L3470IT9o6Jt3NfOE7vHVdkR6ifgLPCyWLblTm3hKDtNRSX4PdW8/wiyMS
eybkpx0E+mZjWkk/9DL68vSgYLFYu/9ABGjbRSkhvOfM9ZucZ8Kc+YbMJ417MZU9xF4eNK9o/QKW
1fg5Mm9l2tHd5K7DuagYGNphpWt6r607FzR2ZbtQLOsx7ouUjZGKHKXvztfMnDsr8mbaOo6GGTyv
qibnLvosPRBYaXDVhD1YGWW39lZB+rBTmUASts6lZsEdBXj6M+Qo7qhIfoghBk0Q+TWtpdlmtzzk
MvWogz6Z2dw7wqWS3JIHR6DZg/gYF8GEcq4K0b0rb0ZLjurefyQPrOKf17lnev+53RcR8xyLQdCD
QWd6OdVxl+qA6pvm3e06ca31h096401SK/czl4C6Ya7HxhosfYjRM+/MLphJT8/5T0yIIvFMViQy
RJh9yNeKHVhhlb68yoxrCpzVK+dKZkpSf28CVqgLFRCUJJTuHdG8tDGshkviKGoNMPkoqE1I5PrB
QczLfSGPldwbUO3pV/VIQ0OwhpfzeNou2SWx4ue9Km+k17t65/JvqV751Uav0ogsvet4EDfkm3NM
1x5p1TOyHZHysfcxu0BC8izocTODDmlVATSpHxw0eWctHBhlCXVp6IXHeDhbfjwrp0p0f15er89N
0mbJf/9mNCNbzqZWJ0CDhwVtsB9Xx2ogup//0JjBTsdPUG5I1IXmC8OBrIHnU/0zcXrRn+G3maWS
P9x5amJDr3NXPr6ut/+GnnL5qpHu/nv41vurU3LJ16h7hg/CV66s/BDm/eB826wzW2VDYi2KY3vM
dzvnZoNa5Hz/YGTjGdP6lE6itM1DgL1BipYmR31zSue9Pu6PDPRuhu5rtAf5WhYMCf4OE1REkndS
XojVfLphAz7OH/P3BFK83HzGYnSHRB4cKx9ERrEzoTjePe/tyv1oSedS0zD2ZR470ZZJHM23L2vk
7Ywv3BRGeelP4ozpJOOmVZsIC830HfmnUiY6oikrNdZRqwzXIBqkbLfILHEFp6+pBEfH2IJVnU1J
fLLBETvgwSDjqmRTndNRUW8zbV9cwOjOUup336l67OUCZyX79RBT2XLcpPBUu/GEln/LqkV1a93Z
e2HbU4+8MxQCHWRyRdfU7HnmvsBn2nv82LX0tPXKsmohXPb7H/HBhQRhABkjMSy4zrVr1valXcZq
JEFuM4HmJv0Iqw1P9v30nXEbGJXqNSPs1UITqOiXt8qLClGPkN2iVL1eOipv2xTTIusfnnbrFbG+
MyQD6kR9zXLo8VoVUuFOeTSIyKuemsiahs/EPB8eeRaNudo52RIT9OlYAD1HVknEtqNq8YyfqPS0
4cvetbWgkkDcq5SVWHQ5CeXGwihHodJzCh1Cwci4z1KNSvR7wIm5D1wB6sw5o0PgB2IgK4xtICBh
N9k3ozmRu4peJHe+mHv9u1L1KT+1S8vLppyeFJfCxd2Tl9ps5W5RswpzNgWKf61+aL/fPNZOQ3aH
wxBG7jauYkFUFtMeg/If+F7+PYKC1HwmUfFUwk0RN7n3OYvYvlVP+tZyuj8D6UhCSStqvmU/9Xoj
o7J60bWARL13uZWPu+Z9pYHal7+JUbUrzh+M99raLrc6SwlSEN4guF8TG3B+ZlLEyXssxmz5cade
aXUxcSpepn9j5W40B4rIuSygvWfdsxMbwgcvmYOXF2g9H89p+DkOfGVS2D3wHbN2rznbOcTvKcDy
NVZDeePyVv8RW7ogQGVxBfiyn9wHDutaupJOVCrzpIK5dWP41Pe1gE8qtDLM9RD0OD+cu5h+6qEy
WRrft7csjSyT9xvPUBxArh9UkGLKWg7V5wlqGjFuBDzzN+YKhElKsfOGK/BMVw4Qp5fLzVPldKkA
yfXPNkP8L/1c/HVGFD5/LX19dUBdtsv6hdPHDR6XiswmOLmE3Vj8oQLG+sahl/q5QHwoGeUmg/5B
aMb9qG/OFUtqdMYzLe+u3uGAbAUxGU5XHmMckmrzCz5augVAXcDIKr7Vh2Rhg6vzxAEdqhthdltR
d5TL3Xc6uUJPzWk3NfMze8bTiNGvLKfrXz96c/7pxBCGtPVIWGxG299AyX8ZHi+vyHJ4rzx0nbTq
2USTGck+KnR8x4X0adBQn2IeOxX3pJXuMuMHakpyKrr9mTjrwLKR9/rJVa6zw++8ZVl2S6xxoqrR
gYw4jrNHA9Cvc6ABF6NIVOwrxe+ETsVoDEXIq3BbEq23iWcuUS1Ng+qqTuNca/LXg0KA+bQL5cy2
ydlLCpJRN9OQlgo6iRDjVCtDLMUXSlxbxV9MvB0HJtKh/KojTCshiciXxnafZttElysa2n6+Ekpq
lXvxRdvLXbizcOGNDbaYtSxzPe6d74jZB85wUP6g7KpqvEJFc5LAlpD1ArqmUCqXm1VDrhS2NnV3
cLZmXLri4GPvhyfBfm5mWev8P+p0FxWHcBhbjJ1fXE705GknplGBziYR0yJImJqzpBbeFkypn6D6
+kWq67eoOSdLdVu7S/sQNomCjAYO7rntPmsTYdoK94za8b2tpR1lklsvzj3aohr3nM+oCWLk03KP
ZwYUWccaVkUFSjBSrVa9zNIaQuUhr6rlXdtqq6F0NMtnBHcLD3Zvwsjypzf4seDHHwWZBHvj7WRC
kxNnTl1OBFd85knXR5KQmUN5tMGxb3uIlr4USqhzUkeghlrebPY06P6QGks+Rpy+5oAaBWwyi958
npDTDEqO/DSlEHIzpd5/WYV87LaE9JWHT7Zrz3cwxKy51huVso7K35/G1wbOyh+tbX7AXZaOsbFK
bEH74/8BaiRWRAhif1J07qyJKT8TV3d83JR29IZZivJISVaSY+/yj95NBo5M3gax+L3jPic05d7N
IHJ2WKn02sC1gFGzboESe/8D9TOQatriEDlBwZwCeLm+MMYLXhlp+tz9SvxgY8WLpDKqCdRnxwK9
S57eVvMTllkzGCF3t29n8jkCHwu164/3pX329oybRB5Rhbbnvo4t1nu6NU61QNrqsrnQZb/g1aHp
pCrbG1QcXmiVYIUGGie0+11t/qb56ORrptAsY/ntq4VhxOlnG90W5JWpgPcJ0Aen3k0mhoEuC0Rx
+DeSuv4I5hdvA9tCg31bzO+O55m+6uZex82NbLj5eLx63KmH5c0d/JEBpSJQSa8aZEqgsJHGuozP
8Wdmb4iwchYX15OolRxtpTNeOZz9Ws10iUhRP5e7PBTzxqGKk3vmBDWkMq1xS4iLJI0fFUmhveVf
GWG3tCt8U/aB6o7BelIqGfemiox0jXNlV3/D8fyk5sqREIaO9Wn9/IlirWOoeuJbPaPeSGiP0PjP
5g9oGoHQ2SXx98qPrZWV8haj1irpZGfRcSO2Kdt0Wa7uZdxCVrNt6Xow5mzttSRQDesX+eJRFDjl
4AeFdUza9jW669S2d/2NztlltWfP5VWPVrWZMzO5avh2IvLRlhxC5BwWH6IFvSZQwq0Em5/umTwp
dQ8iqeMltM1DA58dKFKUJZpI9PR2I+N4UZgrLEdXVQv3XV2K7RQQBnw7g9KG8dGInIQIIe/h0Ar6
4Ml6P7aXa9rrH7VNjYNuv5BgWozOSUapSrV69mfnjNCrQmkoEnM7SztlNffWI4q1em2/v0ky5zH0
2ppLWI8j6vIiFx0RmHIquU3WrKLBuJE7CeojhNb5dzTRaxVeWQpt3AoslHInpu/pc/LWnq09U5OW
uXee+y7kp3+n7/aLhnnycWraXWNBdNtpEXvFlmKX3UZLb37tybJrKacrbheUAfHHfE5UuausJ6Jt
WT+7vSqvevuHIWL0IPnWxqLL7dnc3QQFo7xjXy0KnvNdDUtiZlI6vztJox4m8ioyPAEDKVtWBZmn
Bd+SX35PKP00t67+rpe6I5GEoCHDmGNNU3d/0TuKIEOCXkRQl9W3sqHtdq6srRhTDwkhSTz2Ku2Q
hEs/G/zpGqmM3VFyVm7TJcBSLkM4H5u07NVMYvXphw9xElTiRmgUV2g1R4TL3vJbhSWyuqK0KIhu
QPjrlBt0t/urYb4nabt2FZ/Y0imuYHXCJEaqQKn94b7DYxut+mw88+7vVqjUkrHkKfq5hPmyXtWF
zd0kUVNXPxbZrHbLnidSnfKlVozqS66EKvoNMjyxpFj0tqa8I+tlE93xwoTkZWz7/BMxfbIwZ6Wp
JQn5EPngzysqJC9jCOJZLB7veqskTbZddjMrsrmdYBcFOU/x9eSh1rRdoCzrhEMgvpAezCt+Aa1s
Y9Qt4T5FBa5Vb4VXX+k/jT0SJCUNIWxPQQrux2JHmCi8KJJ39vgG6XnF67c0hm0ODWR2GcAeGP2A
piDjSzXTLu9FU+3NMccpGo+rguxdzFDiK+7ehqMyvWyLXhSyu/xZHuHEP9WH6fwq7zV9w0HTx3cr
hvl54IQ/3Ewn5rlLdTJSlswco55dOkMPyQpWUbZxgdWM/VStfrQIP5kvNuJk4dJt9I7Jv6dckERu
d7TUWBTDR67oeV07H3DwCshSFp9Fnq8qtszqaoYOkyEVOTvU7bdhsjIOT/f/K82jgvVE3sAb4LwQ
8i6nYDHpYQdFmi9/JVSHijh4t9aYmDr3G86/j5qaMOucWeeYKVR8vLBMne9++0CuUnTVfGTbhmwj
GS/XYKCx+AsJ/4dhcbfTRhd62lyTX0uwX69nr+5+1eikddJQ1JHH8pTbOebcboWXXtYXG818Bzqa
CKLpBrk2bFXWvsXImDZ7EpT2gkeTDp6w87LHqjEGbafyl3RO1xxRP8QhRYP6Cmde1NiXElGpPkw8
6efqpHv0kbSnuODwoU6TgDyodpb//dKUka3yFYJH4u4w44wC+mIZu0IKFApb3TA3Wok1NtO3DWUZ
/S4ioO/F4ZXg9Zn6x+ND80bGvNIBRwltdTqbb6Cam4ETyF1ckVnQ98EBuFQvqVkL3zZxqnZNS9vP
CWNiz8/PMO5hxqWtTo/E0FMb2zqJXFJm9yK7WtLjgUuOzwvqdOzloiPCCLUvZ15VOBF+b/nNSE9K
4kk+/V+OxOtF82Qm8nM8y+OGdpwjJ1PI6IaAtDW5SLGrS129/jxp5PoJgBfPes09Rd8K3hpY9HVJ
L+GGMXIIMsxpvWhVp2hcSGTr3evIYQHp7iFvO6FGjNc5u7ZXLvEb5nHLFfIOHZOPlnzpExINd2pZ
22r21RQQfdBha3A3/2DiEY/tj2epBga99evcPy8fiCSKMiTXWBcHzQU/otOdr0CGs5KJqvPayr81
VNMtubrQGXD2ftBx6fEGqt1hap4QQXRG0CraA6a0Ly1oiv+q3bVJY6ED8G50J69Vaq/n6FT4izG8
X2z9ptnmAmAo7lj1en2PZtOW2OGdE03jDo6wmLMh78zJsG+JlzRSUPCm1XNTqFOOFYMr1/T8E7XO
Wamm11T6Besct/siyW6qSJUQRFEThHDyEF6mgzAsZep6JZ729d6y0Uk9lmd5bU/DeywVNgHaErIS
9+L+0iyCoii/K9HCyyJA7CHKmoMZsJPZe1xjpWMQCtriPazX/pr8ga9BQQ4mwD+FfD4Wu3amzFjO
SEmc8qQnwLWfaqtnxNKf0ZDvOodHJzJFpTB9yjF0nuzMO/BoI28Nwh5+5bOKHgK9xrs1uF+Oyyt3
OgyaPLQI5Crq5gprP18d/+kuUB7Vf8jaNvuuMOxG11DhZq9rkqmX8J5x9vMr+5w6djgmUjsj3Fit
DFIq7r3RK4R/8A24p+9dAd33J1HXlZkgZZlcb+F1H0arwzwu6/n4bHJO8VtEL+Xwp/HlNtEIIBVY
pkuclGGqUR+5Aq5fXd7IknDrcUBA5HUXo4ZVFYasHaSQsmuI2COMJJnVhGCnWPe8+KkBY0twEXR6
eemMlAWWEeX4CUFJQvvOtnQzNuIGAxkguHyyRelb/bPw7s+dPqF27uWcsf01R0QtAD9cVMp1trwK
WiSZySKf3XFym9oD548s+jhqTMTLHK2E8q7FhUsZO0oRtDJwnHLdt7uHqbhcGXN+raXYyxKpDGF+
xdGyJDqpY05MSgKUkZbDC2qzj3V/eJlMPqa1Cc2Ls+KfeRDtzc8tPpSRaqnoxYF5bhz+pA7ApGM+
4R15UobsWKBQSGn4ZB6UFnvrE+RHiwwln8W6HPisze1RGZB4eiAH9XFLF8q9+K79pXeHlvvHnwTW
O1Y+BXyzRpGR4PrZegMZYEekrv8IYZ6vhbi4j1yz6HiuqOaVwm2J6K7xy0k2LvBy+8L4AJF26PUJ
hWt6wzfZjOPdKEnJ+f4H2iibXgplbmRzdHJlYW0KZW5kb2JqCjc4IDAgb2JqCjw8Ci9MZW5ndGgx
IDI0OTMKL0xlbmd0aDIgMjE5MDkKL0xlbmd0aDMgMAovTGVuZ3RoIDIzMzQxICAgICAKL0ZpbHRl
ciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjajPcFUBxc0gYKI0GCBncY3N2Cu7u7MzgzuLsHDRKC
S3AIluCuwQnu7gkEd72TfXc32e//q+4tqmCetqe7T/c5AzW5qgazmCXYHCgNBrkxs7Ow8QMklNTZ
2QBsbJwsbGwcSNTUmrZuDsB/i5GotYEurrZgEP9fBhIuQDM3iEzSzA1ipwQGAeTdHQDsnAB2Hn52
Xn42NgAHGxvffwzBLvwASTMPW0uAEgtAHgwCuiJRS4CdvF1srW3cIDT/+Qigs6AHsPPx8TL9yx0g
5gh0sbUwAwGUzNxsgI4QRgszB4AG2MIW6Ob9PyHoBG3c3Jz4WVk9PT1ZzBxdWcAu1sL0TABPWzcb
gDrQFejiAbQE/C4YoGzmCPynMhYkaoCmja3rP3INsJWbp5kLEAARONhaAEGuEA93kCXQBQAhB2jI
KQJUnICgf4wV/zFgAvy7NwB2Fvb/hvu39+9AtqB/OZtZWIAdncxA3rYga4CVrQMQoCKtyOLm5cYE
MANZ/jY0c3AFQ/zNPMxsHczMIQb/ytwMIC2mBjCDFPjv8lwtXGyd3FxZXG0dfpfI+jsMpMtSIEsJ
sKMjEOTmivQ7P0lbF6AFpO3erP+crD0I7Any/TewsgVZWv0uwtLdiVULZOvsDpST/LcJRIT0R2YN
dANws7Gx8fJxAoDOAKCXhQ3r7/Ca3k7AfynZf4shFfj7OoGdAFaQIoD+tlZAyB8kX1czDyDAzcUd
6O/7t+J/ERI7O8DS1sINYA60tgUh/YkOEQOt/sGQw3ex9QIYsEFmjx3A9vvnv5+MIONlCQY5eP8x
/9f5skpLKSirSjD+U/F/deLiYC+ALzMXG4CZg5sNwP57yHghH/z/N4yqme2/0/jLVw5kBQbw/ZMt
pE3/ydjj3wNA9+/loAf8byxlMGRqgQC6P0NuyMbNZgH5xf7/edT/5fL/b8J/R/l/G/L/m5C0u4PD
v9R0/9L//6jNHG0dvP9tABladzfIAiiBIWsA+r+mOsB/llYJaGnr7vh/tXJuZpBFEANZO/y3jbau
0rZeQEtVWzcLm3+m5R+51u8tc7AFAVXBrra/rxUAM+Ro/o8OsloW9pCrwxUykv9SASGb87+UUiAL
sOXvFePg5gGYubiYeSNBDhmCuAG+7JBdtAR6/WuIAawsILAbxAUAKc8fYAV2Qfp9ojzcAFax36J/
EA+AVfwP4gWwSvxBbwGskn8QH4BV6r+Ilw0yfX8QO4BV5g/iALDK/kGcAFa5PwjCp/gHQfiU/iAI
n/IfBOFT+S96C+FT/YMgfGp/EIRP/Q+C8Gn8QVwAVs0/CFK71h8EYdf5gyDsun8QhF3vv4gPYmn2
pxOQmGZuf5QQR/M/CJKauYuZhT0Q8rhY/WXF+V/5PwvyXwWEyeK/iBsSzALsABmO/0i4uH5LHB3/
8P+eGlbLvyCEEvgXhLTD6g+EKK3+gly/oe0f/Nv4D+T+DcHuLn9Fg+Rt/ReE+Nv8yQ3STxtvJxsg
6C8LiOyv+GyQA7f7C0I6af8XhJTr8BeE9MLxr9Qhdf6JzA1xBUFW5L8CTggTyN3R/PfdZP1XBr9L
Bv/JERIT/JcX+++Snf6oIRxOkAcR9D+nxcX+b+n/nhUXpBgnyBUG/tN9Lkh/nBzcXf+KD5E4/0kS
Qu/sDobcL/8Tif33QfzVZnZILX9icEOcXIGOtv87Cdy/bYAefzWbGxLEFfJq/AkDSfAPCeTyZXWz
cQH+KR5yqbC6eYL/coA01f0vCDkPj78gJA/Pv2YF4v0XGQckvPdfENJXnz99gUTyAbr8Q/U/F5iF
uwuksW7/emIgt9t/8L++MACBXkALpMU5sIVAmN2XsLbbGjEiT+bdcaFp6l2dNHpm30WXdvd7NIQP
9NVZIesu12IfhnrerGxL0V2JLpE9+R421yFEtiSrtT74PZokqk/utiItTOB++154KPa1n+Q1MbOm
6J7fk7OfdrA9bDN0pzx1nrP7WzTVT1i3nn0yXl/7y5dHI+Z21faqeRSQH8unmOO0Yg2DS2ao882z
Z/Ep4N2YSRAZME+90Geurqcxc7+/kMknMiL5H8VxFvnqb3DE3836rH7W5HDtIqAi0Mcngb3CHJ2k
8RU/SJXHm/ctLVr5tuDVLFhElovK9HGF+Q3LAUdmta16DKixt9ZjdLGDfSfvAyCMlugb1k5ybVkj
tokLhQpOdatJDJZbLac9kOSgw0p8te1au9vK7iPxEt/U1xfADKqezWFQU7fvQ53z6tDwN+abiI8t
t0ONw9vd/jolIv0ixNae7AxSNgbRK8v8mSQf4crdxmC6dIBy2G+Yljw+vH2EMwsX9A05E78nZN8q
ZGPTfwvXCz1KfMyd53cW719Zf6rcsTGDMe/giWkU+hLKo/xi3vnx9LSQwIZTyjQrgi4/U6r7Xf5a
Aq2awBdg/UxoOevpRiUui2SZN5li0hb3wtkAVRGXnEzv7nzVULRhiLfdHV8By7F2pVbre+4CNfKd
oxjmsYP64EHx0PA+vmvLg63rigpxY5wfYO2700rPKPGh+E1N3rD8dx3qQbldrirpMmIxMMU327O9
r80pf2mKe5A7Niag62gK3W+PdRU/ejKVy0lS0xYtKvUr/BCM9Fs0WpAs6iWoCRLFfXfVGMTxpV3l
lg4KJevNajx11t4yLKVJ+1Cj9tkzoTiRhubtJ0qfDaje+amxbfKRyW0qX4dKwxKuviaAAHdsOqxD
Ig35/HZQxsW6EF1s9LNVdNOalqdY3RJxbebMN+D60eDoK3FKhHZONmzh8SNZQGEZbdaaYhEj9stc
co7dlk+26D1ZQpNQlavhlzXsK8HwCiHDLj1oqnVJkSitn68n9h55PuROecnkq4EGKogyogl2bKup
51JyyOcnkRQ5oPBqDXIyMC63iwLpyWOtwnVDEC0OMGIQobYFZ2mxB78kpJ6pY6lySuWThzHz12LQ
Ymw8T4ihyaNXs8At9n2RkB+Hkncrh6Lp9eWFf89Ti0QZrD3RO9F1ODsnO0uUfBHDWjaMJj1v7Ukh
zZ2S4HmmEUXlV/0SDFYTHN8f/4iMPGka0CCYTcrOVuaHmP4i2PrD8aSu8W4ha23I5nQtL2y98kcQ
Yn19TU2myBCBqcgFb+ohLrLJaB6cwYeOi7deqoJc7LMkF0Ju329loZbQUQV40pub/F0U3Nl/cD5k
aElAwdlm4NbJulV+mZz2v/bGJ517DrAgpTZcdz4JMmxp2eNS4fIgN8g0uZFr+VRz8rX6EefbnkUM
Ids6ScW5kvydUq4e2+fRBA9fnnX8lDnD214AjEuu81AGBSeB0A1sSrbmlJ4Cy4oC/s8h+m4mPJlh
BV+zKAl9cZmcdiRSEu9lOrRoBdqIXg4Vtmntj1U8cqpUVA4PP+4/NzEn420YdOEfzgDHhmJuBwgR
CRRG52k4qK1TzKt9Im/kRwnSmdzBAUqfOfrwfdbck9LzImd4GDJaGYpR+3tQKyZf+DrHS9dF+goU
UnAt6PFHvt9sGp5a57pV0oiUbcd/77t8AMFrHnq2J++1UeVZKhtKNGUWji+pXM99Fy3S4fAiO3jr
TK5oOVW1TQQ+DNhh12aNHRQXEq29vP9FzpbUrZcP9rmj+nU3cTMQRN1X2Tk5hOO5ubbJYQQu710H
VJk8icjZjKC7H+SLOx5Lw+Px17OjIS6kWiKWDXrz3IR0La0BSKRRS8PwFUHcGueeNGXMh9M11Tky
PrelfD/xhQZpk3boRp/a5B5tlO/r5nx3VDABaGnssIoeFrOOOHC29cVdNIMUSkc/HftEG3VmIyrx
CysdV8yp2RbT4BjuTTMOEfryk9eTWa2uerMd2qlVpTjy+Um1xeg1xBVZ9wTLcY+5scolcsQK1m+y
HQSqfEe6kOkoWxZ04UDS8EkUiDFQaVBhb33VF8BJGN19mnh0OyY6pzDmYs+BCn5gJWQTrLnpjzoY
68/Eie2o3jtKBy88QRV5tcbtN2ZuOWSIoirsh/ms2VDSZ2QpDZzepJTp2xboSkrzEzL9+k+rBrCO
n19afL7HSgfCv8Z0KL+roOiRF64CvlrQFk/QESf239emf/9qRWNw2ZaAKf8keK3kRB0Ttwm3qL1V
Om4AtrxdNZvloF3x1WSQ1+2rYnwTg3Fd7SgMvIGLS7W8alRN1Zcrj9C8OyTgMFOS0/MSYahLoE3y
fVOyO+7Z+7BYU0YHX0LEG6Dazdx7E1ErPB5OQtl1VTOPSR8CrTEck5rcMexv+hXspAzlOwNxmNUJ
SowD5k5BEQK+q+Wjr4Mr1ThxD7S1BRby28aiptFQMatUWFRyNmyZ2t6+rZgjDT3qjQi3zhUyFNoQ
pZDeuFeQvtXMN39IS+zQDo53oHOwrurOXjKfqoxbJW86KJ9NnR0x3Hy6M+NSY8erGQ0AVPBtOWsX
NZWMFgGSXI3tf31ytYzPBKH5JHYjIlQW7BfyzxEr5vgQGMVjnJa7IEcXfSoP9VCW7IhRkuHlo5JT
tH2mSRZbsCbaBDnweENHyr9OkFapPxdUeL17qDpWqBIvJoY/7BGRHLg25fCJZr/+Vm93vo52cRxK
Z2liN5Sm6xNbsALgmQAng9X2te3ilPtr8xzCHgmktwN9PmKyRbO5nNBI3iznBnlezVurbuxi7pXl
2ShOYt9ZDLgKNBY4zD1TGC0AbmWFx8pAQnwbYsnRL6vI/RTp5KQBOxUCjLxOhoWeXgSYelsySMar
3FJVYysHyTiYxLkmK82pMvU3m6c/guhIxVAcGrEmj9lNV966s1y4Mx5vL1LcXwgLnDIF+gzVTVIj
gVur1/O8YAfZ0lxDMOYGCTB12KW9vh/PHHxcB1g/OybG1Xtpe1/VL2FMZlMYUfoE4H8scfI470bN
JolITL9e6C9lcRHne0eFA2rSk6iUYL/vcyu3FKW8KX0LNWGvHDkTo1ADnTctUND1cybZIVj6ng4e
eSFW+SK6GFpgY7PI8vlzz8Mv6KTKN4/rDG3Rgt+K8z9s92OFYZXDunYV8wnWyySgSkiZhmv/+GSz
0T7UR42jljwuXQRWbe/bmsQIDaQqf99OMcnJ2XajyjfPd6Qf58oXCU1rul1JinrksqRzx6+cUnQ0
6Dp9NZDSSCYKbxWKkmVMorMaTsPB5YlZ5uCDvEc1w6FzgvXFczX825EKn/lLwS6FSnEu1vCYTi+D
NKbRKmuxqXd5rFrt66ihFEO1Dz1E0gzlK7aauGdxB8bKgGtLkwIl09DCCA1qza/KLQq8CdWIjOrp
c0cGLkWZj4N6V/1Yv/Scgf5ttQvEKEUxNwt6kar3l0jj0tBaUp+OLp5jT6cVQrtm0WVjab/UC0Pr
q4mOo8stbrhRF+y8pGZ1GZTS8/bRdDzm2YyDslFqCX7o0c4sm/U0aPae0eq6BM6sp7OCTEAfYOUV
83GREelSRZG+7OeNTGQgVdYrk/gqSNevL58a22ear/WAfgbg/jJVrC4wQlw2K9TKh27u932MwvTY
OlFcX2nZ+8SVfMmeRhWI5eIo9nLs+gG759vFOUh/HZYhvVWo7GbY9eoUnIltLuqb6D2HjEguIUEW
44tngciiE6jfcHRCuseGB0LeMHcKt3ZVTbOkYp40vK4en8mkURR06nyF2YTugIXi1xyQWff24J5l
qC+1gdFqfMDHu9QjlGzT5Iu4T9VwZG7EJYeIx0wbIjzMz4u2q/nIXl1oswLytwSzhY5IqcuR+Nae
i+QISIi3vLvSr/VEvTWMAs7Cc2HSK+8cwOJzPz4nvyZLzfYgZ7s7aIyWTglBWV2/Py6TWjcziAqx
ulX14gqSDc/D8fuJoPNYJ7AsQzqH/UYPi4JT/JJ78eJx73ZT1pBiusIA/pY9dTz9lwW38i1fuZMw
B698q/jTRb0rK+xxdIM13WWZF44aE5qbsEHV1tuxZBnX/qZgfjJ1Kj4jHmyaqHtH7yp623qCaI+h
H3Y91zqlMYp96uLGJOriZg6dh15fTfLm9bL5v3ArlVS/Wt87XsY+iUbAim+tRK8nCix9YLUrDN/o
X8wn918zTTk+lKTRIQ4aLN+ZU9NtpoKXXS/ZRx91kyusbHsdODjLsqhHfCa6AMKpcEl9Y3J5BFoJ
7kFE7VB53HYTU4ZjVkQFpcZ8FIEzWcM1NglftsZOqg/Iwf2WIBBnSloz8atUQTxy7ZQH2NfQvUJW
ndiEJJxy4NCp5pQYQVjxKXCaviuiIfuuvuicNU4AQYOAFsW4+Yp/x+2VfK2d6E9sr4qvoVJ0bDLD
AuMtOMtqzjDxZQMp9pq0zac5bwRyBN87E4EWdtyD3RwUJdiTdfsA3GOEH5GcE+f7nKeKgkV2YiZ8
2CU0GLuIC1TZewNIgUMwGhxjyJwV8qlKS8NhHxzozqbrqRBJW4BDarusjk7K3Aq80DpPwGg/+t7l
hTWzaNnUyg395ulqLvc4Lf/O/r793stSeGwtwCT5SKreh6OfUHfkM9ByiDN6u6XTuQQK1AcWRVLV
TUekD5lC4oujckZEQRrw7DcAyovpFgwbtFEDtQhFm3I95t2QAA2XZ28zboCSqp5M2eyEACnfqzhi
o1dlk3h6ULgx4aLcQUmr65N0hEi3WYnCyNm9oY1DkrJ2kZ/ebLviuOCEeK2kIu2x9AgvTcxVV+d/
t/9YteTQJ0CTWk0puL+UUXMOfE9vNbkj7ZNp2jjQKPJpW84CSlRDliZV8AWuLen4FdADBPUWKzhb
OoTYcFu7tpyz/8KsUozc27ttm/9smhE7x4K8wOsULjXE/LvS89y7TVYrf8711MzDkeKBbQqZslSM
yn1aKyXXSYQZMl0drSf/x+v6xia9vvo4Y+SgmXlqu7EBctmOkxgV2RfEobF4MpO7hhiBg8gv4+eB
iVvyTR75aF+CjVYokagWEcrRl2klbESCudMFwzTwn0haf43UdJ+JJlfiZ7/OMPtcF8SMnS4WaBEd
8cMBrANdp0R3ngDvAtVYQrlsOj8B0vO1Wzbl9HOA8SCpMm2hlXPIewrcqCXfrXvMv5pW7Rk+8k35
BC9VnXYiNO5kdmCMHLxgc6hiD2ua3Xicue10e49S+dbde4XK5Tx19eKDO5KVv4VzLyN3t3cA+dOq
0Wz2PdFt1xGaFlMldIdbHv2eLb/seV6HSnjfMl2VCVAl+AeJtHbHs/MEPK7wZ/eDjT5mGf6ozbM+
n9Cc8ExZfUPqBK1fHgtdUKSoEz7bxvgbI+Jx3tRByppbTQ2cQvhVuocbIm2O2PJJt7jM05xhNyS2
2/Oyoivvg62+hz7ZN6mzHGZePXnQBg04smDSjmls90i2ji46eD+S4fMm435C0buak/ha2e/4o964
oVrGndtEJhPhtn6RvfgB3Y01dgb5eSNudOsUaYPrXS17JSjK5EFS2N8JnnHPqtyaz4aK5L60H9pI
9ETpznTBeKpZRuFagLsCvtBz4LD11Y6ci/OJWCmnlVjIuh6GrfvnoJ7Vnd7z9smToylMPZc3P0gk
r675E+KWLEkR1ItgVwHJYm4YKIfM5e+ZsOm3WszKC4dabLa+8xnMlLi/IGrs4/MpJBGEYfRpKpSZ
6VLteFoPJTeohBpswXjFEDkPhBZ4v5KjS31ps3vDrVhSLtdlUe/vZ0PaRZXoI7mFpfW9571nq14c
Y/vTZ33+8ZP9vu+F/Vnsnef1DoGLwC6iAWhT91tRGEK/V5+PyHDmVqIO6jK+GS/xEB2z5nhPPpia
neZjFg+iRhtUj0e/MZ3qGJXKKejxJOyGOzIjJULJ99mzPVc0C8PD9LcbrtkfEn0oiN717w/0Qt87
0WmAQ0jfBUW6xqexgRjQfNGqHUT0y3wuYj4MY8YIN+2//UXmxKw4STNY8AB7omAqDDCtK6XuMU39
dLzaOeRaLtLiMdL6zdjw8R1DEs7ck9rwZqmyuVU443Jbx1pYDpjiddxiidbrNp/JC+uf1mNmO/Hv
3euk8ybTBXuxdO+9V5vKP0/A3DO0wQxaX79wiehyGPW85yqVzRj7lDl/nmHcPeGsCAR/yUrT+nUR
gHJTlJQ0wSt8RP+t8CJdFvQ+B6altFKMl+KHr2SEuiArh9uTUv/A5Z3rbnHQgz2fnO5lklVBWdYk
7NbL96cHRqzFYl2po5LUN4MsPzfJuyZ6KRjklzV40bqW9EirEYkP4E7sllFJaKYWxQ7kURgr9qI6
m1sRMZcwha5SlfN3qXg8vmgQauphvKNcxq9S/PjCNV5yvC+SCfWd9vropvcuUBrPUltGcY6JcR/X
FeezzHPhhjFrU5lzXe+roWtom9h+9M93d/qkn33CJMvcRFE4b4CYGZm5B0oLosJ29II6NqY7Sm1R
wi/zn4ZeAjaBG7+0JeVn/T62tOii+0+WSLhED+J90xwUGzxAtsJ/gkkrSEpR9ReAi6aYblO4nqYc
T9TMa0STvrk33Cd8ujGeSYYlIYRFFkh/3eX3Ux0gadgXgirrPsPzotb/NJFGm63GOWgu4EXZFE/G
eUGmMcpfbmeO8WuZuslNPhGBVXg4X+XlOIvERXstuIfAy6imGb5NmH7rJLe73ijIIfsOlhvc8cZg
P39CWuANkzJNKS2WbVm0Ya2yWrfcuezM2OUEWZeIJv8v0QXpE7x95RdkBA3d7lW2WsHP9K02Gzpz
8MHtXFbN0pKNNgnLLAtfNWHojTXgJplJw0Ge/k9MyFH6yk1SOBMS0JfVN8h6yHHqcMB6n56Z61PO
tilDpIYFt1/Pz3qb3KYJeNIBJple3XGhsFo5fjG0ukn1A5FhMqLoWnNveOSQDcnSw/ZXroUf+Ye0
TR5ghoRni/kY5Nj8cafrDSl8F3AQTzi1lny+nQ2570hnWcGOLhaGX6mulw7TS72Peose8qhVlHXv
SV91ao0VPYLjPMO/YWlHWdRcvYITZYPgPIBclNXmCkZlbhZNQlKAleFN2Kao9FObiITZK7/fBeif
+7j6hYf4F/QpztZpYEUX8QdZlc86tpX0iHGeJMydaiBz9AkRJM4ZfLVsXEh+lM8yXPmKS1pJfI5r
cbSEH/R4h+4HP+LWYcc++S1TbN/lORqnqmuy6plgVN6jh0mBzA/69Xld+PcP2mvv32chpT1mqoXV
GaysCWp16/ITvwpZWhaxYLym3qh9/Uu5dUVcg5sv4ja0+yt0XHkORe9cX9ZX6wPNH22rO8bmZTr9
iPDLdF8YqACxnvCfbw/ocaJjk7fDjbGVyV0qe/V8igSLImjwXD4KiFnKSRCZskYF+yMx2wGgeXwM
RxzO0UeforMUuAgZxoIVmAnmV3WKNHZVY8aqxMplaEP7cPtW7vG+TkyNSp1wLEzIqvJ241WT/tLb
0Rli/iI9hCmllDhvlDEo/m4rlwoTyuiMg1pQrXlvK2AP1sZ4k3T7x+hRTWDBAOXSgK9lsZPnZBgJ
lO297U8yMCKfS/KYli/IZ8SfR8PoQkjVZPsXbvC7ek1Am5qmk1qRsrpBSfSNCrjwSUeFp5zF8ttm
JaEo+f78xwMxY8IqvH0F5KoViUYBareV0bnwVla4PQ3GJp1uVIMmrHwA6iGK/bisOKX5NBsSWYDM
HbKUQHw56WD6K+WPU9JtOF2XO5bg2zubfskFb2iJRllONdDWLtJo0A7TKJqNAa4EDerrhv5cKNtc
v+fnC+CPOlchbhlCib7PrgLNjJavSdgjB6/0PsHpYQqwFk/ByRIbz1g0DjrapAS/QqeGT0Z9oagj
OcJVOerS3BsK1HkqW3CkAJaJSY6hZQGXGla+suPpKEqUlk44twRptnvJsr4Xg2aYh3bflKk0A6XR
KYdsIYt7HByy56cZWtahkYiV2L/ad4IZfxx+FYusrd+wHJzNsNUqUOnn6dUvQBPh87lS4f0d6kk7
31wCNtwor5cdhZCpB8XxvuVidfa8B14WmRnSh28tN0vDKzRoT8VBMTWO3UredQokwO+xLM2BM4CX
5kaXj9c5UNZPw978pDnsNOA1SsarjnDwssQXNWjJSecJrJn3ecd2ccFyi/mceh+cAuSG0F2a+1NY
YU8dUz4pRyVUtd0oNY5I+aoR1V67wk1/Uk+Y4uchHR3EUMdKkWH+aZvDsozcE1KTnct11ZlEGPiK
MUFt5xRHLdXOt4dB/pi/wuJryNOUdrRGgEvqxrHw3oNmyLphuwgJWjYq3Lqi5JQgvB/2vWKxJueP
6hOe5riGmZMRhcFgKx8e+pOK0z3+wwpaWKAhb/5zwEWumo8ja6Bd3o2P6BYbU+F0RCF2thanLIXb
lqvWL0WUJmqpgPSJ+mcbHqIMweYRXQLMe0RXe8J+eg2/3CGh9qMfHO4FK025HdWG7uW8n3CwDHGf
