Topic: Path views, which are views of file system paths


Author: Niall Douglas <nialldouglas14@gmail.com>
Date: Thu, 19 Apr 2018 15:05:19 -0700 (PDT)
Raw View
------=_Part_2690_404871368.1524175519166
Content-Type: multipart/alternative;
 boundary="----=_Part_2691_466403593.1524175519166"

------=_Part_2691_466403593.1524175519166
Content-Type: text/plain; charset="UTF-8"

Beginning to get towards the end of the papers I intend to propose at
Rapperswil, thank god.

This proposes a std::filesystem::path_view. It has an orthogonal design and
intent to std::filesystem::path, and thus will be controversial.

Also I may have gone into too much detail about my best understanding of
the history of how std::filesystem::path came to have its present design.
That recounted history may also be inaccurate, or it may offend some people.

Feedback is welcome.

Niall

--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/62d6570f-d9fe-4cd1-a26c-4879a29d1362%40isocpp.org.

------=_Part_2691_466403593.1524175519166
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">Beginning to get towards the end of the papers I intend to=
 propose at Rapperswil, thank god.<div><br></div><div>This proposes a std::=
filesystem::path_view. It has an orthogonal design and intent to std::files=
ystem::path, and thus will be controversial.</div><div><br></div><div>Also =
I may have gone into too much detail about my best understanding of the his=
tory of how std::filesystem::path came to have its present design. That rec=
ounted history may also be inaccurate, or it may offend some people.</div><=
div><br></div><div>Feedback is welcome.</div><div><br></div><div>Niall</div=
><div><br></div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/62d6570f-d9fe-4cd1-a26c-4879a29d1362%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/62d6570f-d9fe-4cd1-a26c-4879a29d1362=
%40isocpp.org</a>.<br />

------=_Part_2691_466403593.1524175519166--

------=_Part_2690_404871368.1524175519166
Content-Type: application/pdf;
 name="DDDDDR0 std filesystem path_view draft 1.pdf"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
 filename="DDDDDR0 std filesystem path_view draft 1.pdf"
X-Attachment-Id: 47bf178a-264c-4142-b86d-6e3aa20cdb40
Content-ID: <47bf178a-264c-4142-b86d-6e3aa20cdb40>

JVBERi0xLjUKJdDUxdgKNzcgMCBvYmoKPDwKL0xlbmd0aCAxOTI1ICAgICAgCi9GaWx0ZXIgL0Zs
YXRlRGVjb2RlCj4+CnN0cmVhbQp42s1YbXPbNhL+7l/BmftQamrBeCeh6dydL4kz6TTXnONrPrSd
HkPCEi8UqfIljv/97QKgIlGylUnam/iDRYDA7mL32d0HpNEyotHzM3ri9x83ZxdXLIlYQjhTMrq5
jRhLCRWR1opIbqKbIvo5fop/13Q2F0zERZvd9v6RLWa/3nx/cSVUxCTRQnAnQWpiKAMFbnPXF4vF
bVnZ7r7r7Xqx2GT9CvdFLJXEGBEJIpXwi39zL1KSsmi+M/2+tHf45uAAYL2OGAV9hqHuOdOwLYHd
HISoNNjfzGAc58Pazlhcz3gS4wkEi/+ymM0ZNXrniIJvjwgLmDOIgmBBlBz9kfUWNkoNCzhl6ZzK
OQhm5tjiVy1oVyr+r8172CQU1zi3bLP1uqxh29Ir/SGrl0O2tF7vk2+/dcISTXi6L/CH8m2btfd+
3bP3eJqmGvqyqf3Um1kq4qZ9V9ZB8vO2GUDPxgmc70hUXuC13VT3874B67hJRPzPMqsqv/VpMyxh
a5V1D1nzXYgLjVjUYlDw4fr5GUb+t64Z2tzeNu3S/h2PaotN62NRkLxZ74UUNvzVW8iNAfkC9Bgi
Rj2XYFCSxrB/4wQ0XVb5KRCPDybOtmg0hCdgKAAiFYTp9BOwiCnAdcQJS80uFhVRKQebPs6PYJxi
j3MiIGOCqnOwyVCwyZlWN/W8mYHZd7UPC9jt5Li3za2fyTGWq6zNwFV5b8OxOvv7YOvcdn5RWfvp
fmWDuwDqgqr9sIBT1lnAsBMPwcz8sArZ4PwH41+okKNH/ELwCliwIiOcOYWTyW0cJDVxa29ti1bB
kNG4XG8qu5NdmYcjrkTtuATtdRM7IcQNhX/tIuHee7/gXJ4FGW/d+rD/thnqsAnsPI6+CQqEoiRJ
xBibVd9vusXFRW0LqFvLsl8Nb/1h5+PKPWeWzUV2C//28DoNv4QKqLZII5DzWscvMAQJh6C66Inx
JN5TbiYcBx/7xv/eIVIgg3dG1mUkjFyWg8TW5nZbyWBsixJ9HtR4REHqP3ly7mfyKvPAE3Hm9fH4
ZZm3Tde4WgfzP5XdAKBwfgin2XPD634oyuY8gKr2WPmQ6jDzQctzP3d5/dJPeU04c9nmeIyVluRo
IccWRJV2WEsM9wqfrMBmh3uQ1ZUObdP6vJgERdDdoDBNhJb7x/iFsuTRSPrHMZJXZdsFZcHH/gTP
bs5+P2MBcqkiWptIJimRTEb5+uznX2lUwDtIICJMGt25lWuACYWlCMUqen32r30ZKZQqCQg0iXpM
Bo14QqQwByKgtxAGXfhLZIxHOS1iehTHJoRALiCkdlwgAVsgBjoJAQXUgB97QK6AitA9nL1yNyBY
gkCmCVLYbG44jV+AEI7wZzE2FZBbDLmrO3ttRWpGEr0NJ3+oX83HhV6XHpd7XetNliMK0oB8+HUF
DR9e94DzrC0m7QwSPaUqFg8pnJxKeE2vXHWEg0F1LLz8p7Yrl/VUOlRkWH5SejiH9NKDKCe2sHnZ
Yck49+PlUBa2KmuXcDDGLlQHE1pX0LPKHpyR0lTFyYOBnGQW8AckZ7vpKAlDDsagWC7rpg38527l
uxePfd2Aphg6oos5TN1jE0lie6TpMwXNXDzOQBeL91k1+BbKFJQJyl3zTx9o/mG+v9/Yo81fESP1
qLHspn7SLHU9gdLP+ZkIY4rqOJnU0UNAC6kI1Qfu5sHdb1bYPoBHcg2sYtu6bbtpbe9nR993fpiF
33/fXM1T/3i3svWxCJgEKMNp3nUAECj/TG0jB1wHDAgmdY/a9J+PfMhwogTbo7g14Pf9zHMIRFCd
ta3nY37s+nEeqCkwtG/AR8Av/jb1vElcGKUxXxDNL/3507Ufg1t6Em5QboxMp2gTAW3XwGLLNtxJ
gITaZVaVfUDgLkttMRZZ4A1+kn1kxmMRgCW320dbT5Yf3BfxFJTx/2d8Dp2YxOaUE+nUfTK476r8
YMMhh87ue6xDtp45F73zb8qjOQnkIIGGvM3JdsCWpinWWMycwPk+oQrC3kcZFGeEAXfY4cJfK9Q/
MxtOBhLurin4K5nGU4V4/lhXWHmNwNIE4SvdPd7i1LY6JVidcGy3pQkxgDNlvRn68Nh5Od2w8R2x
aXtbYE+nkBkfckynTe/XIHXB35dY7rfcH2felHXhC2IQB4Ud1rS+ph5L7WlJvQP2MKbjrrkej85c
99iFy2jVNYHYe8NTb/hB4xRfd1U9qDJwQ2X0BDymBBcus4Qzs08IladsNzOjYpsj113Vpb+1AyPr
PEsEDof39zzzl78DBqrFjjmnSKL2Gq9QY+u+OjiGjUh1hLB7h+ORlsL77rhWnQL0HtT6KaRQb0lh
+HZnHSwlkG6PdxWv8XtSVvtB7+giLnCfrnDq8tWLsCcHG4c1tp7DoshZCncY+VlEBW9PYV8zLFeO
qgRzGq+5HjkGToIZ8/CRAW5ITKk9htLhx8kj9iUkSdkXfr8Sn/b9Cims+ki9QENWHDCgJE2+ztr9
xyQiBz8mSu7nReLz4nLmmAikwDsILJa8yhZLuw5pcpAHgqbA+hl7vFUKSH3oq3PFiFF8vOHubnl2
c/Y/bfyOcAplbmRzdHJlYW0KZW5kb2JqCjk1IDAgb2JqCjw8Ci9MZW5ndGggMjI0NCAgICAgIAov
RmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNq9Wd1v4zgOf5+/Io/OzkSjL8t2cLcPV8wO
7nAHDPa62IfpYqHaSmNcYge2007++yNFObGzbpt2tpuX6IOiSIr8iaL57G7GZ5/f8eM/n4lZgx1s
/Pz53T+u3338SemZ4CzjmZhdr2aJnCU8Y1xDr5h9jdL5IpM8+tmtXOOq3LXz367/dWQ503HMYpVA
x1MLgdPAU82EZkobiTwXPdVCCya0CrTzhRCcR/+s5kpEXVPPF/Bf7POurCtiI8xQND4DAiakpvWw
bqFiFXVrhw0Z5fsGRJzLNOpo5ur9e2q0na0K2xRzEX3AkbRfpKLcVnVV5nZDPB7mMoks8jjQ/Kpu
aKbd73abQ1nd0fgNV3rj2kPbuS0R7Gy3boNIdS8A7BhkWO0rr5k3IOoiFIt1Rro8rMscN10DrQJN
gGy/RQnBIrQTTeB+wNJvqU5bAlXZBsvHs4zJRKZoMWHgJOP+cNquWC5XZS/1conLpwwtRMKkNP06
Nl9oLaPrdRn2emjsriUJ9ruJbRcyNdAxYx0nt18u265Bo6JRhBEsTfVMMpGmtOh3PwHek0pgexrv
Djs3JbrULNGyl/zvUzbhLNXJyCa3tgXz+41ilkp5iQAk9t+u1rb5cUoQsLzuN3kowc4LKQV4lv/b
bWwHjrWlXruD/yRyeYlHndNgjo64rsvcqwmerxRL42xs0no1paBkJ/1Qvkk7xUB/FPCGx3wQPZsD
CsSj/5R5U7f1qqPur2VV1Ejw0NLAvnXTXgenn6mLRIifPCrBVHo0Yh74zGTCMiEu8pKpfYkscAU4
kKmM3D2a2zUHCK5u7YMcFXSb1j2tKge+F6qqL1Y1f4yNZEpmg0MTJJz3L+8lWmXg/2rsJWXnGtvV
DZ5abCKAQmpsAUbgNG/RBKA7DZ5gyncHwITdnW28RaDpERQbIYCJd57XTXHsIg6OaD3i+FbhNuUW
JQsbeZwlWtsFYoiSxRAtY9IHI+cDIVFbEwwRSsOA+2a3u42bPCrBOE9fDoYSAeN4eHVFGw1iAwUY
xQYObMGTyrs1ulVHK7ztlpNwKQH3YnRdDgccrser5Y1Q2vN9aLH5Xy+oktiu6s7tbMHcN/fITelZ
hZuypLCul6O7G6TgI0UNU0aPV95wkZwvOgNTWN7bpqnrjiKUHPWCCK3s1iH6eGee0EQlDEL9GDje
tDdc8knYYXFyDOyr5fTNxoQZwJ4UT5pkIbhixpg/2yjZI0YJ40XZuBwC9vCUZUzMQPzXmAYd6Flg
vMA2gGpZFv/FtsEwfSOHecwuQJecbtRLnAb2APAdhfMLDeMA+8p7uvu1ZiZOL4mmNzPO62BIxAAp
/AUuJROIT3g7fIdLAcq6ipwKMiYNd/OfZbex4cSThhNjr5ow36S9uGHcqBfYCzwtkdn32AuvwOdA
OIZcVmWv8ZtnHATyfc1fAsc69Xp+h75o/TcJkaDqJE94hZ0y3b/k1nHfOle1kMe9zRXy2IGeZ6jP
aio0S5V4FVQuMGkKKeEPg8AeDN+6u/JJC2jJzCl9f1lgP5pfvOCk4Z2cyVed8wXav3//rP6xYokx
Q/2lekJ/nR71/3hZBrHQ3PjnJYYHsafSi/SllQdMTG1TYDovY4whmrq1/v37v7P5dmPbNSTWviLB
+4oE0Pf/WDgpC9e4IuxVB370wsaOPgmAuEfvphSACML+/HHt3YHIITKwQgVc6pDyD7O0ZwOazuyt
zvmCk359rIfL61FgMy8Id0RX83o76Gk76JMdLrBEYuDiN6+xxFN3t0/SkjPfF3ro+7BNVYdqXUUP
Q3iwNlR6qKiyiG9adPJeeNA74SDO2GY/zVMV4ZNX62xQu/DdunKhsaJ/8N82DBUur7dUbarb0j/z
IbJ0kmFhCgkq9zBhBSlTlil5SrGmX8oSq4ZH8MeQRJaN6/ZN5Qq/URoKCgkWFHB262wVCAci+Ma+
gkCmiuvUmxlyS2HERInxTap5gNNpMigaqUSOirZG96pg0+KfIlVoalvj+fi5zYZwJLd4AABlscqo
mG0QwHw1pnBEfLZFKBQ2WAEZbqWjTXhIwasMUqRsAsq05KH8ogU4ReOL3MF1Wix/47CvDSHlHz3l
A1WBe28S2VErpD/Tqg3UxE9kBKJImNc7X1337o4DXjagWDX2busoLloaovLmea2clFBawcVQg5Pg
aegYC/k02na26ajp4R8Ji4Ia+x1eHYk5RRCOhqKRZ2QwNv3o14BK5x9NQIQvn+E3/hDyNfotuGky
iokMv3wcQ+ff81hEtfcKE23cvcPPDiY+1fhhuPxY0+CmvG3mMdgWjDyZa2iAdDN0SpDekvDhcgKA
ocUzuIgzFsMzclhJo3rvfov1Qfzo4uMur1t/ALgzrkcbU1fGPMSoreoWPKQqQuz2jkl0oYzcI5IF
N+nK1hVg+ySLo0+292kkDj7pN64gDsP3H0IHX0FLqY577gcoJ7JIQ8kQW/bOlhhSEPaQHUAesPIm
wKPVGacyIdI5ewQh6AUR4vQRt4eVhKpAsbabexTJtf3eYeKYDoQdzkw75ch94VX4kqatcsd6uiHa
e0VQJv+VB/4hrjZtTSOWBip3hwUDLxlNwItOKZCI5tGiOHr15RcayMMhuMARwxAJRvHptwoOgJOh
fAstAswWowlM/cV/NcPrbN0LeJS4yhsHiFzdbQ5TRmhcEITuP5GAlxlq3CLXQ+dan/2BN7Y0biv6
PoeHVOEVisNp1OyrqoQu8UmPVU9aRFkcsjecGgFHoEW+YBub041M67E+jZ8DqOfrvkA7rPtCd1z3
RV528qxBi65cHRB10GaZjD4F7IUt8GbAi7r0n/x0St6GDTiNEk8I25aodtZ/o/hAXxWPlGWgcvcl
BJC3AfTIxSD9IFuUANMHmtm3brXfULuwXWC+QnHqbZBnHXh7p/HihLBxQHXJd8zK+UQckpqqz5pP
mbiSJCwyK6hfhpSbtPI59vn63j9PH0BRFjYGY6kEk3C3A4wyFRuSTY5oPl2/+z+rAa13CmVuZHN0
cmVhbQplbmRvYmoKMTAxIDAgb2JqCjw8Ci9MZW5ndGggMjg2MSAgICAgIAovRmlsdGVyIC9GbGF0
ZURlY29kZQo+PgpzdHJlYW0KeNrtXVtv28gVfvev4FNXKqrJ3Gfooi/N7hYpUHSb5C1dFIxE2wR0
KynZ9fbP98xVoszE8oVjsVCAQNSQnO/M8HzfOXMxhbPrDGd/ucD+88+fL979TGRGMMpxTrLPV5mi
mcI5why+zbIvo5+WY6pHm7IeTzjPR5sb83XbmG9QfFO6g3W9Wo8ncGbVlLPxr5//+u5nJrIcUUW1
qZVQhpTOAdRW2mxml5dX1bxs7ptNubi8XBdQMdyWEaIQpTKjiGjtLv6XPSGQ0DSb7JXfVuWdg2q3
gFLEaIT6Axio9OhuTEY31XRM1ejGmVyFNqw67JVgheCPmnsITQAbWhDuK5qOqidcaERzlU0IQ4Ln
exDNpq6W17a5kiCOeXc3sOO6QaCci2CKaS1jdLSBfuhqMOWIKNJq8M6aw6qtcbFqZPqRjj5sDAIx
rmB6+baalY0rWayajUNfAfqVN8S4jjnbFIvSFS3KhXGur9aRjMOZ01fb5XRTrZa+ru4uJUojgXVH
lx711KzPqT2PYZqPvEOXdbEx3TBhioNpUHLvjqdg06Zw7HAldXlV1uVyapqj2GjrGbF0Z5uVbae5
09xzU9TF1NLKndzW0DdTf8XdzlVNTfbhQXG1tD4wCQa3mhs79GpVL4rQ4VeuzJ+ko/kKjFKjaTF3
39fzYnNlfKJe/OBd5J+Y8Xl4OLbr/KXQfcj3PssIR4xLavoPg08TRDhzhtAxGIjx6MNiDS2Ee6V0
nSCVtwMKPkHXzYp61vU8oD4G9VHu6vscGtYWGVs0r77WRX3vDKyCj3h7t3UJLZu0rmlW8y24E5Qv
j2kL8235xUIzHKChKT+WTXW9PML+v23dA4fbBHNPRAT/hwLfKhWqFq6n3UlLbltmGwcl22WzBevr