u5fIs8fa+Nc/7RGdmwYm6UVq57dOYWU1mGeSk2rVHxj3nKZUwM+UUMXidj8vPf3s4jggumZk7mjM
8M+qboEzr3BkGDXnl+xVibcU0OBlYa/4TvLT5JSkBZUej0YGvuFoI6Kj1UVfAD9DgNDuV80GjViZ
U/u4Uy9qYaNz7i9eVLx531ZNUHX40FOEm1WASG3FhT3/DkHESyssMoW/ldDDCrzU8t0+j/trbQ8j
C1+/ipu7ouTFFwcOuo8BUdjxGqdKivkaVsIv0RbQYO+BiR2wxuF1EinllwhRiTNh1RV/BQxy4eeQ
XHmvUep8c5CBXfKo4/ufH5mahoX14lSvvvF+X5L162SXgeldy3JKiTOy6JiV9K2nJzDHfEA6UPEL
5VYh/pnlMYmuVZj0WjW0JMG5bwjJDu0kKYV/P3SWmSN5p0gyslSebCPEMTCdw04Mx/DRKd+2+yhV
3OQJO1Hw1qX4gvJBI7GN8vGbkhl0au/UL6aIii+0mecoj49OvHFNS282mo9ufIpBwocnDyb8sKHo
tE2t66yt7fGPM+A0OJ8oxTzX9/nhw+UwEj3BMY78LAFy2dlilzYd1puz6Qi9v4Sk9T8vuItSuWS2
0lF1y9biYftP8+WfV9g9jveMnJTsNmIPWaj1BBWIhn2UZi3pE8FHsFEXUIshEc591HKO8PnB78KD
3zoxz1hF7WaJIPaDg9yeZTV5LrMoYehYABYKADYkedlPyK1rzIC3QQ3+pqh9+n56P9o/RIUxS7y3
nPyoG6+p5lWNUI9aAwtMrJBqB/Rj1uzsBYhuaVk6Ze891gFS5RgBsaug7XKA5tKYegDiKeLPIqlD
0udwAjWphx/uunjEnAxA1LtaFKMwwhsQBoPvzqvoLVnvEexqEn9REYMwWLlZ9u9+WorQPHjGPIOy
E9JG/FCCh1B5KGfF4e9Z2RcEL6C4hFGeWh/ZAnxCkLr96NV7TJ/fmRKZ2YsdovQG4ApzHtig0VIQ
FVTjXT8G5Z6FzL2LqLLgyOpdMaFO2O6OR3idxcEPpTdTpsHgm4n2Bg0qkk2668ENC3YHmZsC9I3s
mU7p4pC97TZLy7OMAXqAdMV3NNDoDak+bTN+pWU6n/LWMtva9esmf4GauxW/beLKWRRmg3QLn374
UJV4C7jhXRHj118Pc9LirbHHyPzSWCNudb48sIoKHL2gOtlBY1D2jT2N6Qub1QJgut4d494NoSYw
pJyOlpX/7Kj/2vF+ymtLHyG2NFzQ1tDKRMp2czJn8aLYCZM+4ckT8bOUuQ7oAgXXpnQm1OBSRBYX
1ytKnfUVPpfayfDepIpuRLQJ0xvRe9uZFzs7eTfJu6GvLWpOpRwh7iEnwsciEQ4cbR7ImGuVDYae
P6zw+ODUMx+ivi+SE0ypLfCmU6RDCw1jW/0gUPzpOKcOr2wxAXcOq6wesnTr108iVV1D3MAILfaw
CkemojaNrITWHCA7p53d321V2VMw4NmaCKQpGckIIcLeqSPgJT7XusZh2Fl+oM0M+OgbJW8fuJKt
xM+cEsYh6+M1W4N1MUuxE8fUPiPCfM0Wscofmbw+SaSCAc2H+x2cUUO46kUxYx6hH4ozFPr0tLpZ
poRnRaPD/GXnmr/Qf9DMTUPp1ixqsyC8CmlGoRxWDFWWYnIqmzg6+53C5nSkx0jIzZs8mCQiRYXt
tEG38tVOL7gfBjbiYvtPSgkInSdveI4r4l/dBOjFTn4Dk0wmMR0hR9KuojynKxLpdhWedg/pB/E0
TuBNv1awnvtExpqkZJ64UCSFh9F2BouEQqztpqMKA753GfppN6tv0C7r83hDWXpDXmORzNW/t3G3
kVGFkPShm2gzqSzNkHgVBRkDpYzIdSNSKt63+MFA8oiAZTsCtzbkE1McRoLgTQV6epwvKzrjT6Pr
5CuczrP2BBidRrxXU5fPEgE1WSiG6K9cZ9MEI5x5+3casXdP616h8t4CCQJmlJBOHRDC9TN7Hs68
Q11QkoPXrrvxuh6FCxsMlQOn39GQKzAivun7kR3obZYtxT1yUjSUnskQb1cvYtzcGJ8OLt5u2vV5
FxqW3cmTqEeFShL4I/YwMedjCIzjt7yvefmlJCZVBd7NFMxLPcG260Xc55kl/lWUS26fpE1Pq9Po
v5OwViAgpgjTlZkSSMtmh/i9zmwrQ+0bnDGlROWOnTqd1mcJvHazhf+KitBmSptcZEjFpNTSc2T8
Qhc7feF19kWHhWTm2GtqTC9B2MlDDLsE4UeZB7qBfoURtODe16em0Jt+RGjzWL6UvixNOBJSSWay
QcQD35pbRLuRJv5DMctlTLQSR3etxtTy6grlPT7McrnC8k0JDKZLXzSvJ0ONumjNkXzaxmWTrQPl
SKAo/FcH3tmr2EdGR8ngcoo5+75WdCZyLKvXbxfU8E0FeVWkX68AvdoJfrwKSK/MB/xIXyIwH/AU
L+3CkEs921AOG+r5uB5utTnzgCx78eUUHA4UW7pMtE5FLxAo4x4tQJvR13Q47b8p5nj7VTm5XCPi
SGH8/dh2IAG6aFSU7cZEWzId7TevgKbm10Ee4EO8UgM6Bp0rwpnU0/Bvs5cx3UbZU1MKM7dxtPJE
SPM9K0l9zBuk42u45R6yyIu8qv1f3rSU39Kiwd3uEoHShGvg34GscFkwGTqV9lEMeTSEB/etv3W8
8n2IwAEOuzmq4NoLBtvgFFzr9CEcC78qUFNAZ8+PKXVe/p5LOMnRicrQ5L+DpzIXVzrX5D+JFzG7
Vbs46LeOa5z0jraS84zFu0FdZpx6Dbjq8vSfx8xXcnzWPxo58ErjbYnShO4q0wfe/SPkDsaXoJkU
/A3RaEqGpuYlcY4NrL1TfxEznKxAVTg5Or4yOsS4G3ttUXf7C+MOJV1q8Y/kltTHr/QXTU/YBeLM
MsNWF5S8sFaaPSgQvy41C9XNSYldN7mQjKy/2WPk5AvYrWSGazPi+PKIH76Btg0CwuW/rq1dghrw
3YkqsNNcnC6EiROka8lQIrbUWCFAyZBqwzub/qru6KQe1qUAPussMGjUF/SazXMWUninOUGyEvVi
eu8ukZc2cn+QiVs5XAbTg70/d7PHRFIBhdBucVlPxS6gKRfY19ZG02rlB636sKJLNe/SWGM9gZ8F
aqgICUDEPpsiO1YlmTsegIl4Tz9EsrFLiEx1vx8C1Lu7tCGs4hoi/1BUkDQ9Uss6/vGB7ddSPepD
AhPPZNMpjH+oNvPVI2vz24Cvc7kKNuM+Bp7WSUMuBRulabOl1lDL7y3l+Rm4FhvuYQOj3Jwsgjcc
KjrXEb6DdOQS6RxqvQ/LaV4UzRpRmeRNtNVBlntIU+IES29db3G4RQ7rnK9TgaFtMrlE/hMuNNXz
shLDvMVwnK95DxXSPZXFiPdMCjxjDSpdfRmow6wEeb6NBlxpkgBCEFPQMo4ZRMx5zqhTNkuhVbJm
pMPPZL/jpj9Jj4a/scJ4zwWHHbg3mU6VFMRU3iGQ5Ssp7/S1VErkmMhYffgrWRiFlJnvI89EwDsM
JDTJ75+k4XEO33TeWR5zcc9IpcMh0L1C0V4fWq8P8LdyhI+5X+xrho+ma4x8CFMP8JfI7OGWdVoT
C+YLyJxpodlq0t/iSOurmFY9OXU8p78TsKP6WFLyOhWrH3+46lkulzNtnS7O5YyMGI3U1bIme4Uy
8Cu27uUjRYIvuaV/lb4LtEwtXIOc8ddg78pW++4DktmiHry9A0WYl2rT9cMGOaRDWTtS//P1JLLd
wfdR2J+NzYyZX54TPlwKKDi0mEkF0zO3aXhwKrzbL3N27JRAKY42QudIxpZ7S192YkAtRF3+4jJ2
svJoLSC3HudxP6kiRfgcozpWY1Bf0QSa4F56iZC4id8y5jJCL4ODLxZia0jYi1VimGTAuSVwDWPg
7z3bVD5YUVGyKwkPvxReZndukNKkX21dqb4ZmtuztKtoKfuW6CMa7kWBdXVhhE9AiBvu5HoyGBaW
rDOJo0UtvMQngqu9O7gk6KfSHLFBf8UuHn33Htduit69ubeu/Y3nz1SEenhYfClUkstxeo3GKXyL
kXz+NCQiwQDU3IKAKp9HvDVxn/oe6xdrqaaQ3o7odU6VqprCCt8L+EUrs/f9pGnSb/l4orYkYd36
sr1lzafVraTOWeybPjDn7qKA89u1aHkpYGZDygOZOGXI5kNy+28UJX7huMwFOGZ/D2bnfFV39HRU
Zw4aJSeAPUFnhYG9vVpWqpe1dMq6nIQF5Xy69RtF/WH/cbqLifwhEoi9quB1ynb1Nmu3qmJW5h3T
/ngHQj99kgl02ZMKMR451n2KkU6PFUp1Ds3hdhMNAhe9zfa4/SaO8pIRINRPdK+M5fxY2dd1NcxJ
gq8g/oscGOZjkDeAV5EpZJCPjrTGUy1w1pYg+5ly8GpMr/Op2+fRVMyf5it3VhyPkZ1XDm+3Pu0w
Vr+Fbm3OIMyhTJRkiubt9wrMVDtaAbu9TnQ6IvNGM/JmtRXPCVdfymQSP1MHDnhvs/hoUuY3gxnc
dIwDnqGXskVQi72L4WrnTDq6UFkf98hbG4M08q2dqPcJm7Yyh936V9Jegg2pilZ4WNFTDD1bTtfK
dVfwBhjjqN+9jaHj8w9Or7M1yILXrYqXHdYwjQ2ELjANb+beWDwT4QZIwrh78kgSwRkgPIP1xGkb
reS691H4+yeRh+c/vO1cUGomO4bZUeZLJruOzXt15EZyqK53rAaOwMwwkFuYE7EY75WPXIK7ZZME
t+VbE/gHhW/GVjFfwnU5ALOpzF/WOZ4tPdCyyjE4vEIiQc30YBpcFE50+gU4DqnB/rJJZWF4Kpv+
ugs1wggNDNNcLU+5k665O8oAS/3PUhdX1uxL4y7NWvxO4Pgzdz+Hd+cI+IYpsUMfwgPUrjol23TO
W6qqvuxy+2f0eJG89ZcqMHfVw/PVzSFeN9PX1drTbQM0CubA5T73lv1gNzIGGW2KxDGVXJ83u1/z
FqSSe7iKrkvdXAFtXd2sDOqxyOfPob4QWT459/XrdWbL3IfCauySla6gIFI6lFQbil7cUGLbwbWj
ojYTb3kj6abVI/e++NiTN7CY6lsodRv35/OjGYlJ6DbqToc/rbc9RJE/pwwvG27ucLrTQ0mzyr9e
Mpv2SVGMqmh8v2szqkvIFhaVobGaJewOr2/1DEfxssTAXl4iwewvkKGTa/kF6V322OgEHxujG8Df
lvCXBqG9770p93dSHOjzvQ8fvDJPF9/Rz7V41xVT7HFp95PGUYohQ+mUhOzSxEQZW26Cwwubsyc1
wQlNKodJBaFHlEF3cyYn9pGcbAjEmC2sTsJoqh9yzksOrCOjPBj0oAozlS6jiK0xlkjT3Phi4p7u
NIf53Hc3+4nCcIVuB/WXSVn5HmMVmdGi7d3hbzyJFWCU17WBbp0SFM7BwY7mC9kjn9AuZSM2LN3L
YdGt2jSvrB1WlVytGPzgCkatn52O1FZgV5vqBjSctKrhZVG2POjoTA31YrXan5bU1ygUQMI50gFY
w89pSG9OMvyUEXW+Wrzxvw1c+fSzOGsmmTbdhmIiv55MUmvcC11hUQ/tOb73rpauuZZZYytSW6s5
hd5pXFplKJEl83x0y5eCbe2xdjr250YXXDOYjUrRoEma3kLridJgxTpqaTXZF+lFRcoMZB3HTIIu
fNHGa2uTjB/Z6szlxcfUts1wTfDUGPl1oiAwD+goUqu5s1id8149eo8dNZWxr/KNRRxr6BPhHvNo
5opjoKyxciTyQJ9TsyQICqXt+qhQMVwSr0UURy52/5DdRoupmaxFeFjly5OpdjSeqrDvKfPw6+Cb
sZ3U4Cs5FJ6mr0tvtpP659hwj9vyIjx864vpnUy/JCYGKSNZvdYYR1P8Ydi41PhAcmqN92boRvGj
8gNHZGys+beB7h3YYjRnCRBSOLexUBxAft3fD3pjYOFd3ZbE69RZ+6AH8Bfzy4a3Db/CorjOoogZ
E/PjfCuZsFrHbPdF79AKn3iEB47ygTTKAVRrcLqupkiF7Zb0ODt4lG5DetHSc0QHqOepYbSdS6B6
l2TO9yhv+z46VVGmga2M50+xG/gCXW0G4YTIleiZnAuWiIVxfdk19J0dUL+W6LvBG1+zHXGF2pmX
cAEnm6NXw/qjOhW9eBdDqiJ0wGLrZKJncex3k+oemPHd3MVcOR+rN6z2uw8QeUj9Kh5QdrIq360a
upwUGbEFa4PD07w+fFrnVXD3I1CQlhIgaPDs0cssp/GD+rZFP18s9DhpxbS0ZcwI2zyQTM/VSLS5
GGMyShfFahGPAQA0hh+kUn6n8XrOSszTj3kk9f85TykD2k2bqmQUeggXULo9g55fdhYK+5VpoUjp
WK4Pg4T1RtYkFTtDb7glemmovUoSeVjlZQPEoDweip/dT8GK2jJQFYz7QlcmOMCGitZdh1kftGbC
/EWu2qikiNJUTGg3yDyYYE3EclNoAOwI88t0vBoLRoLCId/HpF48kPLB3eohVTEKGf8l42woST+s
4ugRqm6cblJ1lcTE4jDNEvNUmIIVGeqjMaoi8eZV/tWeBTrgsx/sGugnV284KS8zVXFB6XSCluvA
yAgnp2N0Bw1sCNOhx6t52cGDip0BCe7GfrtLg2Qmv/sXtb2iMM2fDpdTRaINhGJe4u/m33EMGy2y
l4iytWHmkW91tAwD+xtRH5BNIh8IszQsbON76jsGbKH6aIvCox+dRRnO1oM9oYUItvfikW3Qxc+D
bKRcTm9O7nOZjJvflz5G6IQHr5P9KnQDxmV72c4rh+Prmi/RHHYoj9KESLGc6ZU6Jwene5oBfLfQ
O6WZAgg/2hMsW4Che+unOwqWLRS+RuXsrbff7Oa0ZXaI9fIQkxj6a3BScsscr+H+xKRWv/Q61YrZ
sNihefqpaGcguR6AF0hr2gnllyY5bgbGoPTl3PpQk+fWi8jUrdgTicEH9qsVGy4JDnNjLHwprnQ5
VL+kYlrK8QJ/LZzSbGfrnBf+HD5DePZNIpzDDRSrOj/1yuoDQvWDd/439OmVeqqxhg1WH5zJM2ah
ImvzAZ3EcEMVxn0O0uF83jJO3g8qKSRW7KZJfI22gvb+yf65LmMHwA9aSqvIqW1v7VB7Gi792RV4
crY7UtTndBVb3Rze8JnrjNu58emz0zCE+eZQGsJl2+c58JzuBCk4qlXKGz9l+p7OA4KtYzG/mEOr
pCDAOOG+cN3FYtfJjUqJ0UvsYhsJlYOjjngDX1YEah+eu+fj5KWJhPxkAq8/UTnRjz14O29Hn1tO
x1mbKfXJKtdE+YKXEG0V4Lm2urBBOtbV4wd3/ln0G/zbwY4oy2m+XVV6BoSmW2Xxp0I8l/edkeju
PblEmErNkc69l68iqKp5rwz7YrPqKFw4cd5sHIMLK9Q3RXjJWV3T8wLJeysZ4LMOVU39UDwPsF1W
v1vvRnkvrTKVeMSyvdNrrP66tRzKnkLWtiCw9FXDHPk0FT2Y2wIkmJnQj+Vo93N3eyVHfvNW1BHh
1xEFMfvCW4SAokqGpUQsnLDC8xqjDmHR0NEcy0sk1QEDNaG0gYhkTC11NB3e3sbXCSp1Mf3sd8M2
CNnYBw5iu1c+4/lyIo7Y6GAWd9YgB9RaTFV42MbJTj4qLth9NkU83VHrXdef+yk08iIXmpmMJcOK
w8mv3dKvjXGtVwtSUsOeQ3gdClC/jFPYvNehtKH76d3CARRBCq9peh7afiKg7KV9V/fzVZR3W1x+
jj1P87rsaG/5IkuWvMEy+8iLv4k+PB2Te8s7fD9Vg8x3JTf77D92m4OIfPIGqhi1dF6LdhC4L0oK
jWImWCJS7nLh9Y9+St66WuDaFrA+73TMdNCvjRgAnl9eMSESQQ/fuag5sHHAJTPJm8oHp0R5F8s4
JKU8hbGOxZDOidP6mumcRX12Ihn/ZGKYkGwfMhG/7QJezci5nUBILlGAHUr4iTNRyk8Bja1iuhMT
zLVhNeRo8In0bPBpmqP5o1SKjHZBqOFOhpM/d7i642K9gGGratcDn5itOQ31eUE5A+fO83aXMwd0
Z9jVSPLo/Zi8Qv1ldGRtaqT9md3UzkZFTuvqg+y6r4ZPSjR48PpYgbDeJd4ajhbn+DtV/ejTUQYF
YrfXiWZA1o/nfCXkLTW3ary8FpxK59j+Pbixwqw72y0hl+i9XztpZF3w0/2k1QcYDeTuFuUJAJ66
WTTL10zUdezivs3R7ijc7+hfLuEiHDQ+leBTN240TwYHibnCvBPHKLu1nIkvZKOpaBGnzqY7lf22
4o+RmoIihf4tG9Gc5q3baQbHESbua3pihNnvCnuMuSUuxfBiTwZnGfMvxt9NO1pJ2g28LA0QK5AZ
vBoGEl/3bK6nMX7SjpI7kPaGxcFw7S3xYqEL7Lo7Q+r6mcTkTYBJQenAhv/QOXY1jZJFQ8h3vHYr
IX7Vst45Nus42IjhqTp9AuQs7ryfiGNl6Jgdd3/R5SnOqY0PbjvXHJ82P+W8UcRrUj7+Zh13qQLY
x9d8jLqiHtSnkejhhjlJGDfttJ5xlsvzF/wxpuJXc35yT0o1xHxOeRwxwsb41g3qc4J2Doa3srpu
x+c9Mi3yMKMvdxS08IjM9Vww7DIc4g61NBVRdUechOecsleYI0p65BZ9OUsj5M2w+4zJ/dTCYVqs
7AS/4KQLlVvWwr/LnIbRMscHb6p8MDRXPk7EVh0dQts0o5PpT0cN0Ababc3FD7ybp5l5mesevJRL
66cjFVG/T+FCwhT1SMRUjd1nDuzwlrlBmvfJoR/jNnbbVVMGXS/myl5rLEALGbSZiPuMp70/Ucsl
cEEOwQZbma2q2M8GI+AU12KP3k9PxBesCUghxvbVTeXH6puzaZP2n7e0pN8ggmznc/CCq2kXesZE
iotMgEK/7BJeDh4yex/k2i/6jde9CSNFC3AnWIf2NYfr8o8Fs+Y32VXk2fMY+D54W5Uawkn0pl+n
sKXUnpupGI8fCwjhfxPH7W4N/PZO1UyO37ixy2Frqf0cZSDeZno36dX73u8Ere/upQYIqbWEFDvf
qS4nFfQoc7nOjrYjRMBOUm00SsjCtkvwoQB/3q6fAK6BNizuuvO4hPM/2oU228QFVd6SKPejyk/f
r4z0kqlcYq5NfyUsgZYWcDFGpspXYC6L3XxflPGLQplnXWn0aQaoxWgbDwUMztdWTwncFQm5kfHB
R79w5cQxACC6JQK3H47H33texPHDFWMEx25YMy4mcXrGKZgeq+RHi+mjcr7ljEWACh7smek5MLgq
LVlPAmdgM5BsI92/BJRUc3GuSgZi1FXYClhwMzawIkehzqmhguu4cvr91wLfUbjQspffhH2x8GFb
og+BuwPTAz+36KWvX1xJjscaItof9bRUXsjQal4vyA+Lcp3kUibtyce7UXbuWe/Xp/rElcKNLqMg
K0o1PZhKnQi5shExfW6dIPPLKUSSCMLSjMI9eSuTjvbFeSsOn2mQT+nCvDHszi7WJJXKX6FoQcMX
Y+naHO3nwn4Ih8ZEdS7hUPYALgBLUZ2DxEcy2Y72bJw6N3C8YKEhGPJQUC1TYtfMs5GK7/GAYIKd
qDkK6fJV/SfHPwb0TDSw8ll807AOc0cS2fb0Sz01YwyElSFJZRNgwGhEI986XVCPGzCneZYGNaPh
qF1YHhwEGwEOYODajMVOUYzbE37wS+eoS8qzhMkvrcJ2KExn+pM6Y9S+Xequ50XNFKGqu6pCvJxb
yyOhn0ofAZePz5LGff82vRDyyqQ4D3quV/szgQzhkC7UBP+yaTHVKMBOYlPwS+sw80v68NQprhdv
gf95q60iaDHv8KxoZEhXjx1z0ftI2vtG8cvGSMnYe9LJ8/FFxF4NdMSuGS1MVwEyYBrTiHt9oG26
hGeDrnU1HGvTuHJKWmvRQbS9/+2jb8tDC+JOEbjwQwGrb38Zg198nKGi2AUXyo9smqjmhJqJK0Mb
0x9H84CqsYfs6I9WuygsjxbgqsxdxsQg03GFfU03lrMmfFkfWbFPOMbwGbE5i7CUH33d9Mr4p6D4
6C0wOUzlg64UjIRhlcRa447T4rh2QC9UoeJ2ZnNudl4K0HgeA0UuUwYOKjyWH5uWhDPAL62sWgtZ
LOBoNwTUttfUuPoRIUNMWnKOXZRC0NDBbf1FMT8T172gPXKqcv1wtR+NBZqZyIPSLj7Kz8l47XtQ
QuU2hMpgme1tE1Dao54/GjBTvy9Y9XaBDl+APBAt26MJpzHZwm8Dv8pkcoe51CSNEHB1wZjPfSVC
OcbBJ1Z6wEaa0h+dkW8R7+itBLDW4W8maRVBs6SFcXybpqOXSmAt7bGbYhAjeW3rRTxwZzilNDxB
90NFfalp+vYeFCXJ0bajjD6ISiuR1C1EdLU0O3IxDOe+gf5935JXSP0CHpdBR0aWjKAnfBhsMYVU
kca7+pLvNaF3qzTvaZUwliaNcCaK8MGuLwx3aJH7KV+pGOX8sp7GZov9u6bpCrW8vdCEnqQwnpbm
moOFpIFfbrDY8y3x3U0jsb0TsFtpjSxKhUyhforForiz2268L921XLZTlbQcOvh8Zo1pA/nsuiJs
0i+250DUsiyNUuqdDpX1eUKCfKow9gq+HSkr1Gdf67eywCodz1eKncXMxsT5Y+JS2FvFiiJ543fz
LvMEOzgw5iL592Yi628MDTeFGjCsmrSGcno9UqYZZH/GCI/b0On2iVfKshF9PnKC9tKTaiuZ0U3A
1dk+GwrkHQXNQ9PzQMmzVDwP2LPyOlVs7DA51JP3x9VbKCaubfDLccPuXAVFn/8izvd1Hs/5TEi7
6P8L6LZcjnC+npjzkM42yzH5K2UGAfeTnkPhVVNdY8b9SJZzgTT8lJEGwdJCGldqh+s6R5ZeZvrp
RyZud7QYREUL7loMcTaJTWYapgiO+nKzQxLj7PwNBg5Ex/KMRkE702KTY+ntNO0a/+D11HvxcjcY
h2gEra6t8iEcGfX1n+K42f7dcIbkyzRPDHl5EV4tZTfv5A0+yw05rfNsHhW6yg8oLAd6rXiW7EKF
zkoMs+T/cFQ6JlQ4W3zKkDoJxclWOr7AXDysoWioWM3ix+W1ItzLHKWtc0NmwM0pUcMTJ48bpsiW
sX7jn1VrecQDjXilciseAk2W3Thn0dvGWpdp1SPb/vgDB/VX2kkpd0+9VN9nae4+NQwESbYa2G0g
Slpq9eelLHJfnD4kfZuNVWu5xHPU9YjWtdGnAhtCMEM6mexRRl7L8i/GQ22CQLLhxV2Xb+WHfL9e
gfhGXFZKLrj8uqbe7177wbdbNFlT66lcxqzwhQjcyh1Pg5OoQJKFrOwR1pG76tEPEqLwOW/ekZuE
7fa/4Wh15HpBjvk2w+fHV3v1hhb0PW32Y448QVXKPNrwC409eBZ+/UlMG2cJ93R3cMTFWagom/Rz
YgJ53IjHTrM4bxnVWSrpMXnhMOZUm4cjjiGLqdSZhRuTJjsMVVN0I+fSp+NxrnQtQSXSDV0zTPu9
D4QmkH/5urKxFQEoj8RfZ/deec7ApZJIdXwL5Yqcsslssmh8pq+ilp+pxW/woN95Vqby+HTqA7Xo
y/IDEYgbg/bLeWhJYX2jvSNdSId9m2q4OzLmymalzP/H3ee0Fs0xte/0UJtvhZLP3pgizlfW3rXe
on4Z8pBbdJyAioj1zuHLlVrojs9id4Clw26tKBE/OjhU8O6JbFflCEC1Iq3s/PC4PX0XUrcJfDUt
37qePyIqG/jYakhWwJHKrFKlW/xcN8qBC0/xoEqbfJ8+idmiUfNoSfemqb6xiGBL5OxI7SvZFqKD
LRU/Dur99yK/7vXa2eth0QbBxEnVC54T5uChrelJ7AoUIyaXMaNN5F3pz6nvhDmqDDy8g51nip4O
EKWMcKq/zj5srWADa39G1nVpvjJ+iqlxYoyQuEZSA/nPyMK8suSXvE2Ss4XH1MH5nGoxqANl3ZhO
nqRbQUH9S+3yzf2LMDNDeXE/p/YXnHrTJdci2VHlbYOyx0Mbs5KQHgDHNBW0TG6UxtIG/2fB2uiw
UGbdTYM0LqL2owylOktvKqyOXPItAqRfN/gNZvoXq4mdonel6I7JjN22mEcpiJj+cISLy/NhUQV1
G3wt5wtITpdhJJVMl9/bj7C+sD/itLpHvianTVGCh3dtV7ElTm/85OOSCZ2nEmvLHh36iXiM53sN
DDLGpC1lbFzoRZelZ9YXb7I73rgtpK/J70XFss3Apc68JjXqAABrzkosblunpvpE3V0x/nnwoeW6
oKshrya2DchlOHs9tFMBVmzF9IP4GZ6o1AT+SCqP1bbH/xNsGZPmSTxHWrFpEmmXPDbf6xkmRSvP
VERmTAcasvt6txU0mg7Bsy6zLw3SgRzkbI+eoersOa9qxLWKBb2OncmjiSqSMMzIRXfAvOCUnCOQ
djNg07dbplzQxmum/QG77mKkxijXM+w2n8czYRIGyuN2ccR1gCMvk44VfZ9MmLZ7bMA5zU8CzgnH
cujkyPNhCZZSWdAg2wV7GsPt1tEmle4nqZAcEd69/YZ0RFkwFroz72Q9iPmfMAwfGeCIiHBbVItH
3XFj5JvYDFQFOI82Ew3EKk0Tw4mOKMCpO9DMHb39dk9qhUBGM7R9PH2JJCcQGt1rVMs+SGJgKHhZ
xTHr9VSaehMY3bhPXgntDwzGMRnm9swqoR1eo7H79povas8s27r2Oc71FIMFMGsk1UPrPJExZudq
8IE6yZzAGRHzor0Gb1VyAKNNd5JuhhHHpp6i0M+RVy+UfExvX5DKrdJXDefvdAfMpMPB4udcP5I7
+02xYe+jYd2OUwTC9WrFS2BdzG+AkRU9mxV/iiJRElr05hebTFSdivLdkaNEyR+XayarFe6wpXbI
IBD2OVoJL4H9qsE07nUs5okSa1rs95Ya1hsdzl8GPyEqBnfjcFiZ+0A5RNO+v8O/yY3bBjpgXiCz
1zeqxWvlq0qLlLxjFNgJkfnsG29+H6z8wB+u6M2D3rzW9rQVbsDT08EpAr979Y2iP7g4BF5pjmkS
xz2l8ZiL0DKzNGjFryS9wk+fQzZIeh8hDkSWwFrqCBaGpuM4dEprlPsFLUApypQAGYLe5jzvjE3U
0fQPJr9Il6CGBWykwqAPCtenvXRHoQZCZXMhj929nXDWoDDocVsoIeJAMoC2ylMalKD0opP9nn8f
EsQ7+hgkG94JOoExb7/+oaCjqtdZ+vEaA/zzlLlJykDmWcdurfOwLNXHAscjEHpzyzc6GWKsF3TJ
Y5WiNINwgLnmRnyRyenN998+hLSMIQU4X5AhMYsdK3zKIUw1QHE+w93Q3EVK5WAGLEP7sOq35BfW
IVkZBta0RntfIhaRuD4KkebuPJ1KDAaKHYFkDC3IteDl3jWNz19bRdiC+RC/mj8+Mccjjw6hn1kl
gBiuFIwgTJtqtBPBSHCmZ1CzxTnZRSC65m2dqK4UdFAXldhpuTEAbNuzKO34QshUUxwsCbTZKC1R
PeG8aoG4qk+UQPFDVK82ylRiWe/CBPM7Ev6JQwN1yoBOaCdM38WHBYXjUt6thkNw4Z/LMHomjqiz
nYILvpimvMJp1Qx0r33k101zt9ZmjABycdO4nyaIfY0vum0/R5Ptq8EUmhp6lPjOmI3D2mj2ft3D
86kv9QyVN5EkI84847cef6cl1L5SsngbPwHaR//U3YNqs8/QETAuTEz/gf8wINhJxu6J5uU7Eet/
RvmSR7MOlgpDnzFc6DyVppzcDwdnLK+DJq+VNjzRpTV3L4NzO+iK+URbLbnZgo4KurOiVN3XLcFW
Q2cq9Rp206+MKQH5of+t0TbPf1SqspReKBSjgoDUyRHJNo/6gHbvO4c11I4i6F1htLWDu4fMNXht
uKBSL6oIez7Xbr63KpnhW0TDygGoI71NBelSU9sYPgRv7mys9Q7r6P8HLc2temJZ4Ra77L1zlPo0
ASXvV95FaV6IeIBHGktGznU5IGc41zdS0H/EdWIAffudhIjqVXoiKa+GY96CxDGjZc7Y6ZPCm6le
scyUcAxwZ9X2qBjg3pLy0zCmMTsLWoLSlpbjiAXxkqRjPAD3+rW/ySeXeLYQs6r7kK1BhFw46DTo
CpSxui3goPPnGtZGJ7a8sgboMoK3Ipc5msesRT7zufcvKieFSgBDZj1pEXKQ9r6jiFZu7ukNgCLj
Sx/V/ueDmp1w6VwMfCG3EkVQJ/JMyTRA4aiwrFwzJv+ukQkWOqXg9EJxh3xJxe4yZLWPwjJ8XMCu
natcs2U3JQcXOUf+GDtUJT5nZDQuiEi8v0bBP8W/P6pZfVx2Y0Xt6YagB63ZF2lca1w/U0ZAfaIO
MFuokUsJDOccLzTsfYsY5R3a1WxeS6QvcaRhlxZ07NuvZyHy2/cnZus7LrPab6tgS8xCqZp3rJjo
M55X1w8f2Ev0wXp81lBlbMyj8Pd2hrScIw+2two7IDirmjUoJgaBgJWYKd9jG8PKWgCKNQ1ap7Bh
mUjOVSP27c4vqUWsioulefRhhdBo3YjpB4RBRUPxxCtIoz4Cz8c6UAAhdqNLULpDLT51jrYBUgyM
sFL8oEDByMXPvuc112rlI2sNDAcnzmn6bj0oDOiM0DOvwpnBoneejehbwDW87qclCfjCtTgM8c3G
DWgDlnetcCnOE3/7g+T6W/5ldVFQq/wPBufo98Bye7gYiKqWdBYgNHLQLzGY9Br3KcuQoLTWgUPs
tNF+V1jq2c1kdN1O2oPHtRCeWykbILhXL//NUnN4fx9BSf0kZyQRrJOMLe1QcJEgBW39u6bv25p2
5GUbtPszr3Lnr6aXaUGDKldrrRG7LZt2nr/Hqp13cFdglF4HhFnWGwBn3lak68qxlBcWhcCJ7fqd
O2iDCKeOuT5FQvgewn4BAEcGy1p9rRkL+XqapSO4CPwXGCpWuk+LjgD/FVcN3uxuyLdmhfefXIRK
1hpK3Foz67XRFvKeK3zJDNd59FjnvjXnHXRbb36FD9ZcdDcEur/tuP5LJrk9XC4HgW1v+ArisloK
r7pL/TpA89Zgi0205tZt8b7KtzYPuH+jhpT4g5u4kDJNEDb5mL40gRvovln6GaWqhq0xjjyWsA37
5OprodyHMUQoNu6tyNKI0gLS/GiH6Dt3wbGmY6hcgzjz5fL3joGSuR1wBtqH/GrvPy3OnRuPokfN
nLtANnChFPEyqEPv5ocLvzK2W1O64H28dSY7dlhpCXqR72I2FaHJAHdMpSlII7nzm70VC4q6B3xr
Wp41Qtz/7wh0wz3OJgg7xl/NNxDYeYux58CJFdG7BNBfVMU1JewxK1tJfGasx13O1kRxy5zGwJrF
mZXean6ohMGhcacoqBwOrHjdyYP/ODugy49o1DlCNyy4Qdk6ReNcb+ik9OVlYOzbFvN/zb+AT+kD
OfvV2K03HZZMtc0xI6g6YAhXz/1kkGQez/4KRf33E7vlNONHGliZLHSQgQiD93Pbul/i06ZPN1iv
eBPocsMV7B1mZeN1JHUVJ+ruk4X+jXPJW118tbksDJw6SbeuYUr/g5vaFGPOWEYJu0E+qFCi7b9/
KE/ehFRAXs75Pz+A7GEzFLuKkVGRDakWK+L0NzDufldq45YFoi/uYhGHOpyFMjOVFyd2YkNTuDpI
1BJYn+raedzrrENQ4AJMBNI396XSF2psm7p4lpyVy+ydtej6/P8l8BEmS19AGqN1XbsC+vq/FF2W
+1uv2bCBPQ6CwKSfepEWrrDkGq5oitOZt0S9nZxew72iYPYQePXpFRm9mb7VK0eCsnyAWkAAgWcj
2O5g+Zg1/+KhrnRfLGm5UAL25LoyRUfVu1jql999xP4/OwhCFQnOUhWedhVHJjqvWqCTdMSvxfFA
nPjJmq9hXhEdbfXAEqD+Ej1vpPaTsGDfnUITQ0ig/q37exTSZxuuiRRAqQ78ays4vjPKU/6/cLoV
40fYf5QoFSguic8G865WDiYMoXlQKp0KdTyFruYuSVuh4WwlnhW1k1F8uonTNSQZbrrI1FWls9Ti
mNICS+nEMqCxAbntGUo3bgVNMAXxcaSNdPmNiWnf13lOJut6c36YumTfrD6R28UEpL6eONfbZY33
tTzTMHQszMuNRDAJ/jlBPdanlAb3KHyRkzHa9ZcIXn458dZO3D6BjIUi9ArFTiHOq6Krovy+TUuR
RM4OsoZwo5D4rnfsXT8nRDWu46E5lZbqLy5ChzqhgXUjG+n1MDUAVjMhd9QzxDvr82wN/HTQiu9E
Wqj4Si3Sqw6p5zQ1h+9avsEC6O/f4C7M9/KS2tfc3C8KAfm/3BmulEM213gt6OQ8LW4cmzHIzKn1
rsvmN4p6HRjDe6pVQm6pB1eu8aTmkqTROMgUk9LNnfmLDBh/o2/nsJUzgVfHHSAj9n5KFR3l4VK+
foXH+koUrD3Tcu6sOHMeFQflDOhoOFQR9MY69uUHvPMvDc5psGiMm1EptLX5F6FFGdbkCl1muzcs
u2r8HdmPW9jMGdb3W7DNN0YvKzOhmsnrk44gDYZNZ6zQ9zfZeDttGGYI1IQ97gab2zxFiOAOGRAd
wdcyV2d4mHFT38+W1gQcePDcMo7Npewr4rtRbWIXza0wFB7UgA5OpFWRfrjlLQFrDg/1zA8ovpox
enXDadr46jDLwsCdywbTQB9OXMlWoJNYKmYloKT4vcFXcBdNxEhmJdDUO5hk5HHPQvGAK6WvNMNV
kEybTjGeuIXPC9SNHGyTOTvpUfGPZoRpX9CpZQiKz7nadCv/yPVs7G7t7TcJRuszpsMFBXyA7b0F
a2mwZMXz5J0NzKaFAYferZE5s6FKJEUyKLTDcRyNRzQFqCtZ6QpVWDYLK44psNWD2WbtD5YL62Mz
YPY/hjDPRpi2nUzefZtaNdO1Yi587Cah3OHr6GfXTmQWwJOKXNNB+fgLHMhGeedczOZMUNqjutUN
+FMIxPMl8QD82n3OqvHkhudphlAt5MIN1k51wa7IRmY4/Fg9vNf5e538UyTJXwU6U8Msj+nQ94TO
3Yav8btqvUeIksQUohKqM0+9X05CLOpRH82LeAu4nO1EkBkfWXvb2xNwyIQR3nA5Hd9/HXTXeMHk
SYU/qbZzSfNc8BnPzunYpWZKc8EuvF6MYxLknM5xbQKEl63mKJ9SZl1ONmi04jrv9VWE3UK2KUBs
M5repZPvs9vXlYVGfbS8vkVeiH/9erPx+Z/CADp8j9kKiegVB/X4ShzbnJlCYetr/cJcCeWeNBf+
0VN7GlesIo13EDfWiDh1DE8Z1rQRivPsLJof7Lbuc1p1tPw2XhkSCzIwMovJccGkpqPihB1YxGXh
+rSAzHkY8k5FouD1FrliJrazoVf9hOKB7H/yqFfvhKYRvgzyXRBsuTxyU4odiaAkcAOI6NlwoaKn
xmFGOQvvLnReLyb/hdqpEy1qcLNwjMZxIPyYnTIk5gUKygyPVHmm1CfilT6J7caiGr7oc3+J8/j/
Qn9YdYDQM1jBQuyyvMlteRFC8ZEJsISM2abA5UusqHiYUE/0t9At3gpLB7PXjx+2Ttkhve9zx9md
iPcVfM0Rx6sm0DKpSf3C1CHAElh7BIV2ZExU2o31ncmP4eca7P8uXYS5qLMlY069l41MGcAs+Eo1
dmlmt7ztvh3QtXVNpfBLU2fKpU9wevYhxyRCrFni1XcYlsvAAMJmyLlf48Dp0ADyJd1v5uASDhVj
0L6qTDgpXc8OuuKngvSX379mHaGLW2kEVM5QtJ+s8VzOE1krXBSL5IAqt3EbJ9fmv/e+2awx23Rj
WPl5JQT6+7sLq/gA9JF9Id758MelMagqrnhn48UmZR3Ibopx0H/GLD2V8asF/G+W9g8cpWKJqbtE
GEGNiAqTKxM5KMFdUaiwMEyFu6eXVJ5tZFIRsTWWtXwutNndwPsZJ5+Grmwg5FjGuTGOQ0V2K1Im
8tM1KfD6L91E6OXJ2ymVAInG18XK5ic+iZ6oDsjoJku+kIqGcXzsSX22Y7L1O9uFqEz3liqvIt3m
h1Ine1/9M2LtLk3tNcR5wxaDx8W7dRPpTGGMoko7RRUo1Z6Xk4UgyPY2mmHhH4StS6sbf0XsGTc9
OmPo0jQOrLIV2IWnYjLQ7NNy4NlQ6V/jjkzErVnkAYZ0WnjbzwyxtSErNbiUZ7qR9E51RaraH303
IIf4Si5mBbiJzuYbHBnIPxnJjAnfT9mzb93v+j/WdiKdTWQsP/Q8aXjFVDVLKtVRnol7hoh6fIGg
LSMcNTh+PxMDA2WN6AzJ6CZG1AKzSC7GvXodFb0Rbc5xQOK/oEH7SXXOrFcTgharJrFMw3v6P46t
CYPYo4uTSeXf3lK1usLmBCMePmHRck7tD1qiXKxa3Ptj7liX9Og38genJb4ZvPNxAXaKRbcTIB6p
+bLMIwwY96Qmc9AEU44B7DqiXIZI/x0Vw1Z5nCsDufIHJ9Z+Ci59nTog8AYHAEtLWIYw6J3qdONG
mqQKAM9H5h2BnjTfk3VkBHI9oDzNSUf8dyXj4BBU9Kbgq9Iu/MOmhTo/CrZXMTFmG8AXOLQ4wW2v
B5wIx2ysHJcJ4hTnHF9W9S8zWGppM5sGwinAbZwlI5pPKwiJ0dlrwOrSQyldeQPBh09Ps8T4phM5
l45hptkq04S9aCIMSjpQWA4ycvzg78z0qlZdrF3jV3wuDLm3M8BQIUvn6PPwe8G1kmIkes1OuWsz
mWpccRx2UeElpyl/vluH/M/Ip8yiA1SBRAWnu066UEl8R23hObxncf92U3xFEi7JAmH/U8RYEEga
TSQJOmujMLl7+0pqps3nFeIuo5/P3EWrKEwj+VZPP1idNkGU7epg2TBzR5E2196ECuZ49T2c4J/O
w+wA4+eYsmGPakB+x1ApjzOE002jXe5So5ABd9KpIR2GzB3iJglRA0bhd76DbqOBQsZEp7cIzbUQ
0OgLB0CsTXe1ZZym2/qeTk2bf3M85bOQDv83G+qU0Re1c42FqoJfNau9RGGFgXclIxgJZ3vev6Lj
RBXhrh1y6tiSwFmSJs9iqATUFCPsGUNAWgGctzsytMxeqYiilEx/U46IETbVUjSSp7Zy6L0Ssh2X
mNOykW/v4dN1zrIvHOxyiMkoTdiz4i0tHTSgDt4hmFjHPL1sBuNFe+DbklQdoGFqAMxCBAT/TIu8
yuu8mN77PAUKsk3CewzGQ9idAMJ66Mxxqku4Ta38MVh1McOaKoO8htXPEn3KmdgRZP6fYvm5/kLS
VH1nxmDuekjKmeIb9ubqX3Y+wAH5JT5Q4hN9R5sp908jX1mK9LTvm3qxhOl6Pr4vt1j+sOYjni3U
S87U1Os6UxHc+wiDPyQU6GKdJ8LQLjwZ//MUJP2069fAI9tvJHLZBYR10mrhFIuVyl0M1AyKuKc9
aSBLNfdM1csJ8tjB6Gw/6PRyvWWZJ61ot9xp4ziIauwlXnzR6M8NgI2fYQMlFEGHv/JZ7uLs6a+h
yxciaa66IbuC2pbWxyB5PLjw1eO6aEJ9m4zztS/wEn6Ufe0GeHdnEX3Qa95b2y0tjBKigIecgtDv
k2sT/wjfq5qZqSjKuHP0xsQr0xIzlOvoueuAp2QTBWTcEZR+kpKWEyxwhiQTagCZd+iJccBw+zg8
Fw0XlIXVQTtn+KlWJs0I9PZqSriquBUZeKhPebU0hnhZ4QfYOHWJYw1tDN2gq92LeeQOOnLDeE3R
CFC9c2ei5GuTWCtn5MRz0L68u3iWDGv3bXZh5Lo/hRH5VAGtjUW3tuRpWbv6teAAjGqYNW1jgJC8
yk2oi8hi3eSNsSEyvJ+jixEYAxvzTdVZf96tGljXzPBGuDe9cbN96528vW3785BsBlFvhHjiTdL0
edaDO0icM8lIlg2WbbX3njHo2g+1yWMAraYadRH01zwZmDC11rV8rEPOts5EcKOMD/lc7OPtWIpB
y/poGj2H+EtWsaA6zAroekJvC6OJBu5dfCSLQnOTEYdk46uTLeGvPCjO1KQ0smdgYf0Mjso0x/bZ
zqR4ajB2lSoMg1tBbkRAO2jGNdqnGp4bZUnpyukDRmOdSrJ/QYHSaIR8bCkJhektXJJCAzPNfQBS
kt83yYElIHSttorXQxx3HGQm5iZAnvp2KdHk9e1u637uUGOP3is08F6/4fRkVOnHZOjSfnkCZ0q6
ekWDKVIHl4rdV68m1zjYS/naVnuLwIjGYiV4dWqfe0SKEBxMV8x2lrbaNalkspuTKf8jclk1+Jzn
VOK5rb79NOMzGjTIUspcm1ieNzowk0hiO3joXorrnfuNRhO4wnpXxKvjAagUvEM0aW0+8GhH6qif
BTjffXXfErLFqbfTYK7C5CnsDc6MAFIGmqn0V/zCq15QYmrcPrkfwzSA7L7ueLgDwnPcYtrrsP2A
jkZzGwc8zrcumKbFs+SyRvPikOd1lraXOnVTNYinXG2CN/hbv2xyjB6UQdDOW58Rz4vGQxtVUcLM
bBgdpyjEtOZzdBejU7xHW1mERLTtmXZGZLoFjR/gvGVvSOIhRTIyNG1QfpjGX5ImLYdnxZKFQH1D
I6TeFZqsqqANgmuxLPB7FjNKFtofh9g+L2wX/K68mgEf2Zpb8CHDmEOSImj5cKn/yeBdI1cDb/tr
5CjeEoEbqW5TCdehu7KmuWEOiTPYCgi0L5TqSM6c6jID18u5J/Op5fDoONzT1aAuKn38TGNDxEHT
O7sIe3W2pkj9UxAm5nW++blBbB+lBbDKn7FAm+xARb/98zz4+zW/o+/qrJOqU61G08+hiysdpAJD
di3Qb525xfx5dXNhIkLzlxD5L2GocePfmKD5d9KezbLHKR0AZR0ks2sGLX6+p6PajZ2FuwdRcisv
CpExpbo8hnaBrPPn5QCo2O4b4bh0VPLmVehIaJpQzW5T2CnWS8MHYwdlrYgio1MxGTAQaZKfVjv2
KEfW6h04twYMmorfW95s8TRnOUpm5g6cILAzMa1oFwfqKfepvXs+FuflocG6wOnxPirYbv9S505L
djQOYFtEPhhPGbFjUpSF3w222zHd3FxEy6aTcBy6T+MT+CRQJnAT/esPBMNX1h8/vaBvxIMKZW5k
c3RyZWFtCmVuZG9iago4MCAwIG9iago8PAovTGVuZ3RoMSAxNTg0Ci9MZW5ndGgyIDg2NTYKL0xl
bmd0aDMgMAovTGVuZ3RoIDk2ODcgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFt
CnjajbYFUBza0i2Me/DgMlhwGCy4u7vrAAMMMoO7u0UgJFgguLu7uzuB4BLBCU6QR3LOd8+53/9X
vVdTxcxqWbu79+pdMNBoaLNLWsMswXIwqDs7FwdQCCCtqsXFDwACeTiAQG4MBgYdiLsj+G8zBoMe
2NUNAoMK/StA2hUMcn+yyYDcn+JUYVCAkocjgIsHwPVSiItfCAgEcAOBgv8TCHMVAsiAPCHWAFUO
gBIMCnbDYJCGOfu4Qmzt3J+O+Z+fACYrZgCXoCA/2590gKQT2BViBYICVEHudmCnpxOtQI4AbZgV
BOzu818UTCJ27u7OQpycXl5eHCAnNw6Yq60YMxvAC+JuB9ACu4FdPcHWgN8NA9RATuC/OuPAYADo
2EHc/rJrw2zcvUCuYMCTwRFiBYa6PWV4QK3BroCnwwHaiioAdWcw9K9glb8C2AB/zwbAxcH1H7q/
s38TQaB/kkFWVjAnZxDUBwK1BdhAHMEAdTkVDndvdzYACGr9OxDk6AZ7ygd5giCOIMungD+VgwBy
kpoA0FODf7fnZuUKcXZ343CDOP5ukfM3zdOUZaHW0jAnJzDU3Q3jd30yEFew1dPYfTj/ulkHKMwL
6vc3sIFArW1+N2Ht4cypC4W4eIAVZf4OeTJh/GOzBbsD+IBAIL8gHwDsAgB7W9lx/qbX8XEG/3Fy
/TY/dRDg5wxzBtg8NQEOgNiAn74w/NxAnmCAu6sHOMDv347/RhhcXABriJU7wBJsC4Fi/MP+ZAbb
/IWfLt8V4g0wBj5pjwsA/P35zy/TJ3lZw6COPv+E/7lfThldKUk1Q9a/Ov6PT0oK5g3wY+fhAbBz
8wEBgrx8AH5eQUDAf7NogCB/VwH8J1URagMDCP5V7NOU/qdgz7/vn+nv3WAG/DeXGuxJtGAA0z8a
NwHyAa2e/nD9Pyv9T8r/n8B/s/zfNP6/C5LzcHT842b64///uEFOEEefvwOeNOvh/qR/VdjTFkD/
d6g++K+dVQVbQzyc/rdX0R30tAeSUFvH/4wR4iYH8QZba0Dcrez+Estfdt3fS+YIgYI1YG6Q368K
gJ0LCPxfvqfNsnJ4ejncnhT5xwV+Wpz/PlIWagWz/r1h3HwvASBXV5APBvBJSNx8fAA/rqdVtAZ7
/9EwgJMDCnN/SgE8tRcAsIG5Yvy+Uf6XAE6V36Y/SJAfwAn6BwkAOC3/QYIATqv/oN+1clr/C3IB
OMH/gnwATsi/4BOT47/gE5XTP5DriQr6L/hEBfsXfKJy+xd8Ktj9X/CpYo9/waeDPP+B3E/M3n/g
fw3NysPV9enZ+CPrp4n+D/7zRoHB3mArjKUFmJVwuH1NeNt1lSS5F/vuhOgsw65+CjO735Jru8ct
Nup75sqPoeuul5Lvh3twV7ZlmS4klqnv/fab61CjWt5ptv7yvzNP0JrebcX4PEU0MJm3L1nbT4lO
wa4j8dX/3sVfL8QBsRm+U4khy8VDAFsjh+Daq0/eu7a/5MtY5MKu5tfKl8qYdyUz7K90401CCucY
si0z5kloUdzZKdFY8E+8ceYuLmfxP00+UislsGIEHLziyfcz2uB+fTPvu1qmw+3WRUpPakRCiXiB
Pzb9wk/q+wcl4kW/ooI43CaOUe6ce6UM04MYjM9KNExmu8G9fvYTyt2oMgeXG7EvvMGR7aNfr4ID
UNBOfOXapOvQ4r7qRxjKe3eLtjhpUsCShvE4rBBwjS47/a/nPQ6VpgvTiCCWwc/GgB1rzbGvn7sm
E2IwCekZZZa8DWDz8Nb+nNfdcWKbI9sf49orUC9liGeIvbeuMSv+Xn45JwsX+YtGKn8Hzmp699dk
MYs4c7Sfba2k+K+EsZ1CRa7jF+R0VLd+TerlF6kqIGzS7SxO+xjJtydZncbT6FQZbCZfBdg6uAhm
KOATHzwjSrjwK7/nlPSLvha7jtSKOLwh/NDzYlt/fu+CN+T7JYv3lt1M2zpvVD2lotcH52cjiSKZ
MgILJ4Y8esTfPdMGpyvuFak47iLuYFOr0bo1pqpyvQ1sd+t7gy36HfFhp2w6tfPUloNoFmscIzo2
KOQvb/GYrG8pFLUE4SREmEsW7nIf2MIpurTj310F17F+sgVNLGsd0b4TOXGSD85gDqKY3azFISvr
MZeEQyXo966UhVCacMjaHvycqTv6lj4So+H2TRjRyba6su3jwNGyt6z2m9Sk866AHHrbtxI2zWrQ
z9jpW6ACEkAzm2HPR25YVQgcQ5tZ9wS94lZA9VCWbgUnYQ5C2/VX229U7RoHL2Buk3FNgSE/Y0V9
i02pyxFX5x3PEkwGMO/z3yX4xcoPXY3E3uCIei6xiw0/EyTEH7zDD5RoQo2zwk01HTdVIlsnGX3d
XieKzouRdfrZC3KySKXwrPAijZtIrTsKdCFrbXMcFReb40aSMS+zhkaAO8nu52P2XrOFMGnbiQKH
OtjrrTy2bNAGllD79wwMfzKhLrOV5xdyvuaKXlkjn22CJX593QgOKr9jEEl+o18p124aqVg1ed5P
fvMSbzpuws2LZjJJgQRfnUVQdWSGFqE621OKIP6ion9TjNmm8APUNMB6+k2M1HItGeShHfqJJ2mB
QMFeOCne3YNCUi1cO+D5TkRQcQ6JWR58K76fQDKIYbLMXLnKfIlHEg2EnCsj/NF02+xVXzSxmEPO
a91af9HzvGyY+ZvBVQ9f32Ma1M/tpNhbmUKfgtpDxw7eWlBQ4nEXCGvcyTTypJ9K+LsrRCCTzVBM
uZsSOnTrSmRm8tvwOJuoyhyhYU/KUhs/OoTilFSzG0047UsrcEmQy6mLYWKe6TCaVjcezQA/jC4v
1wtqLRBgbZkvdsclzMtLtl8eYeMk5OYPt74v8irUN9TpWRsI2w4+cqf56T83YTfEisrCNn3/WRDH
wM6HrzTIiochH88u7ZB8jd+eTd17NqrxYiVFxyO6ablDuVdT830A45mBom4+3BvnQOKiZ8GJC++7
i+8HZlpgrZfOK5Pkqnshnkm/oCUrA/MH+lFR1m0uRHXI7HPxZcvEWzgePuGD6WVBo+9GgtmoIuKL
FKsojyp75ByEsa60KPkWlhXKvpv4vz2EId2gXu3R9g4G77LkDITpfwQqj8pE6qSWYtYuh8tPjZ6t
6MyHHSfvOFyj8C/2zrFnFzx0IT7Uq9ukSzFXI+pOS9vICnDUPlPUB/qtbQ3KzxUcRSR9R68nkKq+
ih2PkCLQInWms2tdRcHD3uvcUjZfj7roVD2/XPLXlYldSy2dj2MZP2TpXzrpntHwdurIrHKl2nu+
GScwyWkwokP6nL9dK1yK04MQy+vagDvkKlB/RC+uGtASZnZlJwPZ+1nX3Qn+SK0jXGT8PZerg2p+
W1KxQzmfQJPrtOoX0lqoZaveBeLoHERr87h+4CEwd3RsBzFe8JGOkRzFpLCxOBN7GdN5Yq8sQYmP
r7QKxdYXkf9tiK28Qnn0pDRTyOul2V/LdREc7NkKIhukaOOkODECrTJKa0tGlp9rg+TnvInVX7Qe
IYZGDPcbDmyLbuAN3C1K7j3zQW2iAH/RM5NzWokRzT0Kpw65vb1GiS9McxjjuDz+tStTwAQsIlnl
lTAQDZ7msfrZ+rgqUDNat4vmQNtzbSu3kNVqRUjg5dvO3vT43oQRMZclYQNOjwROq3OL51fWhRHj
Dw+kV5o7eP17kY/KJKq1H60xLMdS27sFq+GbPN7FuOkY3tkp5m4EUTlFmFqv9ohUYPES4hOUT12U
XLyJE33Ibb7M9Gg2mBDVgp3NWRSiflvLqNC7mSfLt6An4BTzbbDkX8q8Z7T/pkiKwhZDD9mFfef9
Nb3d08GxPDvGnccsoV+ey6imW7odwSA8Enu2nBjBChSVZS5hYdZIXjLOtRV1rGNZ0F6FO7sZ9Gr7
aJhIlOioqT/nw3IPZgakw3FDfnGlqyAGWpyqKP0yaYcFStsr2x2uBqa2fJx5u+FE7DwiN69xbqE2
8HapShKpLASP9YArWDIX+x4rUHLAMwyOs39SNbkJkEpiasYJQaLVp849sT8rxIAl6S5/FqGet9o5
yKu/MaBs5+IUuW73btjFMXiUTvvUpHoUZaCyTdslVpyymo3IKQcZG2pAVfXiMzecDnXJS2qnvrGC
Ea91RthbtmhNt05aZCWX0k4EmJK8pcZLDI/1zuvSZlzi9vl0THiy+CKuD7rMveveZo8c/FOzUHvh
8LDulGHiWKlaeq539adigErXmxht447yWzvltPXv74p4mVT6KI+S9srjkgk+cRSW0RLzAz85Jtvr
TUa3zNSAFX+xeY90q/EH9X7RS/H+gbPalPQ2YiFkyHVVDafaHuaAJBnd0FKfSj0DEB+eFLnRAgYY
r/Knz2ZTBFVumjTXeYEL+96fefFM62Rt6m5yyxMgzQaNDil+o1Z3uTAMe79UvmIRgXktjD2d5kj2
MZU//6U5t6qoPvEL5SB6/6lFRvbW8aWSIzG4j1rVMHcBPPQTCI29MzLrTmMnB1KLSHVmB5nmPsZn
YM95tJZor+IUX4lxs67TAfdO0ZVnPOdNgrFBcmzkj1RFT813qfjsOWb13zi6mNveiZrYanzMK0tq
PPVhPqjHJUZvYMGKFjfusO1kmHr3JY425idgORAr1nHiS7mvCkHKhNAvt0Kr9mNZlN1k0X4fDH84
o0d1UtaNirEdFmlwTpo5XaaYR0AKkuCKoN1msaBmCn7m0xv+Aw2p2ozMcJKf2RlVp2fdIqd43J8H
T9fzbgSn4aWEtjbLm6oeKXCcY+pUaNAh5aabgGMDYDcqINFFjvJk6xMcAEWi5gJ/51FwfLaYlMTz
i26UhjB+6OEKcfLNA6YPx243Au6cDZle7jwZStMGVyEGYkhozhLDJtUn/QTnaHw/oDOG9Ty9RBrt
ayGWfvU3wB9K4OWid42hPd1qGZrkDhule5EGn9CCHVsuDX3EMzaKRpc6VEvuCEk92beXzSoVwfkz
7OSoiCGNyeLidXpYrxxL5Y1pM8alhem7grKLUErckQ+Y6jVn8vExEmf4GiLXdErPumwmb5rO06zG
ZKIEFVuRpNBmc66MOaUTruzx1cXpadJhBPWVXUgufmwPq5mOuZg+1UQyU57RLQI09K1dOTbcM3G7
z5eNLH2EaYBwPoqD+is4Wk2vcAbm+HDjrsLML+cXOra434uN3YedLOO/rM1I37koQsDzGwsFRly0
Zpi+qCX9kKQXHlg2MdNlaL1CqqaQ1BiM7vksxVOMabJcl5AhG5+VIql7t8e4v3NUIE7mLfsuVJdL
vuGTCuZp7ORQsdzKvZr43uAwo5U4pTlig/G857MbKy8d4XFf+3GD6AaILYs8EfVR2PPG79C4FpRo
SEvbSYpDuW6dhFFjCDXSID4kCbeFuyXx8HWlc2tjo3P9SlnqnEV6AtVS+b4o0rTy9maTFP5ZYjkU
RVC1b/Zr2lG+NfpC30uzA0uiXfB3g6oiH8Ebuo/w09+dYlDIa8pklcHmNYVZ0mWA3k/slUxwQYxS
K2uv8WAZRq8+eNAt8LvduSv35rIiDiXfDDDLHTILIVP9+pApsRSL610V/p4hZbjfy2Gc8lsNzvPi
dfykwqgkK6SK8gaUc0Q0yTqxvvlkDK3nOWFpgUOC7W8ipbVbVbuqWy6+CYYvY39HRlZSIEwmHJoW
IZNX1+W1ty5vq7UWGJah2DXR2IR0N5bybAklazQkD6ll8ydfIXDblpb0l2vV8FU7unwga6Huu4g/
Dhefn1uc20Twg81sUm09oAk1rzhFvUD/nBIx5bFX8YzG2Vw8s9vK0yCYDX080D4GspZFnT8oUhC9
QMBGTDlqeqrrn3ouJlUehnuoLRvmtR4q+gWZ3v5xTfeIEejzELwjg9yb7fgKxd4i25SSCNvAW6cB
Y6z1yvGuGwn+0UgMckk0wqQmyjQO7/XRDy6ea/YcVGBYEOahASkL5Nt7r/KW3r/7hufX1gcf0fXz
ofY32fN3nkbvZNURUVpihm034RVJfuDYxP84M5jm3qrgdBFscKjbqDkAkzNZe1WziGtaRZbKNAWD
GM+2urG0n0UTA8/VPhZNo0iL1zdvqAVihTDJUsbVW8uJiAyoJmx+v/Bvw+TX8RixsdQvirW22i58
7A+JLTz8EnvwTKOJI2lk7qpyVV46q4/IMTeJX7OZzRGoqhd1hxGjMUpFjIfLtFh/n3JL6HZEs8oJ
j7XVFaapcjaGbL0o0wzIFC8z0UBeSfT+gkCoixaGXM8Dq3utCoeVDJexzwQ49deTpK1HQt9XhD9j
ozufj1XR2uAsKIzCsE/gWK0/Dr9dwHTuTX/jvb7lXar9yskLZ8L+sGj7RRDbPK5dfT0sqU/Mp7HO
1OgagqiCx7aB21CMhTPuECap2oNe/TmkH+lO0wEvAitIUCV5+O6r5OtPjRKjl0qeF2yAO5mu2hl6
83nv5tfavpwDO/Re/cmyr0piCQ03sR3l4Qb2r3NSkwO37F7Rxn1LrOnUq1AOM57X1RW+KNF4yYW+
3ZwbS+r5bWOkkTcJlbrDmdZDmQkVaucXAsa9SCOwVMyxOM6Wph0SC87Zvv4klvEBn3x7XPvyrISP
sYho4iQN0FNHnZGml8azAk2ZdagaP0WztTi3dys9mrDbIWdQUdd0f4tGqmWIeZnyBVpfh0SRkbfh
QWGLosFropWkSpfLELhF96M/Dg1hX/3kMDRXqrjXiKzldZrZ4HmXMabFOoRKajnhEna8zR8bRqVD
VTSQuP6G3mVIFmtgBuUXWyazpTBolvGClCS+RqADOuoURxjX0sgy/Phje48Ow2mNlOpixS4B2fIu
tdNBe58jfcdXEe6RU/RDqxnI1bchzwL7A9X9y6zSlwkUc1Dp4771LiLznqQBVopa0Sut+ntUJ+K2
Txu4NWeJXLGL4PIyy4qw2YBPSdBWucg3im73X8UOPcqqAfAqiLbQUf0FDWmiVTXP9Yw8R3cfeCkh
EjX4NxIOjsnQwiETPOWA6J/Zn89Yw72vKq+gGC2+JgGZ229y1I136n7KjSzMN+sz9/A2iIgHvyH9
vtqvMBEUqUqaqFvMZsUM3Ilm/dQv83wgZv2cNDst8PlGZepPkRDI+PCut4xFnYuml02R84d2uZIv
TTcldExKryQYEQOmekSPpKhoLO5OmQ9zO2weQ9Q5YU4FnjFnOPYxdTVQoSnwj8z8Waflo/IGBHOe
8NmYEOn0yglsn904ceoBbTrs6Ub0YG1DofjcQMh+noL9pN6rfqpsppqftzmOclHUrD16DkJ34+z8
aU1J3VnChhmDCJxSlxbCNdHpjdcWTptFnqLkIOfUncvBQlnMWki1sBqY7G1LlhS9wWHc28A9ZDoM
VUsC7XDJo6s4ORIBjuvV+BdcVuKRdOnENLErUqIo1ecPA1tLpsT3i1FCI8jyAtDbOhmXpK19lDvV
XIKSOc0DJUvcibQKM5302XqsXnubn1PgNUP6i8J2Rq4jFTqAKVxOY7pjkmRJDfvlbMx4ZsbMyDfK
UO/sX8QKHWRsyOU9JLHMeQ1Me5+MNfVDFIs6JZ3qOGtBv7jnZBKdLR7B4izHXZ5ZX5gtNNxP+QR0
T9akzogiqw25BHtxPs3fegbh+Ps7la7V3NxO2lmfS6yVXApeXRoBQucwdaTxXkRnJRcLxUcWCoYn
7Df4pW7HSbahaDvp135NDjblo427d5X1XNqNprtloli2O83+2KfT5aiDq2TQ0CKY2k6pFBOYfMsr
FX3qMlTMmuLjkGtDOrTMEnoYmFnpQqP5/NjdRSBUo7XL4xTzQmnVZ3yvMnEIwJZ6MBPKUXx0BwH1
lsxKxsaI7s89Y80Inc+GCmjCVwj4aCB3j9+e4tA77yBj2rUMeOS+ozuCXOrO8aclhuXgOqrOrUWZ
Lim8pW92HHCRqdpOwhzIlEYlBKdvtr00ezme+0qG5EaGutFZOY84uYIFHFOn2wLTrEKQK0IdU0c9
PJ4y5ke4tbOF30q5O6nRfuYXYtqatDmObyE41CB5Tq0iQV5KxzERfoAG2mvJ+WhFUwjfiZR9AixZ
ZEj2Fkggykihcj67S1SlPbxH1FYicCH56ZSkX5XyUYJu+nPCg1GErwahZAkaUuSn3QHThjqAYI9Y
E0TbRdwNG3GP9tGvZv+IXT+Lla5JFgflysl4keqVGcb8ePQMw12kiJZpoQ2NgsShm9Jk57h032Un
dQcSb/6Xh3ce2Teycx4XitNUnxeWn1MrRz5gHEceTiSWYka2Eo2G9+RB+J4lnquMuX+Z4VQnmqoz
xId7TPvK7VOky4u2ChAwSnfp5xL682/lexqkKiLLkK/WYJw8YwxZ129yduD8731VZQov9uRkPsdi
bnywqFaj3oLjePMo3ZWCsHJpFIku9t5MGf18o087UzkVXwQVjFq2fBVWXLCltkjZo9onph+n6eSJ
21Y4q39LFxaaIw8dT8cftddyOp6jsHsx/FVVzgRu7L3mHFO/Nk567TEigxjmSdfgB7fjx9gmfuhc
mtUQR4xTF+L1qf3st/jYlq51nz3c7V+y7SxE9wrkcsmE5nyXIGyOWjMzhR6Ph+q0jjommsOmHEze
DQGUK/zixX4iyuTPMnJIyxgTj8zO6zm+VYDMuWpBnD6no7x3y7JRVW2L5Jfysc8mdFkAcozh4fvB
Yny1na85DUFA9mGEisII5oxfJh7wt6FTUV+vfRyCjq8Hf774pFwydxriqo0dz9v3WhttsuliaFXU
rFqDZ9ylMkSOfHT5Db6a6PWNA6V/u0k/tY3QAed63ecUU9aLsukFv3djkjvoqu9x2EaJSfWTZrto
6eDUR9EumcgzdPFhz3vC5GOnzeVs+Xcc6hujXcSb4EhNy87BuEUwl/q1ZtKujSRVbGbVO+49hbJx
g88NSd8lvOfzXlnVG+YhrXyzPobeulGSTPK0Xn7a21tsWxjTzw1YZDdCuesP9IffxZ1HPRgjReN+
YYPORBn2bGl3SYeCvuVO+ziP5W12ikLIEsV4MHdG7I5fbCLrs9hSNak1cvrr5SMW4v1qHyJg9Fde
bgf6Ppdy91bxCDb36hl/BjsV4eSzYN6NffTHE3SK9QAZct/NxQ4W3jD7VQT/dS2bI7yUlYz38zMq
yg6M4rocVJ41fQlKhaKC/HEy0jO4FJefLmvC5Jw/4Dhhxbk9UEXZhDMJiSHO5kprJ3dmtbzGUXSQ
k5SZyaZhV6izH8SGzNzs3OJNkj9ceH0y6i9mzPkGRwzUd95OsANhxfs0BDAMjG6FkD9MEIbNm1N9
ZbI0LbStUcMvM69iIkXN+px+SmNQWNXc/4HQkievq8i3KhZlNx6JRa5HrJHPuSM+qCVZmRxLxJxa
nDxX0KkwnT9UdphrvdsYy/ssfx9FF83TYJuP8fN8yeTp7A/L+ZIbV8JQNoisSb1GUzPcmVynqCUi
bDw7VxmaA4fi8yHA1ge91Sfg0HD2tuZSPvkn/cwPhySyjZGiIBf/HITmKBxfkQf6HgUm7w4VPP2K
+qx57nNjXe8w/Gwe9zJBskh6g0ejsTurfMGFs6nt3XJfOcKKmob+2oN4pVWF3TJQcfPxQd7GyjmD
7h0fp0xM3jNJ5qXF0W80NF2RkOeNUHRu9uhP7ny9nwkqO4zG8aniAdISDRXL+sQHeRVkrx4zQgiG
ZaxvOYL9KfCts+2EvyGY6IaKG0uUEthHFEpzT9Qi1GR3y7fKhZIXRCNm6MQQD5fNNSJhFSlUXtDe
7IjhpeGEMCpRfjHJUsz5pSQurrlweY4+sNvA1qheO94efREzNjCVIiG7wTyaDqzgeSPAt04S4Pm+
Rqz9aLVkZCL2RKM+YYhmWgdhg1XeTd7tucnXnFjEeXBjsi6V1gVn/DLe0bOLInx6bOrPd4qv74ud
gWZ7uDwySiXDdv40D2XoWGPQtIw6n7YDE1ffl6HZAx81WcwaNt12+Di7Nn1tPa9JS8D5lsQyLkPR
BLOYuvc+eYFDsQwes+2yDNnDN19hXDTM4ACMGfXiCtAvx6ZMM5I6B6QU/1DzmjzvNoFzgnkQI3Tl
flPiQCk1N9C5/mtixIvrvXYxuyv52e7jRazNnaEmhlirogDPgs1emFBlXwWJQ4zp9snozMk3sk1n
fpkY+3vTKJmLGqMFKzzNABDcqekxgR+3OZmxl73lHBgiguRVxUK8sjX4MEMaXMDHhIHPvtYaUXzR
ahKaEOhU3D8u/hzY3JKxuksX+utujWSY7LvPPCmfc+9lPGWBkEIxoRMz6knuCpwjKlpJAzUxtw72
c5X+nZWo4QISuAXzzqPp6Wf8PuvOcG4Wh0gXiBwUXyKx6xzmaOQ7+kxw3bRSTFM+VsAhUVzQikz6
qAzKBojr4UlHrAeSFdjhyb0MS5cRPaJCkSkM29/o5V6QNfXPUzkkAQo6HvoUc3m8zJZUHeJKZWWS
qVvYOeg4jx+CkVK0vleu7iGbKsZ9zVrRAsFqOp+960H/3mD7ytnySzjaEjK2G+gun9WMwlWrlNey
tyyuxOn6ztb0iokBXs8YJj5o7lPDrp4a/VC9zOebEmQZmvYBpEAuFUzQT4w/5zsXIxtfPL8jGjhC
W7TDp275ShY7kFyCoUKf56ceQ1PfeTMoH6X3fXqayjwGaOycYbXejEMn3x4z+cSu9z5eNMHLaK55
2FNAmx1jP9zmpPAhLbThtvLdMjo/Sn1r1sVW2ZFiykajMZ8zlOth1+ynDHdpIPECkH9F9JcLFf22
jCjrNFIt3dpJim0UKjDDAIwudAtbzEOrsF5VqxTrFUaPA1fLRLgb5FK8EoajUwC0WbSHwhe9Uj5z
FOziQyXm0u/46E+FMsmEe6SZu1+4h+nBk4+SIfr4Y5VSpDR2dlDYXal/pAkWWROEkn9R+ToFSGs+
5dQPg9/h0OTPJNVEqwZP+X0o9vSsgkNYzyfTZ25+x1hRp9D8nL4oYtCik4+814dZCmrzmP+L8s1g
AWL+peB0naPpKUGQ0bjRrBDCRvfjOkg3azgEg03y5w91Ox6S+w3Ml7ownEces6OqAy7HGpyYtrOx
zrZ8U5jKXNED/o8+D/PJsJ/MAmyCbj8q3r4sHvuJ691LzjUcYcRw3swmq9blVjOWYXLj/2XucFvs
lCxt5qq7VOUViW66Jt0CSQHhXGhmNczVp10cn/PNmeyLL8fR2pH3MM1tEH+uRzTq/jM9E+0RTP9T
l1FiZR4K7quEeVY/wzhM34x79sGZ4BvHE3Pl6xaTl7ufX7SCktMl+5jvh5ho80XjWu1xGrwgK/hU
0eItj1KDdk4EL2qkUZZ2bwanSqdLPrQLUrhxL5eP++pW7cIqAiWboz76VyuzYStO1M3RwCTdQVOM
xFKdAN6WrVpbjAfX9F69YC+sTPlYmAw6v5jx6/twH7leeANsaXi+VjtWIAvezRjzAOPuZjDL4ukK
o7tahAIh9xU22szSBDLadn75my0iFdY+AIdk6rJo0Wg0oh7xm4qTYlewIXzm9GaKYaXTyMVpZA9Z
YTLFF7Tud1SP0CxVJyKJJMse5q/l7u3exYaWkpIA0EYBskXzFkHYxRbHKdvDypQcpwyYRmq4ZNCm
4ewerAebDReQCOzIz7KORqundx0Zkp1NXpKuCfNzHQN7ftw8Oft2ec4n+G4u07iz/iWJvBdlCav1
vleFXkuhc/P2lxrUQQ2b4SVB9fvvuj3sSR66jIWuuLcMC7L7RUarB89tGdSZhszSnk+Q9FbLDh9z
3xQSzqkj8RX7a3jG8rtYqn0veK2XT9hbJMcBunJ+l0QZwTXxdvM0P6eY8mzITLftrXVmxPsjeOQA
bxQi8pN7r9KPaTO0Sd6KTd2+cljKO/bWLpymdZdttol1qBnqxVi2ypsBcm8wE4FFV8Qf9AWjvmdz
ztA0NeNN/5SowKaDq8tsEU6kJKWA2behRhqnX9+s99j3YJWY/1RetU9iiyXNAm/EGhkON/5UN8cw
ILuY5OTNNuZzDcSa7bQGXzwD5K8K80affynndvoRSzwy4GVZhtBpUQTq3+lL8lmxXFuvETBojVzQ
uu4KQ+RVunJxNzlVI/t4SC7PbaE1Qh79UP5DQvVQO8UvvrEAZ3edCM8h24B0exb5ZlFHnrxmrorn
fOUFsuJZLctLAxvgR/wkkMSI4HsmH5CvYjOmcDcSM8sZkm7jV5kAUn+9xV5Q5cCLw3gcBGdUKkyF
8nXN5erUTjm4w9iNalrt96dKlPV6IyLTCgo4uydGl5cBygHk85EBy6Nd3WRSnxjUqodt/U/txZTQ
Spi3lHb5xim17OySV7krUeV7ehiH4/BY0ym7dxYRhG4LVe0YtVjvvnk7NrK11KhJ6CuLn7/iUMcP
IIhtfI5Tjs6BIr3gr7JOha3/ZT/6PHLGSu0HJ/wNsA7srJm7RImtKoNvWo7cI79rH8o5n1BxcI/8