dV014JfGWQXIW+XuoLbxcNm8qK9LV9Jsvzblxh0D+kP6MM4QV/nT1a7Nmx8a551cYqSwbHvnCmyo
b8eWUKYlWI7AAdzBYmWf6qwynhdP1+V6Xk2LTTkzAsPY6L0hXPmfde1vdzqx2i6hO2aN6QhCd5W6
/oUD35lw5DsTjiqPAQp3WxXz+b37OoUnYQkOT6P4Oi93dpqG4XaLgreZiKhsRLSE2VYbfyt4G1DR
u27RNE5FjH/WYPTMXREVBY5vxwLQ5tsSBTyKIZR5N/r7sgyAvibqdcL51h4BgnLdFGvoG0/rZht8
xl0UI8JNsTkQiWhIiBnGRl9pvNn5kdp3CIYx4nl0pGJ+V9w3XZ7DBKJEx+s6fNJkIOH8FLTyqEBv
jDXesPLq11Wx4S7CWh4RKy4vb20n2LxESMQwPSYv2dyvy8fNNU6N9egDCCOlOZh8Y2KBObwz3b2q
rUtTgd330p2DLrXOaZ9I48rWddmUIQ7Zi3y5dXxz5Bzfwlx1PTfKKJKctvpbgJ+a+NT5/LhGhO06
3tOeo1wL16/CnVqGJ3EH2YA7agW/xj+0qoY2OBUsIdrfjoOnhQjmA5fuDFy+YogxJu+w97rugLTB
JicMYkhw95mT7T1bVtW0DFbO54GWk50JoDlzQCqqZdmpBGBJWVvOXkAXMfiX2a4CB0caxDirr7Pu
Ex93qfjT7/zp88W/L0zKhjOSSY00oRmHrI+Dk00XF19+xdkMzoG5iMGNd/bKBfxniGmVzbNPF/9o
1yDhoXJqPtX3anD34wc1KHrM3VzqjnsFxy+BFhDCDAGf3P7nd//T73j4tCDx4Or7xhrWiTxYOzDM
+FiGARp9gXFBoDrEGQGlhE+hQeQtfPepj34sDV4Mwy6lpFFJGOcxEEQOaZISPjgQJxMRSVAiTDMk
fLf17xdArTZ6KSSh1KZcDEm8E+ox6KJRJvhs7P925YTn2HSVAJtNV9HYiZ1nAC77MhG5ggSC2krN
aNGNy7lACiwhSOWt8MeRUBzkcFcOAjyq4L/Jve8ODOqfY52iiEGs4aGl5VlS0OjzQ0HtiWpYgiPm
YRy673xdRIpDl/8+N3i/in+ynELGRNP6Z1rQ4CmDQe3HP1kukOZhauEVI4ERbDMt8NVGBCfA0xZA
9oWOLt/WzTVBImeJ3TwpaHS4oaD25OaaI639AgI/8PPnIL3s7gPmwDhciTjV/Q5Y8+7NTfR513ug
7Y3PvWr7SWySt7H5lCk7EUONQfdjYnWnPIkkjylQSsYTq0tS0MjzoaD2pC6KoZxSR1/xsihqtIDH
icitHUMRGz2X8P/6tcZTt57Tcx+m3ZyigNZjbcdU+TfGVGFtx9KNjtbh3r2wbgH+5CP7Y833l0/t
uC7ozGGa8Me3TRNEjiQ88LRETgoaKTUU1J6ILCnKpV9pk+c04ejo+8vYLKVTr1PknB4coSpcI0US
z7WmBY38HgpqT6oiKMLYD7LVINKDdeQzsRV389lerF8x1OcSYWYTDREWmX8fExCTl8TiN84ImJtA
T8vdpKCRRUNB7Ym7nCDM/eKxPmcET5o4WPlsoLEKciKGrc+pypPljrpFjLRylxQ0Cs9QUHuSO4YR
1srpST6IVGUahYbuhMbNZMhjVoeP04Pnz2rsbCMPRPDoasIkLOnKmGjuMibRnTGJk8iYiF1nSqsg
KTEjlYcB+trywZECUxnJEaFhYwk+uXRJIo7ZSaZLH73qXEX1IfZzaZdNHyYC5+xkR3Ps1vbSaktS
0MjzoaD2JC9YIyL9CgR54cY1Iwa9Jyd1pDXxtKZ7tO5/6cRe8Du44G2jP83dAllSiqYFDWQZDGo/
FKW5QtTvsyD0nAAMf76kPmcmz5Y97ZYT08peUtAoQENB7Un2tERUBN1jA8hMvjNtIo7ZANKWBXKQ
2dBXyGz0no3dmvjy6ZOTSZCUWyJMqxRJQSNnh4Lak1IogWju94oRfs6Qhp8hVa0FcqczG29sfRqJ
iHSrmGnlJSloJPpQUHuSF8mRsdnJi3i9RKS3v+x7dP3mkUSkzT7i/0qwi33ZF/bWYV645bW0PEwK
GhkxFNSeeCgYYspvViLyHOaPjqYfTj+aMrfKlZbFSUEjn4aC2hOLOUWc+AV0ogYQTXfRkHj2hGhI
Ti8aUreck5ZHSUGjRw8FtSceMQJXSc8jfY6G/z/LArd7YtOc0nLA8eOCN9M/YtfK0spfSsyoQ8MA
7Un7qHkFXdgTlQ97RM67d1Sy1o7KtjQ49kVpyBhFmBz13p6H82rhbbEnOLLHbgEoLZmTgkZiDQW1
Jz7jHAkW3uhz3uP49D2OA0kZTnHqgeRu9SipzKQFDYQfDGo/MkNyjcIr+igZQNbwMOq7nQv+zRI5
tJk9L+qTk53PJ9qttqSlY1LQSIyhoPZER23p5Pl43th4fFD95P+M/LfzXsHvSolyC0ZppSQpaCT1
UFB7khIlkZR+BxAdwl7Bxv955G8xnNuX7/Lu5XnxvBdFvcA6lyDMOt4uuXvD5HOqZ77le+KVgRcR
+Y1XZMmDlp9YsiLdYlZahUkKGrk+FNSeFEYCPXH48ZvzHsNj8wI5+tHL59X5Dx6eJTHCrfOllZik
oJHsQ0HtSWLMJ/f7m6gYQBIz80nMo9S2IV6Jp70Fk/aS3OhvJjcMEhvywuRm7Wdaalv/vvCZ1mqJ
tJbHpXgnluhws+KWeJdlWtCoB0NB7UmFuPkRT78/i8rTiIHUrQ+l9b6koNEPhoLak/cxCoLqdzXR
F+4OJK3fdx3CrycQYlco0vp5SszocMMA7cnJKUFa+jeCUX0aEovdZHxa10sKGt1gKKg9eZ/9icew
DJqfZzKOnsl433r1XEj0iR1fhR/waE5lJqOwrxk+EWPMgHDhZ6zdAO+E3lwaVsNvTsWoWz9Dbnrt
4Mf14u+cHf7qLEVE0GzC9I7b7WUQEP3/AZp1qE4KZW5kc3RyZWFtCmVuZG9iagoxMzYgMCBvYmoK
PDwKL0xlbmd0aCAzNDUzICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42u1d
W29buRF+z684QIGFUjQ07+TZIi+9pNgFWqCNiz5kF12vb2sgjl3bidt92N++POQc+siSU0USR6Q8
AQQhknw+Smc4/DjfDId35x3v/vKCj8+sV+FfF55578OTV0Z1N+fd8jf+sc5f/OeFCFi8E531zAvZ
OW6YC+8dX7549z3vTsJ734bPq/BX9/GTl8Onw3VM373v3r74e3ugRismvG8HNduD0kaE6zGthHLD
s/FeJvzlb4UR/OHwxcEbzTvDeudsd3gWRsJcGKvjPeNadIcn3buZ4i+/P/x2AiV0z4fvY8J1h+8j
8zdd+k4AOnijTOeYlcIMKNKG79SHq8XrH7+Us6vw+PBSzG7D8114nIbHf8PjOrx2szF89+6V6W24
mJwdRQAx+2m4aGc149J1grkwnDiYf8fXNTPOdK8mr38Kf3cRByZm93MD6t7p2Xfc8PBGeBLhM79P
7yNM0T8fLk4Y24d72GvcWYoLOs6XZlDLzFLbe8bDZ9IsFXNWuTjjNDfjjPsFDHSdmaRgGok4T9M0
kpJ5a5ZPI73yNFJpGsk0jcKM9bPXMFATvsZwU2z4aBzf9IVxgrvZCVz5DCb6x/B4H0f6GGnHU9Sr
8L5FnqKooHmytIJaaIp6x4RUMEXlo5VsR9bnwnR1Dtn6UEGzHbSCWsj6nGXCarA+9cj61oHa7K+X
LUpqXJQOgqM+2PkQgSp+EwZzGfnnsIKkNes4vHYB/HR47X91DNZNCLTMBPomDPZjHHT6/20tgz2q
YyB+kcbU8OskfiTi/ue+lkGdgT0NNnZZy+07quXX2bYdde/kjNVBFKxgvfDIRAEVNC/ZraAWIgrW
MBn2h4koaCIKK8/+wzjrB4ddyYAugAhcAwG421c/uZVB/TUM5p9hUG/D82GNfO4OSOcHCGdUY2d3
kRBUMpgxXHyRQ8jVUKdEm27quW3JX13UtCeokvVWZeA/1rTEfAJPPm6MT/aL9ZpEuHBZLypo5p+t
oBZiveFZages15RVORfFR+GZDN95UEf8E6qJX1k1WVUnUTGM9RAtEgtr5dry6hmM8j148tsYIxtD
Uum1y4XRfx1e/XpDPUrM/7KT60d/9dUGl5fhx5+/JOhT618yjulD5HgiM5djuL3XC+ylArkqTB5c
b4gGmH1S7YiFPGAYjPTgZZStY/2VKfcE1+JQQbMNtIJayPqUZEpCZoByFHUieYrkqVHfGKJSh+Hx
ZiubKz17Fa7lKRZI2ts+aW9TdzJGSc/3KxohUo4fLhtCBc28pBXUQmxICqbGYIQnMkQSXDPukqQ4
UipIiiMpjqQ4kuK2Sn55yp7HJb+ooJmGtoJaiPwGEC3GgsN+h1Lc5gVMFUhxtxBbOVnQrjaX28Zr
38AvMZRtnpPstn3vF25krN5A9X64oKMfaga1jPczfR8+BYWcmlex9hqfUoJxrQ8VNNtBK6iFrM97
pnuoUdSCIk8kw5EMRzIcRSBIhlvx1/kZWPRNdDEVhddOYZ9yOQndHk2OmDmpZbA/bClucwz7mwcn
X9Hq8xMkalYQgVXGMuv7YWtvJBTI/zZv+bvJqz+EQdcRDTMupSvjMnJU0MyNW0EtxMidY0aBAWpJ
jJy0YNKCSQsmLZi0YNKCSQt+llqwsalUBZf9ooJmHtoKaiH2a208fjWxX0WHz25bdP58iGDFszaP
4/eQSzb0nQsGZc3i3nq9n2/4OdR0R07KsDGpcArXF6KCZq/UCmohX2gMs8KCL9R1rMQ6JqrjGh8m
ZraCNkALWZ7WzBooDdaGYlArq8J/nMvqIqGVhFYSWlsWWiuaJO9hd5KCtaM9kZb5rLVM6XRgDDbt
t8xSLdNUp2WqlO+NSyJRQTOhawW1EI9UitkxkKEt8UjSMknLJC2TtEzSMknLJC3zeWqZItX74LJf
VNDMQ1tBLcR+pWRuTORzz0HK9E9Imb55KdNsRco00w35opT5u011zFtY6H4emVynJONh/q9wc7ZU
f+wgTjXcmCV3eEOp1oNUKydSbVrXq5RqeSquw3X1qKDZ6baCWsjVizCTPBxhoH0VREP3KZEc1fpw
QUc7aAa1kPXxwU+OJeR97WG2cf3xy7KEdrn96NnwymRM30QhKjGohxpfOanxFbXU+NqlFPAGwjrH
oBeR9LxcepZbkp7V7FW4VkXS81PdEXZop58gPLS4C9jhoM5yBasg6XlJjP3/HfuzR/Y0zOI6QkXa
p2RoXAaHCpq5VCuoZRic9j3zFo5hMbxKBmdGBved2EqX0GGe3edMiiRBXUBA55x02Ce83Y+Rco5N
lSoZ1BCtP8tRR1GfHHVak5I4rJ7VJGxdxVtHt+tzymFVXNXFHenHJ06NJAXxIQSd0iSP4j6dRN/F
wdyAYR9tTWOthji7VDmDS5xRQTOFbQW1EHF2PowWwnWm1vMLl5805KehxoM6Jo4dCn+Q67twQbMJ
t4JaaOJYx3oNUrSRVGi9enbCukdny0kMbbLN7Uy4f1x+2QHki4lsayvqJUuq06/5UFK9XKeXO9bp
tUlp6rheDxU0+59WUAt5PWNZ76Gk2qg61lwd08RwjQ8TM1tBG6CFLE/buBAly9NfmKz2aHUVjkmT
V9fffHHmm4or0Fnc9yUXPR8Cimlj3Kyyav4rXGA4Cvtv4VmFh9ytJ1cpDwd3MqGCZsNuBbXQfFKG
cQu5i4aOKKCD60mvL3iegpyJcD1LZyrQmQrUQ7qlciMtU24oLiNCBc3cpBXUQoxIajZ20TNUa0+1
9lRrT7X2VGtPtfZEgqnW/nnW2mue0mpxyS8qaKahraAWIr8iDMiM7NftsIe0f0LC9dRDesz5ltRH
GssDhpkY86NQPSAu6OiLmkEt5AG5ZKKHImBTRwm68inJCNf6UEGzHbSCWsb6VC+YVGMBU0/RJ5Lj
SI4jOY4iESTHUS9pOn99e1/wHlaauTPYO2UD/bArpXnf1XHOjG+q/bRyKW8Wl8ijgmZK3QpqISLv
OZPjqZWWE5EnGZlkZJKRSUYmGZlkZJKRn6WMrGyq3cFlv6igmYe2glqI/dqeKQFV0VZQVXSVZ7bf
Q4h87tz2dFx7/+UhgGE7rqlhdTnvaVKlFq73RAXNfqwV1ELe03imDFRXW1nH2q1jVjyu8WFiZito
A7SQ5WkXUKG62iqKWlHDalJ0SdGlptXUtJpE06dEUzmcnWd0Q6Jp35ZoqlJOOi73RAXNPLAV1EL0
UwWCpyDD32qinySakmhKoimJpiSakmhKounzFE1lqkfCZb+ooJmHtoJaiP1Kw7SDnaI1JJqSaLpu
a2yN3RpbrBP9aKI1tvjskds7F4VFqhfEXR1QQbOfbgW10Oog9OCRYHWwdXATnpLcca0PFTTbQSuo
hayPK2YsVMVb11hrbFNha2xDrbGpNfaaIreYiXA9S+2xqT32PrXHvodbdlJTT9b5I5Yqa6u77b6a
9bQelD5lkKNSS1zQkeQ1g1qGWspeMsvhyBvrqWc3acpP0s9p2C09j7TztB5Va9rHW9Q0MOrjTX28
97aPd2VKO/Xxpj7e9ZBplwqKcMk0Kmimta2gFiLTXjCrx2NneurjveHEsakeCnfioIJmE24FtdDE
cZxZD0F5xyn5onQf7/tHhXJzubjDXfHOUC/v3Xk+k1LxcT0fKmj2Qa2gFvJ8pmdOQrW5E7vuqHwK
YbATCImd1UEEdMrNw50OqKDZMFtBLTQdtGfOQgm8q+PwBalS7g+u9aGCZjtoBbWQ9SnHPIcKOEcH
MKwevfkTkKkzqAb4CGf+39VVRpXOFmqqEcGygqEd+UGZstBw/SAqaPZIraAW8oPB03gNWzynd9iH
bOXtZ819yBaOIRmM2/Rq028IvcVgexy3zq9X/r7xj0/gymdwDz5CzmNtifZSpCwFXNeDCpqdQCuo
hVyPMMyPnscQA9sfBnYJDOxTTYXrjTEwnvQlXDeICpodUiuohdwg12HUUPHh7B50gl1Pp1gcmhZM
GLN8aGbloUVe9lV4Y7PWrFfISsUiM4t/sKesT/RJFUR1d7igo+NpBrWMuxO9Ci9BFrJzRPso8Fa4
6CbRvVtYIs4hHeByctDjXRWUT7ikD+L6QFTQ7I1aQS3kA71iXEAClvNtUr65dverBN2ugNecTqoK
7sBl3Czwkdcp2FVpVE+E39D3Zqu/4Xq89Ho5L93nEKGwSTnGdZSooNlltYJayFE6ybgZkwWpSzvF
CIksgjsyKX8B1weigmZv1ApqIR9oBeM9pA163qZCi0sWNwlATlleL8L92TiHe0sByGsKQJb0pzrl
QeD6U1TQ7NlaQS3kTw2PZ0MlfyrqWM1VlMJxjQ8TM1tBG6CFLE/1TDgIC3hJu5mVefnbWHOUKoav
6dCAlo5Tv4dBVdWY6wj2cleZ6i4/2GRHq4EcMgKQqxBwQbNrbgW10Iogw+5KwB7Cq7qKYVdi+On8
v6snOgJscPq1iJ7jKMqJhXJN5gL6vGfO2C3s9VzFiSaPGzAv3+ftfC8mUooArv9DBc2eqBXUQv5v
KGMdQ1u6jsWXJ20W1/hQQbMZtIJayPh4WB45HPTuKQH9yw4sHFOnK2qEV9GBcqeT08bvFtOh4Png
jbDR1Hkv4i0fOuQY2b1S+sEy591icFm/As4TpTEKZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8
Ci9UeXBlIC9PYmpTdG0KL04gMTAwCi9GaXJzdCA4MDMKL0xlbmd0aCAyMDQwICAgICAgCi9GaWx0
ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42sVZbW/byBH+rl8x35oA1+W+vxjGXX0X+Bqghxqx
D9c2NVpGoiUiMqmSVBz/+z5Dynb8ItF1lJ4heZfr2dlnZp7dnaEVSXJkJHmyjhIFR0rig6/BB43F
J5IK+KCJpLUhrUi7ONGajA7okvGaNFQESTqRk71K59EY8lBmLHmLJpDHCiZSlJqsomj0xGqKLvHy
MaLxlLCKTZScgSZgCZ7QVUqiBRqF9RzgKIcWkJSPhPlKSznxDJhXUaR43Yh5AYOAp5JK5IFdQpm3
sCF6AkJteNyTtjzO1iQAgp3BqAlU6wijfIJBMhK6RtlAAGo05gcF04AnwBMOIIKBK5KiBLkIFwRL
JmEyXGeVNJMAAxWb79BCGKZZrTQlS9bAgXCOxQ8BgnWYlNinCIFBwy7hFtg4PjZJPVHsxpQAAK4y
MFqhBSisRU4p7lh0HHfgPfiA/UlOsyzscboXRsgMhx1fZ5yc8ExnEo9o+JxpADo4Dq8CGud6Ybjf
cYAUNLteGJp9LwzNHmYruNYF2QcHHZsmCtSBYTwCzVFzB5ojC2toTr0wNCfLHWhOvTBCKjUMx9dL
zx0EjS1gjnowdKJgklfsHKMRbxZm8mkIJw58L+sQefYKU4RZyrHwzvIIZFwArUBT75nuGPUYmhwe
UnZK2c/1WU3ZG3rVFtOurCuhXtP3309eva26pp6t+7HXW4X1RvhylU87qivqFgWddnk1y5vZ9mlm
mHbS1Ku6LWb0pmjL+Y5l7CA/iNGsmJYthtvvaL4uZ8WyrIqWsCY1OYvny+IJVesPt9pubZxXdVPQ
1SLvaLrIG9hQNNRdrwpqu9nBwUW5LNrrtisuDw5Webc4OPiUL9fFP+HnXqhsR9bZuOe3xTWVFXSv
mmJYCXBb+vXs+I8RqxfV08vdzWnvJv2bPVzBzk/cNE19RUU1rWdlNf/DDyNwNm5/V/xnXTaYQMti
ni/L7prqC2qKfMbtnSPyC/5dVP3wp7K4GlG/idJx+RkhXbcFT2u7fPoRhqDTgEw0ZeehP6LKDar+
Wi2vnzIW+stqte4QAWrXq1XddMXsOyo+T4tVT8NfymlTt/VFR7+V1ay+atnNza3jrsCax5ryZVvf
qdvOxg24s2K6qMppvqR2BUZeoMt/brdP9BsHNQhAUXWwLW8/AgGe2m1T77zib2j7pgbduwUQXxY5
bznQN18u6ejkLYgCNetLDu7TnKrX80VHXU0VnDkIb2E7R4qjDgdhMJ/9sN2wMAA7mn6E1mUxmxeX