1SfPAG7rlbrhTnMGYxHwnRsWicyV6PGICAvv7O1ye3TnrIDP+8POjcryfcJwlxBS9N53zFdxVlb+
qSCPdfgxhPbSR3PFrOP8Dw7fbESV5wvN279m4ebDOXpnky4Jj7wGaMW96b2Qj1eP/e6c4h7tMCvH
A1fiHgF828bzCt9pJz2I5RKP0oAY6W2VKvHBQt0vYc7CUG32/vt9gU1/E5DihoEF5gt1ge7YnKqT
xOuud15H3AvRtMXTsn4T74/X1azhihyfEbwFus9QCzXSw4NDmaO/080+L+hP3ttTk9rXFpn6gH0y
75Z39UhmsQaHAX+uNxDC/G2lICKfrxiFo7kFiWEi3Q6ViG+8v4tpl0UqHkMNWsaciG75Sy7z0PAb
2cw74RGxZYYSef3JwZ/Pw2/u8Y26UY+mcvzehlQoRrpg5XgQwH0JldasOGn9rljAM29rdyS/c1ud
5HKj1N5H7c5TP+OS7NdtUJCd+Fkooev9Ebf74SkDQgnhxr0XI216Z68kKw9EZAUmLLeGLnKjZOsn
pljX1TTO04Q4vr5Bfy0nmLR62/m65ybkOX7B+jdrxRYaGKmcLTMTzwmpc/LFjBKq5/8BtWbbAgpl
bmRzdHJlYW0KZW5kb2JqCjgyIDAgb2JqCjw8Ci9MZW5ndGgxIDE4NDQKL0xlbmd0aDIgMTMyNDgK
L0xlbmd0aDMgMAovTGVuZ3RoIDE0NDA0ICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3Ry
ZWFtCnjajfQFUJzb1gWKIsHdgwQad3d3h+AaHBpoXBp3dwgeNLi7uzsE1+CSoMEhOJct5+x9/veq
7i2qmm9MHXOtMRclqbIao6iZvQlQyt4OzMjKxMIHEFdUl2VlAbCwsDOxsLAhUlKqg8A2wP/YESk1
gU7OIHs7vn9FiDsBjcFvNglj8Fugor0dQM7FBsDKDmDl4mPl5mNhAbCxsPD+J9DeiQ8gYewKMgMo
MgHk7O2AzoiU4vYOHk4gC0vwW5//fAJoTGkBrLy83Ax/pgNEbYFOIFNjO4CiMdgSaPvW0dTYBqBm
bwoCgj3+pwSNgCUY7MDHzOzm5sZkbOvMZO9kIUTLAHADgS0BqkBnoJMr0Azwx8iAj8a2wL9HY0Kk
BKhbgpz/cqjZm4PdjJ2AgDeDDcgUaOf8luJiZwZ0Arx1B6jJKgCUHIB2fwUr/BXAAPj7cACsTKz/
Lfd39h+FQHZ/JhubmtrbOhjbeYDsLADmIBsgQElKgQnsDmYAGNuZ/RFobONs/5Zv7GoMsjE2eQv4
k7oxQEpUBWD8NuHf8zmbOoEcwM5MziCbP2Zk/qPM2zFL2pmJ29vaAu3Azoh/8JMAOQFN387dg/nv
y7W2s3ez8/oPMgfZmZn/MYaZiwOzhh3I0QUoK/F3zJsJ8R+bBRAM4GRhYeFh4wEAHQFAd1NL5j8a
qHs4AP90sv5hfpvBx8vB3gFg/jYG0AdkDnz7h+jlbOwKBICdXIA+Xv92/C9CZGUFmIFMwQAToAXI
DvGf6m9moPlf+O3+nUDugE8sb/JjBbD88fffL/03hZnZ29l4/BP+5xUza8jq6srI0/898n+dYmL2
7gAvRnZOACMbJwuAlZWNA8D99uHzv3WUjUF/8/hXrqyduT2A9y+6b+f0H8quf2uA5u8FoQX8b62P
9m/KBQJo/hG6Hgsni+nbD+v/Z7n/mfL/T+V/VPl/Ffr/ZSTlYmPzp5/mr4D/H7+xLcjG4++IN+W6
gN+2QNH+bRfs/m+oFvCv1VUEmoFcbP+vVxZs/LYNonYWb4pmZOVgYuH4yw5ylgK5A82UQWBTy79U
85dd4499swHZAZXtnUF/vDBvWSws/8f3tmSm1m+viPObNP90Ad926H/7StqZ2pv9sWxsnFwAYycn
Yw/Et7t+Q5wAL9a3rTQDuv8pZgAzk509+C0F8DajD8Dc3gnxj4vl4gQwi/5h+gtxAZjF/kHcAGbx
fxAPgFniv4ibDcAs8w96y1P4L+JhATAr/4PYAcxq/6C3mlr/RbxvyPgf9NbB5L+IgwPA/PaW2P7j
/+N8mM3+BVkBzMB/wTdK5v+Cb30t/qn2Nqelh4Pl27P2T8SbDfQv+EbG+l/wjY3NvyAvgNn2H/i2
aMz/KvW22sz2/4JvVBz+6f12Og5virf/hzvHGzkHGxfnf6W8jev0L/jG7d/etxLgf8E3qi7/gm9U
Xf+BbG9kPP6E/yMVUxcnp7d388+dftPRf/CfjzQQ6A40RVxZtDflD7aqC+64qxEldGP8McnGgTJ0
GXkNr7Unie+6rxIoLnB/xZ4ftSzaM/8z6n4L85it5LXZWhuXxdpg0zstig93paEDxtxkl8F7GlPw
4dhZwYXtp3x3t64Ru52ZBe5Zi+qI27XIHC0eg+PFj4XMQ2kBqpaq35WWZ3DUTSdMyFCTMVFw73l4
2JGhgjtFMzurxGpF5+a7ZCmcL0UmfyV+kDq8TxscZ+PcGfpexgAJ2k4jPDpCcZC/zjwS+nLQx0Ug
bzQNmKPc65N8//iZJvC6IziAxsR5Qk2YnD9Ldm/6UuZyL0ZW1aJFZngLejAVWnzrM9n5FoLoV3cT
6h0DfrpuiZK2yJVk9UJPdk7qsr7ycmksQSkEpIFlBKmZk+A6pq8Y8t4KtaMzCQbqzslZc2mFDOMZ
WE3KaldeS6wzpgjjUUFOsSAGsc4Pu36qQRDZMXBWSzaG64FT4FqNgo5+NBkkSlK0yItH4mPyQM0C
Im+uqdMJaV5QLk7qxCNzBzVz6whmAvMxRO0p/nC/2UOO/SLr1dCA1niUoXT4wCJiX0R2rTGyqwKZ
gzG02kMKY0nx+zyL/aYwH/Bl+7aIFz5Vcum0ztxNllGELGKQ92qeM8YMyHzuuXWXaDxM/zW4XgAq
/L3nU+0J6DUjxSbrXCv1NeSDRu2EeXwkUrnPVK5jjIEpQ4hIRbJXeP04V5/v2aZwpJxad13ZQL3r
DUVS/TWonoziok4pGjEvneSr5opKvPAxxPoBPBvEZXkFO1eZSwFkyfikkQ9mnYtvfl0HxA5x5W5+
Cu9N94/+WvJvioIlcOZMJpiXcyPluwR+7SjSxHPIzcelJ3sBufNk8iT5hJjfH76WpQGMZdP0PtbT
dR2cq+Ss/qKDxuYfkOYggEXHxsRn0aWhmDxc0HYloNOKdo45Vn73smJXhWCp/aLBT1DINGhMwq09
PMsJ5eULp5jmuS8zhNStvo2WfGNVlCzsjzfw+GE7HdYAcUHBsrKq6FEWjOuD/gE4A7eLTdW1zyCq
3HSHpnpzfvLRQwDgz6u4vTu9fyBujh6p4k5mKhCd+H3T96NlZSQly5nR9zCJyh9b9GGxjqcX3+2Q
+eOZL261G3NKMhUh2iCQ3XTNakDsZ32aUWk/yegpaDgXUL2ZklR/n8YaLUt/Ksdxn1omUuR1pmoa
5n7vSAlPJ7jUdE2Z+PwVDd4zIV+OXUqU8ljks3VO7CzJ1tWsGbM/VLl+tsXVQEAg2/jtcJGA3mME
5Wai3ZQWTRA2p4ss7ibV7IZZvixCgblWTQe4XD/1Xh+m64idjeQGyuTysDQbRhMVqnFGzddf6aa0
qhHlgCrJ6PnQckvbWVqUrH6Xch8tfuhbKtmM5Wm7wGtjrCY3N2aVJXlOMjlhGpz61FRkLhj5nYI4
JLFF1nybquoze96qj6Kpj1HfZUp8wXNAmnRptR6z5Yydk/6iez0vOWQWCM/KJ356kOL+694AEspw
961Z6bTmtn5VU2m+TonQOV1xdALHZAbUuKURnwWhikV6wb4xHPjjVsoIL1kreSGkBN0FxXBZRybm
joeHXi6ghFcJokAS3cuD7HOWiqjbNfPFTBEoh4BhMbUtPR+iiYuLky9WWM0f3YmcrfkGAjIEASOW
/kr/V9fgmCtuRWhd9Obx8kDvi6agPrIGKh6P78Tk3nYMNmD18o4jjAzGn3Of/8MVbncrv9XyrlzQ
C/3dcqt9FmnUflkxrUcCk4EAFvzM0dfXeQOLjzaafBdHwTJIaw80BdgPJDNWFEyf7+OxxFfxRoVm
78yc9jB6dHI9+9iTvkkQGJCR0Dyul3kklAqXVa8+OJdDhDpLBL8HV3EQcxLByRPd3c0/OZoW5hVr
Fn5pPvbZGB5QXh2XpX5RlbRcaxuGfiQmaveHtCN1OM33AbV3R9s4ylAXJAhFQrE93KCmdMPXfRdV
mrJJDGYrB1QXkCc+wCJ/aiccT3fuIbHPQ0aAaHuUAF8+HhrvyX/wn/RL5fNZQe/kZVZc0Tf/1Q6r
vWJjfpnP+CA16b0M6NcBIImyXr4PVRlKRqthZnvhAajhHKb/aC89YjZInTPTFEOG/2Q8ilEg51nf
IpPEEueStYfjXzut1rxqH82sYwRHbUHLiT1WdsinVxNoifZVJ8lJupM0udUDwFu74NRvCWmaddBg
3GjhWVa1aY8/9YVCJFyfBymv4qvqfpPktfJ1w4WWZcMAxPK3Tk99KXQc2eXcbs/V+oOfCpPeZOKS
NW4+Yj8zBzsLD6tYqtipHK5cQzhU+FyG5b+4dV7T24nP+7p23y6C7SGy6wP5Uo3rGVA8Akn04PB1
3vOcdioAnH/U9Z5PTVXj+uKZjfdgBXXE9zkUCdqNCcNK0Fwgx+8JCvX4Hc7YRvhDrnjmfuR8CkfA
JChARp29YhinYGMm+wWBhn1l7lf8lSuXhJJWlXLMZJ1nxao0J4gLLoHE9gwno9ERflxShVGcBOWb
c4p88/yrREDlZaNeRaCgKjveKM6DmRCpzupk7DFvu2K4Sh3sZDKz5oJZ/XYVJPx6H/2L2P4aFE71
vRY+VZDsxVngGpHsjUOW6E0xliVdaymgn0ELpqb/AIPw8tYQraAGQ8O6RIttUZrqRwzYuojeUlOA
otRQ3aJY4Xi5yeX53bWpJ6/wmUHDnMdTLQ1/RS5b7dqvo+sJxuU7X+5KvEF99JuAb0dOlcVUKslL
LJ+6MmZEFfWzzRe0fwo3uesTR4Fa79J+nttpCD2cBeStUY61PNPM9KgLx+MHpX1jwkYxZlV4x9Tg
1jQBMg4N2ZCpLH85/E0uHsNoZCFIgAdXZb5Oi6ieWCcpHer3GIYHzJB1kcQOsheWIrRAmuNM63Xm
LYuPa0Al9b+eltZx6g+kWMz9CTj7eqWw1zN4h93Jk2jJd2z1AYSQKfHDlCiMx5qI6e7U5ld1H5q3
jTcGRjxyaT1z+d1aOj91Gg2bsr4Awrbd77na+TtEG70B8adl/y2+/OTt6Exqb8Y550CPEJxFTkjg
7rhEcRIJEONRMmLqWx3791TUwqI8ouS7AZY8zmQ7krZSf9dKoTg6UjMACizkk0MTPRvUhO/W2VS3
0ygtvxx/a/pM+JYcW+PRrIc+E+s9/C4ENTAvmpplfx9Cr+QIU7ETzEcUF2DRszk0dCBFbxt45JTE
vohbV0qHDQZryxO6qEIrkOTALKIfB46XFA6KzXNA/ngXO6Fsi541YBkBtNl76f5UacI71rJx/1G1
1Cm4HZ6SRZ5g62yYabcj9sSEZ0A9L03cK5JBGcflFy/SO0oyxK6hDFbMbwPLbRjXBoHyGhiyq56t
JV9X9szvt+uc93EhuqlL06RAbtJUbGMmhfgSAtpxaDfTMpO/u6Fd5+cCL5GEtFM5Qi/fEw7OU22T
gfVduzTYL0cdc1v7PgOtt3QTTIjZ7v3OW21lrCJYfRyf28sNldlwvdeNeU4KR33Dxyes65S3bzns
74sMj/fD0E+IdgQFf2DgxCBcpRW6ZszHh13FoF+Vj26ufuO50+D81Go4h3qE1DtDe3gNhBW0Hdt+
GAvke31uYZ2PQTdphkKRKOJ9xvMZlzIKg17srmT5bbrfvGeXp7oW1CN7G+7Q4AFSE57w5HQEJtar
mTlevgKvQZGvKCpZcppcsdsFaUL24CdOKraLi+M83I5mXa0pipduRRU+5amOiR69055Jt6LbduYr
VxGrFsHJ1y1DhWSR0MLfZW79H2dbYIN9pNbMtPnhW+PHIk/dooZ/nk1Sthkrlpj25/gdM+edEl2Y
mBD7ydPjZGSwOW6Um5tjqATGBqP3GsG8I0O0O8BWQFuyZ44MpXaL2UeCrzCg08LKSzKuKynMDI+w
b7p4jNz+gJqchGZzyoZP20AFxHrACaJfbgj53WXxkp8RjvT8GnzURVpn0YDiT23eL+xY79YeAV7K
lM/TXXgE/76hgpmBymEQIId4pt3R+cLg+eV+0DNqujsGBu5nUTUlK2lyAcRwTlNNfagWmYPL1BMg
yfbaWNWJtWRz1+npqQZLRDyMBskgqxkF3LT9qmrAUhQa9U0ejHnmtdCNZiFW/0i2sFn8+0zC/I50
a1PQOyqhVGUJEXqX7+kikaYb4VNkv2+JNEaMsyuxlV/aWKJ1uTKSBdEu8/n7ekHYRbSr28+G+hoQ
xDlNvcmeRySJyOpnDBSapTO8GFbfTld1Nxuv417RP7z6YXHudG02F4ODF8ZVHCeqfq2kzUpbm07e
bp96FWQheBertt1DPStAoiMd4A3pY7uKi1oeUAyh0XDmevAK8RyL8vDYH6Gxjt8VoNaUjURE5KqN
KY0gi7oKC0elJuVsti9A7bbGa1o7C9q4mmxM5UNC8Yx6143063UaUnqdz5bUC1FReRLJwuFk3tSg
aj1odqo9gDREY8408+nXIeYSKEYkfBKQO26kb54OsoCC5greaEMA+l+0W/boUVkGkka3zWXNh2uy
rgmYe4Sn3Gf+5hjyHfX0zu25Ep45bM4XgzAlL01HHPS9h35dXRE/+IRE7fwcHtSZF1daqLRfY+dH
C9dzV9VjGUTUg0L43cqRXn6XzuN/Pa0p8xzpmCvewp068gQu/IaHXrdOMBX0HD6/Md67lzFaMKLA
S7nlGMB4QEOcitrClFmRNshkpgbDa71qPc+MPe1PuhBx0pkMQsO95336uDMKHdNANV/t872ZPIsO
fg1xkfshVHA/jNn7oVG8UJst039+XAu3h9RNNPWE0HpklFpdUUBEbSYwOKaq01qZxxy/vFVIuPzg
qjJkAvBDHYLNX565cXu/W75bD0Vo80MMRer8ymjk0vKvWgW1jyicfVKCG7QRQ6TkSzyQQO/R5W+J
8xa1ybCGH6sWVaBasG7W+AhyS7KKYTITV/U0RJ+6Y2HMBEQM8cYa1qvOEbc1g/kVczYmOT3BL1CK
tmcpjaChl0658KXlWv1jN5Bt70G/wnhx7u22aZFi80yOtVCCjGwlALrYmciwutbw8UjnHIK5AHtN
5pxSZgrePCJR388QE5ksZBtykfMzPa/k9Cwmm/oA3ETLyE/xhvNYpdZPofULWFVzdyiXsxAW94Jh
AuciW/VsChxDBt3QXQvFdlAGMTxb2OwhPeflX3ZuiwQ8mt2PzX48qTeH5dK4Pzs7AT5atRyabcfe
Ua+bwi55hy2gaWcvdaR9OwIq9S4FpnQJCkvtbpFmLHMjqr4UQhj4bj28wJ12PAJVVBS4j8+wVtov
xQAOqxC5+tOFaPEJi113Mv0nj36ilIcnLRzgaA5TjF5hbcnA7RpX+5O0fhu6uZzJoZhjVfuDCGKe
+5jqJ1l00D1bQ9/3i826kLkILl8p4wT1fdI8WNFeR7nRd9Xf9xjsfhPGduTn/sIv897fG9rBudHq
l8XVRp/jntLw7ay8MeyFUT2jHjG6hFqTrHCRGcqTOVMYmjJ7hfkOUO9MsAf227edXjpd+bUZ0R/a
69r3vYeFkPZh96Ton/oeH1WbLqn+sPHR8/V9msG3EWEYnXALCqE1Jzj0QNHjO7EQT7VmSNDRWmqI
x00QjIYSgu5AjrRwli30TIXC8Onr/tIFrI2ybXUARhPs2WqZg4gdg4dfHxHHIu4352LIMb5B948Z
jVl4h0Hy2sZs5A+I8LHQLmA3mqanZUAad9ggVl3D7kThwdIOqlD70PdQrDsGqQ27Kw99cxnDZwP+
j6geMhoJMMzr5GS0xAuv4BbYM6bScf/SHtKpDJBbhHt2Ev4HL78jZA/x63VkcRPvqOmu95VI6M3t
afy1u8ncWNa9iUkFe1mv8sdqrJedX/bkjHkbPde1epzzx5OmzCRqYOC1ZR4wM/XMVrMSrLr8aNnd
1yjtnqltABBdOH7ySsUP1baq2HrrspwOIBwlX06haQsRnVXOvWR6gpk+3uedlqXmRJbRhvp31jwi
qE8R1aPIIbc1DKiOKaKjfYlrUBLHEa2HHB/FylzgL3t2PcBo0576DhWtI8VJZIWxKUzCfRMJM9Xz
zGs2a59s1qky97EJMCNUfeO03MRI868Tfj/a6Q/x0Mtyuunoy7hirdV18muQDX8huQ7aiv6I/753
DQaz9ZzjMiN0ap1uHXbgRtBLN+tEgyvOnl6B8tu64HPNHSCbqr3edTQIw8Wn3NG5JrCnhEFlp0aq
Wli1S9rWOBOm+24NtEXwI1vYA9nj6dgkyH3aXANP4XOcFobK7wIRtFCNNUauKuDq4UprG70sbv1Q
MvicVMsc323otNlW9ONEh7/C9vVuK/Sz7oLOjMKq0kVRwW8PuQqVRFqiHmVIaDYICgHt4Q5LanEE
JeKad9P4qJmnJK/1uKJ2n2BnQvl64uO4AWcF1skWWHY/7RyJj1NhwssRLcW4zuoNrFoPvxO5R88J
mQgH1slWJCiFcNgjb1zvKMmVnP8uuK1/2Y9xSp2fk4CO4Asd5iG2bn1hEw57r5727pThQaVIZx9B
tvXxMLheTPIQRq6LyqlD1wQBd6xGSW2If97XUYrXdIT8rqjc1DQVv20xrctMYbjAhGUoZbwbIyp9
w3JQd+m8TjUIW654GCBENy9dhiQVt4K/68UvTg20kTXVtgVgMGQuh3HlLaZR7eRJ2qZe2eG/i2FS
ld59/SYaCqwrC4YYHiw4ZEvT+uCNKM+fWgtXOgOoQhGCdv/c8Eh6j5MXO4yMgqT4TfQmbZ6/+vfy
cKQPqsnrLjtKVx4z22pcuDMtrQFWydq7W9BtacpGVCYrjurg8g2AZur9YMpQ1TBRXHzLAYkFB8lM
HYcNc++gtio0/bS3rLlJsFeu5SSyZG54oD5n0Cc7hgxvHn3iavEcBrwOsQVIzVEyuo+BhbrzzcOj
qRZJ1Rt0Rg3CT6uf4bIKlUMjxZHEg9uzL69oFRYkJb6j963NnhGoqU1C2BOAlUwiEMr00uHUBZlX
Hq8f/Z1HZgZvBntIom6bwOXC4kX1yuZSeMW36eMIa0zGv1JoxEmXNyElTHpv4IkmMmAlS90JVqwo
f7XM6Pwa7DuT13pOYL3MiNlI2c9l1rEGi3TlMPH6cV7euwn0qwAgkBhN1aD9vF/SAn3YkCGqXTQM
4yZMSwb6K/HJKWnhZHqv+Cv4js7EbWXS8Jsa2SXaK/II+2wTX1GnaB5h5iW8Br7X4ge8N5iB2Mv2
wxBClZk7kuoyHfj+UQJH/HxjEQpEcuicOHO+G9yU/L4uHGqqWheTR5QrKUleV9GSMMVW8re0g3b2
fM7tbo4hfzvBnssHPGawIVU3Ukddld5uYGpOllDma9f7jMQX8zI3QhN9IW+j1yei9IlRKed96d9N
Et/ns7z2PKdzcDsEHOIWCPnO/TjxZuxNDQgcojtJ1qJudxpxrD4i3xiZ7Dh8eH03ZBUZdMGu9bNH
Fe/do9D1i2QOqkmIOeqoHq2XUXujujkO5OC6320Ajc27bLiQ7KkIcJAYzqlw/dGwWPesQG4h3JN1
+8PDZ3JsxbRi4lUBZ4Cwc9rkDpgtml+/JVmWVX/GcMR3GxctH58RqqHqm7De5GeKH7kcMcMtFa6j
u5qEm3fxXDzLQWkXQFlGFykRBW8cwuqOtMkvQgUmq31ZjyWoPKmhOWeNh7IBxwn6L6w5mNBfMI56
HLRaMWKeBCfP2ivsPSNt5zQmyX973aMshzr9ItjtM8mDVfzpP8ufxujnIuHxjSsVn9YVVzT9V44k
7SERdEO6KuQWxoLE7SAU6VeQF9plwXr6ksjBpBofDE0PVn53pIqa7wNjLNIVWJpez6sRCRLSyfS1
OFiucKriR/b3pLl2SpIMPJptBjJdYC12iEBuN5F6XRxnfG+N7pSgVDK9bFwBL6Vpxpn8O4IlJyrc
BreJFyW5oYexm1CM2WdcclpnGSFWhu+9Njnm5bIFd0I6J54E10yHITdd0hs6z/vF7N2zn+oTmZQS
cPIcFOv9yLasXAmMLxigsl8B7MZT466+bTHA9JvhsKScozqK/HFhnV5WAgIvLOUXnaVxe8MqtLQt
vebn+MQXnpISdLLImX0cwNae3r0W9oweFQHf8Xuv3DX6HKy8dVKNClOOVqfk7gKELOzsQ+GOIWq6
G9kOrO3C+Xo2S7ZGJMlBlDj+eEYO/KxEiljTldK7ERKCj1MfwomW/B4uXaaaK6wi9MuRj4YSA1An
cAaFHJGH94YdBtvaMDBCc67izMiMg1kwHtkj1pPkiDfPTjatiWj8CkICppSayXfIIxs/aSvPE6p/
G0G3k64gbwX8buTEF2x5jiCAaK2XaiJNyy0rQInirGBW+VpcqXYrKB8QxWxWJujeHx54j7AvmLFJ
nJhT6RU7JwYPMfpdAi1O8Ur09av/bbiclyZauV+s5to01Ncxz+2dmvCwIhe7pXSvJuuXON0LwrDP
NyLaFz1aE5IeBBye1PwSZIOJRDGOAfL7L3tMtsTNZgroxWQ52Nwk+Yy5xzumnN9RKMouf0sZbIQ2
z3N0oMCjJ8BJiTY5VNPYi5PxtwA7CIdFF2gHe9Hs53WbPpFe8mGH2QcqufMJ0OSoNfEJz4+Drq7m
usahlA/8nWfX5EydREY7eC8uxUnnpMP9LRNlgS4Ga8d7BECa/Cg53X6LWl9iJKE1turJArZ3rLNP
+NIqNLkylsGKfgpjbGjgUXyoQbPtpzr9U9xaJL8aWsLd3ccssea9IpdVmh95+yk+mgSMRzti0HZy
uWQQA5NkAngogbknnyhAgp/PtjQWT25s/Si+IdB3hpE0LlBLpHVgwbgd8n6uawi1FN2ELGuCX+pZ
bGctpuOBjjekyvAiJ9HPIDHe9K7hIB28Nobllg8cipvvoSrVt3jm1RWc34pVuXErWAJsfNHofkzn
W2dzFklkGa7L3GUXYtqfDvK9CcRUxdoH7/q2MvW5/vBRNGXtfeDiJJZOKyViYlx+r6eymCCik7Nt
56m4gqj3UXQRHr5ivHRydh7Crs8NoT6NnKaNHF61RcwCbnaQdBmtivk47iIbjXMosbWSikgA9kOh
Iqfba86cx1zoK4rCs3gvyi6z9c+rfLGR/q0Td9EuweajXsZgtF0qZK4aYy++QOlqlknPlldhKsEf
PLAsuUl34gIkJDfBU6JQJldbd/A3zrt9J4VmibaOYhXfFePc1/BFz/H1BnUMI0P5HR0qaINIt3Lm
CQaIz7LuJFdVp99n3ktVj2J8duvPYRpH6v04q7Jx1rGqKBo9hl+bjj3vpG2c7L3vP5lUxYlKNd+Q
oAn9dc+L1CGCU5/NxY/LnbklEgRDLIbKHRDAl+0Hu1JOkwftlihMWUJeEu3rTGLmnjz5LWVMjrkm
RKKIL624Aeon0pHZiFws2ZTP+Q3kYwaa7NPMUpCqiPtYUqw5Nc8QVQkSdrasdZtkib0ZLaoQoFNE
zEkgeaI0eFPMN5SZP1CKsKJuXpiwKpxZLLCUiyAv6St7tfEvHXe7hxM7Xp/UfH5mODG8zUtiRsA2
d/iPoalDlQHDgfiU9WhOeNzP7mGzCQ/kPIfud1CWnVTZCnnFcTR3IzzQaaRs21Z31bZQtY28opXj
3aoPq++4yQxic5/0GE2yxX4/px4r33GGpxZtkbcGazL5ayShz5w7vOzvJi8ZqI5++jgOX+/NgVUB
02fSlcDnFssRRq3bO3E4IjrHPbP2UYmHg+pw4/P7ky/e0ehCugi+1XbE3sTRKh9kisVVJ44gEO4Z
CBCI6tk+e39oHAPupLIgp4GJ8Ok17m3wPvnH+PVNaiaEn6xqsttCUqhQa7KPlZDUg3ulstoPf33a
wgxFiFUG3qmkOSdVV7WDpwOfO0gBOtifPtuYskFZagyc3ATAksUgQeQEHndNXWEDK8IkTXGTGe6T
Xf2w7Tk3J39t+oy+2OBW96Pj0jrhfIEJJ1iEyEews5qZ5AVbsQ9CQPMdJy1hZJ904Ulg8o30XOOg
XHIinxsS5zvl/3waNZLhCEL25qpPRNtvQiwJgQxZZRL64kHwTTd2HlP5lEyyaCV7IhnbJXLMZdCe
jZn32S+z7SU/2nTQ98nwpjCwEA2OvZzNrLHBx1pVi/7kyvkelHMLEJjUvzxMHOF0mVnECXy1rfvx
UPuzjuVDyPmTbOXF3Y2VPG4HuND3VlK9ILo8ND19mXMkncZ4TOMyvfyKTqLLJvOIpJ21Bda4MAIK
9tMHfd4mrGwTCgZ6kVE3OIq4L6l+SSjYsfgpKGl1641GezUZowoPu26mEGpBxXU/egkqZGe7j4Os
1xJY6YNuA0bFU7gZRL6tLiNnMn4mEhsc4hE8/Hr2Q3Ph5VKZsjhOjLoEJ9dmjrz+ZSiUtUhR7Ybo
MAgl3SLfKo5VdtH2sexUy8fOKGLxM25aT6YNnVHcgFyNscjUM1xUC4to3/pN2o8Ecm6ipemUFBbM
gZJ1On9rF+3WFdcy2C2UqrbenT6molvsQh6hYifbTH0Z7tmqZtcQZZMOTZbe9zhEC0Z4AeVCKr/I
rL+zPcHcVxDJKNWizczN3qYkwJqo+x9KH/pWEkfitfaFQhOEWbuN/6CLgVlRFDHyUu16Rs1DF36v
e43tjrFY5SuUEZZygFwpSYVPASI2++TYxC6JmaVnhbzj4YZ0W3btMkR7/WHbs8mQ0e9bKt3GAYd1
dEw+l8rI93cZjAhKtV9Gl6I0jvg95vKt1d2QTMM+B4c0EloSvv5kfg1/Gm4TeaTP6l5IyCOLItOc
S107dpq0t6fz5wzwEM3UWdNPfb3Y1dIc8EwpzniUku3L0TVm290jcLWwK2pdcTtMFqpNQ/70K8hC
KHdPNrCxck4KkESUHEzq6X1+KIL4Cy09yN6eaCZd/kixj2/c1CofDiRXkTIN8APc2O0jZnxoJKOn
1ol8D2rUeuGiyl0Y9Fd8JySMF3HYjWK1wRgTVCKUSlulyP+zK9/L8PmBb5kwlYxcP/qTpNMMvraB
54JqCYYzklexkSlVOJFupTWk5EYhfwmD5wZRO4apPRuNrt/+p0AgR0qU0oxAFNV6eXbrp/cNx1Ni
++WDa88+56c2uSZu4R164dnKtNSla6TiSIXUrtO0hMeWDC+hh4vG3koXHxtw5tM3SzGbZXmeNbPo
Dt38+J6BDbgMdScL9zO/U/GYE35AzRO1DB0QF6Asw9R0BB53NP0s5ifXg/npfd5ioh5/9QOCfuwr
4xfKgUDGh8ArVCq3FZFN3q4eC2gRWPdvW635SqSQTrSfzlUq3YGv5/ek1zOXjJsx4ldWvTGcTGhN
IuM/Ejnqu08fdlUPNU0+agNZ+cN7oJ8epsk+bxHru3cFu0VJpXsF60cS+KDUJs8+Nyg0bXfs3o8H
N2kuhNBPxDYLRVUAauM7E+hsLCF/IImvpPUIkFePTQRfE2F5rfxmpTCd3SeM2kNZ42Prf/ebyNvu
5xFFXnjlZ7THX5wGW6IHo98F65Drmcr9BkK/lLbGEi0TfHhNpaIQs5HAzs07oteV27SrtiugCUiN
VbDZOjZdfXVdgdHXW9Kp5V+7HOkDVocQsZCsxXE5pHlk2etg/IDflUSTkbI7bcBYOMjexNOxtPlk
fZvpiTaKxGdpf3BJGZd9nkyNYx0Qk7vaEiI2Kb+u/pCnyqNEOG90/3bUOgYchmnDfBTvWIPD3S8q
dVJpinpPF/OZkNjcvtu67UKEBimFxPXSK6SWo+XYLQgo+LnSog9MudV3FpvE+78vxO7R7WU/htvp
1HwqOoM8PUpkZZVgTZyCnnNjeCwue/kCusPcrJOkd7WriY+WRC7bw8OjnyLUaCRuk6v65f3DFijX
ok4zf4X60UFoWDWQO0J/Irk37AOKmwU7eJdfXWV//rDJ+Tt6Mej6mHXn5EbShVFag+/9Qf2QBCuE
Daa9GaK2v5chjak4Asc6ikP1paFpzxBnwNeMPkWs4/vWgOxyI0SKkIh6aUc0jy2yRpYjFHB6sXjK
3RnTagMR7iN8SR++SuH3KIRu2atP92uCVbPa9oKOEoxdFwIdsq1fWFV+SmXCxKM/ZHkByNpbkCP4
exXlFBlj4928wuMqeo7vrxOcrilQ1O4zelAPpnbFufIvSpKbteBwPowanD53HJgdrizkAEkHtfAk
wFOJXF5qGC+hQKUonIubTz+mBQ2SlOckA872IFtpD+ivB3TxPRgToYJyGo7G35m8StNFTrXIUlOW
mjZpWjPULTmE0DTuNWOQd4Zy3Pk6wAhGURcPu5AdbBe+L2xwOhJvC8PM2b9+Dl8qmRpmecjOhY/T
OkRP2qXmM+Tb4oWvZnhmkl3k+wZpg8z81bhws9NhwnlRwGkc7NZmUKcLscPGSE+s+mWnOk+iIxTS
+9gWRvnZ4xaDjIevJ9ltiZWbARvkZaFBoECDwEAYQS8aA71wkSi78aWW+LspcduhQWhVa5hKxpCo
AfN7PockmyP5gx1afAPUhualxE7bkk9Vl6Q6O5RyKcfrTwPFeP6+JlHShE3LLGjCtj042bo/nWcO
Ca3pDizF69eGpfwummY4cop69PLnkcwMbq+lDCfODvwmilRE4EYaK/kyC7crLjIjk2InklsYrorR
W4Pq1t4lqBEKcmoDYUlC1llm75ZAoeFtzmeoRmVOsBCjVm50oGzTHKzjWtB8fVQfHSrOLkWy3anD
t5+poz+m5/bk4IRmar7xKfbE7mJFOEvrvbrwKp2ofPotJviMKXn8ZcTgO8tSPZ7mqWhfmE0Atp2g
On2H1oDk18sW/4LzJtOvHT23RpipP+lsGfKQs5VfrZGkcGVqdNEVHm+oUjMDgXIpwZG9Pp5U94mv
etA6DKvx5XgdjoFVYQYDGIevAwR5l5nas7JDl8PHFLdmuG75pV3vOa6lx1iNip3aA2GWgy7Y1AIU
Il9DB97jBv+qIZfVj7gVMnWcrqmiG5mlBvtpgoOsBOo2qOoOr6wTPexAhU4NPsdDcnXTqRqlNFLX
VMenXER9MrH27szG8n1czdmqTkD58M9oir4JbGYFPyBVumsN+gVZiV0+nIqVdKRT/rw39f+ZXhHE
9RJMKql0vd8O+31FJNVltfPHb9WHlvPTKb0GyU+2VguHwZxGX/gmtedbPUn66occAXs+wwW50MEd
A3JfGxYOJ51ZjA5LMUn3TF3oyYZcGMTsBnDhxhmTcuLEAWkt8K4r2F2w0NvAKPrqCskNjVeFM9O0
4pzFBZ4IMErAwsknlagXy+z6H/LiXf784jGoqN0w+OFmKgMbBd+DzuFYVwPjc6md7Ve3R7kgtbJS
YLVUfGQzkdQfBFXp2eqcH9VMOjZ5S0ORPChdhkC+LpyDP/JAjnSolhzxzo1Qy9OiGiMKatoS2zym
9GkHEli6WTcouCpErObZnRmY1wRbuNrnCrjIOWD6m4e6ZwQXbd/9HP4ehdfOJAHAxj6QJpxOeKaT
xqo6lbvnPKDic190N1l9WjR80nus6vqqQMZs/DmEYckKez6yhfB5Pqsg96c1eW5WavQOXe8pvOSV
suJ1c58MrNdfkJBciiwNfVeJvYoOjIMQEaxHoRLdI8xFhEMl1+7cDOkFFb7NimeGMlCuyQavrEoF
7eslJrahJNvtkEe2w8lfsxre36ZBDT04Fn9oYJp3yy2MiG0fGPCnvQlWNu/jGwRjW5KAvhcfsAMc
6rizRLngLsSeQ36bZNc3ohGSmkzR7+PTQpxgSr4KNWKlvdRkJPHGkETWMcF+DbaRxX3xQTmwUCra
7WyANgpor3FLNX+PmChpdRtkfHq9MV68YNZDIrmkfbFVH4SkIXGEoCxEosB+WILAi8no9Lqt35ac
0ond32jchQbroECx571xbc3PJnOVR6MznsgrAnO5trXMIRWWoYI7ldG547wbanjcMHSjFuuntZG+
WIlOGRg6q7HCUcpvaLLu1NdqamQRZhEUfDTB1YEzVrlLbgbTn17ZtNUK6T9aTjZVWeXeQjYsGsQe
7m69HArgtoUfnV0LdGQzwPA0hJbRIvvgji4+LTovlIYZvvNrMrGSbnW7bIJSHV8TdW5yA00Aem2u
dZbyyw6zjz5eShudNyNs9IeQ7CMp8sOsFm7AMpXDzlYyR+CW2ga+5wZ08Qn+07MkugBuYAONo02c
bXODh3LK3gr+PVjU0Tc+EqiCLSXKpgZgvxrjomw74ZKJ3h45cZbt8YBHaByElPjyDluZZCriI1J9
Pr+bKT7L6iODzh4GAvLKFycc15RtuQch0PYXl8juOQVDbQtxx0mray9zrHID7YmfdXVFrLqTrbe7
YdnT4t66GK6PIihPHJSwV2aa61nYI75llw9ItQsZ/iQ5nxazeLgrbn5Q9nBAtVQ3MH5eL4xqXoQP
zlmC7dzTvukJm3rQXIVFPgmNLgoKTxHgtkeEqHL+mguf/LzoKMx4f4SNzu8n5EfhR+u5LRjT1o+U
F9R61GFXUnfvGxkXHImGQyUl/axwa+8WIMKOJxuabUP4VGi6pakxPFBshVLaK29gwmHMYo3gSNB8
29Z59IQt6hJ8wQXtCyN/IvUJN3tK2tXM6gkvOqyDJUqBdB9gNQiTHWtSgsO3nbU/MvpSO2px/3PF
4epKzIMI5aie4YuZUp/1zOT0lfiCOUVs5M9Az9wF1Rl0LFgE1FfsVWo+VIlONywmxKcHGEEHTyTL
5R/zlpPMcHqPhEXtF4YsTWGjij9RR4k/1pqFH+QdXEwhNjKvpYZ+hc4fk+nfUR0by+tJOOyc5+uu
yua2jOWDJI4+qt/h630v6JR6V2ujNrQjYE9ddH6jtBP6wj/e0Uq0mFm8GM0TEIKfdL0iJlu4aoL5
Tp4cPWMlxL9XWe1GAsZeuSLyy2iMnznV3MlvFgFigNuJb7UWyLi7JekyxPg6wj9a4vpGeW3K66j8
Xdzc2oq1g4n0YAmxUESha/bR26MjeSMnOl1Uxl7e/6y2gb5/GwYDAVuotrjHKQPQ/h1R5L8nvQSs
Ot/qrBO0v3nfUEFr/FtoJuDeCDdull+7EzYR4vWp0XpbWvm+rjQWkt5jJDVGuM/ZZ7DUow8WpoQ0
xzu4/ShzSu7yTuFU5EJJJSw+bTnLsfqhFdBW7tJLCG6cUU2zVgzDpBT69ZLfQO/4aRE2z+e+if3Q
uy1zbpM6eHPI1Nxv+bsttUbZ4OUJgXH8CaTEuLNvoOs6P2cDB/RR5I9UvUFku21KopAUsoDwueiW
4y2zXwMFy7eiGJJmv+SFSBksO7s2V15OdODgLZyuravGF1/G3UBauhZB7ruatPDbDU0ObLMx7JcT
D0rn4JTmjTn+6+QDmWdtfZgPbXjnRuERaRglm9TQY4q8APKxiwhy4+UYgYQ8E4lkVJCmx5UTdiNG
dOhGURdxGfo1PoU5P77TFqZexyO+3bdtwaElIzxC+ez8eEJTnJmdbKVRVksRnQPI/Wo2ycU56YIP
crWOghDPaNd5L92icDAlaAVbrRGyh6b3UCsmCqGRCz1Xax2RZ0G403yivneAIX/aQn3a8+wEDM28
lV+NdpUBgbnu641E1q9JWJjDC2W/MLf7ZDnxSZoVapcjEHgyy0en4K7qazRT2CXNGnlZQxAQ8vOb
+nkVz4Yfp7h+BSAKPijj0Gnunt99mNBFHoACGKPy9t+5vWBtsGaU5ELHsJRpYBD2iioJ8eHwcJ5D
HfR+w3mRFKLUPUFRVBx9iqBvf8AW8vkairaW82J4nUVLtgJXho621/YrLi8Y1bH/ahuRwb9ZNSxf
RKHvuZqwR26eIcaMcToAz73OaFQvVMuyzxmjvN5PJcQUDgdaq3uark3Rm5xw+Z3PnsVTZuX2Q+MT
YJNJI52evQVuBqcp9OVn3TbHmFzz7DkhZupkRbu2MptII0Asfj7JqyEqPm2k4wM4W/fjfRIT8Pvv
nF2xRokXY/+clitqe//XMol3dfvvLpQKsqBIoCtj9mgtnx0OnU5xlVJH6YmYXsI4RWQuyjeqVWtt
MBiCWtx4D1scOwMxPop8nVojWto5RoWGq1dRA52FbXEC9szLktf2/MY1/XjF8aBeEA6+OZY2DbrO
AdJnMqZqb2CVDaFbgq10s+NFOoMg8SBHqEPiZtUwqKyja9uhacf7KqjVWG3rWXeApUxMyKQVpCcR
o89rtcou2PKVM07oMtg8XGLoVT4zg/yTSywF2prDhiqq1DLwWa84XBkqylVtJSWbsQ2du6oC8InY
vyyLSpW2tZ5AipQ0iK28PZ4HpJnM6LboIz7sZLfyz/2WOa9KKVkCxAYcT7YDHgE+eAESRBBHuF/p
pUiKySq//oxTLupUen+we1stgB5+nehFAcZYw2ClSu+/eIckAH9D6DEMqGyBRpkIdHrcmY1NOSat
4HS4gXfVweE92Bkx0yXii5DlW3BLsa/aFCb3g2XowDcQwj1kU468FGXFZr+BMJZYA1Aw7MQdsIFa
4ljC/Kyj2QO6ZaGdWgYIRBxLsAsl7ZBKdp9PaSLYccVfE16uQ06XsKc+LPwCM08qw+gKZJ30vKoG
7UWvuOIQl3WUT5HEG4rQqxQJHjD9KExsYER4jMM9l6GoACvQJuhRtKQsPbBN0VxYHq3Scdrar+mx
NPiR9wWWqn5JuIuWHvA8JF+aa+m4KXW9HCiiyE/KIpzCpTyMYXfXnY0bXQkroY/UVYcSBlLXD8Fu
VnJ4MTF1i505SECzwRVit6O4GUW71Qik+9vKUqvNfw0Oo/+67pAxJc3uUKTrRcpYgfExfzpUhVWW
gc/CoD9XcDq0d2ggjTI6T/KWrupj6uGuq0jMlt4KVqtKpvrB50ZGiu/zvjVRJ63f+5XbkrMYkPu2
k44sGc4z5SW5d/CyiRs/0FeSm0AsrgZJWEks3XlPLtGailg1J40PXitH6QOXmQc/PZkruql+TEnN
YcOaY0+oJKcUEuKtW9/+jvx7uWSStyFt+pcNwfjDPk/dVUJ+cPCklFoTFXSlguqtjaO+qBRsmUc6
HxtiHVA+/vOCnlv+XE/fO/pNvA8Xfr85REq2LmX2sXL1aCW+ASHZrrLhdCI8q+l6NyW5am7S14Qp
QKFosFIxX60u5scQRx51mTCy/C6FDgVyPV2lVHMT2jvzc0Z3uQ5oCUbo298dFSSkMaeus+RHMKwS
GCN4tRyuUMXOdDrAcx0J34Z6oO0OfSUvXbE48Ib49Oj9yNvsg/YAQQXPQU6XJpATIAg6ZzD55nY8
6mFFpT1WaUmWX2PO5LsyfqTrvWMgLf9ldRvrZzIKO+5HA4oU1kJcQ0W/KruvUpnBKxfUAwTT7RNt
slx64VVBk9x6oViq9fpqnnUOUjC/456vM2G8PqgHzKiXwn6fbteYMldhKMCkCvLP94dOJoi8sCh2
0oG6P4P0RvlwJ0dWf2WKzp4dxWsWZgYrEAk76nNp3R8+cf3VlsHe6t4Jhns005S5HtNefyShEFs/
Oba/EEzbnMyJFul0GdXaXnOv1Sn/IcMNRQOXKGfsij2Bw+ucyHq8XqG1kmG7+2ZQGALtVlawKQVL
LFeYaGI0xkiiHNRjlqRDBKZItzNA+EnTg8mUKbQ42aV1Cy9rl+WzmYmCKLvZ79IGj9LV/FgcYSLs
oLMWyzON3FJin0FjbJRYKvBEYstkhZCt3PFdjd36NhJm9vOOcnvmWiB5S6Wa32D6HtmX+Efeymsf
J64XCuzN91VItaxZxZ+gm8QvSzj0GDuRH67O6QOW7jwvFIGLLhhZgD4XtRXUz5SFQXTqii+/s/Ko
EK6TG2Jk543KV7d4o7eBxSjFwbsLrfHJhN0bIqiuak2bTJOY1bAmUYt3Q8U2WZNtzfJUhH0WQryL
B0orEk/ixiUZA6uI804jxbRe9mL4yXQ4AUmLvzvpAeeNO+T5LppameRHCLB5VKlAunfuHaCxfPVv
aqDQMG4Y75zzm8BUNGODxDCoBCC8rA2Rc25JBBinXpzPZdATaPb/AOYgK38KZW5kc3RyZWFtCmVu
ZG9iago4NCAwIG9iago8PAovTGVuZ3RoMSAyNDUyCi9MZW5ndGgyIDE2ODA5Ci9MZW5ndGgzIDAK
L0xlbmd0aCAxODI1MSAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42oz3BVAc
2NoFiuLuTrDG3d2d4BA0uDbQCe7uFtw9eHCCB3d3d4cAwd3tkjlzJnP+96ruLaqg1+ey9t4NJamy
KqOoqY0xUMrG2pGRlYmFDyCuoKbGygJgYWFnYmFhQ6CkVAM5WgL/K0eg1ADaO4BsrPn+ZSFuDzRy
fJNJGDm+GSrYWANknSwBrOwAVi4+Vm4+FhYAGwsL738Nbez5ABJGziBTgAITQNbGGuiAQCluY+tm
DzK3cHzL89+PABoTWgArLy83w1/uAFEroD3IxMgaoGDkaAG0estoYmQJULUxAQEd3f4nBI2AhaOj
LR8zs4uLC5ORlQOTjb25EC0DwAXkaAFQAToA7Z2BpoDfLQMUjayAf7fGhEAJULMAOfxHoWpj5uhi
ZA8EvAksQSZAa4c3FydrU6A94C07QFVGHqBkC7T+j7H8fwwYAH8PB8DKxPpPuL+9fwcCWf/lbGRi
YmNla2TtBrI2B5iBLIEAJSl5JkdXRwaAkbXpb0MjSwebN38jZyOQpZHxm8FfpRsBpEQ/AIzeOvy7
PwcTe5CtowOTA8jyd4/Mv8O8jVnS2lTcxsoKaO3ogPC7PgmQPdDkbe5uzH8v97O1jYu1x3+RGcja
1Ox3G6ZOtszq1iA7J6CMxN82byKEPzJzoCOAk4WFhYedDQC0AwBdTSyYfydQc7MF/qVk/S1+68HL
w9bGFmD21gbQC2QGfPuD4OFg5AwEONo7Ab08/q34X4TAygowBZk4AoyB5iBrhD/R38RAs//gt/3b
g1wBOixv9GMFsPz++eeT3hvDTG2sLd3+mP+1YmYFcXElRTX6v1v+RykmZuMK8GDkADCysbMDONm5
AVy8XACv/42ibAT6u4p/ecpYm9kAeP9T7NuU/luw898MoPn7eNAC/jeWos0bb4EAmj8012XhZDF5
+8X6/5nsf7n8/+P47yj/rzT/vxVJOVla/qWn+Y/B/4/eyApk6fa3xRtvnRzfzoCCzdtJsP6/pprA
/xxcBaApyMnq/2plHI3ezoKotbnlP4MEOUiBXIGmyiBHE4u/uPEfsfrvc2YJsgYq2ziAft8sAEZW
Fpb/o3s7XCaf324PhzdK/qUCvp2d/80oaW1iY/r7kLFxcgGM7O2N3BBY3pjExskJ8GB9O42mQNe/
SAxgZrK2cXxzAbx15wUws7FH+L1SLk4As+hv0X8QN4BZ/A/iBTBL/oO4WQDMUn8QO4BZ5g/iATAr
/oN43iyV/6A3S9U/iAPArPYHveXT/AfxviGjfxD7W0wjK9s3rv2+MP6xeZMa/4NY2d6CG9sbmQAt
gWaO/xJz/i3+D/3+cWb9j/gz0PF/7HnZ/5H/H4e3CZj8gzjfcpvYWL6t6r8SDo7fEiurP1X/3iGz
6b/gW0rgn4n+RnZObzT/Y8AGYDb7k+KtEjOQ8x8Pzt9qGyf7fzm8mZj/ifimN//95AD/bfJWlsWf
It+GYeFmawG0/pfFmwz0L8gFYP70L/i2iM//gm99/6mY661By9+U/KN/m5LVH/h29zD/ScX5Fsv6
jcr/0r8NweZPdW/ONv+jfuvI9o/6LZjt2xtl/T8L42D9W/q/63q72pjfCPP2Fv3LlOsvGcjmX0t5
e7aZ7f409Bs5AR3+OoT/hOL9LbRx/D8MYmV9G+2/Js36Nsc/k+B8c3IAWoH+lyScv22Azv8aP+db
EIe36/2fGt/qdrA0crD4V+C3sv+kfbs4mR0t7IH/4sXbXBxdbP7l8BbD6Q9x33L+9ZI7mNjY/3u4
b6t0/hd8K9jlX8fmLajrv+BbVrd/wbfFuP+p+S2SO9D+PxX8z5Vk4mT/thnHv16Nt/vqv/ivLwFA
oCvQBGFxzsaEP/BTdWDLXaUogQvjzpjgNOWOZgoto8eifavTAwpsIm1Fhv+6/Y1o4mAX2sq2JM21
yBLJs8dhYy1sSFP8h+ZHzyeDWJXJnWaEhQmcvvH8Q9GaXiJ4QkY1kV3PZztPDb/PkI3g7bKU2XZO
PCjKuZh3Lj3vXWt6S5ZHgud2PuxWcMkhPpVMMUaqR+j6Fc5Q5hh/ncUjg3FkJIKjwzhzRZ25vpnG
yBp/JZGNpUfwOopk/+ahvcEWdT/rvlqmxubQgU+Br41HBHmNMTJJ5SH2K0kWd96jqCBiXXA+k4WW
CWx9pJfEc7id9JhPR14GA5fF0n6R9/0IhVdzDbPfx24k+IwdVUNbumrbQ5R5PHozFxep97lKDQU9
+rsDIfC3ofb0pgrO0bCKbh67m4tQ11qH13KHx9XjOu5DOmZb8Ahb2Cv1YqsSzyF2XlgKMIRXuzwd
nvmf0ospqjy6P40f2U677rqqtvaVSp44oSDA5iemoqJh5qf94KYcjL2uwuTQha/gbTYGg9ftpNUZ
xF+SUl9msjvffeE4zhnRTuGRe3R3cSGsc7NMGC+Q4TTGqCf5ZBJ7rI1dBoGSGsYQz52VPzdYIlfF
d0cuIrts+l1kslnqCHxUIWTvttOgJOfRFJ3cnL764VCw/pfQYRjUjPbXECOfhvpkTcIwxWusMGlO
LealbQHt6r78X/k5Ib3x4DgEkqPfdIbHqLIjZRC7OH7N3t4gR/yESULFs7D9bFYfqqhTnkGJI/Y0
OHRRIdUlbK6SKldco/dlNEZAdVrZv6HjFTW67JvgdcmWzghhd/yiXiW5d8qI9nSn9oLbkOtARUR1
SFW/nyaVhE7s9D5YOhVG3U7TLD8ZL2FzkLLXvVdb7Hp796TR9dwnJoPnscjspWFpkrpV691I/YO7
PpfowWmF+mk6V6uGWZxdre/JWCNCRyvITPY7mGUxtmYeLBIdnlwipXtZ+1/59Q6YK9osPMcnmO4K
VUSh1gYr5WYgrTIsb/RXqDRXfHHDV/s9iOtzz56tpHrerZ6WEn2tTW4nWJpNHWSPkZLzlsEJ/sYt
gqPGLbqi8KikjBLGxB+1GhMhPUQPCv5YlcnvVR13l4m1+6lX6+O15LxTKUlLHmd/s+1yjJhMS8Fm
TpgqAOepOJvb9kNrJAeLCbh06swsx5mTzhGyi1Zrd1Ja5s5XthYdx4mpwaGkpbyI2gxhi6vUsAbj
jM0XukUiCApfBNO+b4ZhFADlIKSg9C98fmhk/tnnxbRRxZ7qk6d9xYcRZrgw96WYEnX5jndoM6bJ
XYXZgmXpGZyjly0+9AQ/8k8+cXdSHoJEXpNxtjAH0GnxwSdDh9WYwSbsQt+pr0xI7VfdxjSyJjhK
jvtP1a/miiBP5vrisuJ351VL6asIJzF+Tfx60VVghxMIq59B+hgBQcdq7nK7x9aRw8FckJ3VwN4u
UrqlW8ntvmzkfjDJSrhP+6WeaSP17NIvXNLVX4u6aaDk9oAzVMrER9D6UxvbVusszJwJ1q8YF1ak
yKe7kV/svsZZMnohGWGdbg3VfFEjP5HN5nKKVw7C43cOzgsei8zMjyjbbXMeBUDnJErENNQexdGz
1cMoLqUvqruqwHRqHonX8+FJgq0atvGxjl0v4lupcl+x2SKb6cim2GNMfaiAzuQT7YIsGMTDxVfq
xJjyYBRwJY9JqZQv3Uab6ZoDfo934/ycqxn5ylaiMwP02RrzQ+6rQ3lx6SY4JCF4huz6aigIWcrO
CFTvKiu3Ow/KYvVuVVTSS8S/iUPpV3A+85JfiR5v0gv3ix1S7K300x6IxFXzFdJoUu8yQIaAvYj1
vi9Bwme0jxtRywlOnMXRAvlCoQaKMXz+Clm0R4XmM1YqSZbudN68qLXxUGx4KoQ+qW9IDFZLk1g+
TQ1jlfpAhChHjSq3NY1MLZSFniG5oazIwKfwyyNMlf09mwqKCJdu1oYw49msPs7HSGrf5V/XPlI4
THYWKd3Qt1oEWRePlv5GJUUuI4uK39VtRwsNy8uvttIUeKtgfhpgyZpPGbuQbiUjjbQ49PgNqU0l
gJVLdEAa+w/yadqR6vmA+nJcmuMNX3/lF0PBRlDvdBluWOjDdCGpqUXLlFpLfwFa/vyRi946GncR
ddudbYixejO37ZfiezO/CqAuIrYNXUehEYQq1WJt3L0p/ZKt3j5ZVsR8pPQArYZAaUh1ROgRSIMn
18vHJH4EGpXjzW13le5lxHTeknya4XA14CQO3YnOXmx6CkvrYbjKLDTdsuSkNh42XrVjSJK+YQIo
xVf+4undhFdUtL7V7nl/AQ1r5zRKXN9fNaeQANF21Wn+uD9jygwJwQRrc+xN19OahLHZ1IY61A7E
sr0brkNgPan2skH1lQM7okk69RB9N+GgsE1kKAxAR8qsG/bCR/PEuMjAAMMo0p9aKqR5XGJtd85S
AP/4tCD6KYZUA+oy4DOn4EEfVbpWzhGIeNHlMnjYE7cI72uws3hFuDLQfVsKqmotct9QKmBLFlaJ
tKP0xb0vp787T5KJlidPNMPRkD55zOZg8SAB7ns5sm+AO5bhLqnni0+5Ed33UdM9dcQYKFhaJkcZ
Qgu72PmXUGI6FshsuxPfpirfCqG9QEXsfnX4XvY+koHoDW7UHl9eJccfOuyekWec9iyQl422fQsv
jws8sOuJmimEdhLyva0tUR4rx4bVWPEDpi4JBJ7zgcjvZV/dmeszfklTt2lTBH5ZBEtdUBjL54nM
34iK7tNGGwmNAs+HE+Be96iQt11D777VoKXExNj89XlohT0g8ChVzSb/Sdzai0OoXvvVfqDSo9ke
t1Nd+5VXsiRrbub9902nWA7eJaENQxt8u7ZRZv/8Te99FNetpGjVIM8MM16S+TLhjo/nTE4DYq5m
740ln5hcNPkfg1JtGDrgcb+JyX/+LFfnActrBmdu/sQAbrnvWUrVQuA7hYeiMGBElzdDcfOFqN2Z
fOWH0BG3+pHJvs9o9w/YUjDqegisEOsGRdSJ1DHWiLS9As21vtIX2KLFV40VpOIURScYet7XJVQO
bvRwt/eoNJNdL+vryEV+yF0dYWTl7kNbKDZKXQYJnmUm2i+E7mL5uwEi9dq+oiSrbfcbIkZ5QNek
HQJj4Zg9IbIx7ETw10FYrY6g05OMOdwv+2oF5mK1llCYi5G86s9SB7IVwmQYOrZ6XYhL0EO2YxYR
C53ZYx1xRefB6hA8vuOz8e45e2tt8sHCNb4PEPG4T3zEcuH8368fcjRfKUc+JgReQ1EshPDhGg/y
2m7XSumbpomNEc/JqtCAc+kwqtEdc5BmRE66aYEZUivUPdNAIpbDVRwPKWCWKouS95nF+qqRmRFG
kEEJA2+TXz4WUsWptPVI9h8i6hWxyfseBPeAcUEhnQtb0PJQjWAzixmhmQXcJMWT4jaxhNadOaLV
Kwj0hkN+ZAF3b2Vdp+CiwK73evTTFFhn/bQD2uLm2numaOOoAoJX1tYA9orldxicx3LUnD78smnk
W70QPPciqpOsHS6i2VYdGh5lYYpvr4hiXaNFNH3ECQ8gvxySgRnlb/ZV1sPFaB2sO2/EUQFvf0l8
+pXYJAPJkEA2IJz+Nd7vZttYLGt8bOBpnsdzZfn9eOba6qkuf5M0EoJ13yaMCVvoeoUryccxGKxs
VlJhvg3sTfTGpB00HEdy4u4NHGHKxsnbRPPAMNV2oI57WhZwFCzICzC0bkGb/CBxhAT5ifEhCC6w
50gpkMv52t0pP0bEOAA+vBce5Fpr0rdqaL+MQWXfsUeIjCJzdACDEY0fvdRoIIQO54fMqnqgagp9
BYa3o0VxEmRIm99Vfj3ZgzfPBx2Gc9KeiK6HeKeCoTchJfNd7bPrWfonc+NM6XhTOCYaPoTOrdPS
DEKmiAmIZMp8W7v2kishHJ8yIf19d1eGJQ/9uFETPfv0LS6b7/XBdY3XOQNrZY7S8Wor4s/j84BE
Jf4Juy0/PZ57Ciy3hnqxUBt5e2RfD0Gzjh9lFNQAqbteL7rrAMp7unAUjIeSB0dTh1ycdHFwRXeT
H81phY/+nO+9R30WuhoygYADtnCiGdNSQgzwsG09Ywd36vYBvp1xI03R2pJUIQ48eoRniAJOp3VB
WWK1i4fyeOlQbHCeIq3NehzrBsyJcY+nKkY/1Ja7B7hMx9cpL+WnowTHHuzcQlnXmkSe+YFpFcLl
TSZcXY8hQ6fVVx3sUAKSusIryv1G9s7Q6Kcg7i7dWXtr/2BFWZK6g5fw8YvU52yp8s9l1Yg10Bdt
Sp/ak1vffV9f2qWvhdUEvpudcChWmNVIDqctuUtJuuzcgC2RPdfSOB9O56k96mDtfIYxJZeVZ8UR
xlSoHRDGJOtNNy4c+dCJQnja1mhmUj8xnWVf21qBKGBu6R15mhzLqVUhNy7op7pzrndoiiASmu9r
AMs5K+2w4f94vYLdd8B8sdUUPvJZg3DVadf8p0/Cc0743AmaFzWHZeJEwo7IfUW7gZLMeiM3fvo4
s0eMPpS7G6Op/SieK7IZQU7rCMkDBrfs+uTc+V3g/HTHba3q1+Jt6qx3BO4e+I2HxnXfpk0+KxvD
eff5gS0gsORUdXXfFYy6E2zLTJeTBiKrBTSEq5RQTDN8I/YvOmLO/iUGln+05UclmQLD01mT2v+k
AO+ifptxxJG8sNTDkLEBKgjRMlxvpAMu6GnRR9pdKcTm09V/9W4i6HBfaRJYc/NT3xWfEAlO1soL
JsiS0GsaXrdy+ho8xvXopbSPL8mkZlynjT7b6J2GbsAeppFbe4KfDVNLwKGyTxZNhJNfPVF3cLaJ
goJcbBMsmxyl2UnVjt3oqalNcx94MCEtDz8oshsyxm2q1J23OxRopxkebBR7gV+xUo6byeeASwnr
TExHpiAwAkOc4rY/v/WJV1FGFzqljzPSYnYVlVE3Puz+pzyx8Qx2J0OFuZI1NQ/24NNASfl3Utx3
kjPB1PxEL0GsOICQ7eCMIR9q/Esj7T6A5R5h0XTZDfc9Wc6Ysa/alEgS2QeCBBfbsU/p2PGzFh9Z
b2v4qa+LJqBr9QvsUAXGaU4vfR46Od93IAYCedAMYozG9BEJSAzgTZPpLUvVyDyIQVyVBs72GkrL
OLnBcOAxZjBJe1n+JRYB6+bMqa7NOZWKk8d90+pswhfm4idYH/xKschtEby0ZGDldPzve0MZ2qZv
RVNOVZRHSGCVP4MEbjXVwHfi82OQNw4NQx3HlELjlPvSLEeib9Q86HRZ1BBHiSkHxJZ2shWzkaqF
oVkSkm3xX49f5M9qEz7WViEvrd1LJBgpwuwIGflh2LdwzMfPiuDfm7aVJHcm7DlXcGLVQBw0ZXAC
sXskzFTo600ElUEQrw6lyx9jeYhe0mYmrKzCfdOW+SXLK+QPevQypD3LVeO7KqtC6gHk1wPtsO2F
Z3fDRLWFO3uVHc19qCWWeyjX1QT3qduAgduii0BVLhSc+7DdM2D+SWc7KTu4L5yYlpo5WgoUzBJM
lReOWo6aUcpYqH9oVuk4hBl2+ox5VkHzzMvZxwIDescE1hw2WtE5FI/1orvTbZOA+crs2NIid2W6
D8PFyarzKjumdCR7lorHuAvRxpifBkOKsSBcWp0Megsh8QhZ1vHYvxm0W3ULQjL/Wvf5cH5V42R2
tZWLcE4tA68Ildu8JTyIafep5DyVFmEo6jBtupo+80eOKEb/JNGEfe5WczEXlfREgjjvnJU9tGc3
t301xuX7e0q+kAtZ+5cfAms0pebv9bt6amu8K1yV92H0feW21mbwcTs3tB60giSG48nuGhIosITN
6rmJk5fS1r3QG+M+Dv+0+RW6x/6UQb1FrxYE9OS+9s5yveOVaoubgxmKByRiOSGMnKYkgLbhLMAQ
eBUd0fGJ4oJ4/ZudQCa7DqM/ZX1dEEy0PX90YkFTiA/oTBKDwuaBZwGIU2S3YI/VG219/O/YPUVj
3aU2tThuNGEXVAmlh1JkNwsz92m9X7EoMwqNddrRlYS7z3v5sbNUXELWG/slyznzhMkyNXc8ffln
v8twnURCJHyEoNY1Dfsld3/l4MUWge/xQZTW5Z3sgSPsx40obBC7U4QKBjuEWrodZ6yxJ7H34UOc
wD7bYwc3vrGoV5BfVuq7b/IfZ5S49h6Z0aghDPlIxmfOWyFq22tji4ibwLHPecwjZMAprt8zJL6O
KBi6eb0/KMjAHRKmNYlbgV67TEp75d6UQyTlERtqjbIEH2RaQYKwuSYex6mbdQp1RpCrD1QVHmXR
FigharlQ0M+0kYTYnDtNQBb4GGpqBJRD1vfu36j3pYcnRWnbELB63+gc6WbOwitUWEtGzLpfcKxb
Dhwrk/mBpOqAPigmo1YfMTvjfIGxCPxVl0MCr9L82dmSwrMcdHvEYmd71orwwRVs0t5mW/rhQ2hN
qrP7+V56b8AZMHTxnCPasKh/BFhsfJvSJFyqQV1h5HqGTYzURbc5igPfnwPe7B2usCMufpX75XvC
NcsUmX0agUP6mKr4910Iwa4ptyGkR52Zxxl9AVLGAlaKSk75hDUFdHQZRqEXnNkEmRMw1hBT8gwM
Wd4TqlSZaMgg8irAeK951PoPE7pmMXRw+qJy7BUpTWvTYAWvcRUtp1RjZch6/3LntD0TYQNzhc+c
2jY9NqtYPwmLsmoCpsyygyG9cdeP33cJzTwt1B2OhjJkoWWXpWybfx7Ug5DkwawXhkzJWjA0ClVk
NrSFKUTdG9vaZ2MDQRY9OA7D0zDr9Ihse/KLF6yD6RnZc23PfrxGDtRsYIBoEQ8PAwNTwrn58uHo
i5Zh0Z6hrIFYxQaxReGM3fk+Jg8SKf8g08V4P0E7XU+7vMJtWf/pXrpxe0KBghx+spGHsY1cusyu
9aR6oE0DgcusOdEFe1znbKRnrEqbHZEw+lkp9UMx6i646sOcjcychm4P7LIeaE7NfCA8UsdgXbvO
4OhTMOH3vJcEzvyKImpFHhdUhVBKWHpJPucIhLAhskDIhumS02KfzXijAlcc/nEtpCjDGiuk26qx
PmDkxelpMZmxwwbIToih55229RBRd1E6+25XBHBihOZblXnfgs1jAXYLQJDiSOW+/jWr7mWl7AG6
IosackuWz+RTCXuBvxkbgmJcHR+7uHgMvxLakDOZgA/OQI2oMK9g+0yIUdw03oAH1sODwnBz2I8b
Ki/5XWunrwU+eN84lrM0dEY26JlyDYKMD4ooHG9KY1gPmH54Dc71T3eaTD5VePwsFRBIdz66XWlY
xxlxn7sKEXhAHAU7TxqYyFsF4x2xh1nDq/MjyzD2d/yROpRC4bY/UTKXo3EE0NNMwuuam5oRylvd
ZoHMRL/2IVHOF4ur16Qj0hYf7EsPU8o8UPXzhT9kqdn3nTWKxm3yH5vraILZUQ2s4hxLvGX04v7i
DzfTh7PI2JlOh9sgI/492oN1oDFYNCxlXbu35ifsd3x7pVia93CI76xTMLi2SbBaonN5Qduc68bo
Es+Kt9UkxNQu8l3IyOA7DBjVn8gS98E0nWvcFMaMzZzTG/PvCakYZoOlYb8HB6BN/mh5r+NvFnTc
g00VX6zc4dpQSyWDgZeW+nqYHw0SpEEdTs7+5c7nr+MFSKM4eBCag5rUq83Zk7F0/u6mfLX4ZBox
rUMM6e+I3uQ+6fKTf9ICzOQbb1LF/kckVZ4jDI+vsSizX7XKZDk+Yzs0nlFT2NOnO6Y9h+xy0wbS
rltRhctrjnyYQd6W546nLa8xv/Gt9wuev4wdjf1BxhTa0fJqBghFk0x/pttCQK3EVRi68efjJqy4
/vTOKj0FEqmEtI66AKodi73RFauHQEDHHnDysxTq5Es2/qF1zKp+qkPTIF+WfrKCRzevZHxvPdYk
IcQIz+Sq2LajwJIm+WGNpsMyPHucVxea36633rii6POkK2kB0rFZwhnly1RqT/9dpUvXIiGy71Ho
YfdwDcNC+4e57Yhaze6y8BLwkeZvpVXstVva9Sy10yDS0U1GTGdoViQAa5YwmzvEnt3Sz7sJLuKa
DGwALgLfeUg/PXr6znkmY7KL3VcrLLYe5vRjbPw+15tcDpMUe5WYzz8OJGwpNFXMBI1gL3GoZ3GV
2WzvIJrCM2poLNp4p9fSbUiMo1C1tB/lfliFBJywxYhO3BDcBIlp0FmrYOTmnleKL0IFoliU3cTy
Cm0qpMcKxhQIB2K+eP0yz6iHJk/GmxcZ300hbKgnCCgZ9SuXsrJaY7fqSGDSWlDy4PTR/NEmos4T
IAFIqHIBe1J0fCe4SI4gd1kyJRhsuK404FdVTWBLlvqTe4Kxb5BfUKRR5oteS9bIetnLrSfWg2mj
mbKFwxx/vjZF2c/Cke3YjhKZWD9FeVpEEnUrYox3FKd0bB8kwKKtnjx/frP8BukeqbjZu2x7xUc5
6yQrG+rnzzBu0mPMshhqdZ9MD5o4LRdlG7YbqzYQROxYDjoEYA52WdCaSJlw3Eq8zG+oRyQVbly+
k65ataGeJr25pzz5RmqGm7BTO0B4eVuzXA2/zkNA0Tj9eVbdGbLPmsO7JAfznrtvGM/PTFJ3CH/B
/KieruW93EzE+ATULVINzeZYVhdDMpAuttleFOhIgcLaj9r/ostzfXpv6Sz84bZXI8X07uVHe499
DImY/09hlrah9aaLhos61HYdVeRuEUGFJzjYniY/h8KvkP74S4HwuAOY45Dad1uHekUJJgAaguuF
70PVlPPsm+QsZS19lD2fFXz1a274Pm21xFfWlyiwrS2ctSGp7tgR+pfkI44gpCMI3iDcKQpUFIB8
Cma2+oicS7eSFUQUozoSTzPFohMt5EblL5BGw6C3dXgpZMk5+ZdRFi8bfl7Cq9olX+Hv2jOeEV8O
hDeRjD90OVbkKh1C4NeIK0NnVnlqpjpMuXhNYfrBH7IVF/v7X0TnrIS5T+vXspyCbTSIyICJakx3
rUJ/dchxhf8qLcGhhZaBqM+knD36o32gP3rNy1w/AYc1JBwPdxMmILkux9A02lkCdsdZIwsNa3xI
b5DxAFBya90Z087AexynW+bCM2044RqoNNlqQA6lT3sHm3LFeAe7jDqIatlWind38DlZu8A/Z9sz
xC14moBd1OK4kHoc+alqov5ebeXRZEz3wxWTjf5zFEiCZJNEY48JDydRV8ARx0AusMKrBISoNO/4
YB2q1ArnCwkY+4oZehh6SyETvOlZgX0x/UFDsIadFvME/QRuBf7tW90ZWsyyMU+rrGT9wLPKonMD
A4euasDJVj+r5LQ6I0HAc4wGpl6v4MMQRNQrHVaPrZ2oga8081ZpzwhmNRHcTCHWO4xAg0h4OLzq
dIqa48N6oCcsD2JP2hyMp+HkiDsX2sq5ixRDc+G+CqcFj3iFwvsD84MH7KDa0pLvZFyDLROOCGEy
wSePCpNVnx+/QigsKWog15qRlcp9SUDuuthdi5Lb4qyvZ7iy+ear9WAk0SZzewH7jDZRFmhW0YrB
gKtzgkebATVVPBNDqYBsaMFcUzXtkcOt8mMwCeIpn8WDu6Im9ziR89KLmXMnSXtF3RHtYHCmlooD
o2Mc0UgkmM600UjB61WZQSS8bdR2tG3CCI6BLEuc22ct8kY26RlPOi413tch5T3fcd0Cn8T4NMkl
7XjXBcyo+EXDJ4zz6ir2JewCvtBRQUigFYRfL8tVAWGl9arZA1bTeYDj2n6k6bigbkBocCfrhbYW
VEowYr3LAUTqzKtPy4Mxa07ARFBwLMDTV++HFSNW9Y00AlTBGIHQ0vgRdJHvzwQ4G6Jdx6zLzjGL
VNLLu2/sutykNkqQ4yQgV3bCRUPqczlKKh6dxGnTAZ5aMin8KtyD7ztJX51bfz4lb9jDp4jyF0XF
n8MgD1DQujLhJyGgYSQc7Rm81sTlktC3TUNVR/gb8JfCnacfRiR68hQzSR0VkeJZfM5bJrgFnkKC
XwZI2YlHXtLV0NtM5+1nMTyYO8woVvL3v8rkDoTjf4G264MD9E4KCZLlzwkXrJ0n7LB6kHLfDr8o
k4uAPZB/U4gxpTCYmIJNROJZRv/Ut0LMbEcvVeoOJFcpIo8aIpXHorYhQTr5ZLFeXsciMLHA+5h5
HSmOtJcpppa63IxWzzgg0elgQOsmO1zctaCDVRQ4qYIFlCCbH/Cjnd1Gn3m/L8Mc4zHLSOr3IaBV
tPesJ58MkkTvV9qDpC5uSx7D3McE4fue7csFdDrvaPtNARQlDdEWmDS6L3PrPiuE8egkqgTIUeg2
BOAOBipecLTWc+bjMJl7GhfnBRTfhBXs8K9aoDJ8obYIUl47B55UzmsJlsDnXYLhMYcooumq4EMp
7vanYz1ijKrEkQAKiu54K/BWsxhFzad+kKioONO70Rh2t/7f+YX1TyZ1x6LBSUt3JChCSyZYjKVI
2BoKAhaTHYcUVfZwM5uYbZtgPDudLGlzZV3TQr5DvxBiJQcReqCzIAmCpOde5Th3/UedjOUaqtfK
V9/rVrhpmDgrs26z/krslBXlWj7JKPN2mU9HpAtalrVm0PWlB2ZJDxjmsJUEBYaglYSH3FZuJZe9
kHt+joMdI+lPmGl1Nae4DsMcx+UV9Ws50bP5ZdHDcVj/iyx2rfJr711S8W2PYxsjarnOkXN3p9nJ
a3t+Yr4jJdHHPJN68/WqfTpEp4+EseZngDLxMvDlcJdC5tiD7pQvK1fm9DT4VuDW0tceCW0ZJgfk
N5T9l+2TBMvZJ2PA1zXbuagZAmaWzPEW0kdPRf7caNP+hYRPpUQNda9twd051cIz38yGhm7OIghx
ck6ayVf5oECLoQfgZCTssFKPscL5pC/2RkEv5Z4bL9tD8+oshVN7wLEQMeEqsXmgMPkPxR/P+TAY
IYTOwGr2Q7cVUM61zpASb3YRK/av7wuul4eSUs3fnrUqB1i/TwlAz6hhRfa9/T8HO+LdbZy3Nca2
0mqfiNn9ntO6oHoi/gHWPFfiLjNFFdAn/arthRIGTxGpMkkUfJgkQ/HRvOOTqq6k882pxPCj5DeA
7Bn241HW8M+4JzLTSyuWL9D1jUWOjWQKwzrPPHP1Z1zfs0QzcYxOPS4EO9HE+ZAGXdrqva8l2FnX
rWxFBTb8xwGtV3yG8nJQpYKtsUba1LzY/ausxe8xGWC/kM+hdQv2Z0lHkVf+WqQoVlRbURKRrHY0
wfOULY55Ddhz+LkKYriK3X08tjwmG/AjuNLxnIy0JNx41dWTuueloS52tyxhz+hN7CRezzNxUBmd
8SmRl+5/mSowQo/OncCPsZB0C1+d9FbVQ/A7Sta1Xu6IGdUXMyD+yDZJI0xiSINV9Wq8Attkw+16
nc1apMZuqaCo9bDkrfnKk8pMcBEUJibyndkuMnnJORUL6praOKrxo5lItXCAFGJlbAidKCG+AOlp