sG+HJ+INEy8QlWpaPBZ9j2tH0jvKjsvunIUPDyfZGe+67CSfF5Pspxq7A4sQTjcITrJ3RVuvG+ji
66cf+aWYlfmP9Wd6L4mPU00h6fMJFGDRDhfyIHZUVTX0vMcR3C/p+3G+ZPsnPTSbJzs0bmj80IRh
QhyeNs2APww64+ZpUB0GnWHQmQaRMKg+n9wztgc3yX6sm1nR9HbI8+zP2dvsJzzggD9nw7Gx3psQ
RYqaryoRPF+PXkh+DkkY6SF3uv7Ax1b2l7L6mB0dHvYrZEd9RLLT7Nd3b/n76jIvl1190P5rcOdF
3cyLP1XFbIX7QEzry9fA9zKIyAlEQLic0sJGTnukSMgFnMaRrMzzIS66btUeZBlQKSvmZbdYfxBl
neUX+PVyfEEJicTCJnjScCoWBG5RwJXCefuN4W10U6/8abSqf3iA1iQlNN/wLogYFVkpRUgRYke0
+47fKwpvwTpk0XAVshoTvLBS7QSh9w8CfDLYqCriGams0xh2O0GY/YNQTiScCNx6JPIoJYSXaScK
uz8UMYANXKdgi3HBYZXwXNCAiNLap1E8To32CUXHKDgRvtntqDiETW4cyv4JAjiC6yJtkK2gJEOt
I5L1/1coN17xfBYSn9rSGi7LhElhHInZPxInhUZloKMREqUJKkURbRyHsn/Wclx80LdU0dYLnZ4B
xe2fKriruIYzWovELwaMFqj0fg8oKnkRODC40bky1jLimNt9wn8DFEELVJ7aAITHEWtECnonBr93
figXRcAdd8MPFXCUyNFd47/BhacsjhJkkEYn4fl9jPMiuvi7QMGlGw28kxAha/lNgbAh7IxN+BLF
F9n23/7+D05SAxhfrZfL820iSKW1HBOxvJ1B2Htix8jbe1jHOHOi3CT5gB/Vpg96RX0zLinam76h
6G/6luKQdUNtdtLU01OU1u9RHLw5puys+Nw9TKQfVA3JPawaknlZ1RCGWiDpHen7S0MbJF8PCK3l
VDQgNAGpqN8Z2vg1BOOE+A6FUbFPqPjESQG5TH9paX7JiAT+6WxiWnaFOPkZPw8oluwoxe6JaJRQ
Gvzx2/hzx4H73LjHny94dY9LgdJX8UdJ9YhA6X8h0J3V/NpzzDP3ZeAai0vaxFE5F0CYMK7P4hiL
yjxDDicwNu6oHIga3Dg+K3G3wXFjciY5JCXjYtH2RdCoHNKtpPW4nMft78fdMpQaz8CHdJz386ic
kSjex92MZFbwy+NROWxg5cfdrBMu2nH3cd6s3TPkkG/rNO5mjerRmHE3a4csOYy7WVuufsbdrI0S
1vlxOc0ly7ibtUzCmXE3qxTFMzaHQtrjnxEOhWrb+3E3K+9EkONuVg7FvB13s7IG6di4mzkhiXrc
zQo5d/Rha76w7Vz/Mi+4PdezY8v/ZXNfdcgb//CQV8a+8JQ3bvyUvyfzdI71SAack3Zclwfn+H3g
qBxIx4XPrdx/AfApWwkKZW5kc3RyZWFtCmVuZG9iagoxOTcgMCBvYmoKPDwKL0xlbmd0aCAzNzU5
ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42u1d224cuRF991d0ECCRg5jm
nezNUzZYB7sPAbJRkAdnkZV1z+qWkSzFBvLvYTcv3XOTR6NmTVHmAsKsZ6Q+7J7iYVXxVJE2pw1t
/vyKxlfSCvdf415pa92LFUo0s9Nm9Qc/bvMX/3nFHBZtWKMtsYw3hipi3GeHl6/e/0SbI/fZD+73
hfurh/43L7vfdtdRbXPR/O3VX8sDVVIQZm05qMkehFTMXY9IwYTpXpW13OOv/siN4Nv9V2/fSdoo
0hqjm/0TNxJi3FgNbQmVrNk/at7vWf36p/0fRlBMtrS7H+Wu290PT3e68hMH9PadUI0hmjPVoXDt
7ql1V+uvf/ia7127n6vXbO/Wvd65n2P381/3c+Pemy3AK3eV7jlq9+8edfyGA2vev1Gt3vvg/vQ6
XPri2XfQX9S4cbG9y35c3TjZ3qe5Czfvxd4/qaLuQ/fC/Gebjde4x8DCY+DuMTB3+UnGrPsLXrsL
xmd62D9fFu5hcfx/CKPOzy/f7S/Pdt06A2wlLMXAgsbJXgxqHorRrSXU/Y6nGLNg7DuyPivc5xrY
+kBBkx2UgprJ+qwhjItgfXbB+raBet5fLy+QsqN0P763jqzf7nyIYZn6LqwiB/1KwvrV+sL9fMIy
wG5AZ/1yh2RAt/3T8n4DmkEd9M4WksGcBA9lhmlA58Gwj4M/9ql/HdzTywkG2zlc37hrfzPRtW6C
qfk5gGJJNZxYY4CXVFDQtLiVgpppSTWaMC3DktrWmDGSyVlYLXu6bSwngumGOS+89ffyr/59SZSR
zZvR+7MwkOsYpzXMEt5u9Lc3AXOZCFKMyraKUT1RXyUunOgZXYX77OLSIUblK2NUvusYVTPSMgtM
aaCgiVxKQc1EaVoRTpWfUi2tlLZLSrsKmMtudKW0Z1Oa8rMJltJAQRO5lIKaidLcK5cmUBqrlPYI
pcmeluwaWrKPUpra5G+PQpg5C88l5lOuw3t1d2FimnMzApbiwAAT0WBHzERrbjDchmnV8kprj9Da
GmoSS7R2HDJgMaPUUdV99L4aoYlq2SbXKjcY7b5Thttz436nHpbWQEET0ZSCmonihJu8PARDragU
93SKkytpaRY8lqvkwXFDpBRPuUaltgzUxrxCAJbaQEETyZSCmonaOCMixqSyMttz02zz25csb+ps
/CizsJSPi9ex1M5jSuqVJLAsBQqa+KIU1Ews5UAkC6LYVlWamqcpNqYpu5qm1BxNDffFFtQUJaW6
/PeBjZbcePvdeFBaggWNBFEMah5aUm3rfisIaduq1X+29xTv527kPd0Gj8rfe/WgJqUq63fZYakK
FDSRRimomajKWiLboLpuTaWqOF3PE00ZQ4zkm9BUR20fgotzHYK9j+k+S6Mo3Kko9+z7XXNYigIF
TWRRCmominITUImgYm1tpajnUNSwichSlnxuE7FS1HQUpf0OOCxFgYImsigFNRNFad2nUjxFtSjK
PJTym5Ow1gcKmuygFNSprY8Rat2AlCLaBdK99TFKsZVOCkqoUihLJ//olo1O8vfv3lMflvzbWjq5
ZkDHYVU/wjKgLv17gu3rOsdkQ/e9j+ezTQ94nlTnESMZzGXSjHiP8gzTUzrDVKR8Emwp7l9fYCrp
jiJnLyFi6Sv14u0p6nnl3u9rDXtJNexjzcVtr9/nj2xybm8W05aMszUKtp3FErJXA8GGEpCYyacv
AzRTHCEl0crGOGLySqQ+DmCZM233ge/Pe89+oqzTLDWY8HKDQXLfakLd491Al7rYwOIqzPJHFGBz
UotnpszKKAdSwgt6YJkGFDTN+lJQM5GNEETHrDSjHMc6x7xwA9b8QEGTIZSCmsn8OCdGRusTNWW2
sVf9Y1i/7kLKbJZ0fTVltj5S62Lmz5giNZRps+OaMntkUD7vgmQwPk3mUxCz8Ho4CqxnE1FCzbm8
sJxLbdO3oS9KvTIP1hcFBU1eYSmomXxRxoixLDqjElfeZevajCW3p9GSULFJGcqkcqGVMqe+V4Ld
RDEVdeafl/yTbmkqqckVvpIY2XppHyjHwYJGtikGNRPH0c5SeeQ4hWKJldbLtmDNDxQ0GUIpqHnM
T9qWWC2i+ema76nd5WuUWLvLl99dnq0NW7e9JppsS1c08XGFa7yzAc3WpL7Pw+spjoFaZxKIqPAi
6CEPa/r7pahGd+SuG69zh3XXQUGT41wKaiZ33Vg32rQ9a15IRuxmJDM+SxkxbjZJid2HdaZL6zxM
NaChU3LIDTWSEabkJgMaOliVlBcro1WM1J0SD1hwCQuaOKcU1ExMpw1ppYpMZyvT5WY6Pma6jWqm
53vCD9vcX+gJj6huWvcXLKX7jFReGgjLfqCgiYdKQc3EfkqT1qbK1bayHz4/b+lmqp83HdPJXoUK
S3SQmIlxygDNxHJS97PfsxyjleXysdzjB2Solkhp62mNO2Y94fVOsLQHCpooqBTUTMwnFKE6VhQy
VpkvD/OtPzdDua+N8q+L8RD6edyrn2AZDxQ0cU8pqJkYj0sSG9Izxr8GwrNrCM9mJLxBr8FCMXWm
zYjat76R1GvnYMkLFDTRSCmomciLuQGpxF6islce9roNwemyqgyzq1UGW7lZ00sHQNkKFjTyRjGo
mdiKcsLaWFLAZGWrPGw1HL4x+FrD4Rts6fCN6m89k8GslwTAMhgoaOKSUlDzMJhoGeEiVqUwHEVR
wvg9WVjzAwVNhlAKaibzs5Tw1ASH1aKo5zbBqQVRqwf0WHOF2uIFbZXWAZZylptRL9+zl9VTxvaT
4zjs3Qx1cb4vJLLCIrP3dze4fTegd5jaEMWI4X6u9dC60wFrz3OkrcUvgvEfrmktviN3WHvxDqw7
DAqaHNNSUDO5w7olgkUpPjPVHd5w6nbbcWyhfLpTxbOiu35hGF98frNFX6BhXBBp+GbNlHwLthtM
ZH+Oqf72Kpjo4ahp3e1IUvMJx0qkvJgKdiUCBU1rQimomVYiZYlQsSyCZS4KW9RSfPmYDE9zPNLc
Vmn5x4+52Hqrcn2ouLqr/iQbEwj2DGQvO4KlBkjMNEfLAM3EC9I41FRIgOOcSfeLvWgE1vZAQZMd
lIKayfyEdr8d1dwc/TmT0R22nTuseNjo+N0Uvnl32WZ00V9hcWX/FJIol8Hhj0ehHdcO/V8Y0AOe
5NygEJuNjts7xTK4+xDtH4enhq5l0UE19Eef0GqB0LZJit9Och009GT3fp7ohuLexGUQGg0VOtM8
+CWZ1bOv+DOWr+AhnC5xju1AVlRncKBUHwzbN6zPB9/iiFK4F4vCRimgoCleKAU1U5TCFZEmHizH
Ge4oZaq1JjqLB4E07yY7fmfaHY3S1kTpviG2R7Csi99iciYPev9/OALqGJvbfYCpefA5ro6zyMQf
BUgEESVQjjAJiWJrubuq7CxpxqE8peBj2GM7Gkn5LsJ+5HmovjrFEVAwX7sBG1CAgibXvhTUTAEF
k92ucAwoOMqAQseAwit02SQKXVQ66QNMTH6cQpjYBpatVQvtLE8/Fi3cJ5U5w6mNrucRf9nHmib1
2M3qNxOlHaZmmzfuWrb6kaXUENSvfxdZhFtMQftQusRSQ/TL8P4RpsUFdRXQjmIY6guAYWMYUNAU
TZSCmimGoYIoHXulcIEyhhExhkGZK7kLLn63g/HLRO4TQUED3PrCJ1AagAWNE7IY1Dw0wFtONI0N
R7hEujfayzXVSK4ZZJyjt9/imDnGF2rAzhxQ0GTDpaBmmjmWES1jrxSucDUb26iKRScl6WSNAQ/X
qo1XVt5sWnIj8jUCW9pnbJjUzh426ZC9XjwZHsdvnlEP1T3AxTb9tYHadqysfZkMLCuDgiZ+LAU1
EysbNwFsLNnnurLyTll5wxs+DOHdwdIza5hyVsPEqoKdbZ5Hx+FiXKdzWx7HMpRn9HHla8FgORYU
NLFdKaiZOFa1xPBYjM5N5ditOXa7OvmhCQhbagJiCZXt046d4VN1BjajKrUpWLWejNVw6bXrsKwK
Cpr4rRTUTKwqLTE6lvJz+0RaW+BQ3nlNiUN//WSOFEGdPAjv5qUYjeCEUrUJ0fzDXeB7d4G/uFfh
fvhuJ5Tw2i3YCQUKmky7FNRME0oYYmlqTtBWN6WEUPAhHEV+lsbW+zV9FGg2ycktrOCteyBfa/C4
eMA74uCR+91oWFYGBU38WApqJlbmmlgZizEFrawMHDw+pHCKreoi6fw6zcXTNj9qAIk4gGR+gx+W
WUFBE8eVgpqJWZkiNhEr23X8GE8dPgqi2RMc+gzqd+1hpwMoaDLMUlAzTQcq3aijwFFwFObHWr89
CWp+sKDREIpBzWN+rBXurSisE6L2jn9CRcPgqM9G6pzrJb+wll0grU5DWUqO6iil8TE1KTjx0rOg
PbNrwq/w/vwsGRpnr5olO1rsjN8nhl3sQEHTslMKaqbFzgpCWdTCipdy8O756IzbWTqENx7INRHI
hwBwmhq7fjU96pn2W56wBAEKmqZqKaiZCMLw3t0MBKEqQTzltO2YSFmREn2hxKD81i0sMYCCpila
CmomYtDutY1aQqFxOK7S71HBmh8oaDKEUlAzmZ9y9Cui6ErUE/427yX0/dzOml/7rkKm5ny0FqIJ
/09CoHw90dGDL+tE5anaDq8op+sPJlyj3dErtpSna7Diu/UiecLeMURid6fhKd/VZm4LT+Zz8ucR
nf4yTvSNjwE/GAUgR1gGO/Xh7BOdn+NPRjgfLVcfwoEEqJaoVbHjTo/xPU69m9CdPGQwkarFtg2j
934Z5Sauwv/jOESdiV6sAhthQWKmUKcM0EzhlWgJM1GCL55Z09IHQzwGQ2MN48cgwptQj9k5qEIT
ZfUmjuswGGSJNN6JYICrXWBBk82XgpppqnFLOEvyv3bKqXYyqjU9Tv3Yt1BOG4hZ66zQ/WOTyjS0
s5Z57RDsrAUFTfOnFNRMs5YZkirp5XwxxApFLm3jlPyfM9sdGyn1e/6wRgoKmsylFNRMRko1ETQe
dyAXlOXJWpnuR0Nb1pur4oRT07wRcvjj+X1fZ1X/B7Bn6lEKZW5kc3RyZWFtCmVuZG9iagoxOTQg
MCBvYmoKPDwKL1R5cGUgL09ialN0bQovTiAxMDAKL0ZpcnN0IDg3MAovTGVuZ3RoIDEwNzYgICAg
ICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjajZbNjhQ5EITv9RR+gmw70+kfacSB
RXNbCQEHdkccRkMLrYRmVsMgwdsTaRCwqbWyT852fxVVDme5olROOZUqqdpQ07BBU2EbWyrNxp44
2zgSy8Q4E3eMmpMUG0sSnUdRTjLtN9SM05rq4jTp4lpStbEnnQPjSE1snKn1se7Vi40ldR1HaZy6
cU3SMK7h8RanaS6upQmt0nqa00bMZbECN8kdRcdTl2JFQaH9KJ1RGNwFizS4VxQLxrJlwVi3mLDN
yoKHeWSFLd+mzSc1eBRbIJQH20psRuyRraj2bFaoPQFUR7PbWLG0rBh2gRXTZlFMKE+DJ5SntqNM
KE+Dp2AjDJaKwp4Xs2w+F/jEjA0CiGLUtWMs2EbOBUWzghNXm87QqTUfnMHVYTOaWBcMQV0wNr0t
GMqtWgHlBgO44EcvVkC5qxVsHWEFlIfMgwuUx4KhPBcM5blgKM8FjyQZG8v4W3K3FVhHFSvQUtYf
zGw9ZoUkYRkHVoliwZpEFtxQLLijwBbAgCS2X8xQtv1igbLtF4s1q1rB1rVWQBn7dTBclbZgKPcF
Q7kvGMp9wVAepowGl2EwrJFpcIWy9SPX9R5YYa8VlK+ujtOLdIOmwsv2Kp3e/vV3QiO23sia+v7z
x4/vjmfPtlxTsh0KOa3EeFlDrgoxGi/khEngYMhxIbngtiVTRctEnM5JFWdJyI1BFa9EyPVOKrHN
2hppj21WVWro5pCrlZrGNqsItRnbrMzUL1hGKdTHBTbnTINjm+uYNFpsc+2DZo6fr7ZOs8Y2V200
R2xzrY0yx+1XRSm3eDsqV7qgS2sRsi9fyGUmO8EjDmcI2VEUciMTX9AG0ibhCI05HSQa24xjlOxs
DTlpVCW2WVjJ0kHIlUrKsc/4kpC22GeeTC3HPvMo1GrsM/dMbcQ+s07qHPuM7zH1FvuMTxKNHPuM
ryONGvuMDzWNC7BcaUpsM7IKzR7bjPBDucQ2I7hR1thmhEfKM7YZ4ZXKBR8t5D+y+BdyPMhyTMiV
Tr4Lrh/un9LVVTpdWwjPPy64xpU4xr/X+NwMXjWuOb18fLh7fX5KN+n08sV1Or05f3lKP+XefP33
jD9uP5yP0x+QPt8/fUqWeXH5cXp1/vTw+fHubFP6ferP8/t/bp8/fEk3GROtWOzmd7jN7SOuRdZe
2G9rgr+/1oSw/n+v538YKCLahUyelGus1eagPDjmRidk/Jjb5TDP7XKY53Y5zHO7HOa5XQ7z3CaH
eWyXwxy3zWGe2+Uwz+1ymOd2OcxzuxzmuV0O89wuh3luk8M8tsthntvlMMdtc5jndjnMc7sc5rld
DvPcLod5bpfDPLfJYR7b5TDP7XKY47Y5zHO7HOa5XQ7z3C6HeW6Xwzy3y2Ge2+Uwz+1ymOd2Ocxx
2xzmuV0O89wuh3lul8M8t8thnvM57Bt6Ejt/CmVuZHN0cmVhbQplbmRvYmoKMjU4IDAgb2JqCjw8
Ci9MZW5ndGggNDMxMyAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNrtXXtv
48YR//8+hYoCqVycN9wnl9degbTotQmQNO05SIBrUOgkyhZOlhxJtuM7pJ+9s09RlmzTIrlcpjxA
R1Mi97dczs7M7rySwfkgGfztReKOKKPwbwDHJJNwkJTTwep8cPiHfx1zx08vMGAlAzwQEklMBmnC
UQq/jS9fvPsxGUzgt6/gegp33eorL9XV0A7PBvPB2xf/7B4oZxRhKbuD6umBMo6hPcQopqk6cimJ
wT/8E/Tgz2cvPn/DkgFHWZqKwdl0wDFKJIaOZChheHA2GbwbYkZOfjz7qiLW528oH6RIEMwVENHD
Ae1piM9PMHyqg1S7e/DulGfp8LsTMlzD5xo6NYLjPJaOTaEzK+hUDsc8lk6NoTNL+FzC5wo+I+jg
Co4zO4rqt0VMI3itO0R0xzfQ2ZnvpOrwbkebZ7J/PdtneSJjKM1YWD4bFtRxvM6gNsNnRSbhSByf
pffIjwOzVE8i4FwjFL94gKcKx1NnmqYxsC9i/97nGphliRoxDj1XI0b8WB78ZX/WK4C1nkhEs6Wf
NRdQHOB5T6KbFcP3cOvSNj0/polU33qle2P40Mj2brnXq8E7NnwN376GX/+d8MT8eNSYUMv6DEe5
UC0NsMgQSdgAA6ll5pX8R//AEE/Z4LTw/Y19RarPt3W9op/vPSwZvqzwhLrJ/YfkDMm0vWe823tG
eJG46mMuLLk4gh5b4laEvbmHSId/sHAtyQpJ4XcRWFYEBfVcuyuoDckKmSJMqJMVrJcVgWXFb3pZ
0cuKTsuKlMAbSAPLiqCgnmt3BbUhWZEKhAVzsoL3sqIGWYGtrDCbMI63LfX5fVnxx6bkBEOC4l5O
9HKiSTkhMMqwDCwngoJ6jt0V1IbkhOCgd3InJ0QvJwLLiT/1cqKXE52VE9ywqLByIiio59hdQW1I
TsBcIyx1ciLt5URQOcFhPRFk70k+wEflr0hWtPGMvawQwFbCyolggJ5bx47YkGyAzhApnWyQvWwI
LBv+1MuGXjZ0WjYQ420YVj4EBfUcuyuoDckKShAlmZMVWWdkxVpPGzKc7E2dV/DLq0psd6kdD037
KztNlRfl5T0s3ZHPLNTTkoQ+22RB9TKjshh5aKwIjBNpY6yOgbrvC1qUPSWl+NgO9cL3uRZiFN7N
Vg2CEWEE5LRMZDUZVsuo3RyWZuR4EXO0M+5hUcOR4E94flJEZWoZ4U4LAlPdgnzcR9/cn+y1kJIy
dzMhD9zLgZ1WgN5Kgmc+f3I/8MQeNYvHQkuNJMOKHavHSwhKrdn57CJf5SenFEugN6Vh6z9H5gDq
iBxezOYTc3qRz69OTkk6zFfmi/VmdT3eqL/T4e3FDC5PgdT16Wb0QZ3l2zZni0LboOGNNhfmi5tZ
fvsS/iTJcLSwUJN8PJvka9d0vrlwmPDXoQbMXwuFl080U4ABOMUUcWs32SzhkoyA4q+fwJyMl1ez
XEFmwAQWqsPmMmxh4JL1ZqSH4YM5nVzb792FizyfzBbn5suP+crdn68uZ4vRZrZcmJ/g0VT8xHJl
Tr87e+O6sFDN36j/8tUaroexYEnqr1RPr7TgfFV8KmbFs+knVQ3PzgFwrs5Uq/O5Goux7QB8tZya
C9+rx7zb6MGF0/HI/r4dGDi5Gq3XemCoGorV8vr8wpzczjYXy+uNQ7lS3b6D50dRMA6uLGWyAt/g
cFRT+zi+UeLuh/lGBWjHN577+K3GqXFY0VESeD0RFtS/l66g1r2ekEBsHDoCq4HErScqriaU6JJu
NbG2uvLKRgyZaKHadp4Uv6UCcSkO2y/Fjv1y25kYwpMUFVBBAk+voKCe0LuC2tD0YgK0RUODuzGg
B+YOPI2dO59a3U3ilCCWBI5SDgvqCaUrqA2RJ4XFTGajlGnrMab35gTFSGZplBHOX9s98J/1XgDW
sbvXOoY3kg46c4za5VCS90MsHXtvR2oKHZv6rbWIRk29zo8xxYerTcho4r/Njhm2wemRdOpKGwq3
VqmpNR6uDszIlkQqwYgxHlikBgX1wq0rqA2JVMJQSm1AesUQQ0xhbeYF4G+fbQqnmplNtSXB7FdP
dzeXQQ9JEn54AcV3FlDfQwNfQgPfwJHCh7SrocKbZDJwzG5YUE/YXUFtaDrBHEhTG7NbMQpL65Ps
/v6EC1md6T2KljxjjrZk7Wksg0ygh+Jgd6f0pr4+YKtrkq2uaXgLKeNcvlUJiVUJ7QANSApMnZZp
Y23f4L7mZt/I6xM4SMu7yDAFDAFHWcWwVgsvY1kGdBs4pjQsqOMqnUFtiJclBAbfGvdE26pB7j09
9tQCM60n1vlp6t1BzPnkhBoXBzr8Fr76Ar46g8/f9cyUBFFcKqRELaG/gPt/MM3hdiehlIiLwAF7
YUH9dOgKajOTkGWgBXBhaDDtFYrnKBTyAYVChlYonvDQKaVQPNFGCYWikoOpBOZJ7jFPniCSyTJD
/bW994c9Z6GWlZnUmBPD8tGgoJ6jdQW1IT4qE707r8lRxqLMrLWOEsOOHxPa8hd2IoTE9BTZDdCG
ZoHIoNOWKWe9NtFrE0drE1onUH6+id6iwEPW/tYEN+bhsEwsKKhnKF1BrZuPKWsFhY5I+Mq5gSUV
xXmKCM+qivOFNVvs70+0Nh2YMe2EnQ5BQT1hdgW1oenAJEpcUmkcB/FRYwgJS3xBQT0ZdAW1IeKj
KUqEKx1BovPK4jrCIUavrG+8FxbRQeRR+RYtD8ixVmtOXBRqTRjdGPuFwEovDKp3VkXXv4zjoeVO
JPfclieZFGJdz2N5Ox8LGZWXMXl+5d6pyuhli0LK5+hGcazzE5gV9KoWWqax0HJqo1c75NPZktZE
jMk1rNYUFNTrL11BbUhrIgJhr7PTXmsqPXvf2kQnlzE5Pe+69BrWsixIn2h8j/NaJAsZopraOY+o
P7Vobd8XdIuJpYLbmChgbPXoqHz0VYc+xDShtzvgzosoko4516Yrq8RsYmKBO0lK4lH1sDWG4JoX
iywuBXsRE526yJvraKosMqxcqULbuIOCejW3K6gNKdeYI8x85axeuS49a28POKT0msqWyRKdTmtp
Iwon8XQsEu330m6nXBbWP3dxVS42qtNdPHISx7NpOivUdZ7bXV33ShcxKZsLq9fNYyrXXWbLOarq
2FGGai9tHfG8G+HapKa1xP4WRktacmIcZcNqyUFBvb7aFdSGtOSEQYdczUBe2X/xkJbLnZZ7XYjK
UjNdeQ6KrVeiLBOCVVs6rnlBpJ0f3LJQxrNP2rkRD39p3bGRSuO2G3ROhgV1s6MzqM3MSZpRRIir
zyaikAg0Nc6WYakvKKing66gNkR9kiAibLAhTvt9k9I64hexLMCvrHJalLVR+ZVFtd6NZt9kUVhf
zOwuU97FfFWtdXLbKbNlMYppu2JqdwPmsZk47wrlFfKYXudj1sSW1CChnezDakEhMb060g3QhlSg
FCOauOJmFQOFtcLi69W47eeF3eCqbTnrMp64HdvtxHahkvv1UlgNdWyuCvGeFw3UybmxbHxuzcgm
IhNToga4TBjjxg7E1Z5VSyUwloKoq7lbbv3++M4ynSyk0Nau38EhFUzt+H2qNDy7e+Bm034/abh6
1b/Aty3vYHATJBKWewYF9ZysK6gNMVCh7nKhmVkcopsZZ9uw1BcU1NNBV1Aboj6WAapNYJ80sqVd
kOfbTAAHhZHYi6k/xJ5psQBbmWjjgGXGBAOlDLdeZUypAtg2T/aa//+rn0mp8W8Ky8+CgnrO0hXU
hvgZlepqy9DwYyU5FHNSlG2u/W+l6WZYW6bH4OhyNZ61VS8JWM+sIcbeGXbWBAX19NsV1IZmjbIp
pza4ipCwakC1uRKBGjB2yf1ombTMDz2PFfp27utN7tfPK6fqEro6a/1mfxXfviTGxl4blqcEBfWz
uyuoDfEULBDH1qec0O7xlCqagN0tq4MdfGYqTmuWkFZjCc5sERlLSIwRPSxLCArqJ2dXUBtiCYlS
ua0DHWGdYAlH1JR3++fEp155qKY8hflMItNjcAJoCYlJlYmTb5HMWL6C8q2woI6DdAa1Gb5FMqD9
zJX55D3f2uNbVXSlFN62YBWfVWg96Ve/fCLSGIvC8pygoH72dwW1IZ4jKRLUupaSOBybidDGorDE
FxLTU0E3QBuivJQgkdrM/6RiCRUikE95fmUli3LsuymE+eV79qlX7TJZbmwIYek8KKinua6gNkTq
ArQL7MzfsvffL+1u+sa6mY1iygi5TSPl6ils7fPRpa+cxZQvNuqq3bf2NUaTEezS+1maSbAsuD9M
4tDUmDHohRVhQUG9MOkKakMijCcodcuErAb3a1+n6b118FkeSBlxxHq/YBLZc42izynIUqqoy8JO
x9yKg/XWLCPL9GFqdVXXhktNcR7bhgA1VrawEz0oqJ9yXUFtaKLTDMnEejbRJA4xQ4xBJyz1BQX1
dNAV1Iaoj8DgM+shRHG/UiqpLIrhX6wIdWmitmGNRsJEo9VOfLhVPbn0f1dTmp9NLDHHrsDcxsYR
bZcAEaVHK3ZKvc3xgxttEaSumsVE/5El98K6gEtUwc+uXqWvstjvoxzozCamAimjmNLnvY+mei/B
xqIfVnENCupVyK6gNqS44hRJad1QaV9trbziWqyru61QHKna42yLS2tbzGPie1Gl8HE7YzexFdB7
H1Mq7WtfbD6aLf3EOISEFVlBQb3w6ApqQyIrESgj1k2a0mbzjG5zoRhiL5MLReUqIQ3mQiE1tP9A
LpSE64i7UslTH8qFcrT5g6dlvKrLpUJ5V2l03NvdWc0p+pNAiSUG5wkTDS3TxrZi0CHf7h9PVLqX
GJLJ4sz4QwVlvGFBHQvsDGozjBdn8JWwft6UPRY8rvza1Owy11bKF3S0XnGQWGWGyBNOhBRRmdqR
3GlAYKobYPLRFsz9yV4LKSlzNxPywL0c3kcFaE9Kz3x8P/j3jppEsNBUl2RYvXH1dEIg6oztZxf5
ySmlIF3W+g9gZpPZ8tJ8d3tC0uHyej4xp+9PTomqT6xPRmtz+XQ5t84j6fB2/SoO8uECJZhXoR8O
byChx9LP03c/Qj/HQ3v6ee7zh1wV7L8txlHCAy8JwoL6F9MV1LolkwRi49ARODJXeqCalw+GZU7i
nbK3eY9rSq64tHZOvwMzUB4UMi3jtbO7GKk9NvuqENZk8jUxjDDn1fI1VUog9dgiqJClqSXNlzKU
hC5tEhbUz/SuoDbEX2iqj8aN8DHFV3MP7yP4qV36JDCMoct8hAX1lNIV1IboU623iNW8oyv+TghK
t5nEoorT+DIe5xkcT7L0qFw9vgXh/w/4vIVOfQnHH2KKu7iwHmvjmIpUO8fsn+xO6azgrB2NO9FH
vy1K4jH+PVVxMarK7d9B587g86am2uOn0JaMq8LFYznooy0u8Wur4IgxQTh0va6woF6h6wpqQ2ok
5ogJG9rOejWyNAN4G5MHy0VBsua9G+oj/tVRVaa/sHrGygqTcUHSrWJyn5/65D9RlYGL7JXmVnWc
xLSom/b++w906MZq+/sFAVpmmhEt2HCtCzZlcXgZD1+LbLZ2aoK0tC5JMCKBczgExfTrg26ANrQm
SRjiroAe79ckz94FnBaWA+ve5f9B7Rtb7bsGyZamKGW2GCDbKQbY5sO68iu+TxNvXse1VC5Wm4gv
YzGo3Ma2vhvFZFTZxm/0kaGHQ/23RpPtUjyqkK5b20mnKS6tz/kmpjRgZpse+/LedzHNSJfS+a7m
/HcHtu69s8iu0yymHBGRDk4p2So5u8lsQfP9H1GmyPEKZW5kc3RyZWFtCmVuZG9iagozMTIgMCBv
YmoKPDwKL0xlbmd0aCAzMjg5ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp4
2tVaWY/jxhF+31+hN1PADs2jeU2eEviIDcNOnMmDsTZiDtWS6JVImceM5yH/PV8dTYlarrHegRfZ
Bcbss7q6jq+qSw5Wu1Ww+vJF4L5+EePfCt+gyPHJ4yRedbvV8sT377Pj1xchzgpW4SrN/TyMVlmQ
+BnmquOLVz8Fqw3mvsb6GLseeeWRVoNOUqwOq3+9+OfHd2hiYj/M84/n1MkeYpOEoOebOIwz+iZ5
Hsn5y1Pg4G93Lz79wgSrxC+yLF3dbVdJ7sd5AkYKPzDh6m6zeuWl65/uvr44KTRFQNdJQJauE00X
XZzBOZ9+EYOmn0ZhQodEkZ8ZMCLkT+vIK/E3rENvT0etwtyPcOXQz4pC1vyHx42fZGZ1czH+gH01
/iz2Ps7YXL2KvVvM3MroezBNFCo+N478IMiW+Ulm/PR6j+7ZIlu9ukmKDMKZXyryfgyS4Fl3OoG/
mbxnMgP5EJN/0SP+fJT5/O5Nn08LA5maDws0H/ZQ5/Ifzal/DtCkRe4HWMPek115TQK8oHuk6DP9
y4G3wEruYKVTWBjwHfFH/ebK3NnFbrHoeSjRgsKJj3vziGc7bLSAAf6z2L0HuySRLb5blVJ3dYbx
Xj7jDJbrd4LlofHjyLwLeH4PXj7D33fg51t8v8HfD/+nAJXHmE8/MEB90EMnqPhYTv2TACrP/DCK
xULzmTVewU8Y+2kwZTX/fV/7fO8Ef9lOcUdg4u+KMcZFM5XijEIaxkwh/X0Ksj94g0IWvctuk+YL
exPo4hlHn83oD94/uH5n6ZftI0zZ5IIiJH3T9ZLMT2IjGv9hnSMUjOubOMy9x/pwkFY/dvbwJO2m
paTLSmfYa6Ozv451Z4+2WUcYdrPlcLWuoul92ZXVYDsZKrfazM7LTuWwl9ZDbR+lVffyPdhdqXwR
J61joNz46xsT595XzXl2j12E1AFQOgbKK0x3oNFtXmJdHLrD4ogP62Ww7KyMbWqQ+TGIY9vR5TK+
HBYMrcz3Q1c3Oxnj/RzY4FfxisKGSSMSNM43IaKNOqFZ34RhEHif2b7eEbtp6m1sVfd12/TEVpp5
u7He2EPdiLRDr5dlZbOR+a4csJoS4YOVI+e6xZExjoxUtXd7S1cyud7N5PRk4T5fazySau7XN/gv
6YMm2q2sa9rmpr2n+Ye6HXuZ3CjvtIB4ByfMvozUjaxildLAqWtPIJ55bW83OsSCp1WiZRrDMTdJ
4v1iqwHqzIuIGO/tkhIngWGnMXg7MedWekP5mvuNdNXIuCmfHSxmoGYMQmRQNMgXxtceT3VXV24Y
KpZmLOLnJV3XKsXHmu+B1s/H1jFwIa9PZIQFBimRhheu8ygKipMAQoOQqOmk3Mv4+Yo0tW1HtgWZ
yMAa+55YIwZJBbTuYQ2BlpQgifJojCmVtOupJ7cpcpKzzJUjzu+EhtrDobYPfHbvGGTPTlS/NFSN
XXf2fsz0dli6JomY/acrN7Ylx+rFkWr1PKFIA6IXGgMtdSsTIR1DyEycW8UId7nauPFDcqwo8b7a
NayJOIN69uQ+zDB61Rr0LhAoS8Awhp5OhBqeupIx5EqhOG9YJIiyiQuL/bC5vd3WB9s/9YM93t6S
Hd/ePpSHUew0zEI8/lcRY/RFupj6YZivbi7Gh6eTXbpXlKMZuQMFw679+8YEIQIk8s8o8wEIk5uv
aYYgy3T9IJ03HTi4cGC0KzKFfVtXurvWNeXh0lJk7NTBIS9sjcYGd6x6Mm3V5fe8d7DTQecAQFBn
ONKwA9Em+kT8vu/szaX9JCr88Xhi3GO7EGOCqSgoq7lOgMwugPl/331xkyvcUwDjwcc9OcVAlp0R
5AlsJ6vCj7IoZzWESJzSP6D4JPXjIILmw3z2UEj8BDnazcX4WfNzrUYwZ5OeNc9mT7o2flGQrhH5
XSrHuo4cFBOySLc+nhTGESImv6WZLfl1lAeEFTxQHg4to3JVsjLflEFYwCyRRP2eDJYuEoJTOIFu
45BDB7L0iQPFuAuuWPs0RdaqjCFjYCUt8waHjfwID7iZhbyNQzhY5kdR9i7qYTNeUg+c93wrQs4w
9f4KRpPI+3mP4PBE7djbIrggafpEZshMaZSlTt8rqfOgRENefo6BMkXeSF+BXVpS6wwH7bEfHN2Z
t7LlhCbxwzifg3CFWIyFlNIVCBQDQW9ewF1O4+CanOu02nMrLtRCXggBpCHQdquEuFYhzaUN7JYY
PFrEySddwDEMOypK5k7M+rSQ/ZcX8bh0qrK3BByB8dTOCS1gREe1kuuQU3IgNOQXh7pirIB4q3at
qY+4SNcLrCSSBsQcNLnbTG4kw02J2E/9R+lzjiaSQ882lSh3o5E4ETGCUF86qb+d+CPCnswooZwI
4QCl1Vt77GXBoX7N0LV4Z8G4jrLHsm+b8v7gElqXc8YOjQn2X8rkTnlR3OQUWve1wPhOYfdCansk
3opSgcKTRuOvOPdKNTaYhBUnQ5JnpZKLpS4RxBINHxjbq4TpgnoUKT0zOibrJZWlQzqxGmrr8icl
hExfFpMaaIQxiBpnN6CeWiVeQDDrLIdZc3Hp8g6pNznuYUnqp0M5kCHSmgB+ybibBbKdGn151Nal
EVGfMTBDZkZOtLHSgUNSoWuQHgxCHjxiEzvZWL5xRjt2lbbvS47sr4mobKBYLU8KapO8XxJBSvJl
S9VybNeoyE6xcFP2b7xg2MD47SfPr1DzyOCCj6I488FMYMDth4zovtppjno7jNWUwSjViCGG9g2O
OmGVwk0QTOQaznM7NtBHPXrUNSIgjJy1xFvX8rZCk3zv5UKcmacg1UXMeIdQggfiYiQJkLyFU3zs
kdhwdp1FLrvOYr1tFk3InGmejLkpp6GHHIMoBmfKI1EMurrW3QxF6JfSJSJhKkOdPbE2e33nlppn
YZn7Kj8xLlUydryWIIOHZsGV0Nl7phZ4maf3J1yVHoAML+1Vyo+QDQ7gXIdFRPm2HViFidgwB0Pu
6Cjf/fohGxUC6LTgDKlkYGKLyZLFs0nQnMuk2F4gnI0MK/lBMQpNgswLZnBmV+/qhl4wNKwKpAlW
1mwprk13Xq5UHMu6UdmNjeTpZbNjXsg3DHxjmIu40dIEPUY16RUDiSOdCz2kR/ruElEq4N9PARUX
totK+K4hKMyAl/Vur+89k+H52e1GARbqiQ3TMq4EZA5C0dAwkHEYWEg488wP8P76wwmnZne6DxdP
wugcLK4ZTiHasZ+4PXOuwQgLyqpre02jYiTgAMy5ciT7Ogz1iYMrgSf0DeFyDSdzyQ2DsyRq2nNh
FW2tPqWFK3URpJ/YE1sBTZ2udbOkeJDFdoSXIFFMvb+3Zzt0rxnZM8z32t8qazUvwXAnVS60BBYC
T2s0dhHz9ZFnNIpRizD6oG2tfQTJ2aSo0zacXZhIYYqWSqniiVhtG91elZ0+Jw1hZtvsqOTIq++l
cDQOs6yPfbJsKt0v5UreTYnek2NKwyX9UvT0llvVmtecunbXlcc5OLGRiKNYrUbw9dmbGIVqhVue
vMza9BVa9lcEXABa9C951ZnMa+xvg7TItc6l1chIMZRmxn4EcDxJh0XJja18B0dKcxLj/JJaZHhK
ZWeVLOfEx2PbCMlcwvvIgE1dTk74mYLOL/LuuDznYMttQ9JZkPOkCamnIrRzEh+ok+RCht79Wynd
5MwjuconvXTJL1qK8JNf5Km+NFI1P1pmQT7lguS5YosFpS6U2/GBzg/ziXWtbecsFN0wjw+DS1iI
P/GWbjFDGmznHkkmzpBNIkwWAkjteNhIt2pH0avUwIupaE4tKXkX17VTHtIK+QQbaM3ejUJccgo0
t117lNYr/QGIfmOg32K4wT95ev/4Ev+ufq30flKMzi7B1gQAWzNVBb5ZJ4ArYsPgWWIfLNXtTOzg
QUsYsuUylao/pZQ8oqfMfbdOYAvd0xK2J8bPzfTs1kopCML+FTNgHPd9exgHnVDrpmat3/tyIw3y