DvSudPm6sDvn6mUwSPKTJZHmfbdKaQ79/jtUnYiDw59YExNHW3JIqWcpeKHnTRmDLI9ytkJ8Sz+5
7Zy5n+M0uXKeyJ3lFong2tWmZjOpPqw0CmTfcCH0UVLcJ04rJmnsT4u4mr5+9ug5b6o6/YoMPIzW
HdhcoKIRPamDbZiX3n6BCWH0Y+f2CGsvCgaHq73BObfVI5VlHzKTUOYCk+X5ECQxoyNS1MSazwbX
GIYZvL8J5lsPg8ME2ql67k/kI8BfLQ9NePeqbW1THtKS8lNTCFGDVNZ1I/cEY824IYUQrzPta++M
dn4UYjQJfpfa19J8UzCD9A3w9oRDVosqlkS8kK8lMlzcnDf2rJuILDgfI3dSkIOx5K9iOZDFNNvb
PIcpLzJykLLpmIXrZ0cmb1Cnl7rdbc90hCi6h8Z3Sy8iaWpNY9bdijI9lyyRvWxLEN6boklXodUt
P06Ekv/Ctk1Q7v21iPSl/250dMDO0AOSHyS0Jr6HEHC1I51k+LN0xzEmP+geOrbF95pedSNPOq31
JP5Ir363IJcjxLQqKrBUeET7lJvdyVutiHV/ZX6WXTJetMX6naF86+HRWiBh7Xa5sze1fpoz9FkR
sO4WV+ZgHKd/Ki/yHfl5dDtNRAi833z6FtveAqZx26EYbi8vDOhKa647FX3OIgsZDkrIhCAsXjx9
1r3HLqDxpv8sJNOmhIuF+V2Dy08hQm1hYX0qAY1WnXcnFORUVOaFVRLpmB+d3lvktI0T2DTe6e6V
CeOu2lHMzut5PKQVhWz7Tr42bq7k+Uq3Qik0kTgkAsqzpyI/oVJ4wnJcrm/WQZJnCe3DZrLFFjQT
WZda/WJu8uJzk+M1LMY/2xF9/z1tV+dAs2IG6qER8qf8lilZ5xnsL3ihp7HgaHvosD3c4IbhnzAx
Zh1QSSiGWjdtVJQsr1Mmuh/9MLphvp9UWNyXvpt9FA3AGJ1QieZ7DT60K7s10zIr9b9VXdDxafDe
BzCzo6aVuO2zRLuEoacvZvVVfCF2xeXZR4NXezktlAVHW2P9hNNIfNAWGcmF4QnUczz1Hi870FqO
B8HwD0+1aaXxHdjEGTPVr91rSUsxlrM3m0hp2pGeGq05nLm+WI1SPYkyNhV95YJWdLwvfMqxfteQ
9kK0sj7vDqQ3SC78OSK2JKds6spsxOu6V4tlj74OcW2iyJrVSk6Dyn+Nz59yan4gdW8edI1eXk2s
77f9Zan0q+K7LHjfj/foMdH6U4iDUczUcGRh/d0mC24Zd5MguJscxLNLT0qc96NMPHE9pnntNN1a
n9MwjmtYGq5WOyzTVRi0YrBg0ablmSap9Pt9ysUqZ2+vVMup3nVzLTqdbaBoXELx96vfpx8xBT0w
qPEO3qwS5k4d0udxW2XoaPqbvXrAG2RoXIb2VFhQ8dx5pWHFHtLEedvB135zQOaT+kDH/ZW/lR/u
cTe8s+mX2q+KRi6OCQKgZGwNoY3Rx65JhF+yJI6TKG5rMEO2q7a1rIb4LurpII+Ynqbs0jRPk6/D
XrS2vAw2dVqACBg5g8kkfOvRZEyDla7JL9SK/aWKSrqwuyHCVGm4P7z3uQZFujpqbCHt8BT3Sqis
u8foxy0bWpcKql+8Nu69j55rH0bsy4Uoj79PvT/GKTee/WQ4Ms2zwO38y3ljcJazbR6xbgWZ8bXI
5aQBdzi4dGtMrzzxdSlZoK1skFW6vNyAmQPGXNUaVxj703szfRrnlkLSrXXRwvuLO7EKaFyrXdOF
cI3d+7HvXUuNwVJncaYQW6zyEQGE6lEfdpfD6FVsyVfQMxe8neUYkfa3hloQzdhkEQdLwziYTrqn
0eQ5T877uU4Ija01JJKFXOrj5OiGh0s/rpad/VTlZ4w79LmMsC8f2AyN+aLec45N0GeFca5Anvm4
exR0KS/sZ/yBhTV0xAmcaWPneZIOyoMT5UnexrvIWB5SnoPRlnD9/bnGwDqVvHkIkJoxLyFZ/y57
Y+/+Kce4ui4GQ8iLSJWzDKkjs6DiUBjupbEqmCtmOHmSHj/hrPWsSU5sKdFzHLN32y7hpC6jiHM5
o7BJRP4WI2TbhS7wq+U5UShpjRlmzrQJC9w6Tu33jT11zkyzZmp0VZ82yFE92q8AGrtOappM6A1Y
+nKbvkmES2huoYk4dcE2SD63UuEeKtFMMrcX15+DBZQa6l4+x+hyxYYgNwNX8f3hm9eBy0w7AWHQ
ALVRhONxgNSNSRLyFNwWbX1mZF9bPusARh/hIa+Pd7GfIOT0eWtUOsN5yEBvBiNmu7NPrYSEm8m6
q5wUDom3Xh+aQSsYWdIztn1+b0ICqfjIwfASSWAK1nH+q4yWWnO+dlNs8/H63BxlhmhQxFc07NHk
RTPxpzwfrCfTX7f0FN75NEjR1fyWUkjdbLV96JX69TIgrq1JXpR92Oj9EK9+jkr9daJhb3TsX3x1
pHeI94PP9hETgN67OoOB7DAN2TR/dq3qV5YyFG1dUNThDTnY3PsT+4qBtLBpEz3OD4qixEzaHxFP
6rVMDueUymKTxdXTtB720ik3J7/l0QWhCVwBXR6i++qDOI+sB3+9f4nMMozDL9S73JhRBElg+YeO
nQXlBaZShFaE3dRox4vvVOXR5aoQOHU03y8KDn1yYHl0fP+cNz7kl1wbZL/gopK04l+7mZPUzBM2
tS2ncsqEGlldOV9UKHtgwYI31lVMRRpCLyUHd4tiIVGS+oOilihKwyjBdUqkCZfRdlNm3Hd4ZhA2
/lrm1OHSflVe0+jFbnejb2A3M5d2fxlE1D35wmYMAgYXMx01V/IRo1ywQRHD8fJdd0kcGWaOXMWf
HcmvLU1+YUXeOd34UM9076HUiqw2zhcEo6nnRep4cOkgERiKP86cpbuqMK3CeSdOaYlNvbOILXIl
DwORTfTL7tfh1+ziPCPS2CpzRyMd4y+f5iTtyTL0QOKRqRDnBzqvt1fMW8ILMoQAXbe8/Ibt+pjN
edcDMl23i7cnFl1J2uCjHYa1GSxgIAfvRfb9875TDNFHHPVOvYiffZJQhg1wulXPnpvR3D/X9jW4
JJwr1lp66qRessUuq2AE0W7UKvTZuU7kGSTTHahxHIPzevWNqzqtTCf5SB/VslNZxhQSo07ccBpu
8s+6vn74mqmeE/ZzZVsAX6dy4itr409iCMREoMR7k45SeZI5PimxC1QfNNvASaG6caMUIpwccAgb
FF/76iXEy489cMnnSLw5G/F+WWW8IdltsF1x13Z8ESIKXijzmRRwGYJMavptnXRv3+iIFqS/OX1k
3ZRBx2PS4RIbG9aaat0DPH95JP3Cx6Svh1qHxorVe4dvSy7x7Pjo2ysfybfdR3H46KURjuE471gX
FjdZPylVPxrw3NY86r1rNn0ozzx+ICucc5Nj2LTGB/hxo7X2JauHQJXtQ3qv+SeclyF/RDK+R1ZR
8oKgBTY7ciZHlNCC8oPvebtJzBbfp6EHg4vI2KJ/QnvBNj0TEA9UZAcwswIdv7yokNjZxdDfKCEK
xmKbPSxLAvxipqtw0vMpzTaZYMSzGg9I3w8lc+1OlIsByIRENJOzkUvOAjsW3sUyTWbQDgTBqD3T
1PBGuRgyoPgMwHBJP6pVRd+h98+e3kvuOl1+ZugYdGczjFh0rX+BEC1+ERL8NqLVMOUMB7jtA/aS
83iCe6xD8STIUAnTOuSaDYKdoBh+pQK/TfzeYt7PgmhirjgtvKUFSH6fXGDCPg1bZ7WKpKd8RIXF
ybWG7L/t/45+ox3UG3Cr4R3IJ5/pPB6H6HHExMXWIwNsf1Hd6CuP8yDhfAFAPwlUtVZdP0TbSD2B
xHu6We0JjzB2077zojH1tCVceNpdw58T7sREYmp3iIFv9fzSnML+8vSBk6iCIxbDMucs2IlBFR1n
Pp+OWytSNiUrPhs68MsW6lbw4uR7nwTT85Zj3Frd1xsCyFZB1+Y8ulBMJyZFzswvEvoQWluiCPaL
yuatPKyIcu+uCY2dvgdBedirTFxDihRmtdDAPvPHVsmiUV6leyDxBiOK2HGITol2FuzHDBmZscdt
phZX6X5P5FDT33QgTaJ1oWUhspad+zZiVQZrpwyTGCWv0V42b/MdVwrjShmE5yoKy6eVSvRgm3sZ
0V8Ji7zUSgbNaafy1EgzBp/FRIWxskC+HuyQdxzbmqAMESIa7w5q1EMt6/b0KW8q25e67Wpzf/pa
b9OrcLfWvOAILb5VPBNJj8lmx6nIQK3murN1Ut3lFu7bIQsCz/8oRH+eiLUwnbdUxkVb4cgoNDss
WpYjRQermX/DovVJWqgNWYJS7XNUBj4kuV3368UHqIvPXo9k5IZERtnpns1VGsp6cK41kzRz0vUH
MADfS1xeqSfGgw6fUCOD1c4rA3NXH3BE0APEgRDkN+JqRM8TdI9TO27zMiuibdmJ3GGwyMtxwAIS
s+b0O72vmO/J+ePYIzqEU+JgpeXIF7p1SxxHjJ6+qbDsIYQLUNxEixK3GUB57/qHtseWDXJS5h0M
xrXdMZYyt0udRsMBUGdQIoXmmZudK7CVoKY65TY+YaLtGfM5rWL4yOtps2ukdLt5O5PN8uUNgMMz
KNfnytDeEY1Mf2ZI36gsmeq87WhjpV5tIjFMrzOafISj2dYgNo2VyBX2zS3rFeC0+4Cd7IpsCXFK
9eiOI8h2z4mPEzK86f4hU3AdvyHK1zntw80EYNzcpk2JsnM/YLpKWrWumrP6q7qx3kLXPdxRxrnG
fKU1GpgF/XzMofmvqGkMAxf0ckRqj+VSKcbmXCIMX8M8DEVnma8DBQPBQUvgEHXhmaSGwfPL4SrO
5UAUcqIVfDFlAXyBklOfYDLnO2y4IflQSV6Xb8cpiLyqHb4eQoEoxZZMXd+ASfw6NS8/XKdpkncD
o2xtm7MEw9HL2DJ/CiNT9zfhwtbeYgM8sGLROcyrvX+NdxfSZl+vLZV99vDw+0xM+3QCswK2oWzG
P8izNMuikpJTa0CQo0UqVwUIvIL7cjEHR955HYDuvwE7b+itSwWVJPTOY8FfPT8tJ2aYj5aPmBys
GghXI6Ie3XE4UdIkwkPZvfIa68xYebXljL/HS1+nYEABTY6TrCRVUi3RRxoVLyZeSlWMcD0YQ+dY
KVzz7od/az+3QXWt/I9IRbXJj63Iu+5Yl3T0Qye9SgY+9T0RmSd0MjOIey6YWWKW8/I9Dmk2fKb0
PB3I/hOHgcQV6YL9CyoI7+TR5blEerAS/HViBcT307Kl0gInOsKEONEXdwgVFn96w7ygykYpYI7f
v339gcLOQYnd5GDpHyLp+2hOLmjhgK3l9WQo4lDvkmu4tXQQYRmr5CrrDX9r15fLIXcE8/QNMjni
Al6lcQtV5Z1SmPeFzHfZg24x5VldxUCORb0fiIfTuw9hAWeJCukMEazE99RpazTkBST3UrLoBnrX
nn2jx5t1HKPYzOVRsmV8kQyxc3AlIMDFIYTDvSpkSJczaTT6XmlxN8dESiGBoxc1Pf4HsH5Hkhfc
MuH6puuABRslq5SQXjvYhBPSncH3Z6TxE9cIVnvz810Ce06Npv5mdIXoq066djLfJzhcoW99+iQD
6dA0CI4Tjp5txA0lWtvUj6vITtALxZec13tNdxgZC0XJNj8nbS5dYmaXCcFio3+B3qxuzQiGkXe7
f8Lf5436vJKIOWhCaOd+s+1E/rn+mUJc6GBQIg/uicoaX+C0qNgCderm8lQx1n4fEA+V0gq+LHvw
mu7sJkrojeSbm2+QaoK4PIqQ4C9aJgYdMGVAgHBV8zAqfNbLc9XwZVXJb2F+seZ80gHKccYbBxAP
SXnwvvN7YZmr00hOpuQ4934FTbp1drMAzatobm/hvaYv/sL2YFWOpI8F1vcFPA2aADM4m9TGCVsV
R18V6PxIbrNzIrho7YPBC21HZj87Ap+OdyazPvhdKi/XORxBaf7rYf2vghrk82LNKnNFi5pnZhfU
El+fyZ5CKyF9YD35WFIaGj2dxwDeSs+yKOBmDT0aLR/mSrUHYsO9f645xllXfsULbfo2Tx40Jj8W
wWBpyj5wcwCF8+ow/eFyzaxRrNUWxpmwOtIKk9MfMzWX9E50SoPzPJE0jFD4B9iFKrptETNK+Ghp
JBnpWXFjvVevhNB8UgxuCIk33SqDY4KQiZE5S25cqAVQkn3Tj1Be5MbzylGHiuJiilT8e90G5c8W
aKw+mpR3jgKH8GygJFWdkndhv4SXsLaOqDFhMX35cN+9ajlxDC6717EwQKiEqWDrm8jb3cmm73Oh
mGBVnQz2quBY0tl6BRl6QVa6xR0/l3E47LxHmArAmjl/H08UzuE9Up0InQfTVzeJj6rZQeryzDCo
RiSR0ZCWwFlLN2S3K5BOw4V4qsg2YpLOEIn9YYEqPjVOX/hMROEKioMOpqwR89BQouizx4IsmrSv
fIoW/uaNGYJz+/DAF67tH4NgCFe3I9M7Ryt8GtNcrSrno0UHvCeboJp3MRhMFUDKF12PhCiNQPEu
mrzs2imHCIKMn+hDZozgKlVUkSiRxwC/PPKTb0ezl/DPW2G4ZpWoiShhDVbFtDV48+o3JVcjW7Z3
SyfnBQXZhajsmyuZG/Z5d4Te57yOGWDyc11XevCeHncCIgyiamm6TbSMP7RzLOYe2BkHY1W5dYqk
yF0wWt3TUyZ9rDLshzp/loMdZjdsUsyJi17WMFVXfTbi0AaH6clot5xQ46qVSZv/UQ9emc8v77Ud
aDnPqo+Vl3ldBZGyPNK5ECAekf2N37Ro7UTmg+DmiDwDovB1EypJmtK8t9ad0IXNQLYT1bC0uUUv
ssWt6EEkGzur0b2p4E1TIHNzCfsyq7UjOWUsb/SGMzfsUFiCLhFaufNBCY3wvuUUNhEOiaqpiotI
pH7uuXa8sEr09HAQuBh7YoUoPo4kLp9OjxzDN0E7P45+zuMrz/O11eW+WaAbi6Z8mo7ZUjkC955a
MvZIhrmG3DHDFkFd7ZdSfmcwhRJUEV/tJDFgjtQprf12eJG/N9HsHcRdXQ316CLl1056lKju04Sm
L57835iMnNLGizdMqUxP9PZ9h8ApcOO0hasGTTpaxT791OHiwm30s9byIAqo3k9/vLDMIRbKPHZw
4yIZjbXwpzkkCdmYNVPv7yn6ioQ6THydxcdMvFihEgaZeCPATEoO5DdCgTdhj3gaiugox9uI8ajI
FFqBd4iFp1OyOn6wNELxLsRqDD/cpCtpV6mDDS/VmMMI0sNP69LNwp68jxfiOH0eS4u+pB6BDizp
ZTKNSkrY1n+8PvgQVPAiqjhlbGCxJWMLlkjNzkWwFj/aoLSFhe8kCbHciMf3vsxWxvJJIzfUQXnG
g7vL8IulrQZjlKCPSg/0EKHYdC80/M0dp7EGo1RebEdVB82CdlYYSCBuh9kda6tRncWtYxuffM03
v7Y3C8luqKuBmnqnEnQ8Az0W91oTa7VbJlKDV/XF3PQMZpiO10OgS+MqFG/VOe8CpaDboG4cUv0Y
b/EzIUE6UlU3/JZL34TMu/Sbc4WayTRofIIFxbK8H81tcdqyDQ0hUy24xvsxpRBp3NCd4UjpPqTl
OX1NXN5DCgGYDG6WXTeqcG7tW3zkask0GkoJxyJBp80phSU0NxJyBbZ098YfYgBCnDXShxedzYqm
fTw3H5LF7rlwTmni991RrG4A6HAhNyhKMvfU6jOBMy9amX4MNU46Yy2dc3OVk/6fIh1XIYg+ji+e
J8Hu1y4CW5uT9KNEyQ6NaTMmPQu8P9F/eEdphZpwdqyQdeLcCi7YQP1r9IUltCnZwfKimQpq3V7e
IFrkJu7hE6yxTg6JEo4nnkOd81ZL9rC/0TuOSqZ6v4lIspOIZ8WsgivtPlY29UoXhurD2IIKTVBp
8fG6clUm7AUnQdIYWBf2CguU/EVVMqCgF6fIPTMfQ1Ccer6b0bWqFbY2Dlg71XKNsoMirrWwv0DX
Vtmu/LkS9/Q2/eMdX+EDEgTiuMxrwJ4pfLA6uXjhJeM4rEd957sAAT/tVVksHv/UjjReVkhi4rJW
8ZIyS8+rTCWstPig1U5DodDl7y0t+0RK89zZea4Zi+LtJkBVv5f+A8QnEy18bMfY3nN/t3Q/IbkX
MsfLtJaaJ12l7saoKqLPN6tiLVNIiKcG8aHkP+JAI5cG8NeBaKyKppUMRgh7fLYm7265UXh7jUYQ
i1szWkjY6Hgd3i2mHfsgUq40TvrJVl9JAlimb02/dbabsuU3qHfIJ+2Ujp6hKkHXRvI+z0mdSVd9
ufMjpN0DTXKZPxGvBwec+ELxLNEZglcdeEsV73jY6aPTwPnNyJsKa0otus63dH2TmgblInKgJAal
0R6kPMQR51IRi2jP46JgJ+cVXGDZbDQD7OLPI+/i5qP64H0qZtvCLh9VqBdYPk+4hs0uYZ0UuHvf
VMNVIYdrR1/JOvpXCIGDCMWcnN79gM4IFGYccvi0zU2KNaQrVNBZyvKBIS8Osg7N6EftjYCWB1Ar
ti9q0J2fscRK1TTWj7g0zbDr+XzaCaZ6u7d0YzyttfmbAK/YWkKJKPHF5dNGOI1rUJUo0iNegmu4
deMogry6EMt8yDD+5ZfiO1DIy/ACMuhsnxO9rEOjgWTsp1pXuMgnitYa8OUx3Hlt+rHcjK/FLmVY
K9b+PzInLORs/VM+Xk8iPV4Oz/2C6EC3bDPPZ52YFV814qu29/6ub2rkqjFVJ/AhizZr/oBRT2kw
VOiFaOZBW/RuGQTbQHDIv2s0HYg/Qx6Z2i/OWypRh/czLlYh7TveEmtk+FELz06ZfEvq0MygYxjs
tOBlKRRwy09Gj/KyD/p7i0+T+5A7aX3yeeqnFzqXzq3DNeM2tYan8B3QwDsl4wq1RlWvVvSOpWGz
FK0yY3cmtB8AJxQGCUmvaF/aAM1PKlXSEXsd4Idl0FyoYnQSpDKhTRAa48+0sll6Ks12X0rFWsXs
FrpEcWw+pqIZ6TvrNuFwQypR6CYTFh3QluUPfpbbPC5vTpZ6el2G7lN3nq2kU9iDxeSrQnphN7He
pZ/shLKAGc+a74f2zDsWvUb90oVmk02d1I5H+fEm5ynWBYW+30Cv7jE/NmkQYauRTvFzXWCTlogK
wLpIj5hzbeQltjTmQ3U7xQ+VmMMJqARZMquh3mXOyDmdCoGEuYMdcXn/J5EBz53K6bSrcXaXdAbj
imcMwh4qHKowXu4j+aGwtM8cn02ThWBhkITh4MvwdIwsWiFGi0aqfmjZLJPULn7B/kA7Mfscvhul
ntsz5U3ELGkxjsXsPZJZHfrjuug0EvSi0aEyBSG3UYucOrFwBpPcqGx1gvHj1uoMXYglLyCp4x6z
4/8JigV1+nfcTRA2QoN1kcwVaTB4aci55B+0RIvfcFa3nHRe7Y3P6KgnPtvs+Ri6brnGRCzAbHRj
rvhtWXKvlk4FkaQF29BvbcLtX0Jqbz18hG/qE2+xOvjeDNLkkCy7OK9N+p2sYtQUFNbM1LmAsltQ
vRWTCcfTus4m9wqIWLwz3NBeLSEmElzvz+k9Dk4A6qCbQtBNS4kEULZX5o1AGrHSteuodfxxHfVZ
2mvtqmtz/JccZUIt3lwTEXqcHPtJYp1HqKAu7opW1BSSJ98S9D7bzr1t7z3lkWERKRDKJgRlpleS
na3nBelUPeQ4Dr2tNm/pdpcoqzTiLYHPLafxCzyNpUto0u2AIuvHFDAxtXsvDlo4XaGRV8BIl2t8
Wo/eTupFD+ESyVsmc/tx0sCXaXtZO4/pIO4C0OwIKbsnb4lZBAr6kaJMTbH6PVc+pCmNzRJM31K3
M+kZ6Lpn0LZg6SgK9KwDZQ7eByeALA3LDjGvOAiMMjoLuPIxU1XP1UR8r29KJ/7ZEMBqOvH9XCxV
x5noiP/XaQ15zroGyUe9VDH5kXApVPrxGOUyIcEuLI1Aa8/T4hW/uVvxXSEB16AV01FQnh5TjoCM
hOwNqYNPnw+8D0DpUYvhcHAOVIB9UzD8H0aX0qjNeMBcPtCWFmdL0Ox7QFTTlUQEApGaXJhzV+So
T+b4B2xfVdnF++w9d6ZoVHKXgaSNDuo5D084wM8zGYXZL3B7e87i4KNZCAWZv8McfesOc1nMR/cx
QIlpet5lrHzpo9F39byb33C9HdcrvUepRrcGnFQVBrboA4mMVWSakdui7UrPi/QYFs5qymNJPbMy
ueQcVuC1qBIgRyRiP2UeK794rKa/yISCbBCB2nn+n2ZH+RCeFjqW+4ft84Gnryh1AClxeTZfpKvM
dkSVxmbwMXLRdfOcrBze77UuwOgLj+RK13d1vfYoAUWzYn0RbQiwbqUJ8ULSQg3dUiqUzypBSsET
3MYs0Gx2PCiLCSiTuF5WVldgOiqRPHiF60H1/5P+T37bfFDeK3/hLVq4ipNXFTNCC7dFrs+h4YBd
x0zSiGXOSohakz4UlFehWKAWMI774Nb8ASPj9iHyHjIyZPEyVru+8qlyMW7vOXHmVT6NkzPLzsbI
rblJk/dC08daQwOEyclPbKNM2QrqlT6NBjYBBHyDll0QrXJ7o7mfNb2ZLowCRsEWs0N4F2CJFXRa
I9juJ5zUzRVq2YNlpu5V8xYUGEYh35hZnXwlXE2LG4FfkG0Hjsq4VXfhTTyrFkrhmrvCBBCCsRJN
XERh5W9Qm8yhAiUkcuQihtNqItBU8vJi4nrh/obDxTkcQaVY7SMtPyTEg1U6karnkQc6jW8nuxlT
Svb1PfflcHOIhcq583Nh1Iq6u87SqbqFT1+LFOiGbLCvI5X4jZXFmFikkasCv7yb+FM0/CMcNFuf
RYuIkavARSPTRnhiSam5FWe6zF4LfE66FdURUiPW1km5n9cJpKO9pG7N/fSjP+FAJAFvWP1kuhtP
6X5v1dfk5CDBsoWJNU4DKHHgWf9yHdRNpYJCCBvfRLK+EVt3bnFwTH2KCcK5uFEdNYL1IjAe6pqE
ZBE75+aH/prdWm8VsiQUGqVT+7rdpcVbyNcqQ4e8aEijuJywEw7Lbckx2c6Kr7lK6AH1WXwqfJ6G
2BD2OWZbqsAZ9OdNutw/Kz/3ptqK0vIHEd2gRR9slZtPObIsjPpfZe0/sq7YYBFBt+bO3chMCTJv
zuzeIqsqz8mhrTH5/nck+zxZ01uSPmrzfvHJPftefjdhsqFpgqE3BdyPg4+9I/HVgg8YV5+mKhvG
8QYWTKOPzmbQtmis2nYHc7fP7FHFwkQ/P7RkPYJnYlUGkuByvBZ4E8OcX8iXpyENHykcJ8YYeiag
mKzZywplbmRzdHJlYW0KZW5kb2JqCjkzIDAgb2JqCjw8Ci9BdXRob3IoKS9UaXRsZSgpL1N1Ympl
Y3QoKS9DcmVhdG9yKExhVGVYIHdpdGggaHlwZXJyZWYgcGFja2FnZSkvUHJvZHVjZXIocGRmVGVY
LTEuNDAuMTYpL0tleXdvcmRzKCkKL0NyZWF0aW9uRGF0ZSAoRDoyMDE2MDMwNzE2MDc1MFopCi9N
b2REYXRlIChEOjIwMTYwMzA3MTYwNzUwWikKL1RyYXBwZWQgL0ZhbHNlCi9QVEVYLkZ1bGxiYW5u
ZXIgKFRoaXMgaXMgcGRmVGVYLCBWZXJzaW9uIDMuMTQxNTkyNjUtMi42LTEuNDAuMTYgKFRlWCBM
aXZlIDIwMTUpIGtwYXRoc2VhIHZlcnNpb24gNi4yLjEpCj4+CmVuZG9iagoyIDAgb2JqCjw8Ci9U
eXBlIC9PYmpTdG0KL04gNzkKL0ZpcnN0IDYwMAovTGVuZ3RoIDMxNjIgICAgICAKL0ZpbHRlciAv
RmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnja7Vrbcts4En3XV+Axrq0QxB2YSk2t7cQTb+Ik48vkVn5Q
JEbWjiwqIp3LfP2eBiiJoqw4cqb2aapsCgQa3Y3u090AScFyZpjKmWXasMCcYSJn3jOhmBD40Wg5
JvBn8Y+OYJgUTErTk5JJrZlEh8OPZdI7NJkSAU2mMU8GZoJmSjIHSqWYc4Ep5sHWMW9UD5J9EAyD
Is8N0wJSpWJaMiGtZtpCAxBraKM1mKHfQISGIhYKo0s4L5jB/KBVT2B+cBiETjkpDU1yA80UfqG5
hkpCaWawAuEUlMNKsGaTg8RbZtFviB/orLA94/EL5hZLdViFVbQ6WAuLsTnoYbsgcQ/zSciFjbQl
Pli+yzEPKisY1IGlcb5HIr3NycxWaDIHWEE4rGItmEG0EzCvx5CCkt4wZ0lfGoKhYVIvQa8CSJzp
KQuSXDCFcUvjmnlHdkK/hzDlYd4AZXIWyK5QLQjykmYh+g79KodR0a8c7CdZ0Oj3LBgyO368BEsW
LIlGt4MVfWAhQAsYAl4DKOBBNIgMrHKRu96jR4yfMf5beV4y/pg9qIpBPS6nmdhjv/7ae3A8refl
8Cb27W0llon4pKzHn/vfJ1WJ9NW8nJVVMWSvy/lwPB1tn6AbRa5nk+K6mNaRP3vydVbMx8V0UGyf
adLM/cGf0/LLpBiO4vxq+wSbJpwWH4s5sd4kfQ9I5+yU8aNxfUnEjx71+Pm3WcH4q/6o6PHDclqT
EKCPCHv8tKjKmzl4UezGnpNiOO4flF/Ze+qw8KQL8rIHBhBaEwIi2f50WoLPe4pQEokIpZ/L3prU
SNXjB7BiMY8M80v+lB/zQ9zA2ZekwaBm77XUmdEUMDYLiFojbWYIsEFm2mvQnd18qMGTPx9P/+T7
jx5FCXw/moaf8YvTY/p/cN0fT+ryl8kQ3dMik/8eUU82KK/3oNk9ldM6Q1Bq6TOJ9GREyCQlARWy
IMyP63ZV17NfOB+VZTaa8Pl/im/+U0urlv/evH1Hse4QwtObyeRyGwmcg9C7g8RYkekQ7iJTOUze
kXcEvDAC2RGSINyRwIWsiESR2pSnbdMGhNQCgMgEyi/6BSUaaoMtR2wNzgqYFaB8fMT4efG17uKm
g1ZtumhFzrsXWnXEPdWF7WhtvMmiO7fjI1/hw+eZypGCAYxAVUC5LCCVWxkyLUmdfdYN6sG4LrKD
sqzq7Gl/2o+hfT90Skh1qCHC6wzBKKGMpDJmoEPYDZzVCp3fqovj4ed1dGr9fXS20HKr99vIuScS
jOoiwYh7IiHpp8PfigQjM0V1UprMYVOA1IV77EuUyWRutyPhhZbB/gQIPBDn4lYro7qLTUYmab+l
8gz7p3ugYFxf3XygtMk/EEjL+YhfEU7XAGHknelqjQS5KHeZQWjcQaYc7HY3N+n9rZmtQyaCQEj4
O8m0R8ioH8F0OwO2sx62dmbZr2j79BNYt/kG1v39sG7ynyrODbgsanEON2srM0d78FxnudU7178v
X75k5ayYPqzqYUbA+m89ELwaSMm/jKTgw3JQ8VkfO6iKY/et+ZSCI5sNP3bQF+5GX+gUS5mZsNXB
bacundd2/Pcd+d5Zm7lYR3E1LvNN2wiRiZ+6Njxb1ySrTZN6nFYZuUZlOIQJk1mcEXBIcB69FtnJ
46ygqDfSKU8URtLxAOBHxXIZ9umhxSlyTfMbCVTVYB0JykZCooxXnBJIcqvHiiipsYTG3LZV2mtK
PRq4p//VXRpd9bXnUK80pIUXZPGkV9sukZ8URJuTbkpFCrWYbS3ppC1ZTJM9LnvvcTijNVIt/8H/
NKO5GjqNElcDC4jmmnq8JQqPPE2ns5z09oIshjXAC5J8ExBYOEDl0BtaCjr6Yk7IsY1DENJKRB5/
iMRHxZ0nwtTGCQ6srKLFeqJAEXKNYBSI2J20iFeXEyqS5rbV7q7KIHIS02TXpg3E0LlRNDNS78IO
UWP4adGDYyAhIs1cUicKHXGpTbxqwmF7NNkqtuEfQuw//zv//2O5/5eVYwjuelWiddWSckM8TYiY
r+hK914HyhQhIFJ9pKWApwc9PkZzzOC07wR1oFgSiDWP5ICDAT1ZwrkA+cNS2CYCj+NtiAXANG2P
ky0CnMqClzFR6EhHgoWwsmmmq8X2YKE1yWlaGysy2sYKQ0/J8vSbKgOyo2vo47OnZv2xN9A19QTl
GooVbRrXhvTQmBGfFq6NJQvFNvziXKwRkB9b5ClPOphYQdLVK+pJV+lSFY+jmNX9d8j09HRApzsZ
a+JSRojZVOQiZujYLVtXIkliVq02lYqpOl2XKi/GWurdpti2f7mhReKqHamerqmHlubyWPbTsmJt
sT6m4bSRiHWF6JRN5Xa1TnJAELYZb/ri3IZ7KmzR4A1/k8wpcrkUb2hzS6xXC+22WiaIzBpvtNot
78XeNZ/KFY/GFWadOlGoWG5VrMONQ1qjaQGpna5RMqHLxQerqNrRuSJE0/i4cwqNSSgOcjItQtI2
lOkajCYst3qMpZ2E1DGuUUvtLe12T+KsUTX1WlsiC/g1mmZu6o+OTT0OkBCLuW2ekUZBQ6r+qdrr
FWUcTSuK7cvWuYN23I+LajAfz3CuTDvwF/1rjJycvTt/9vu/Dk8O3ogcA5P+qGI6URzE885D7Mof
0pNrpCFNAKEjdTWgU48NoDzsz54W49EVbr3FEaBIYw8FDR7X/cl4sD8dTQoG9md1cf0HGGHkTTMJ
fgOPq/6cdvgPcBTq8w/8w7w/+LOoJ8XHetGeEzUflBOcb4a84B/Hnws+5hN+zae8nBZ8xukBcDnk
c15N+tUVr7+U/OteWsrRGAq4dEhbO5Ftt8yTiycnr8+SZeQWyyiyDL34UOHvsUwetlpmnz+BdU74
K37KX8NKg2SGZIiPOK7yEezx58IijU1gDF6Nv/Ka11fzoohGueGf+ZeOaeQupnl5evF0/xymOT4/
34IaIWAaHOmsRZgF27KMEGuWodulZaSU65Z5SFBJtrFt0yjRNs1pBM2gQcegvL7urzAy4qN50a+L
Ob+KeJkUVdWYaAmZTzdlXUS0RXsl+MBON1Oc06tBOS+iyb6tmUzvYrKzt0evDv6AyU6Ot8WZkk2c
5drfgSb1PTS1bObkVpstjELmWFuW3WVZR0+evXh1iGWdbluVzherysPPrCr/ARzs8wN+yB8jUI74
b/G5ynMEzAv+EkHzO1Byxs/5BYLnDX8LxPTr72aaTTTxj/Q35vSX4u2KX32bXRVTAOu/y9CbjhF5
05vrD4DOeLQKxRk9KoqCYiuJaQA4m9xU/FPCYRqIQCyux0mLqvgMKVsCmX/jf/G/inm55ke/ix8f
Xxzsv3gb/ei2oFMlPwaNLaoOP+xGs8WNRrXdmLfd+LwJZzL6MsPDHHVc8Fre8jul9Ivjd++ePsMq
z7cHoVkUO6n/piC0/k7APsWaXwGer9PKW5AbrRC2Su2zNdjMl6ZZy09+p5R+cnj48gWl9K0Z/aFO
Gd0o9zMZ/cfi+DDG8DFi91WMWjJM/5qeT/anwyZsi2XQNiGzQywXn276k07xXJWJTlAvK0aM7LvC
mda9rCuI6KKKz2R/ILQXdacd4J0KdHus+y2lqPU6hTph44N+VcTHrxsbvzVk0MPd+Dz7aDyvanIM
09jBPO83N0JiyuvxsL6q6MOKnYV391Yd4WpDeNgm3O4ufGP30pFuNqTrNeliJf0edu9uBDrCXVe4
zVvCrVzJdrvL7lTrjujQFU2B3Fp3S7bfXXanwqzL9htwc1vhFnaX3c37HeGbcFPbHC7vEWidzNoR
voE25daEm5Vwsymc3l9V9ALrhl5C9fiz8bBafmbQvDxu3rmlFzOdF1Ivb+oJklrVKMASoKN8+tIo
3iTmdjlxjAxLn46lF15MJpss3oR529zOi8/0kVJb5TRTLGYKv32maG5e0LseqTfZCLdko7/DRrbZ
3KKNUEs2+XY2vsVF2E0uYcHEbueh2zzkJo+lQcWtPOK8tbijwg1nP3hcDh6e1f15vUef6ZGrNz91
0K410Lz5Nk3fDBiir7uUbN3LPfqCb3Wv9uhLvQgg/nx8Pa47khdUl13tYr/eo+/zIrfW52RqvQci
3XoPhIrONHASZr3L7NHHgh3VFmJbVBuqtb7ykqrLoDXYai95pEDzSWGf3lX68D0D3cIEeQBk4ZY9
7GEfW6Zy1EsBvny9vAjXFSriUsISMqPipBwW/KIqVpH9clZM04th+tKzEfU/8H2RewplbmRzdHJl
YW0KZW5kb2JqCjk0IDAgb2JqCjw8Ci9UeXBlIC9YUmVmCi9JbmRleCBbMCA5NV0KL1NpemUgOTUK
L1cgWzEgMyAxXQovUm9vdCA5MiAwIFIKL0luZm8gOTMgMCBSCi9JRCBbPEI5MjJDQ0Y1N0JFMjcw
QUUwMzlGNjFDOTYyOTIyNjk5PiA8QjkyMkNDRjU3QkUyNzBBRTAzOUY2MUM5NjI5MjI2OTk+XQov
TGVuZ3RoIDIzMSAgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjaJdE3ToNR
EEXhe3+SiTYm2mSMCSYnY3IOJu2Amgoh0bMIOvZAi4RLGrbAdoAzNJ9OMfP0pJGkn0RKZNfuRGXh
AgwJdME51EE9DMMZNEAjjMApNEEKRuEEmqEFxuAYWqEN2qED0tBtKR0fykAn7MEu7MAWHMA2HEIv
9EEOeqzUZ7zSD+MwAINQhALkrexDzA3BJuzDFEzDhJUrxMgkzEAJZmEO5mEBFmHJyr/ExrJVfYpa
sZ4rUavW63fUmvVei1q3M/9XKNvlt6gN+/E+qgJHUIVLuIJruIFb+6P0d8uvon4BqHUZ5QplbmRz
dHJlYW0KZW5kb2JqCnN0YXJ0eHJlZgoxMTYwMDUKJSVFT0YK
------=_Part_40_569813740.1457367186900--