hluIqogVgkZHTDeXS7WgJPTjc01uKipoReAdEkEqDyyX6uPML+KpzMTPFOK72dR4NStPCr50DS2H
U0aGSJldVcWRilcDP69NUDjILbx+PCkoFlJlczZkwgA2RHb/KB0ux9C8Hlmc3Zp7PwZR4haIbIup
RDm3kqiI/TicqlnbcjETDgs/OFdXXRQpnBtPuEe8DVyza6TjoojcyalfE1Ko5Tpcq8+YgGVIjmSA
dlZLkk3dH2Wo1BcBmhxAeUgAIPfaeqNzAuegJr80dI1YPVWXpdLK+G/0pyKsG7ryMs/U3UomVGeh
NIeUobzsa6BIp4k03xbpPmUXhl7nVBQ50e8Uh+XQVr4+ByEtCNhyoxmg1mUkjZcnvpYFbDnL3But
Z7i6fHOVtZ89z/2c5s9BJML7IMpzqCX10zRd+j9lPr978T8MJUS0CmVuZHN0cmVhbQplbmRvYmoK
MzI0IDAgb2JqCjw8Ci9MZW5ndGggMzUxOCAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeNrVWluP28YVfvevEFIg4SIWwxkOb34JEidOt3AurTcIiiSouRK1YiORCklZ3qf+9X7n
MhQl04BT9KF9WZ05nDlz5sy5z0aLh0W0+OZJpL9f3j357IVJFyYKi6gwi7vNIrOLLCrCyGG0Xvwc
3G2rm2UcpcEvUeyacieDsns47qvmxubBIJi6l9/Xpy1hHxWLKVkwVDcm6A5dpXNXhNyWnS4p9ffH
uxfLXMATFmxBnweDZ6Fpu73n4FAOW4Ha+5tlkgT/rFZKft3eLMFC1ftVIDZ8/snN0sUO5ymHm1/v
/oLzL00cJq6QczL/sQlK+rHBg9Cgv1mwFtzvx6ofQKtum6eCOW3rFZ12K8ORRtOfCF11lS5tqrdD
SNt+9sLZhTFhkSSWxA0u4iQscidcuNDeLI2xSfDT9gbrWIyGxIjBUI0yNJAhMF6GRmUYnWUYgTkI
ULZ0dMMm5R2tc2EaW+zMO/bD+tmzTb2r+sd+qPbPnrFgZzg1sQ2jJPXriCXjWdLNV4RinkjAy9il
YZSymAuXyTLmM0uC13KpgJpyqN/QwnHcdS0d7iTjqlnhFjBe180DLpGE87kwGCeLIrSZzYk/cBCm
AHFhYZzms6eTZZcKn+dhjul6rFW5Bx8uM0Hb1bjrhxo6v3sU1KZr9wRFwZeqHv0QvhipQymSKJkq
BS2CoPh3OHaNLD4266oTBRHzEPSw7Srde1+KSredSFJ5vFDYrnpT91BF1jko/bGDfAQW2QI4synj
A6tzVXUyJBIViTnOoPcm6AWsdTazWCr9/ihWK6NSfna4OToGCYhWrkGkui+HKsQ5kjT46oKptq+m
+/ZsRHlAYh5kvd9xxj5XOGm9VotyafCGuKm6RxnV+4OctBvK0Ss5iJasnWeQWveC9LYpo0PZ90KU
pnft8YF8D/GWGFzVXl1ATf6vWit+aHUB+ymBVcUY/uKH21Cguy3JBJvNnKkkHmweByJFOgyNrn2P
zV3QEZWy5+umORuoBgPDtiZB2iKG1tTN7tGj6eAEEd9eQ2Wmna5WDvasIwQdym5QgkNXXVJpYB3K
QOl/5ef+2KjST86ZyDHbDVmyDe7pyh4H9ssYnmqoxHGQwXWgELXJmMO9TCl1XdkInS0pTvMAOSdp
ErxqL77KAL5oLRBfWEbsgknWHYoK9VqwwnrZlauBbQMLYIvsePBhrcxYKOFxt57VzvJIyu3ENFxM
asW6IQONlKK9NOlNrdNW7YHD5bJs1kuo4qBU1NV4Y6apx541SQZ0Hvp6L6FOBsemPegYkinvdxUu
0qUxPkAD+gt66fQ6nLf29yjqaCPk8tlGNOJVbyEybAa1y20Q+rU2CmPrfALBYbFwE39SJLintWD9
11J+duVxTZwrsiav6kw0mT9croO29FUnFuSnNLLHQLZX64aaMOCzOj1e24pLbPtyB0VKY0TQBtYx
HBGWxK3JljNC2UrMzZhz/IgJEXQ8kxAEeS6BKhhSjEzlGU5li6DlFCcPviVdXnVt326Uxk91gzwG
rJGffDfa2RwBPY4/IIpfRjuDq0myMdydNMkCi8fDYVdXot1LF0VhZszlgclgMTmPRnthFw5HUWvw
yA37abYsddWYzbaHT/cSfQRZa24SZxfspS6M3XisL757dTt3CqQiFtzpLDXUjA2V3EGee62jjfRX
LUUtlfnaVpfHkVG5WlUHdUAYQqIrpABKpW1EQKZI4d/cpYC+rccrtDAHvcIcVygIks1xX8mAzhYK
+H0jv9hGgBasdQIeduVA7hpJgffe6rTtNI/m5V113mdyB4QaWvkd/QUNat1XksZ3HfeVYKfGHcuM
SR6EDc+pEK2aJBA0KA+wNvW+YqqErcUztjKa5isWud992fuJZCmEWld9/dAI7tDVyNKGmmMSvklY
83TIqjmS5dk0J2NeWFIZ1Qa6U1Otqn45I4O+7GoOquSNdtiaGWJvBgmTQdBAkxsCKdoJShHPP/1U
gB65yRoRKRTbv20ETQG3Xh13ZfdUcnnWev50qUFA3B/rne6/avcw8vq+3sE9ScVlxS3OVTc+P6L4
OpQ+7bT4EaEBOAufhOZyEvWhJhdGXzWhANTQPEyUcwFB93quwCY0cz4AtlRHJh8hhm5gKWLAKkga
sNV9dmWvRAZe5NPkXMaP8u2R0aL5JB4avjc2tw1lLw9HzvioVmqmciZIxIq1qIyjhVl0VB4T8Ldv
UCC7ZJGFRRaJhzIudJFboKZJdAOjK6WmvvZVLsxiONLJfLp/xM7bjWzu5U4+dFpO+DqPbFxS50gT
T6kIJaOYVoSjF4uIFKXeF9WhEUN/Kg5fU2NgT5wOeemh/CwQWpJLIR4H7MXx0EFcyAt/E1Bl6FSG
vcCc8TlzqVLw6xrFnVHfC6DcgbDUgOKYYmfH9a8nZ3LTM9HCrrpmgaPpBEPuDjk88fV0TjPGYtlp
IHaI/rXP+irByLk+kcE5hUGhJ40FgbU8IfPisAdUX26UhAja+UYGgHrPJVIcB3+Gk63On9+N9HGC
UJz98Ui/9Aun3mxam0bFVV4KhCSHANi4HTITkwnCOy8ZHbgekbwrC2R1zrWIfPdemmDZsK1XSpou
l2a/9uFLhuPl0px9VepquUuaoKH36g4nLpIyRSRwlfBEV/GI/IbUxBlwuyMD0wHf/Ce6gPwcO3P9
SBkmpZz78jfOAhimLcYSmDCaUQPqq0boIj04DpLrER0+qNE8g4BpeKMxCXnmSC/r+w5Rp+pn82lK
FpyJOdkg1yr5BmEuogUhdGOrPRZJvmh8Uh7jyxAvKL5DI1mBSZ+KmrLhEnbvraNTPp6DCVYWwBST
oJqdUnjYlWv4jLnKl3MsqiHOLSvUFn177NgaYnJnJvB7ka3Amu+2PtGMpa/C9Qj3VYgQKU3vixTp
8l1nzTCJyI3Z70fYWmdFU9OxFuIu/Kx/zRDKQ5cnZ5PkLofYYHKRp8ahK0bT/SUydoZWFubZuBmC
edWVu4/mLNrloU3HXaGdN77L6fuW5izMSCPHDXlK7cdlEdgpLm9CmH/qG5far9QOkgleLhFgKHy+
ldLgindjE/A0CvTleyWKAHpO2P+nJJrNS9ROJWrSOY5tmJ2v47Taqpz1rDY0uXYh/8H4JExyC1s+
44c5nhB8i+JSEKG/vxQ75rPldY6k9ogstBN4xTlOTmkzB21AvbYGqNFHwRtZ8aajCLaXwUhHXIiu
10VdD+9LwVrmVm8x8J9qimDkJiIUWUcNiZxzl+eBlFqpFs0ANu2Rlc1vqC0wmb2/MWMjZ8Z7TLI/
F2tAiSkolauBC+lKELVOkFSHp9Ip9GvVrPX78aDzG4oab+qhvBe3de0+4iw02ajGf6o362ozW59e
aOlSXCs2eJQ8tZuhDVXMXPYf1PM2jMy4lRRMUsI7Ezp7VaEiVX/oSrpxkwfe89PVmIJ7ma2AVCK/
y2JRhLn5f7Z1c3bq58eRq7YKLjj9ENv96fa72M7evQnjfHxeIY86sw2muw/a5sfvbp9//9XXswey
uNdRYyQdxq3uy1XXCrhmz91I19oazwylhkVYXGaG3HI41VzFJtRsrPoZxtMiTLP0vxM/3QdqgPsA
Dcg/SANcmCbjTMopTCbvm3TijtvrApPjsAlyUkoL94ddRe26KNEqFRN6fiZiSJhnWDen8ln724Lf
IwnlHkJCzcKZpyuTp2FiriLzy9nXqjAZBeu7HWMTw4dq3/Rgb9P9pg0Y5HyS7tcredKatlWk9UQ9
Fek3SbMpT6Xaz+j9B6Um1KNX4trM03ba2O2pLhosSXCi/gzLh2h4WeGDykqfCvlYlx0LCkAppYQk
aYIoEL8lMKL+wr4cqNWHPOfvNzny2EEmPUotK9MqjjDAkoNnYodyv5fOnswVb8yjs2tMzYVrxFA7
n6kZj0Dk9Qg6pSsP+rzWzcUsNsteqlKOgaiG642MT5qan+FOR/1Q08XQ5BO/R2pf0ukLEM359gUt
ef5UaTfrz9q5AEPvvpmZBq+bZRpZnHGDuLf+JUoi5jtNwyLPPtgFYp0RQh9/PE/QREg78z/g7Jjk
XEXrbBzijFelBAso1ibTOY3g1/PxgmO900k1cSto+m8BfqJvB0GwzxzzYP+mL/dCNSSKnGq2MiOC
meNGZ7WqpfmfOd9ogc7//J4WE9b+EOW5vegjAfnrbIvcujBKx3v8EUX40jv6m8TwPysUCYpIespK
KGfThxJRGHzi5GL6LIj0gmfOpxjWZGFkxzh8Eo2kg1G+LIqL0WWFTBh593NeiBBA33aD/98AE0b5
VXbCCyx1RNn6LT/X+Vdh6XHmNuBg5h+QMFs9BGZvjoM0+ey5kaNGTPO86RJ8VGMlhhgj0gER7nww
hp/gCHr1DQoAhk5kg3x+DJpWftft8X7woBDRNjs1zS4u9eu7J78/MXrzmcVlIlmK4sVq/+TnX6PF
GnioVRgX+eLEs/YLkyPpLCjO7xavnvxV/mfHRTCfIkMoppjgQhc70DKhTcykJwnVyRExijR10olE
dF3GYR6pvL+GtXATCMFtbB8U0j4Aokjo13phFSQsafXYUbwFi5cw99pnQ1SlTpC8EdIHBM1Hgc4P
77Lg4QEXmgb88JZdtd6IAd9SpNlb/3JbBP6ryFjYt751FY8MbVANtNrSRHhlZYvOXdgVkdK2FPtT
uW539W5DCBtFkUxCuCQBsUJ2a2nQjJf7vg6wRUpo4eNAAY5QX07ya734N02BrVoKZW5kc3RyZWFt
CmVuZG9iagozMzMgMCBvYmoKPDwKL0xlbmd0aCAyOTE3ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVj
b2RlCj4+CnN0cmVhbQp42qUZ2Y7ktvF9v6JfAmjgbVn3kbds4A02AeJFdowkiIOALbG7mdFlStrx
5OtdF3XMag0DeWiwWCoWi8U62cHpdgpOf3oTyPju8c2378PsFAZ+GZTh6fF6yqNTHpR+kMCsPv3L
UzdlOv/hnJSx9+7hHHrzQ+hND+c4KT018jjd+1ELyhJQeF0vRC8PUeFpt2IYbI+Izw9R7umaaVVd
m8n0nWPXO7bCa5xUVytbv4VpGnsf+DNwGh7OwGbZfLor2ef5rjtZOw9DY2Cnfz/+Gc58DmM/TUo5
G24YgVQ8DGq6MzRO1nQ3hhszaauat0La1QyY6ytE3zUvrz7xUPUdHvYz6cGOcE4hk907rWtdC385
AkDPRA9wHHgGdE5MQJTBaqGokOKurDuFjD88vj8XR8fFjaMy8lTTMDA0arr2wNu2I2MsqEBbhkEU
WdB3moEL6VvfFR3I4NLZOhoex77VW+4La1IUA7hu3QeZFsy0QKavOfYr6dDASjWdj05HW6Ghgr4+
IHkGdz8OzLyaGMPqRQgviTGagXc9kfajELBtad4686z+bPQzw89kvFYW2rkTtAFHmGX5H/76SaT4
u+lqsvln0kQOBwa1mabmWYXaaMH2zMWArSHhy/Z8KR/P6p9mY3ULdg0UE9117pmOxxb2IAsqnKAo
Id7syFiypn5uaqYXZTMVYVQz9gw1cFNa6HrhzzZFnMQGxD9y8dIID2ItKVoEW8wVb1uhfx8aJTpL
HKIx586YYSoOHEfiwMCDZAKEEhLFU/RaHzl/+z6JTmHol2kaYSSDjeLUL4uEN0r8GMJXGKXe30iV
fIA89Rp9U6h44PXCGJIJRqtVvcdUD7AxSKmqCQ0DUeq6gLpz5CCurKDLIOn2cRaki3I/znKW7pG0
GCS450haD2I0aUZOdwoWAPEYe/1FXHAefw82D/fy8ftPH/7BHzkmATWYXhwxOL6MFTi+LIeYNM6t
bPk/bXvZR9sWRDedmrSw4FAouytZTpHy4DJNN8wT2mGYe2ROYSzOwjCGOoYm+QpBXPxf8KSHMFmC
m9M0fHOa3pINFBDuPGEPxe9wE+N2IziHlh0oOuM48QcjhKgFEV1MvFLzKNsYuVAEJ1k/HmmA015M
8U0MeA3kABuMvfhdVAE4khA9ANIZOT9j6YSAlqwEKDke4HoOAv0rUsiT5EZPPDUiQG9rCgX77eTW
EQO3TlcuyybfnSwK/DhKthZaRN5Psx4nzmJFzOoDLDgsx2mciL1uPtequ8GGs6B7IQR1ie/G6an0
ozwq0DmiJPHDPAMRaGtJxyhUHPtJmZwiPywK/vgfwqd+WkQg8Ir/muNFmZ8GkWNd92J9oD0WjW8Q
Re4ZgYdBwyhT7zJP7oBazr+RDVyj9PM02VsEykGFTbJGXbYHwCgeWkTNHAIZ82yWO0vQeCcGKA7B
yIYJQKVGTdIlkNK6qplrjmvwSXeVGsYZsrCgYrdd8pcLA4O6CR8oKmbbcUEWexRcXg4uJokT0F7u
tNe2avgxSAP4hUe6Pjv6bSYDS7FiahhgWbitGV/IDSZxGdO2ujZgnVReYdyXMMBOxkQcedEzrq+Y
OaeJdikQPrRaiX8o8R59o+yaY7bCKNjL96uam1c+EfNRPiJL8s8kjt1NI4i2gyMZEwLj/GMQxyg3
zq62bxniggQhjIQN3nkLRUye5N73WHXhl6duKR/2S+CQLwxZDXl2xCTJB2CsEs6LhHgiWcgACJVg
TaUPKg7IGJNuyfITSSlFKAU+uIDUsy88a8wTzRuZU5QpQm8N7kVIWWeyc8XJBaiuFvZGVeBE8TBC
AViRSBJXuLwHEInpnMstYVjmQBTxzTs2IZ9MFvJJjsK1BNckc5EZIOlcMjhhCumdTgiziwvOALe4
/8wpCkvOIsPwKB+lBaLS0uorisgYcG4U+HZvhHLuSG25qA2X9K9kkFTEEwnZSOdCdi1Omm/dLolD
P8iW8EkdRVZwaU6ByhHsdfGQgqimmw6jZuEH5cIRYgq5IBRTfUd1ZybtByCk5LbKtXRExaNrsdIl
LNJH7pyggBKjYo4DWQdxq+dKM8k4X87btVdBU9tBGGtuoJpm3dAJ2HETeJaz7A5fqY51noGNQaU0
LHabuTCTuVaF2h4uMDKxuwwjjhgt4lYZslAq1HMKoeQj3jbrIAvXNjOLpM0EFo3wZTMCYFRoQxpP
kQerGcL6WqOVd9Q7ywbfcU3fMYE6svkaHMgaKHlHcsMsd7cCJsKBiYxl6i1nB5hQFs/QfsV4Abfz
+EyqERhVQ4GWWsSXkXGrFcNErBiXkBVTBadrPAAY4Lul7AIC1m3hLqBYEyU43kHIanuXWRrTmslV
WJw+N9mBN8CaC9OnRHly1LWnWNMH5VfAfnDpiUyjMfrzprKj6ydPi5f6hzLcrm2TlCYf4Wb1YV55
5BSZFAHR4sghG4BRD1AVTzJT6CO3uV3jPtEqgWpoBkkusjPEfNlHIpbu/ct0D52cXyRfrcPi/6sO
y/10jVHumHN3181wnRueXtZ2GNOQnxT7WgIyynUepRdNXC+a4gVLfLrADW8CAJFJrMfwYF18AS25
EHOZbzcJSFVPlltrjPJJ4P3zAUo+fn9JyR6QRqEJc/SAKdx997QNTlzlYYwCORvZo+u7cyVlvDVs
SIdvVGSqSRiRqTL0TJHGyowNAwDXx3J8QAzuj+NSZiVhuNK7jhvtg5ssxEp1teNM1RWudQwVD1JY
hK41QYguEki5nGnB8qq3x63iWqxiJWfNMCwz1XEB6roaYCKlGgbVEOKKGdduBt8pmtH1Os61MCyC
FYyHzQxeXZDTcySWXJXh7ifI3QMcQNQoBtny+ojxkhpEKNHolYiIOrdMM/Ufv/mGMWKCgLrQzSFO
DA8gNhf46Io7RpPFEDtu9LODAIJyd4e2srJ/tsYdqBIL17uNsXx6Yn1vtst32+XeekjXbuLmVdXP
8jn06MUtYYXun5mQ1N7mL/U6Ce0i7ZoegmJbV6IWaSP0znGGqz9+93vVDJhbB7lrG3AnLiQQlOjN
r27aPTHZwUo65P5jMT4XyaX63Cnnt706JfLq9N78rOV5iNPP8qyEjywKn9YrfIN64k+mE+4JBs0w
I+ZhmvlZEm3i8YwPblmA3oy6SQqfuuO43EXlzA/DAqPygoelhw1bBEfJ909T740dJ8jyEPkoEdLb
PmluudXYOUCM9tYOpuEODStbaGTH9UujXSO3WYJVDCsHJvyIUfAjBtjG0jjhTC6bHiQd09ev6243
LCMO3cSVUFGJbyTo3mQqhrPkl1kwz/0yi39F6YmfpcVvyYVf0XpY+mWYLqmQXqYD9zIdbDSKEleK
/gwgeP0zheoQRLkX7oD8DEf2M4Q6zdWh5enSm+EEleXzS+KnXhhcmeULOzUj6TlWMnII5kaGtcnI
0JSYpS5K6Q0TkgD9c7OUfoDeNDA0X14OUwk0qXvkS10Di5B082m89JL4uNxbWlmuK0hlWEyT4QBi
vEtUQpiLewqEqfTTB2YizPAVu5UVlrLlC4u5NdR0Z6gwo6gBRN2mpUkpKVAOyVxHjezvVNSOPNNY
ucpjHPKZsC4OSygJHct+voEQdxefkUMvIixNS5qv4nPhgFBZ/k5YXL9+YAx6ptWHafMTxM2uXmNB
5h5a0mzjxGm210220w02r9w8pdLvwnijmgoASu8Np6zKmUfm/XcehUByxZUrfVwhO/L7tkglysX0
2WjFkR2a+ZUNlzmHSuB2eXkx5xyXxqX3afO8moGN8Yxbk4SFRm2vNRiiuXVK5DGApYbFN93hv4qN
UM2dIg3h0wg1eu4ImXMDIFo1nCU7DcN0o2GY1SyL/vUnashkyr0RgyhO/qVtWjJr03c3soflj+NT
FId+BGHtDBkpcf8Vlzua7x7f/AJpkxNGCmVuZHN0cmVhbQplbmRvYmoKMzM4IDAgb2JqCjw8Ci9M
ZW5ndGggMjY3NCAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNqlWVtz28YV
fvev4FuhGXODXdz90pEnVao2jt1InmYmyXRgEBS3IQEGFzHqr+93LiAJlXLc9kHD3bMHu+f6nbOr
cPGwCBffvAr19+39q69ubLqwoSnCwi7u14vMLbKwMGGM2WrxY/DOV13bt+vhahm7LPi7b1btlcuD
Q0+EPOif+qHe9bJadrVQN/7KBg+b7ZNMx2brf6GvaqFkwdDKSlPXqznlQHxt1ylj+elqSYRRBUjj
v34SRlrIgto3D7pBvdsLb1d2Hgf9fP8XaLm0kUniQrQpt9uWP6vKgQ6OsiRoG/qNg2FTC6EfyoqE
+EWmZX9cfxLKBsqVV9jlkXVStt1+Wwvnql6X43aQieyWyW5xUK5WXd33etK+xFaV7gB63T1eJdhr
ANm3TW+ulklmg/dr4VAR42BXYiEJ/tl2l7T88P7u9gcw5kXgSapd3ZCgQznQnq9hrjAOvvVMHH8T
xgPJ2I7blUz3bKV2oC9hWg/DQSTSvwjnVhR+eEX3fVdW7++EaI/Em6s8gn7127uvj0syaOWA9pIe
om5kZzbElD0SOay3vXJw5AkNcuq4r4cB4dELyxrGUpbas92+uomSRWFc5nIKfRdmBoyQQqx4ff9n
lso5E7li4YzNc1n6B9MTk+RusTyjv7v+Qfad55QLTZTG0767kjLK8BZLlyQmDVMMwONi4WBrsbSh
PSqJ4bnLMD35NmPfQnG4V9a6sWk4M2jCEY7fekesmjerFScAyMcUpslhU3d6HGcaM5wlBKbq/pzc
r3Gq3x5j6IIzJY+xtXMWgECsB9/XCBAXR/KpLq5od+eCfcdI8+hXtRDYgzTgwCDW8pPf+oG+fRLC
oN+KpYa6ayDtk9BG2PGC15OCPXD0DrSrfgqTEH/2kjfjzIRZPvFPB1ZdzdZQUfsBKPQwl9tOcrsZ
VuGjTsAKRkxNmsdiuETtNv4URlFNO6Qw2cZzJmxk6nv6zYN1xzhKJDj7P5W01pooTyah+6EbK+BT
GkJwPjqOTZrkHOPFCzFeHL+9ZBWbmizOpgP+oHLBc1ZPQ5gYAmobXD+UviG/52Fwq2qd0Iem+IIx
krYYNrArU8V6ICEwHshq5W4ndqFQbMSENstNhCL2QuwlBVi7ej1u6btQ3AdiUwuWd0Lu62YlC6UQ
mrZZ/qvulBtxtfONlBBmHzpONlpD5DGNQOpsg305bEhnKgHT3sAqqD0qY9VSPg9cImleb70copJu
6ktpNTI4UCRRjXDFFFoZl8EnWZtiqBcWxgOQS/29hAtgO4cbqvTtdpy8GNvg9rSJpF/EiMAZTV+T
wkJ89PVBTy47RWdH+jY9UrsrP12u1Vspk0DuTS3V9kmmLD5wnIJeKN9fv5ugvbwY/rE1eZ6dwn/1
5s3a4wBGvjdvWNZLQW0z49wRG4zwxA4LpkgSRzzkK2NthOxNTJErhMcmuVpa65LgfUMOjVIbwJf+
8SoSA/C8Q0BB6oPM66ZqyTSBeAAU3+yp7+FhL7/9uId7yQodwo9sncZB/VtV75WRrYPfs8aNpmjc
lmzlKDQprEKmLmKtW0Bc7HjQrmQqARiqyG5qcg6MxTR6JizC2kPhQAUGg9fdym3faidEDDPxL9l8
OQnoUI3TTAT8eGwgL3g3ik2G+vxfO9dZk7hjWRZkzQlZowJJWpFJe5lQOfBcD3gqVtHWj+edlKqD
zMU2mK+oJnMVnjb5zC5q29n3SwW1JDUuieb5IeU9iXTjaWcQPt7fLHMa6qGP8yWbyphxaGJ6xhM5
GaN07Qh/aTxFo35BhQtdIc8ZfMBybkSQNyUX8EnJJBbIob2AdZ4jB5Mze0GnC1BQtY1uBIDqet+S
WanniBjAo3Be8IWi9uW2guaiCmVMmAd+rUx1BZgBUJL6uqbIhdUJuZhR2iV3PHHl+6odpcrTHB3X
tJkQAE+ac+Gsok/KUu/UPDBcRtLTujBYjbUM+BhUSz/IvGl1oMVM3I95Jc3ZRmA7nACZspjAVvef
tvF6jm9q1IS08to/nh8aTlUl1BJBgmIvcb+zp6g4l6v+dWTTyzafa+dnnomm7cz0zXkrfM+tMCpO
lGknEEdQviHki9NIfUW0RzInu4tmnL6g6Ad8NO1xnnS00HD7RdlLTQiznKJRHCSMLcE4ZOFzkaJY
U9CVVfn2/LYczW/LFwwyAW1kp+oOZMvOMSoJTeiONxL0UcyF+3u4sIuOLvE0+P4bXOPjZJGZIgsF
2wqTpekCEJ/oWU4/lIv/cyxEz4RasDzjn6ETFQCxSiY5yiSv5bnc8p2da/ST0hTM6BLmm0qVPC9J
kZ2sk0nhAcGFYaj3InRxFiA/i4UP8jIwoGHgZ4b4mEk8Bfp4wiNaGMiyCCvl09ZGJrPIzzlCQGUP
4ldlhHvXunIupmX/x2iWxmE6qdSR7+W3aUWalZem65hgRJRXjvilbm5PbwBHsXKUez+MfG2X6cFP
texZe+9MUtj/sb/JTv3NMsf1/nYNJRNbBKwZmvS+3dVy/nocxk7HeoFR4OVP8lkCgGdVVwiEXiaK
CrgAFSa3+ecgfjhmhe8uY8a8Zgh3KxH38R5+uqFmY4lB/lqoh7NgrhjW8ElX79rZQ46mosT3KVCq
Z62nvDJ4fVDYb8uBMEz7wyhCw4mESrk/hIfRfdo4Ej25LQxDAFuBpKquopCfkxpfMXjS5YcaJMBp
RfETV/Joc8l72DnCzlN6fKfqM2TWUhOmbSH6nfjr2bbzxxNuV472aLdiltVkjsk+Xt9fcA/Tq0Zf
bj+rvBMRU1X+hpTvUDAQ61B1kA45RRH8hebS/qYB1vsz7ed9t2ifOLVraqw23F+33GBy1GW5ihtn
WbCrye1C49DGqGTEwOD6w62y0b1k3GknglNjsrkVfVzuTGHTL0i0ubAWParNjj1qOz5sqOMe5MQp
MaI8NTFa3llv3khvLs20yFZfkAyCZdnvN8HoenM+w5momL1mwYCUk2d06n4uKYMdCozCqQ3FCeXq
jxd7eZel0CSeN/Nvy57C8lhPcSDuj5TavbkAbhlMnn6JZgpmX/BOd9Ls2UNdatBlT4pRi1p5Cc5c
bI8KTA+2fC8Aad21OxnJC0DP2sjdV1mkyVYOuQ0oCMLSYT5rDLce/SvuS3zDdsE1I+LTWZfwJM8k
z7K2GqnRm+rMVqFq7I8h/OyVM8Y4/X/vwoqqTwwUKpHCKr1+lROEvyQG9ZEmCZ891HyZd3/nhepF
7+J+HqfP4lak5OsA4/rU1Ci25YxtyqSwRy3jft+dFY6VmXVXf7p/9esrq81ZhtyJY5MX0aLavfrx
53CxAh2VnxPtwFy7hc0zYwuqxNvF3au/yX9m4hDaFRmcRQkemzhCxke5cROeOjVsjgauSNOYnyeN
TaiTy0M1x3t2yqk3la44mrenr4WitS8Lrr+7u6VRqsBItPN3X2Urhef0RslEDvmIkHR/5Qp+Gzrt
nc6vy/Q1h/lQ9zLVhqKVWSkfT/3kiVtmVHZZdu7xpzdApDG/ooanfrZipI9irt1LeYPBBDUIbUVC
ylH+FGyaGHdgVM5Tc0kU2GHu5Zd6aQd8TOAz9EMmzrQ42/B5hPwbEogpHgplbmRzdHJlYW0KZW5k
b2JqCjM0NSAwIG9iago8PAovTGVuZ3RoIDc2OCAgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUK
Pj4Kc3RyZWFtCnjarVRNb9swDL33V/hoA40j+SO2c9uwtdhQDEWRHYa2B9VWbKG2ZchKk/77kaLS
NVuH9bAcYorix3uPtFnQBiy4PGP++XFztrzgq4CzuGIVDzbboEiCglUxy+DUBLfhplNztEiqVSh2
ttOG7E44ZxEaOfUi4mEtG3JMwnY+Ya9sRxY6yXpScu9T1ejr+qc8qNmqsfUpStaSTL2lhFoPUy8P
v5dsJF6AXYYakMzKKj1G95uvQHHB0zjPKqIiRsCYQpjBDAj1SZRxTncvQWISxpK5NRAMGeT3Prkn
Y1AjtjV0mvXOIG60aw31C8DnjxH8dWJs5UwOq+l5x9LsgGYR9morrRp8hprnnZw9MNv9UfYNjiiF
6nEYaVl5MhUL99hbm0d8SO/bjb8QNXG0WPFVeI0epyxG+GG5SkaSb9AzsLX9Mx0FXTdGTwscKPrc
ToAIPBzkGAFUS0Fb3B4McDsCtDKWwdRrCJSTfYsNZaQ83HcSi6dJqEdJLlxLdNRGClobCtS9wwb2
6EYEIa5ffGyQsDhNMmrwZaxVgyBBX4GJZRqe+ySnsjSAYRBj7bviLuKt7YQljxtHSVNGWMNkNJJ+
etEavA/o8bDE5CLK8KAGYSWhhYrocnM6igamv9vq3he6YzlL2AEe3BFaXqRpwLM4zVYJvr7AL+Mx
z1LiV0QLzhkLP0SINEpZ+AjbijrBjrQS5wMHO1Op0y8BlEqh1FGqDWrjuep3tC596xu5lUaCgK7J
y6fnH91ur1lZJvcnKcHtIoeCPxyQsW3FcehXyuMpXlfkKzDL04X6PkuzaCS+cbBHOQ9R1jyHClaa
KId97mfy0OqBMdtmvcaEXs7Ps5XDej1hJr4lhI4FPDAIEY0bpJbmQRUnRVJ6Zq8hdNZO83q53LcJ
j3s1Pi4d1ROmfxNpceT0eodvry/h96ZUn/Su7YX7goBM3xSs+HuVukKOek8a9PJJ9mSSEmSrpfb3
6oHUM8//SxPk9C5NEs7j1QrQp3kRM7hzFTk/Sf68OfsJjBzJlgplbmRzdHJlYW0KZW5kb2JqCjI1
NSAwIG9iago8PAovVHlwZSAvT2JqU3RtCi9OIDEwMAovRmlyc3QgODYyCi9MZW5ndGggMTUyNiAg
ICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNq9WF1vVDcQfb+/wo/0xdf2jL+q
CIkPBZBaCREqtY3yQMOWRkVZlCwq/fc9xyFkd5MwS4IaaeO5vsdje+bMeHyTqgsuaXbKprja0VQX
I9vmYmbbXexoMyDCNrpEXE5OiMviJPcpZXXSiYU2aeivLseKtrsSMaYEV6A7lehKE7TJ1cRWXC1s
1bXANrumMqVSXBu46vrANdcHDnMEAmuAoBQiBEJrwtJTgiAQCgV1MQUKGYKmKdUCobEH+5QBxkZl
gKFZCW7QrEoBmhX/OCDmRAGac6EAzSVQgOaicUoNmssAQ3MdYGiuAwzNjeAOzY3G7tDcGgVo7okC
NPdCQV0KgUKGoGFKvUAYYNgvDjAMHAcYHqB7hAPoH+E03IpwJ/SQ0FhwEQSlCylAs0qfJBQ6nD30
1ADTdfR7LvQdeobzYCQJnTaCu6Nw3XwFhR0Ok5i5ggihcJo4jQ6aj6jEF4EvIcCXQjsI9iEa+YTe
nNmDQQX2JIQGlIRZa+EbkK0FnUQgdPhZREFacCNVpzFwUWjBBhlCo4A39IUIGEm/CsyjmTZCRwYj
+FxinjBMS0YnRhSYX+AhrZhBpEDg3hEp2kW4YpcDbCPgR4ZXIBSXBTtDYEA5WJ9dVqnT3t40P3WH
cCqC7JWbf/3tdzAezim+IahOP75/fzQ9fHgrLmbfdoAF9R1WsXCxi++ICxPXxAf41cTV5AO2auJK
9AF9Ji4HH+EyEyfdR3jExKXmERk2Llaftpa3vzxdub09N+8rc0y+GLAP2oDRFzJ4jpxAGWPml2fL
44PFyh26+eXTfTe/XnxauS/qXv/7YYEXb94tpvkJVC9OV+eIrcbh0/xqcb78eHa8OB8hN7p+Xrw9
efN4+ckdBnSUiEzZ0xGmeXOGsa6PRaztibn2ak/RMXa2972JYe4NNiZ0j2A2caU3H1qyca36mMTG
1eKRU21cyT6FbOOyep5rJk7FM2lbuFyqR4jvgGsePxuXqy+h2zgtvtjbzZJ96bbbclJfxXZbjuJr
3WG7IfkWbbdpj77lYuNaQAa03YacjRRom1lzQwq0zawKOttmQY73odhmViT8uIs+JPy4A6sUGR9F
hIkTZPyUbLpIS57Vlomr0bM8MHEleFHbzMB42QEmzavYZpZUvVbbzKhCPBht40L2OdtmRr3mc7fN
jNLRF7HNjCrWl2qzHoW0r9G2Hwp3X3eYFucqS1QTh3O1qW3mhHOV9buJC8X3ZJs5klXdZh/uLJ4V
r4lDkLOqM3GIcmm2eyOiXJNt54go11L//4IDZfh2wcGifJeCg7eIgXt0erqEqsNxF+BatqYc76f5
4OMfq/H808np39P8eHn2dnE2VIej+fn8Yn6CB2zsiIs5xi5U4Fwpo1hshTU3Thw4JzLlVK7k0TDP
gZufLV8vHQz74PhktfAvn+HvB5rkyuK8sFjV0Cbm5mroGuaWamgbd1s1dA2XwITUTVzmRWC7Ovgm
xqBfXPtc9+4rc2C9fMAlJ7ZLFK7a9V4cS3qNYyndlWNpsHPcD+/FtTgeLrkWG8zOexvcNC7mPeHi
weM3elQwN3Lt+Z/L5QrTLXxcJ9v9SB9RjjRe/3EO8vNEQxWTx0cXjxv4VzgfWkvbnEdVbXJ+A8Mq
u/lowBoKWH7pQNLX7cPhioLrTPsKu9a4ecU0gHART5fklOCaXhKYL76gNmje+A3hXkwVucZUid/E
1DWTSbKtv4Fh9OM+fkMZso1LuAuF1L/Z9Lda+8oldzZdu266ctcgl/xdg1tR7PQ4grlhnVFxUwOP
FLk25GgE97WokrqDX7fvfMn3G+qjbZwoLyPVxNH/1Z42YeNZ9Ou4y2jWjFIq7UKpdRZt0uvWAF4/
adbD/3sHsOZrLFS5Kwv1YpP8qHc7G29L6fEL/VpFTMdRvii/0OKE4efwpl4KUZ/5POg8P9rbG/rn
R8erk+XpfDD/8uoFfw/+Wq0+nP84z/+8S9G/J/Yi599y8uy+LtSoIa8tTFB7S7/XwkYBthk1qnbU
bGCYDRENN9wtt3GZ1f36F5X/AIrnogkKZW5kc3RyZWFtCmVuZG9iagozNjMgMCBvYmoKPDwKL0xl
bmd0aDEgMTM2NwovTGVuZ3RoMiA2MDA4Ci9MZW5ndGgzIDAKL0xlbmd0aCA2OTQ3ICAgICAgCi9G
aWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42o10BzRcX/c2EcKIiF4SXKJGHb13o7foUQeD
ScYMY3SihxARJRI1asIIQghBRI0SvXeiJzpRo/wn5X3f/+/9vrW+b9217j1n72fvs/fZz3M5WA2M
+JUcUfYwCAqJ4QcLCEkDKrp3wEKAkJCIgJCQMIiDwxiOQcD+mkEcpjC0BxyFlP5fABU0DIrB2VSh
GBxOF4UEtDwRAFgEAItLgyWkhYQAYSEhqX8BUWhpQBXqBXcEdAUALRQS5gHiUEG5+aLhzi4Y3DH/
WgLcDjwAWEpKgu93OKDkCkPDHaBIQBeKcYG54k50gCIAI5QDHIbx/UcKblkXDMZNWlDQ29tbAOrq
IYBCO8vz8AHecIwLcAfmAUN7wRyBXw0DelBX2J/OBEAcgLEL3OOP3QjlhPGGomEAzoCAO8CQHrgI
T6QjDA3gDgeMNHUAfTcY8g9Y5w+AD/h7NwBYAPzvdH+jfyWCI38HQx0cUK5uUKQvHOkMOMERMEAf
oiOA8cHwAVCk4y8gFOGBwsVDvaBwBNQeB/hdORSAKBkCUFyDf9vzcEDD3TAeAh5wxK8WBX+lwd2y
GtJRBeXqCkNiPEC/6lOFo2EOuGv3Ffwz2ftIlDfS/+/GCY50dPrVhKOnm6AJEu7uCdNU/QvBmUD/
sTnDMICYkJCQhJQIAHMHYD4OLoK/0hv7usF+O8G/zLgOAv3dUG6AE64JWCDcCYb7gPw9oF4wAIP2
hAX6/2/HP3cgMBhwhDtgAHuYMxwJ+k92nBnm9GePGz4a7gNYCuG4BwaEfj3/Xlnj6OWIQiJ8/wP/
PV9BDYiFspkZ75+O/+1TVkb5AP78okIAv7CYEAD+RTIJ3CLwn2kMoPC/ZfyvWE2kEwqQ+lMt7pr+
VbHXXwJw/xUHD/DPXHooHGthAPd/SG4lJCbkgHuB/7+p/jvk/8bwX1n+XyT/74IgngjEbzf3b///
4Ya6whG+fwE40npicALQReFkgPxvqBnsj2h1YY5wT9f/9mpioDghKCGdEf++RrgHBO4DczSAYxxc
/rDlj93kl8oQcCTMAOUB//VbAfhxo/kvH05aDvdxvw4PHCV/u2A45fzzSDWkA8rxl8SExcQBKBoN
9QXhhozbiQH+YJwWHWE+v0kMCAogURhcCIBrLxBwQqFBvyaKY4qgvivMGfrLDPpHagdPNBqnrt/D
x537r/1vKcNgPjAH0PgIykEm/F55eN3RW6Ub3vxLPXKDHEtmL3j4/cfRHz1Prl15xlOaHjqLPlB6
1tF0fWpBjXtfcYLlzH/tQ8WVyJpEw9qfAae28Xf6l2pBY320n3vz1pTetTKR3OQ3VlwOOHMPMA25
T/AB/5MWR5a7p+Q1gxyqI+8WdZ93rdjJrocjS4bLpeLapKfYAf5Yk8dWIa+HOLLtM4bp2Ygw/EzE
tym3fciH9g8GKV/2XrBoxfOCAtdjRfL9784JPzke9pt+Yyzs0cDAznCXnolgn7Krn9NfeTVZi27U
vyB/6vOYzwfZfJaXZHzPp/ivC6wKp5XC78Qgq5rLvLrG68GLWc+AcK4bn6kWE8sKq6ht0Wz6NKW1
tjFUmDKR+zCm1Xon5em6A9NGp3vPb05IDby7AIbILFzWgqsb/X9WuE93dH7mP3z4vOaoo6pzoTHQ