.


Author: David Krauss <potswa@gmail.com>
Date: Tue, 8 Mar 2016 01:19:05 +0800
Raw View
--Apple-Mail=_02E297FE-A25A-407E-AD73-C1152B7F502D
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain; charset=UTF-8

> Indeed, one could just as well try to write the following, only to be puz=
zled by a compiler error:
>=20
> std::vector<int> v{1,2,3,4};
> using Iterator =3D decltype(std::find_if(begin(v), end(v), [](int i) {
>   return i % 2 =3D=3D 0;
> }));
> While this is a valid use case, it is expected that using decltype on suc=
h a complex expression is less frequent outside the realm of heterogeneous =
computations.=20
>=20


This isn=E2=80=99t impossible because of the redundant restriction, it=E2=
=80=99s impossible because each lambda expression has a unique type. You=E2=
=80=99ll never be able to produce another expression that can use that iter=
ator. Lambda closures are never default constructible, so even decltype([]{=
}) is useless. See [expr.prim.lambda] =C2=A75.1.2/20.

The utility of lambdas in unevaluated contexts is that, given constexpr lam=
bdas, they can be called.

It might be a good idea to preserve some restriction against a decltype spe=
cifier having a type =E2=80=9Cdepending=E2=80=9D on an embedded lambda clos=
ure. It=E2=80=99s my bedtime right now and I don=E2=80=99t suppose it would=
 be easy to specify, though.