7LVCq8JNZ2/wbTUXy+ipSek0pueEWEz3pQYzmCb1db4Jr2eSp4TQCFn/0B3lE0bwfJ6Q0F1Jwmb8
rpubYlkBO08Ciyu39ernhihGEd6U1mEXYeJ6F/afnm9v5zG4iKjZpT/kzk5Ta3yUPRPHZShTDqsc
CsMKbs8V0wqoFvqy6CTMi43ttLHni2qqNy+NlnREW4X63juWyhXYNC02qX0qlmvIurgew9+9WhnS
rhwW0SJ14Lg6f1BUpGxD8w1lerxd7B2l3PHkq7FEePaj+jvBLxs89FPUlWIuvTpcGG4msb+1Yazs
xepaFUduZix3stDd8OrUmw+rqcrBlT+u26r9TTYyYNx6TDW/meFtsCLto/2qYOHyj/pH3HhX069P
P+FIX54kuGX7saPKdOecUfmGkfFRzi2/Obzm0YHuBdYv/Qvs/ohiq9eiLdWAjNjjFAJEPCfr6EJw
6t6sHPfj6HOn6OoZE2+liombZWlDn2Gz6+1dl5VvXfkoIkQt37OuAeQVcqXP6OTzUl+MJGbem/fL
UDxhiauWK/GwKp+h3peNKJKzarDAZ59VVYgy+U7St3wq/uzlgI96tiGyrehGajTDIryUYyQpk3W0
H6QjjEdXZpmZSvFjIT+Ih/WxU4R5KLHDKkUMMd6C7DAXdXt5XPLOHSoDEbVs1nB+6TIKLoq58z6l
a1rkpQKE4y3lKlo9eFoYLB5ns78E0VPxMtCtENO+5r6GteERjeEbiXsxgoWd1yCjzt5sELGkOO8d
oyj2gNKLEJShbM9Kz3NS0n67B+9lM5jBQoUBxCkXsrXfXLcqqo7H0mc6XLZnssJni78FE1dWvn2b
ptDBYKewJ5G8Rktq25VFaPmsfk/Sx0BWFDzMtCeH6T3SwJsgJ5MRT/lQHYjW9gR/E/mZaqKCRwhP
pa3QwBSX9w8GHvjSM4+cP3Bg5rCadd8KtqqpWRbVF/VitUyzPdSsyXm79a70lObzskMMo9AsU9Gu
rtax7ksLoTddcV7+4rP0SSNWR83AJfRL945UNhEGuUOCpAzjAQttgSlt+u8dPI18dOqd2v7QKJW7
yuqZH0HMTL6T3NeitbkeNgvrCw2aPi8R1zRgZ0f8/Hbyppo/kW7OsoF+bQjW3RFz1MZIzKDdNcop
zOGcZF/qF3mo1cWQwueJeqD7RriF3m/GMyElK3JI/HZq7e1XZK1NZEX9F1KfegpmFVpytZNoHXjo
v/QefrXadn6JKeZUKFx40tvy4yeSyHjN+2Pich17lqOelUp1Wl7PhP7BSK9ivpmwD8uqpDurjuNA
ycIN1NqDRbCp4ON2ZTnFsh8nG6xCCY0W2Si/Y/aN477DtmCOluJP/R003l9nvgpbo7DNs0CJ7ZmC
pssXcs/VbGXXTQgRnXQl+BrxWLIjcWG7r/hhaMPEDMAEISsIp9dBihntenMW8q8Nvi3NVPc7KpD6
Ti/XzpWwyN11Vqd56qJ3UjHiv6hPCVx7ASbQ8XIYdqUhhFe+auBsZ9Nd/+7aolhlNvywmD6v2HXK
nkNo/AXh7RO71LUrLdmJs4mCTvvNGYiPHAZqwtnSzKZKPEbKOoLLsljaTTEqrEqmUu7sYQZCpsT/
SwMp962aMXNCJIQogY04Bu8FXrik/50xVAJFY4sxHfeirdn2JXul8yDtAJQuqS3VyOBzM4rZ85vx
H8l8F3VXL8SDi7LKbD4eQjGZLMSK+uC1bMEMPMgOS9J7EV/mWykLDuS6uqN96q13z6YtCVzfXNT4
9T6GBBGRUCKwx0VsTVryJbDLY6bKcWbKNwNXTHmeXp4yap+EM/Blb4XMvN66Q0lbTZv/sRYS20aA
/WiQIbD6Uedyf7DP0eVX9LaWPeamURR0bXs/DLNKyYwNLva9wrKOQbBOvgS38wnGMHSQS+JJdaIn
7c7T8Md2vAh/RuJDmOHhyFNbRSc6cRFGjVkDqFe/H4NJN43t25fd1J/vFoGZb2MX22IpS+N0edvs
3YIfyvhPY7tIQooNRWhXTU1lxrLruqMGr5FRlugL6GfOwfnqJCWLRpjD1psfRji/lLOSm1Nkg8yd
aEOOjLPtf76IrzcNeYLgRjiXNGZM2A8Ux06zVq9ih5OHv1h9PTuGihqC6d52PQCKpObdTfOrX3fl
AwkeNvc3cjwcn6Qhr/nFNxJfKc5dyZMeuamT6cdg/YRiG4smjc7PwYZ56anWx+iqS0ixa+rAzzkT
lcacb3xFIsR98SO1SOIg+pW7stokS2sG3Xn6T5SU6Du9HiYGzQwgcjhXKo8slkYruMZ78Mwm+pbC
OBtyhEK0gXMGmlRBOAl8fMCTxD6TsUkFJNnW4qekkT/8UgQf5Cuwa5nl82F+GgNW8izGZlx1U+oV
sBTNNRoTtvdO4nUAMIV5m3owRnqXm6pd5dOkrWwprMwPFotkeCXcrPK8fRgoLebVQTbTYmol3VOr
iTSUN1/aTn1IVq88/Lr9LZibWekqooqqfxNsNyXpKbDnybu5MM52sicvs80X5NdR0c8BQtWWzmb5
ELQLvfAIpRhpZ6A0A0N8ejeHVp/PAs7nrvGxlT6mvvuVExT9GWzWt/we0D9/7ea120iWwfQwPuVg
rLVAAK0s9YidBlltoVKsAj5pwWAdFW8dFkji9d3XixyK0X6LnzUok9vwfSgREQI54SYiHXustxf9
Cl9m7mu+4/mbpp8b+AnF109nb9dFy35+lf1soZUqnApL4NHwSkq2Uj2OTEXNLsL0W47L3MeOFg4a
w8QeSD7K4GPLfD9FWBA79ulHtn4RkbpDA6lRqfW7sR5SkfhcdgvFzGTr6AmzY2m9pPz1do/B/bak
KhZFIqewq+k2TGbTEZzCot6UhQg/0mX2IWGzLapy7+mIz+v6UvYXuUts+q9eUnV2mzXfhlBaTwu+
svPFPjYsI4nqSLIyfNZ0A3IbOwU3pt2JXbXRAw4cbXN17cLyHhpxGL/Tq9GWiCsl5r2TMrJuic5P
O2232G+l2rBwhwXWlY3dvJofczhmEWlw8gPUA8E3UctZ3zt/vD2oHdYwTK7xmKu8Uh7/rqFiD7nm
+ByGI3fxIjm9wbKAR6KFs/40y6UHmXG1jOGbBdfQJLTpvXHzDpc5OmhoNkUQaYt8RqClk01LSsyd
rAgqX8n60pcKKq7UY/LXhlTOTm7b3E+zn2lCfn9Au2GnU5prTTwJzTPJxv/Q6n8aRek1v6UzO1Wz
nCOa+AP8gj2ICu2qdLHp8Yy66fPeLvLuLMHtlFq5wsNOj/1tVBq1vaJ/vO8IKTGrigpLjD+dA7GA
WdDd9+tbzMtCdEjSOXu3CGcPgxeO7Pz9VgelPUNpnDqybp8uU1aTI6iuBnx4kFYhuXoi0NGS/J7X
qafNz7fAK4zlq225sl9JZ+TLhz+EFbyG6oiJLn3fq9sfjWw2x4fmskoyDOe5gpInI+mdvcdZr4CI
jySWICQWir5G1g92Il5eSik+RqCUR769SSRhSc7wYhU6Xq2KhiSFXp2ePdksVJuFWkaFOh0Z+IgG
a0Rk0QR8v2J2WiEzqc48Qn3dgopNRPmH2Pje6fLRVw0rtsEiS6IjcHJPyoaDmN6RFNZNXlhCq1b5
bK/SQ5BgM/q9M/ePQh8aQ75rGHnLknnJ7kR1j9bqEGmWO+xS1uLUnFEnrr4lPPBKhmivjm/3mg7M
CmJ0Wu4o2zDdUYYiPq35vLPNGrXIkC4X031denl2eXOSeiv6CtWT2mLyyhtBBT8F7+VFzLWOZ7MG
ztglba6pcprdDG7HLo4Ymn9gJ9KYfb1C3oXRzCuuIwlqHxYYt7i5oziGpClCJ1+3/bGOnAppIiar
1z9dwCjpEfLrkCGTY54rENrO0NrYRkw6UydUPsik/RwnE2vH/LZvo0BbOXJmWxzW8r5xiqU0vhok
n7SK+GToFv+QsSgnaJCn4eH7jOPK/F3BWJkrRgxcV20+7EsvYi5rld1T/E7tU/QuTI1bSL1TpqeG
ZtLQ/dKTwrak+8ZcH7Yzr8tkyj51v4EcW/QMwSB0VMCJ5i2AWDfjc5B7/GiL+0B+iMJiTJ8fWMWI
t+FmrgG4+QEzrOOSkXA3qUiRVrLuRGf4MwT3zmAlOzFzDazDcEnQ1U1PTFsC3+wMFh3A0zw5NgON
1kgunrv7YbBU1DPWJPBTa8tK848CImoToJ/1S7LFs/XveMesQ/iaxEMWSwWDLxm0OVYd8tVKq9eZ
f6bJKY93aVrfCDYiAh8Ct/YGayhcrnVZGj7UccFa8C+FPjBCn/tCxQBdAwv1wuE+GWapy7E3rS8X
9tNZ4NHGRCiKBSdMz/ZzM4KO0uPlSTOaw6o6VDXuReZcX/CgQdOE+kwlg5YFmuQn+kZKS7N77z8v
mUC0yHAml96SXZlIfbsLe8rj1L8I8Uuzq2qrUshZ0HTAUzTS4EyWvSCsS9i8DPNC4klShWRAQm9a
LZiWYUVa96DFSqy+vnUL0juDvNSZDqy5PtuEyaH2vbrnI4++CjoFiswmp619edW2wKZemExRvMLl
pOvRf2WIxdzM5Czw9KCyqtqipTLWhjR4aJTjXncbq0b9Voy+xgVxR/cTFtvj9zEyq5HlPbtB8fNa
1V7Z18pDrKdugdjHr2DJJ7lUXBRCxFJkw43oz5hqN768bdxRTCymzyBJhb6pCOanTlEKcoh++A2B
MsOv0OXejSNC41W9vjVpN9qHtPC/N2knEoC45MVUYlfDpYnIOguaK2NdqjjN3h80aOpc90/KIVIr
fbEl1+MGXbUhDRlzWdO/T2CXUbWZtuB2dHK1WNLTd4odvZs8vffME+QU6ODezCvW6PuA9Wzaejjj
5MZRw/o1E75i/HpMFs8yXFpjN6teP6JlkrvEFqYf8o0JYlp/7t5HRCv/xnN1roVfXTrq606LX1hm
RJrGXSuOOJMNr7EGPGayPr8FG/q5L8qxvhzBesbz1e9F5OhLzNfmFOpcqbUSjmj5B0XCD5ngC6Ma
ilNPQ5x6w87uV98RWEvbP/PiCm5zFaDk6jZaaFKt7RpH+J6y0Esk0uZctdgfUXlX3Or6rdLmfam6
p5itetqVo8px8Kuf5BjBx0Ok53OxXfPboDnRR2XgYmSU7U9V+UA3It5lJ6yzlAs700lBK7614pbu
sd2YzcAHde0DGbEiojzvtrXay4uaaPctpQIRJ6XQWQsKuOeb4Kbpxebdj/1b6wOUFujr35hU9w+k
42InHJmv3MknmAYSlTAUV9f4sU/5qHnma6DYvI4al/leKcuh154XxEYr9FLaCQzhFC3G2oVQc/ZF
b+eOxPf6YZbzl3xibri3heX6XtbkTr6ou3ddTOc1VrPBoTIwwIW5gT3eT3WeyqS36al3rUUs78ez
N3ele7ZWWnrzWtPBn3YrEUHjsIYbbfh2nkeKlxgDLr9ZZ6EZmYparUj9bDMhfmNTMNO3/6cddDub
8lU7WbRlaU/0dbuB+i61zNwmb8ZGwnUo842r2X7L8F0daDgdZeC9zrcrHYo/c6OXAluDfMiXt8ze
E15JWUJGejx5IYS8fc3/WilC4W6h317Ms07KGPnqFckNFjd+nX7O9tyfBFvadvKAXUUBR5Ndcs7m
9KcOD6xCjdeX2s82VqePbifQjJwZdn4t0LN3iuCdrKufCc9EsZHEjr82Ianz699z/u7cDV188tSz
ApLVnyLbTGV+4jtdjX3Td+nkdt2ldueDC1EFc2HrpqeiBRqp3Tlpo7upNo197jowVHn6C5ONvQdX
D/MTEvok5Nd5PuftpWggn2ZeqikoVpJg++av+vCOrKAw5ky3te3HscfSq+Cf96U0zX8kOOUWpvcT
zF/0nv3kpRp/Za62/jr5ervA96+sDX3NbLe1Jo0krjVMWDCXEt9cJdy6N0nGxDkwrrSqdZW3aDnq
04daYsoJSrn9ZL3sJXZxr3IjRmMLike3JulLdJ5fiPa83lxRSMPr5TpYP2w+DoLQOZqq64zw8a7Q
etC8UT/Pm7MRrC50r2i+3HGA7/K4lfzN8fFd5jd+4aqFGMWrIocwytS0l6u6Y4ry93hkzVzsFnXr
ouQvRnM6Lh58hc1tmKpqDQc8r6kxJw/sf62Cjm6n+2zcrtS+SupEf3bpRW5CkkGgDGE022Cd9sHg
rZ5446yqa5DDE6sVxrNDm6FEAiZGAlKZFJKGgO93AFWrllAyDc8h8QvD1rO+F1wZhiLt9jI+t6qf
sIjssRh1SWPv2VNsTHJUY7TirwjKd2brX2ymM6FNZ0KaGHys334gqpPnmd962VhpHYzIOCYQQ9Vf
t1zJ7oPIXOfT4yzgooIXRluV6Rk2au5qDHX/6GNpUDCW3lAcg2zRrehdkF4xMm+cFiqTfcNT6zJn
NkIU8lHU6QNEtcolblJg7J3xJR4bI8J+fuYIpHfgGR9p1F29ajWaPhX8H6WHpBaksXcIYZV+TUMH
2yJ1A1ag92OYjfNzi69idnF0kAe2aT6NsWEEJpkBMVzmCZVtkeHqiuQmI9fFNUmtWFLCV6YO5E+l
O0xtf17qkB9+JXVbUyiQdrDSis1/jIZ4S8Rkwu/zTofnIiTdiaBrPC9i32C2oJNH7WmUJHnoqUl+
+ok3T8m2M1X0Fxr3Iek5x3u38j+UTtFEuVxxbyPNT6/zQJHxf1BMAGkTqEvELbAVBxj2RV5axp4s
AXd3/TwCIkIDc1t0hiuMqKLzpYOdsMOuda+blES24ka2jUiFW+QY4kcs3zlWjSWeaqVbTb2jZS6+
uUvrsD5BH3x6TB5A9AVTfw/c/zlNaQV9Hk1T0tBfcs7QpeXVxKfNEoBPslsR0fvMdObp03TQi9M0
w/AKy6kZWZNGc+mbl0MnJhUceA845spINvRqp5SNxKQeHoU1vsOPxWayNY+0pL9zXjX+Vje9aGNf
aNZKTDTJXX6bHXjsTfTmaJWHJvpx4kKEDbUeK7q42cIvXzb/IScd+rmMkqOmyg07waiQQBD/PQBf
3M/qC2KXvOssOl1blPF2d4g2P8PotFm+0ZJBTHeJEladK6yFtmXqhO5d30CX2pbwWJ+GgUQjXSnz
hsWiWQd/OaSr2KY2UrlO3HvOtTXnkDxbjaee9nhlR10svGaViKxk4PGMIyPfCWnXs4XzAo3dmiDH
1CO/fNOBjfBFtIxMUZT2eyJxvpDHkREbkHLAOk2LR1jdOfOy42GGobmq19mdGMFmrQ/UTS7tkXqi
20Knge0u8XwsBhdPfdyQD2KtsBjzxKaUVBroULHU4GPxu7U0M52Hfd09VWZmDVNpmvgGoJyKa1Fi
6Pw8hwS8he/yrzGiBHwHcIckwTHh7wS5m4WBKhiW1Yp8o1PlNQJrILVq0l15T67evP1i5I7p2DSd
8PsreBXCMZWlSwOdCY4eBB2uLKIOO6EDdScYO3Z2eZEBhRt7x48NbOARSfwFP76kFvBM+vfWObLV
atpeFhUUum/FlSpL3m5Gt7tPeWs9oP/HFyx3Uu24vphmKsfE4Ws6rIsAc5FCewnzeZS4Kh+d6Klj
5wF3yqvNhmWvUtC77wZBkN7BS30VY63GcohP8U6NlDsJvoUU7xp+lv3s8znmv2rtfa/F9VFlw0PE
IazY7T6iNzg0J9r2lnHCx/KL3UeSi49c5AZlshq/eRkpEzCzmZ2b+Daey9viFXZ8XVkUJikj9Tbh
VmbEbLgmxYXm9ua4WBLvX/sfd0mCfgplbmRzdHJlYW0KZW5kb2JqCjM2NSAwIG9iago8PAovTGVu
Z3RoMSAxNDAwCi9MZW5ndGgyIDYxOTEKL0xlbmd0aDMgMAovTGVuZ3RoIDcxNTUgICAgICAKL0Zp
bHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjajXgHNFzt2rYgiC5Kog/R6wzReye66IKMMRjG
zDCj914ieieERI8gSnRBECRq9CBKQvROhPgmyfuec97z/2t935q19uznvq+7Pc917Zm1OdkM7gsq
2SPtoOpIBEYQJASUBqjo3rcAAQFAoKgQEChCzMlpDMPAoX/biTlNoe5oGBIh/R8IFXcoGIO1qYIx
WKAuEgG45wEHgEQBIHFpkIQ0EAgQAQKl/gYi3aUBqmBPmD1AVwhwD4mAook5VZAoH3eYoxMGW+fv
WwAPhBcAkpKSEPgdDlByhbrDIGAEQBeMcYK6YitCwHDAfSQEBsX4/CMFj6wTBoOSFhb28vISArui
hZDujvK8AgAvGMYJYARFQ909ofaAXyMD9MCu0L9GEyLmBBg7wdB/HPeRDhgvsDsUgDXAYRAoAo0N
8UDYQ90B2OqA+1o6AH0UFPEHrPMHIAD4a3MAICHQv9L9Ff0rEQzxOxgMgSBdUWCEDwzhCHCAwaEA
fXUdIYw3RgAARtj/AoLhaCQ2HuwJhsHBdljA79bBAHUlQwAYO+Ff86Eh7jAUBi2EhsF/zSj8Kw12
m9UQ9ipIV1coAoMm/tWfKswdCsHuu4/wX4frgkB6Ifz+XjnAEPYOv8aw90AJmyBgbh5QLdW/MFgT
8b9tjlAMQAwoJS4uBgJA3QBQb4iT8K8Cxj4o6G/nbzN2hgA/FBIFcMCOAQ2AOUCxX8R+aLAnFIBx
94AG+P2n458rYhAIYA+DYAB2UEcYgvjf2bFmqMOfNfb83WHeACsgln4gAPDX51931liG2SMRcJ9/
w38fsbCGgZqJqiX/XyP/y6msjPQG+AmKSAEEpcSBABAIJA6QkBADBPwzjwEY9lcf/xGrhXBAAqT+
tIvdp79b9vyLAzx/CYQX8M9cekgsc6EAnn8T/QFQDAjBXkD/Z7r/Dvn/sfxXlv+V6P/dkboHHP7b
z/MH8P/4wa4wuM9fCCxzPTBYFegisVpA/DfUDPpHurpQe5iH6397tTBgrBqUEI5YRguC7goB7/6x
w9DqMG+ovQEMA3H6w5o/dpNfeoPDEFADJBr26wmDjQIC/8uHFRnEBfsUQWOp+dsFxWron3XVEBCk
/S+xiYiJA8Du7mAfYuxZY1diAD8QVpX2UO/fZAYICyGQGGwIADtjAMAB6U7862BBYgBhO+weYQmO
tf8xiUgAhNEosD30t+kf5SAe7u5Y7f3mBbaXv9e/hQ6FekMhxDOTSIhMuPOr8NazaiVGL8EvHwgW