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/552AE079-D5D6-4AA6-9974-2DB2B5BC5783%40gmail.com=
..

--Apple-Mail=_02E297FE-A25A-407E-AD73-C1152B7F502D
Content-Transfer-Encoding: quoted-printable
Content-Type: text/html; charset=UTF-8

<html><head><meta http-equiv=3D"Content-Type" content=3D"text/html charset=
=3Dutf-8"></head><body style=3D"word-wrap: break-word; -webkit-nbsp-mode: s=
pace; -webkit-line-break: after-white-space;" class=3D""><div class=3D""><b=
lockquote type=3D"cite" class=3D"">

=09
 =09
 =09
=09
=09
  <div class=3D"page" title=3D"Page 2">
   <div class=3D"layoutArea">
    <div class=3D"column"><p class=3D""><span style=3D"font-size: 11.000000=
pt; font-family: 'CMR10'" class=3D"">Indeed, one could just as well try
to write the following, only to be puzzled by a compiler error:
</span></p>
     <pre class=3D""><span style=3D"font-size: 11.000000pt; font-family: 'C=
MTT10'" class=3D"">std</span><span style=3D"font-size: 11.000000pt; font-fa=
mily: 'CMTT10'; color: rgb(40.000000%, 40.000000%, 40.000000%)" class=3D"">=
::</span><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'" clas=
s=3D"">vector</span><span style=3D"font-size: 11.000000pt; font-family: 'CM=
TT10'; color: rgb(40.000000%, 40.000000%, 40.000000%)" class=3D"">&lt;</spa=
n><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'; color: rgb(=
69.000000%, 0.000000%, 25.000000%)" class=3D"">int</span><span style=3D"fon=
t-size: 11.000000pt; font-family: 'CMTT10'; color: rgb(40.000000%, 40.00000=
0%, 40.000000%)" class=3D"">&gt; </span><span style=3D"font-size: 11.000000=
pt; font-family: 'CMTT10'" class=3D"">v{</span><span style=3D"font-size: 11=
..000000pt; font-family: 'CMTT10'; color: rgb(40.000000%, 40.000000%, 40.000=
000%)" class=3D"">1</span><span style=3D"font-size: 11.000000pt; font-famil=
y: 'CMTT10'" class=3D"">,</span><span style=3D"font-size: 11.000000pt; font=
-family: 'CMTT10'; color: rgb(40.000000%, 40.000000%, 40.000000%)" class=3D=
"">2</span><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'" cl=
ass=3D"">,</span><span style=3D"font-size: 11.000000pt; font-family: 'CMTT1=
0'; color: rgb(40.000000%, 40.000000%, 40.000000%)" class=3D"">3</span><spa=
n style=3D"font-size: 11.000000pt; font-family: 'CMTT10'" class=3D"">,</spa=
n><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'; color: rgb(=
40.000000%, 40.000000%, 40.000000%)" class=3D"">4</span><span style=3D"font=
-size: 11.000000pt; font-family: 'CMTT10'" class=3D"">};
</span><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'; color:=
 rgb(0.000000%, 50.000000%, 0.000000%)" class=3D"">using </span><span style=
=3D"font-size: 11.000000pt; font-family: 'CMTT10'" class=3D"">Iterator </sp=
an><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'; color: rgb=
(40.000000%, 40.000000%, 40.000000%)" class=3D"">=3D </span><span style=3D"=
font-size: 11.000000pt; font-family: 'CMTT10'; color: rgb(0.000000%, 50.000=
000%, 0.000000%)" class=3D"">decltype</span><span style=3D"font-size: 11.00=
0000pt; font-family: 'CMTT10'" class=3D"">(std</span><span style=3D"font-si=
ze: 11.000000pt; font-family: 'CMTT10'; color: rgb(40.000000%, 40.000000%, =
40.000000%)" class=3D"">::</span><span style=3D"font-size: 11.000000pt; fon=
t-family: 'CMTT10'" class=3D"">find_if(begin(v), end(v), [](</span><span st=
yle=3D"font-size: 11.000000pt; font-family: 'CMTT10'; color: rgb(69.000000%=
, 0.000000%, 25.000000%)" class=3D"">int </span><span style=3D"font-size: 1=
1.000000pt; font-family: 'CMTT10'" class=3D"">i) {
</span></pre>
     <pre class=3D""><span style=3D"font-size: 11.000000pt; font-family: 'C=
MTT10'; color: rgb(0.000000%, 50.000000%, 0.000000%)" class=3D"">  return <=
/span><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'" class=
=3D"">i </span><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'=
; color: rgb(40.000000%, 40.000000%, 40.000000%)" class=3D"">% 2 =3D=3D 0</=
span><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10'" class=3D=
"">;
}));
</span></pre><p class=3D""><span style=3D"font-size: 11.000000pt; font-fami=
ly: 'CMR10'" class=3D"">While this is a valid use case, it is expected that=
 using </span><span style=3D"font-size: 11.000000pt; font-family: 'CMTT10';=
 color: rgb(0.000000%, 50.000000%, 0.000000%)" class=3D"">decltype </span><=
span style=3D"font-size: 11.000000pt; font-family: 'CMR10'" class=3D"">on s=
uch a complex expression is
less frequent outside the realm of heterogeneous computations.&nbsp;</span>=
</p>
    </div>
   </div>
  </div></blockquote></div><div class=3D""><br class=3D""></div><div class=
=3D"">This isn=E2=80=99t impossible because of the redundant restriction, i=
t=E2=80=99s impossible because each lambda expression has a unique type. Yo=
u=E2=80=99ll never be able to produce another expression that can use that =
iterator. Lambda closures are never default constructible, so even <font fa=
ce=3D"Courier" class=3D"">decltype([]{})</font> is useless. See [expr.prim.=
lambda] =C2=A75.1.2/20.</div><div class=3D""><br class=3D""></div><div clas=
s=3D"">The utility of lambdas in unevaluated contexts is that, given conste=
xpr lambdas, they can be called.</div><div class=3D""><br class=3D""></div>=
<div class=3D"">It might be a good idea to preserve some restriction agains=
t a&nbsp;<font face=3D"Courier" class=3D"">decltype</font>&nbsp;specifier h=
aving a type =E2=80=9Cdepending=E2=80=9D on an embedded lambda closure. It=
=E2=80=99s my bedtime right now and I don=E2=80=99t suppose it would be eas=
y to specify, though.</div><div class=3D""><br class=3D""></div></body></ht=
ml>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/552AE079-D5D6-4AA6-9974-2DB2B5BC5783%=
40gmail.com?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/552AE079-D5D6-4AA6-9974-2DB2B5BC5783%=
40gmail.com</a>.<br />

--Apple-Mail=_02E297FE-A25A-407E-AD73-C1152B7F502D--

.


Author: David Krauss <potswa@gmail.com>
Date: Tue, 8 Mar 2016 01:22:29 +0800
Raw View
--Apple-Mail=_0692A620-54F6-4749-84EC-129E4642DDD3
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain; charset=UTF-8


> On 2016=E2=80=9303=E2=80=9308, at 1:19 AM, David Krauss <potswa@gmail.com=
> wrote:
>=20
> It might be a good idea to preserve some restriction against a decltype s=
pecifier having a type =E2=80=9Cdepending=E2=80=9D on an embedded lambda cl=
osure. It=E2=80=99s my bedtime right now and I don=E2=80=99t suppose it wou=
ld be easy to specify, though.

Sorry, that example doesn=E2=80=99t depend on the lambda type. Guess it=E2=
=80=99s actually after my bedtime :D .

Nevertheless, it might be more user-friendly to preserve a lighter restrict=
ion.

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/33D5543A-1416-42DB-B6B3-73CF21CF8B2F%40gmail.com=
..

--Apple-Mail=_0692A620-54F6-4749-84EC-129E4642DDD3
Content-Transfer-Encoding: quoted-printable
Content-Type: text/html; charset=UTF-8

<html><head><meta http-equiv=3D"Content-Type" content=3D"text/html charset=
=3Dutf-8"></head><body style=3D"word-wrap: break-word; -webkit-nbsp-mode: s=
pace; -webkit-line-break: after-white-space;" class=3D""><br class=3D""><di=
v><blockquote type=3D"cite" class=3D""><div class=3D"">On 2016=E2=80=9303=
=E2=80=9308, at 1:19 AM, David Krauss &lt;<a href=3D"mailto:potswa@gmail.co=
m" class=3D"">potswa@gmail.com</a>&gt; wrote:</div><br class=3D"Apple-inter=
change-newline"><div class=3D""><meta http-equiv=3D"Content-Type" content=
=3D"text/html charset=3Dutf-8" class=3D""><div style=3D"word-wrap: break-wo=
rd; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=
=3D""><div class=3D"">It might be a good idea to preserve some restriction =
against a&nbsp;<font face=3D"Courier" class=3D"">decltype</font>&nbsp;speci=
fier having a type =E2=80=9Cdepending=E2=80=9D on an embedded lambda closur=
e. It=E2=80=99s my bedtime right now and I don=E2=80=99t suppose it would b=
e easy to specify, though.</div></div></div></blockquote><br class=3D""></d=
iv><div>Sorry, that example doesn=E2=80=99t depend on the lambda type. Gues=
s it=E2=80=99s actually after my bedtime :D .</div><br class=3D""><div clas=
s=3D"">Nevertheless, it might be more user-friendly to preserve a lighter r=
estriction.</div><div class=3D""><br class=3D""></div></body></html>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/33D5543A-1416-42DB-B6B3-73CF21CF8B2F%=
40gmail.com?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/33D5543A-1416-42DB-B6B3-73CF21CF8B2F%=
40gmail.com</a>.<br />

--Apple-Mail=_0692A620-54F6-4749-84EC-129E4642DDD3--

.


Author: Morwenn <morwenn29@gmail.com>
Date: Mon, 7 Mar 2016 13:03:40 -0800 (PST)
Raw View
------=_Part_633_1310372131.1457384620888
Content-Type: multipart/alternative;
 boundary="----=_Part_634_593805798.1457384620888"

------=_Part_634_593805798.1457384620888
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

A few times I wished I could use lambdas in decltype to find the return=20
type of an ADL-found function:

using whatever_t =3D decltype([]{ using std::abs; return abs(foo); }());

It's not a clean way to do that, but the current solution of using an=20
adl_detail namespace to perform the same kind of trick isn't clan either.

Le lundi 7 mars 2016 17:13:07 UTC+1, Louis Dionne a =C3=A9crit :
>
> Hi,
>
> I have previously raised the issue of lambdas in unevaluated contexts on=
=20
> this list, and the
> conclusion seemed to be that the restriction was now obsolete. Hence, I=
=20
> have written a
> proposal to rectify the current situation.
>
> I attached the proposal to this message; it is only a draft and I welcome=
=20
> all constructive
> comments. My hope is that the paper can be discussed at Oulu, and perhaps=
=20
> even make
> it into C++17 in-extremis, given its small scope.
>
> Regards,
> Louis Dionne
>
>

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/a1af4744-b2eb-42ee-8460-bc6866b02c34%40isocpp.or=
g.

------=_Part_634_593805798.1457384620888
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">A few times I wished I could use lambdas in <span style=3D=
"font-family: courier new,monospace;">decltype</span> to find the return ty=
pe of an ADL-found function:<br><br><div style=3D"margin-left: 40px;"><span=
 style=3D"font-family: courier new,monospace;">using whatever_t =3D decltyp=
e([]{ using std::abs; return abs(foo); }());</span><br></div><br>It&#39;s n=
ot a clean way to do that, but the current solution of using an <span style=
=3D"font-family: courier new,monospace;">adl_detail</span> namespace to per=
form the same kind of trick isn&#39;t clan either.<br><br>Le lundi 7 mars 2=
016 17:13:07 UTC+1, Louis Dionne a =C3=A9crit=C2=A0:<blockquote class=3D"gm=
ail_quote" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc soli=
d;padding-left: 1ex;"><div dir=3D"ltr">Hi,<div><br></div><div>I have previo=
usly raised the issue of lambdas in unevaluated contexts on this list, and =
the</div><div>conclusion seemed to be that the restriction was now obsolete=
.. Hence, I have written a</div><div>proposal to rectify the current situati=
on.</div><div><br></div><div>I attached the proposal to this message; it is=
 only a draft and I welcome all constructive</div><div>comments. My hope is=
 that the paper can be discussed at Oulu, and perhaps even make</div><div>i=
t into C++17 in-extremis, given its small scope.</div><div><br></div><div>R=
egards,</div><div>Louis Dionne</div><div><br></div></div></blockquote></div=
>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/a1af4744-b2eb-42ee-8460-bc6866b02c34%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/a1af4744-b2eb-42ee-8460-bc6866b02c34=
%40isocpp.org</a>.<br />

------=_Part_634_593805798.1457384620888--
------=_Part_633_1310372131.1457384620888--

.


Author: Louis Dionne <ldionne.2@gmail.com>
Date: Mon, 7 Mar 2016 13:11:15 -0800 (PST)
Raw View
------=_Part_806_78542537.1457385075962
Content-Type: multipart/alternative;
 boundary="----=_Part_807_108829261.1457385075962"

------=_Part_807_108829261.1457385075962
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

Interesting use case. This definitely falls into the "creative use cases=20
I'm not aware of" bucket.

On Monday, 7 March 2016 16:03:41 UTC-5, Morwenn wrote:
>
> A few times I wished I could use lambdas in decltype to find the return=
=20
> type of an ADL-found function:
>
> using whatever_t =3D decltype([]{ using std::abs; return abs(foo); }());
>
> It's not a clean way to do that, but the current solution of using an=20
> adl_detail namespace to perform the same kind of trick isn't clan either.
>
> Le lundi 7 mars 2016 17:13:07 UTC+1, Louis Dionne a =C3=A9crit :
>>
>> Hi,
>>
>> I have previously raised the issue of lambdas in unevaluated contexts on=
=20
>> this list, and the
>> conclusion seemed to be that the restriction was now obsolete. Hence, I=
=20
>> have written a
>> proposal to rectify the current situation.
>>
>> I attached the proposal to this message; it is only a draft and I welcom=
e=20
>> all constructive
>> comments. My hope is that the paper can be discussed at Oulu, and perhap=
s=20
>> even make
>> it into C++17 in-extremis, given its small scope.
>>
>> Regards,
>> Louis Dionne
>>
>>

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/ea28a821-462d-4f02-a7d5-690d480c7c2b%40isocpp.or=
g.

------=_Part_807_108829261.1457385075962
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">Interesting use case. This definitely falls into the &quot=
;creative use cases I&#39;m not aware of&quot; bucket.<br><br>On Monday, 7 =
March 2016 16:03:41 UTC-5, Morwenn  wrote:<blockquote class=3D"gmail_quote"=
 style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-=
left: 1ex;"><div dir=3D"ltr">A few times I wished I could use lambdas in <s=
pan style=3D"font-family:courier new,monospace">decltype</span> to find the=
 return type of an ADL-found function:<br><br><div style=3D"margin-left:40p=
x"><span style=3D"font-family:courier new,monospace">using whatever_t =3D d=
ecltype([]{ using std::abs; return abs(foo); }());</span><br></div><br>It&#=
39;s not a clean way to do that, but the current solution of using an <span=
 style=3D"font-family:courier new,monospace">adl_detail</span> namespace to=
 perform the same kind of trick isn&#39;t clan either.<br><br>Le lundi 7 ma=
rs 2016 17:13:07 UTC+1, Louis Dionne a =C3=A9crit=C2=A0:<blockquote class=
=3D"gmail_quote" style=3D"margin:0;margin-left:0.8ex;border-left:1px #ccc s=
olid;padding-left:1ex"><div dir=3D"ltr">Hi,<div><br></div><div>I have previ=
ously raised the issue of lambdas in unevaluated contexts on this list, and=
 the</div><div>conclusion seemed to be that the restriction was now obsolet=
e. Hence, I have written a</div><div>proposal to rectify the current situat=
ion.</div><div><br></div><div>I attached the proposal to this message; it i=
s only a draft and I welcome all constructive</div><div>comments. My hope i=
s that the paper can be discussed at Oulu, and perhaps even make</div><div>=
it into C++17 in-extremis, given its small scope.</div><div><br></div><div>=
Regards,</div><div>Louis Dionne</div><div><br></div></div></blockquote></di=
v></blockquote></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/ea28a821-462d-4f02-a7d5-690d480c7c2b%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/ea28a821-462d-4f02-a7d5-690d480c7c2b=
%40isocpp.org</a>.<br />

------=_Part_807_108829261.1457385075962--
------=_Part_806_78542537.1457385075962--

.


Author: "'snk_kid' via ISO C++ Standard - Future Proposals" <std-proposals@isocpp.org>
Date: Tue, 8 Mar 2016 02:44:44 -0800 (PST)
Raw View
------=_Part_292_842556204.1457433884339
Content-Type: multipart/alternative;
 boundary="----=_Part_293_300575126.1457433884339"

------=_Part_293_300575126.1457433884339
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

If C++ functions where first-class entities this wouldn't be necessary. I=
=20
do realize that this may never happen but could community aim for some sort=
=20
of approximation maybe with explicit control kind of like lambda capture=20
clause but for (closure) memory. Maybe function signatures could be=20
expanded on for representing first-class function types which can work with=
=20
lexical closures, e.g.:

template < typename A, typename B >
using MapFn =3D B (FirstClassMapFnSig)(const A&);

template < typename A, typename B, template < typename > Cont >
auto fmap(MapFn<A,B> fn, const Cont<A>& as) -> Cont<B> { /* ... */ }

// ...
auto result =3D fmap([capturedState](const auto& x){ /* ... */ }, myCont);


Apple did something similar with the "Blocks" extension for C=20
<https://en.wikipedia.org/wiki/Blocks_(C_language_extension)>

This would simplify a fair amount of functional style generic programming=
=20
in C++, improve readability/maintainable and most importantly better=20
type-checking and error messages. std::function is a decent workaround but=
=20
not an ideal solution for all cases in my opinion.

On Monday, March 7, 2016 at 9:03:41 PM UTC, Morwenn wrote:
>
> A few times I wished I could use lambdas in decltype to find the return=
=20
> type of an ADL-found function:
>
> using whatever_t =3D decltype([]{ using std::abs; return abs(foo); }());
>
> It's not a clean way to do that, but the current solution of using an=20
> adl_detail namespace to perform the same kind of trick isn't clan either.
>
> Le lundi 7 mars 2016 17:13:07 UTC+1, Louis Dionne a =C3=A9crit :
>>
>> Hi,
>>
>> I have previously raised the issue of lambdas in unevaluated contexts on=
=20
>> this list, and the
>> conclusion seemed to be that the restriction was now obsolete. Hence, I=
=20
>> have written a
>> proposal to rectify the current situation.
>>
>> I attached the proposal to this message; it is only a draft and I welcom=
e=20
>> all constructive
>> comments. My hope is that the paper can be discussed at Oulu, and perhap=
s=20
>> even make
>> it into C++17 in-extremis, given its small scope.
>>
>> Regards,
>> Louis Dionne
>>
>>

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/36dc1730-b450-4d87-b0e4-7d14a9a44b33%40isocpp.or=
g.

------=_Part_293_300575126.1457433884339
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">If C++ functions where first-class entities this wouldn&#3=
9;t be necessary. I do realize that this may never happen but could communi=
ty aim for some sort of approximation maybe with explicit control kind of l=
ike lambda capture clause but for (closure) memory. Maybe function signatur=
es could be expanded on for representing first-class function types which c=
an work with lexical closures, e.g.:<div><br></div><div><div class=3D"prett=
yprint" style=3D"border: 1px solid rgb(187, 187, 187); word-wrap: break-wor=
d; background-color: rgb(250, 250, 250);"><code class=3D"prettyprint"><div =
class=3D"subprettyprint"><span style=3D"color: #008;" class=3D"styled-by-pr=
ettify">template</span><span style=3D"color: #000;" class=3D"styled-by-pret=
tify"> </span><span style=3D"color: #660;" class=3D"styled-by-prettify">&lt=
;</span><span style=3D"color: #000;" class=3D"styled-by-prettify"> </span><=
span style=3D"color: #008;" class=3D"styled-by-prettify">typename</span><sp=
an style=3D"color: #000;" class=3D"styled-by-prettify"> A</span><span style=
=3D"color: #660;" class=3D"styled-by-prettify">,</span><span style=3D"color=
: #000;" class=3D"styled-by-prettify"> </span><span style=3D"color: #008;" =
class=3D"styled-by-prettify">typename</span><span style=3D"color: #000;" cl=
ass=3D"styled-by-prettify"> B </span><span style=3D"color: #660;" class=3D"=
styled-by-prettify">&gt;</span><span style=3D"color: #000;" class=3D"styled=
-by-prettify"><br></span><span style=3D"color: #008;" class=3D"styled-by-pr=
ettify">using</span><span style=3D"color: #000;" class=3D"styled-by-prettif=
y"> </span><span style=3D"color: #606;" class=3D"styled-by-prettify">MapFn<=
/span><span style=3D"color: #000;" class=3D"styled-by-prettify"> </span><sp=
an style=3D"color: #660;" class=3D"styled-by-prettify">=3D</span><span styl=
e=3D"color: #000;" class=3D"styled-by-prettify"> B </span><span style=3D"co=
lor: #660;" class=3D"styled-by-prettify">(</span><span style=3D"color: #606=
;" class=3D"styled-by-prettify">FirstClass</span><font color=3D"#000000"><s=
pan style=3D"color: #606;" class=3D"styled-by-prettify">MapFnSig</span></fo=
nt><span style=3D"color: #660;" class=3D"styled-by-prettify">)(</span><span=
 style=3D"color: #008;" class=3D"styled-by-prettify">const</span><span styl=
e=3D"color: #000;" class=3D"styled-by-prettify"> A</span><span style=3D"col=
or: #660;" class=3D"styled-by-prettify">&amp;);</span><span style=3D"color:=
 #000;" class=3D"styled-by-prettify"><br><br></span><span style=3D"color: #=
008;" class=3D"styled-by-prettify">template</span><span style=3D"color: #00=
0;" class=3D"styled-by-prettify"> </span><span style=3D"color: #660;" class=
=3D"styled-by-prettify">&lt;</span><span style=3D"color: #000;" class=3D"st=
yled-by-prettify"> </span><span style=3D"color: #008;" class=3D"styled-by-p=
rettify">typename</span><span style=3D"color: #000;" class=3D"styled-by-pre=
ttify"> A</span><span style=3D"color: #660;" class=3D"styled-by-prettify">,=
</span><span style=3D"color: #000;" class=3D"styled-by-prettify"> </span><s=
pan style=3D"color: #008;" class=3D"styled-by-prettify">typename</span><spa=
n style=3D"color: #000;" class=3D"styled-by-prettify"> B</span><span style=
=3D"color: #660;" class=3D"styled-by-prettify">,</span><span style=3D"color=
: #000;" class=3D"styled-by-prettify"> </span><span style=3D"color: #008;" =
class=3D"styled-by-prettify">template</span><span style=3D"color: #000;" cl=
ass=3D"styled-by-prettify"> </span><span style=3D"color: #660;" class=3D"st=
yled-by-prettify">&lt;</span><span style=3D"color: #000;" class=3D"styled-b=
y-prettify"> </span><span style=3D"color: #008;" class=3D"styled-by-prettif=
y">typename</span><span style=3D"color: #000;" class=3D"styled-by-prettify"=
> </span><span style=3D"color: #660;" class=3D"styled-by-prettify">&gt;</sp=
an><span style=3D"color: #000;" class=3D"styled-by-prettify"> </span><span =
style=3D"color: #606;" class=3D"styled-by-prettify">Cont</span><span style=
=3D"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"color=
: #660;" class=3D"styled-by-prettify">&gt;</span><span style=3D"color: #000=
;" class=3D"styled-by-prettify"><br></span><span style=3D"color: #008;" cla=
ss=3D"styled-by-prettify">auto</span><span style=3D"color: #000;" class=3D"=
styled-by-prettify"> fmap</span><span style=3D"color: #660;" class=3D"style=
d-by-prettify">(</span><span style=3D"color: #606;" class=3D"styled-by-pret=
tify">MapFn</span><span style=3D"color: #660;" class=3D"styled-by-prettify"=
>&lt;</span><span style=3D"color: #000;" class=3D"styled-by-prettify">A</sp=
an><span style=3D"color: #660;" class=3D"styled-by-prettify">,</span><span =
style=3D"color: #000;" class=3D"styled-by-prettify">B</span><span style=3D"=
color: #660;" class=3D"styled-by-prettify">&gt;</span><span style=3D"color:=
 #000;" class=3D"styled-by-prettify"> fn</span><span style=3D"color: #660;"=
 class=3D"styled-by-prettify">,</span><span style=3D"color: #000;" class=3D=
"styled-by-prettify"> </span><span style=3D"color: #008;" class=3D"styled-b=
y-prettify">const</span><span style=3D"color: #000;" class=3D"styled-by-pre=
ttify"> </span><span style=3D"color: #606;" class=3D"styled-by-prettify">Co=
nt</span><span style=3D"color: #660;" class=3D"styled-by-prettify">&lt;</sp=
an><span style=3D"color: #000;" class=3D"styled-by-prettify">A</span><span =
style=3D"color: #660;" class=3D"styled-by-prettify">&gt;&amp;</span><span s=
tyle=3D"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"c=
olor: #008;" class=3D"styled-by-prettify">as</span><span style=3D"color: #6=
60;" class=3D"styled-by-prettify">)</span><span style=3D"color: #000;" clas=
s=3D"styled-by-prettify"> </span><span style=3D"color: #660;" class=3D"styl=
ed-by-prettify">-&gt;</span><span style=3D"color: #000;" class=3D"styled-by=
-prettify"> </span><span style=3D"color: #606;" class=3D"styled-by-prettify=
">Cont</span><span style=3D"color: #660;" class=3D"styled-by-prettify">&lt;=
</span><span style=3D"color: #000;" class=3D"styled-by-prettify">B</span><s=
pan style=3D"color: #660;" class=3D"styled-by-prettify">&gt;</span><span st=
yle=3D"color: #000;" class=3D"styled-by-prettify"> </span><span style=3D"co=
lor: #660;" class=3D"styled-by-prettify">{</span><span style=3D"color: #000=
;" class=3D"styled-by-prettify"> </span><span style=3D"color: #800;" class=
=3D"styled-by-prettify">/* ... */</span><span style=3D"color: #000;" class=
=3D"styled-by-prettify"> </span><span style=3D"color: #660;" class=3D"style=
d-by-prettify">}</span><span style=3D"color: #000;" class=3D"styled-by-pret=
tify"><br><br></span><span style=3D"color: #800;" class=3D"styled-by-pretti=
fy">// ...</span><span style=3D"color: #000;" class=3D"styled-by-prettify">=
<br></span><span style=3D"color: #008;" class=3D"styled-by-prettify">auto</=
span><span style=3D"color: #000;" class=3D"styled-by-prettify"> result </sp=
an><span style=3D"color: #660;" class=3D"styled-by-prettify">=3D</span><spa=
n style=3D"color: #000;" class=3D"styled-by-prettify"> fmap</span><span sty=
le=3D"color: #660;" class=3D"styled-by-prettify">([</span><span style=3D"co=
lor: #000;" class=3D"styled-by-prettify">capturedState</span><span style=3D=
"color: #660;" class=3D"styled-by-prettify">](</span><span style=3D"color: =
#008;" class=3D"styled-by-prettify">const</span><span style=3D"color: #000;=
" class=3D"styled-by-prettify"> </span><span style=3D"color: #008;" class=
=3D"styled-by-prettify">auto</span><span style=3D"color: #660;" class=3D"st=
yled-by-prettify">&amp;</span><span style=3D"color: #000;" class=3D"styled-=
by-prettify"> x</span><span style=3D"color: #660;" class=3D"styled-by-prett=
ify">){</span><span style=3D"color: #000;" class=3D"styled-by-prettify"> </=
span><span style=3D"color: #800;" class=3D"styled-by-prettify">/* ... */</s=
pan><span style=3D"color: #000;" class=3D"styled-by-prettify"> </span><span=
 style=3D"color: #660;" class=3D"styled-by-prettify">},</span><font color=
=3D"#000000"><span style=3D"color: #000;" class=3D"styled-by-prettify"> myC=
ont</span><span style=3D"color: #660;" class=3D"styled-by-prettify">);</spa=
n><span style=3D"color: #000;" class=3D"styled-by-prettify"><br><br></span>=
</font></div></code></div><div><br></div><div>Apple did something similar w=
ith the <a href=3D"https://en.wikipedia.org/wiki/Blocks_(C_language_extensi=
on)">&quot;Blocks&quot; extension for C</a></div><div><br></div><div>This w=
ould simplify a fair amount of functional style generic programming in C++,=
 improve readability/maintainable and most importantly better type-checking=
 and error messages. std::function is a decent workaround but not an ideal =
solution for all cases in my opinion.</div><div><br></div><div>On Monday, M=
arch 7, 2016 at 9:03:41 PM UTC, Morwenn wrote:<blockquote class=3D"gmail_qu=
ote" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padd=
ing-left: 1ex;"><div dir=3D"ltr">A few times I wished I could use lambdas i=
n <span style=3D"font-family:courier new,monospace">decltype</span> to find=
 the return type of an ADL-found function:<br><br><div style=3D"margin-left=
:40px"><span style=3D"font-family:courier new,monospace">using whatever_t =
=3D decltype([]{ using std::abs; return abs(foo); }());</span><br></div><br=
>It&#39;s not a clean way to do that, but the current solution of using an =
<span style=3D"font-family:courier new,monospace">adl_detail</span> namespa=
ce to perform the same kind of trick isn&#39;t clan either.<br><br>Le lundi=
 7 mars 2016 17:13:07 UTC+1, Louis Dionne a =C3=A9crit=C2=A0:<blockquote cl=
ass=3D"gmail_quote" style=3D"margin:0;margin-left:0.8ex;border-left:1px #cc=
c solid;padding-left:1ex"><div dir=3D"ltr">Hi,<div><br></div><div>I have pr=
eviously raised the issue of lambdas in unevaluated contexts on this list, =
and the</div><div>conclusion seemed to be that the restriction was now obso=
lete. Hence, I have written a</div><div>proposal to rectify the current sit=
uation.</div><div><br></div><div>I attached the proposal to this message; i=
t is only a draft and I welcome all constructive</div><div>comments. My hop=
e is that the paper can be discussed at Oulu, and perhaps even make</div><d=
iv>it into C++17 in-extremis, given its small scope.</div><div><br></div><d=
iv>Regards,</div><div>Louis Dionne</div><div><br></div></div></blockquote><=
/div></blockquote></div></div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/36dc1730-b450-4d87-b0e4-7d14a9a44b33%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/36dc1730-b450-4d87-b0e4-7d14a9a44b33=
%40isocpp.org</a>.<br />

------=_Part_293_300575126.1457433884339--
------=_Part_292_842556204.1457433884339--

.