l9pjEi16osUwXFNP/Zx0CLM1xtyUH9pX3h7MMJguixyd9Gfk2zkb8n7QmRuykK6Zj8FR61lR3hMs
6P9+2OkIZbFHMjgOS2TErFDtJhkyUzy0wrfiTjGbvIiQ6BJde/n1+WU7es1SahPgCig+oWRLZ8Q8
Vspr38R9ZMHGsYQZsHhAGX/T3SrTw1jLZPgS9xEs/lS5NY7+u8+KVXzWwPz8u9zengzRg0Lt7irx
ykhqehrfe2x5g8l99LRJufdeo3G4lMVOVMrSEtnpi1wjuRbwHkos/Bgv7G1J6hP1qHfUUwkh0Q98
3+BRixSblMvrWjhgsl3NMf4uTHa7MTnGSaA6g0OZs8oe52Qgc7dKFJ7fjU/HAiCobZ+70h1HlpSe
WujgzjbEEQaGidp8Hbl99vBxdhJIxDpNDi7Z9/mZsrgBnAU16GA2eyGbBqBm4KQ20MLTY3Ne8hi8
IyB0/KwHVmHOmoI4Wm981zrQFbWH5Nhhph0LSTRvy958u5H0Wkvs5COVKZ+aOKZGewrZYcubkJcw
HmSUn4dv0NKuIWOpKDU9wp5gKkpRYEw1ZayzhpOpd8NCOkIpeJySnNplp4z55ewL8fdP5UIb5dIk
g4GBcyN711QNtxIoa1ZIDLu+X7dJtHPfExYhstHOb7d0eliix30PczcR1rCZeLGubDEWsicxuZCv
/NMkyJa6NPBBvsPjH/HHa0f1u/nmSrXRlvCY1I6xoBXbZ++Z2yx745ky34xsdbdxp615a9afn+Dv
UdsNaEj3sYcXwSsaEsSaVeZ7aWNMrHrBOq1HjUTuXe8dGo6+k4KsTmXuroagbNbr9XZRP8rdlFUB
Nym4pyOkRFcqdYO5pPzwSaNNg1TJjiVvkoFH6kNFJhFCOE4ODcSrcAXtWbrCTSuOR42xVLXnGqi9
k26meermGibhe32+kFO8olB1yR+eBqKfPgub64u/81FCdtTsBG6uWZu5MaqG6jYRRFvcXSw5jGyk
KrRImHhfaG6gtqdzKbJiK9JEUtlUhtRM8yMG3fIeo6fp3+DuaPWg929Bkp2dnJvpsTIbZaulHhRv
ZzUljOMe/eBKXcmEs6pf0T0I0qHCNXICvWRRz7PbL64cDuCPgpOpnFkDiovmuniIwpk8HSaQYfwO
w7dzdTe3WWsDTuEKTBC+hWj2nUqbIKMXX63LXSNXKT/CSsK1y/X7x+LZtEjiXo2/+rF2+9iI6qct
ZtxMJqvj/X5mn4ciz51yDN/7EupxEpOnuX7+K8fHhgFg0S/qpXC8tPZDSW/8F4yEz8cwyZpmSqVd
lcsytWyzpgsjP8lUmgdowkyRtRlzns15W8kKXbWprDKpuTVyg5/kBcJ7V0oq2h+wV3xvSMu+NWq0
fd3TSCVtugg/11DViZiefFzRViCvj24wl6LN5SbdYzsH+JqS1pmBDW55bZbXTDZ1sb1Wv6avCw/k
VDTM+0ciS2x/yNb9ARMDrVoHP+2hsg9ohgjSnQ8WVa0F28Jbnp0Jw1YFTT+mWRp1OPULFDezNMMi
U27KLhhwx997NjgX5Jk0IdDLUcfuZFKiq3BUu6mwlILimwyX8CSfuiU3ZwBCB6xoUKQoPtdLFrPZ
E02LMf5SK+nQHAlg8DEsjgpr0ucNryN7AZQY/zrGSR5xI1yD9Pl5spHvM+rDQ4dvflEjNlSqTp+O
ZFcL/bKylpXTBjcmA87f9M7koUUcuFUOfRaWq237Xo6/VLSGsEim1CAYJNy4w+i/XtOOvrjroi93
a/tnheKkCSC59BNcYN4AqfZo4dZXF9yPWXzkEkRueFazbARbp+evh6bXxx8gW0Jtpjhec8V9OTyw
ppKEpyWsvkY3cYWHdwonLi/b8GazGX95GwwmO8RderEzM1K7RBfSdp+9QCZhPe3CwwbnfgyxkthB
lriyHNVcoSdiLst4hagyK6FmuJU9YvS0jNpamOCDYFCAX/Rob79i/ng6/yOmbBj5tcsyCHgIheif
W6kb/zzhV06mVxaKs+vEif5e/m0vD4DTNLWk95wudPXLC9PZ1aG+sA5wWbb10brChAAp7vaBHaYA
npLpRCmedKUf7dllW0Jg9O19rVTifYANnsE2myHq9EZnIuNpk7v4aWunTFGtZfp6R++q5zSLlAup
D1U8Xb1msg9KhkG1f2oFkOJMvw3KHZHeMwq3fjGfY+eroaLAzhnqD50v8mJbr0n/IP54sMjIYJ3j
6+sm6au2j7z9bfFqd6bXi+y5X3R/6WAUbGogfSeCI8zYA+Dcjw+ImulgjJv+dIvUdTCiyvKC4W2h
Drnk8JujmceQwcP6YSTNDO6L2BwdzaKPzdqfjg4b8ngzjwnd8vin5iAWPmk9H1qK8nOuEVPb6r6P
u3woqFhLCLxpSnDJyH2UO1wzclKGuV/a/5zCXmG+xpwWn5onzCIs4u2pi55ZvcWbbfVp2XXlgNr0
by61c92Ei0bbPLMTwzYi05yUQFyli8st1/AWnLghim9wf9cw5Pi7rbK79IZfmmkrwwt8nlD7pyTM
erLe3OUPTHyez/I2Va0eEv/x1Qxesm7v5pRw5Qkz3SZmOgLvQhOaHTljoFL3zVNvZ41dQzyAtHiL
bIcwP8+6HlSgdCvxTVwqv/9aNc9qk+nE/mKsRukLuESotgOjGY3vgnu+7bbcDw12P+7yu4OR5rqA
Yp6O291pNZG79L7Cn2obZnzHdLotw/2bYlSvsfTeFaT4vgRU20Y1xDJY3j9vPFTqW4p6QRRd+26J
frpRaTW1qbMNA2+vGdK8LLDCMQ7xRg/pFjJHGMTw1T2FQssSih2K23G8XGajbrOcaYJ4JYhKE2Ds
j0e6d0M5gMzTP0PqKrpNFWAdN2/G+B6uSfb2+HcUydtfOfsYZz8O6a43de37mrFE71by3lFlgD7p
MGl3+k1z9jUp3+stX4yjVRaChN9iApuTejIjr5cgmfm2M6Tiet2HJ7QeFSCdq0y2tU+ovZ0LmoVu
CBB8OOO3A1VPvton7dbKgavq7Bpa4omGnDYYCCKQR60HbdyyIxZtiwRQwS2Q8Bl5XL5ESByfmtid
DPuo/efI+HQ/a5VyeY6feOo3fB3ZRqL5niGbccavO8d+FNT7EbL9oehDJfJAMqFH28vQcf4xKpcP
ZENNHio0GRv9ZKhrs4ZUxzQm8Ojd1cWZKxkNHDxEZs1JsyXEXvwwsaXM9qXhaxhTEMMq6s1JTzzL
ACEhOhlXzEfIPCwBj2nsw0ve/a9MhcYF2zjFJ/Yg7fxCl4qK97HO80EVhUSMCKDvrXKNl8xLrG4x
rxM2wWVmht84fcPHb9971TRt/pyhsEsUo+UDfNv+TAh//E5Mj1XKnefMYap31D6GJqNQVep8FaXH
NQuZnrvu+uP2QwgJBMlzqjE8B6kwvirGLXPp4/Y1+b7WbGm+Dws6zA64Hx7Tdkslc4GTnWX4mf1o
W4BRN3hHZpWSHburtfk2Qsy1u3DnTBu4fWcsD98rMc/y3kDsnAyT1E4Yt6ZSdWclzukMLZLf29w9
+GajCiu9tCrek0bLPvnUKNLFtk+zYBJ17p+Dk36H4LuYafimw6hJ7IabQUjA6cWYv9xVXDb2/0yX
mL6/QTfBOjpbar+EJT5g9UsKHzEzvyNKKVigWqBTzt+5QkSMSqU/VCLneII0eTe9qj5jmokySOib
sHopI2N/0yCwMB1jlLvUHIsrxM7kBSV1YqDvIDcIfgpdnXRFHezci0LWKVbXLKeHXNnubSiNBYmW
LBvSfutQZjE9CuTYk1IrbKZLdJYjfmStAKhYf+Lndb3KlkJM9LRIfcdxvKP27hPlrPXVnC2l0oqb
S21ur4b3BilYF98sjN6tJ4xliXqeOLIDemngcPvjjReHApP3e/LFj1ZarzM9dX9eYpU03+n58DNp
a33Nj8e3jjqCvE81OK7yGcOLNoaFAgqahkjep74uvfVpuF39Q1YqpLomOylU7nZlpwPbrWusfINt
5UIEwmteBG9jjCSbeRRnZh5l+5JBGtsUu/W4tFwz8uafyZuzvXNNg+4PKA7B6cjNrtjHTFU018+e
SH50uTWRdF3W5yxXz4MMnEq4UVTa1iNU3LuLi9GrK3obDRd5RdnooqRlHcV7S/eMIqjhfuHXK4v0
GUQ9Q+hjAoKshAmuUj6beOa+JO4LiCIOxfLtC67X/f6yi0M9zzNO21lGGbarb15tzJTzp0LIK4Mb
ZAsCfbhdt9CyWSbfQqRQbLbtuCWGrbPHq9zFejkadbtL1zPlyXF7Sj+8cbauu4k4FDWXv1fgqzCj
uh0sp3cWca3NDkHG/NjP7ZadBY88+4wk3/qj9v4PLqU+omfI5dgznE+A4MMYzZUusgRVr+WmM+vn
waRtjIm0m/ZP/dSSaQeKuh95hczQL2VRCXHQmi6tOTFgck98XThcXDis725W0eLvQRwaC86rKFtU
8M3SFQ8GD3+IPjnJQLHCDauephh+zYrBt1sqpRVGHV6rP3zKZJzi1q4+Kolv+3NCiSq5A7FJbfiR
8KrQVTvej8tXRnaiI48gxPVgxQom8X6Yrm4z99k+Nx/dpZt5sPE1xAFGlnEizuVAmEihTMSVnjdv
cNjhqKlqO21pufDM5w7PStVDzlm/ckbKErZWQ5ZcYSAXetG76chhTbmC/8WE+6NdtcVdK8zorKO+
NtNjw2cc5xyv5GgYPodO5Sps2CuKQngprUXLGdLJNyaYJnA4+XQDNJm6GbK+FeXJqNg/W8q83u+O
aqOvBtE4X+arUzFQdkRDItDMmLRtDe7TZZUH6c0oXvxK3hOCn7m2rNlUhbw1EzxN5zlF9SS6us3E
9bXhZG69nlwNVQOnKotfRPVwGnQs0bVexgYefkl06Nbm4eozg7xH/IJPKssKTB5l1Kgfm5wZsLdo
D0VG8le0jlm0QyWoFYAVPGknRDB7RsZsnToZRxdCqc6bPBZagolx8Icvj3dkHk7Qrn1VGiHSlK57
+XTJQpPZDpRSv9yi2efX6BXWZ2RjMZpNTy5A/JRDvfRjuqbqzIEpgwLqgNBnNKOJxmCBU12uJbSr
r1c5iuBk5qRAQ3vawKk2UK/OqhFfa8B2IzpYhWjPmM53YczhxtoN2fH01LiLkGsP72J/ldVAk/e4
Wy+X5jkeBhjdIKAIJZwNelAaTLWsJ+LiUAg+RHrckxB9EkS5UXfgubTRcRSkPWfml6s7viCqMJXw
uEz3wPq7tBm9DA2VJ2tiBGXmdfNlmevhyqzJN2JKzKkThAyWtGQU8tmMn0cDhEheo+m28E5MrFdf
hiXLjZrH/iS5TBarexMb7B6si5H3kauK5FsJsVPBaw+0IWvD9DAqudcUwLkbznqK0y4Orz04Op3O
72fSCcHdDCswSOGSwGAocE88NHxltB3vzh6OPmaRee3By/6tVub80/209C7PtsG9i2OVwFqFjnth
LcLJ6uziJkLVQPk1Atwj/k/ahuPhQHr2gfGKUbnNkH30t4XtMG/kPeulqXK2914X4vrzQgGP8oIx
m4NBYlR7habLg2W1/C+oil6/qHxzwSwRW2uCDs1+OVnW67P2ZeBtCqFxfpyK2IWGu+OyCcFbSrH3
HAlRGXFc/tUJ9R2xRIFp8xrlq9OSeRkbZAVVBLqeXxZ5nG9hSsJWFgFk+8OFiP3tHOsh6x5D3Pdm
tyP0p5MYol3JheKexVfu3TCyar81konUk3W+85XoJ3fo2ttWUCX1NPkbmQBWir2IB7pBTyCTPNLT
0IQahZOIyBVqy6y7LNrRjlH4ZT3rz7vK1iioFeNyjV+kAia4wSfsnL3a/g8NtQM+F75bOfBQjcxN
iSEPOOQKvnwrKSV0OVnSsmbH4KkM4Q9S6+BXIO0XK47mgksdmTcZyI8gHI9uaKmvSSt0YVKnEwnu
m+gPQXrJnUVUXK2KPlfoS8iHuJiduxQVlrXhDppXcYe92mEupsuloO2SNSl5NaU3J6mDtHeeQ0+R
i1JGyZNm3WFk2E8fxXCbp9nTSvGrSdTs6a0SEGXZx0n69VgfxLk2PRGOoifp3afMa5mKpy2yZ/Ck
f2SBG0lgkX7yk9ULiaI++pbFlqX21uCJhLoC8vbwW2cDCqnlg0r2nE7HFOXYJ3FDPTMGO/FHMso2
hgn6ZSmi3zv4lElEa8M8EC14HK8XtXrJN67ybfUJoD8ffiRmzeR4s/gwNEBQitZQ+G3RF91aaHCe
wnRnX//GWHX9NRbKLadVPOvYYru9jhuX31o2Kmw3RGRHzz6k9/LjU25hmLrKq62Gc2ui6e8V/CzT
V3zOqZukFbrwjQxTXD/tSRAWOfGAoUnYbmW0+0DXVJ12ACh2NcTvovVFxExK3iE9oOw1gHLk7G3D
kSgmqqHiqrnAuTyyuNufvaTu69FO4iRxfl+/Fe24TqxTPm68xU3aWt5ppJiEC+3iz5Q7nEGEmskP
cAReeA/5H6Gr0N7bRZp5suraVCurUdPXP2w7lZA0WYqP3I7AcRVYGHW6L2hmeTOBHG/o3m3u19Wn
A3Klq5+89L48qQXDy6VjOM70xRYNVsO9um1HYtSAsWzaC6IxI4PsNl9Gvzu6/ZQC1jio9fLIoNjl
fg44QKaEclw00NsTKoObISuxN/S/728+vDlAVIJKzvRrXCzVEr+lkq59qYIn7FX9xJWGsOLTwP2P
HC8Nf7CMqugcFR4mNdJ5Z3rd+NxezByh3riQc52LLJA9fFUtRf5DpH+DzEN8ih5Szx+cZ6yzVcZW
25BJAuvdUChuLLtGhgmD8+PFCoJwn9g9jKf3hLSHvWESnYeljy3NK2N79pTyZ3b8a536kdbT8Crv
z9ziXgcr4uavVCg7VLVZ9AnpO6MccngcFb2sHYpNswa7rDaCAjfjQOrfv7HYUCiJer640besn+M5
VsXUIHLNk5TY9/yLcePC+SBwZp7G7s5JzjWrHF+f4eQJDnwo6MWcy4RYhr2R0tZDnp4IRb9Eues+
ZvIde9Gr8udJVWs+il97rppMls6Jfr9S6NaU6YP4pe/J+ijbSZTB2bi8E5r3riuWRX3cTSMStC/A
n2vzWN14gNP1Afcre2bQKbfHzoA/LZv8nOgPYN3jW92tz2wmXqbe5p3IEvR7rZ/QVK0/eS5CaVTa
VUfh/W59k4g12rCH6MhL2XEkabn18v5lS14O+1Q5PMdu78RXpqkmU8tn4oHa1PXOwY0YlHupiy7p
a0UCxS4o15unommZ8O6BGMz9069vOZlDtnnXhVFGfWcLM2/K2W+L1HsQZ6pBk8XO+N/OVKNLLA+4
GYhoappKjjM/r9lFG75iONqrvg+/me/ccwJIpGfwJfSkx6FcCF4O5BSi1vZ9oEdTEBu+drFySqe2
QSiwAjUVGaOS072FpOalEQy5B+kz/fxceozBZEZktFG+HxQ99S6FnaLD0Kz5aZj+5fFo0l0+fd8f
zUKQxkNnSGqFBdfF4qfp6WHqhK0NuU2Jm6kWt7PqTs7e7W0IKIkhBrQW1WPThHMVLt7HZi2RWYPR
QnV6wldUuWn+EtNJcL3zF46b/ivqBpIs6TMagcZAotYbXNcOmdufc3oZZsRbkeSOuu5Xj+N/3/pa
RtWVwm+EnG0wlDlnvZN/acjtOxVEp7Y77Md5N4aQxFbjYihXHv3p6xNLHU/5rgJ3Lonb429efco4
JsfTJn8GFpqm7BKmp8WJnfW5GYon3CZWRTmMmLlyC1726nNreXcPSJhavDNoXTA9PGHTKEQa8TSG
K2/eSfRoWYGGCDKxpPPgEVWM5Zu1XBI2Jq2ttYS6Vy/VtbeOIx/Mg0Jfj9EjuULkpgR9vYJERx7P
z1u34fVXCVFUIH6Q7aM6rxOP43nGwB2ieB80xJZIm756b2he2IlMzT4NAtydYH1GM0MVa3oY2Wkn
TvM9If5Scs2MrXO7siCUitB4zzOi6tSdMVw8NCLESOZDxI5TlsXSMfrcft1qJrZxinRdjRZfVilY
K/H0s0lqshCbYAMpyTsK7doaWH7iBWxicFm9Y1H8+rBFIGf4Y9ZqrfiW3OLgYg4S8RE0txxT0mhB
KVUl1adOZE4m8ZONQ3BwnEmATJNe5HeUHy3TT2iqrpt8i3nE9/0CdVdlCiRHDeTySmxH3c16ro14
/I17nYrYOMO230PaECc8liNkOYn2wrPad9K6Cx7Hqm3etwL0YI70niZzmWhWJ1tfouhs6/eddhYe
pXwphIHpALQlfp1Q1GRPfWGU+CWJhpvrFtsbVFBXe58cQ9snWzwByEnp+GHsaAZ+E5tdhFtmLaIy
1EUsb0Gi1a6j6xVqgcXfKYd4Ej5X590/Y/gZJMupUFLpdkTOJpPSLsjGPeXpo/U06zPO1P8AXDfW
HgplbmRzdHJlYW0KZW5kb2JqCjM2NyAwIG9iago8PAovTGVuZ3RoMSA5ODUKL0xlbmd0aDIgMjU2
MwovTGVuZ3RoMyAwCi9MZW5ndGggMzE5NiAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeNptk3k8lPsXx2OsQ3aypPvIFoOZsZPc7MaWLTsZYzCMGcZgLNMyZcmSNUu4V2QpSwrZ
QpZChqxRNwplF8le6jfqd+/1u/f3ev54nvf5nu85n7M8kmKWNvI6nngPtCEeR5SHK8A0AV00AWmD
xAWZ43F4eV081hOAwRQVYDAYWFJSj4BGEjF4nD6SiNYEbH2CARMkDlDUAODqmopqmsrqgCIMpkxz
tDMPDkJ603zgNAMMBsBVDl5gOBzwxKCIgAfaG4MDQw+SInBeeACu/NPuGRzw51kImhBEywSc+m92
GYCW2xOPw4YBnmgv2t1gLNYC6Y8GTh0IBg4UAweSgQPJ/3JG+mOwYf/P/Z+eCCISi0Hp4LyxaAD2
04QJMsSQ0J6WGCLKByASgtE/zedxnmgCFoNDW+KDMAdNAeThMPV/nNn6YFB+OHRQ0EEjfp7ZozHe
PkSajn/rROM8/ymc1qEfsqGm+jY25laQf0/nh58BDoX3xOC8AUUVVQBJICDDwLSm00gFiIADGJoc
EoAm0fRDFXB4Iu0KEBBMJANeeAL4oOcaagAUeWD6SRoAFPUXqajTCI+l1fenBU4bKNTzEMIBKPoQ
KgJQr0OoDEB9DqEKAMUcQlp07CGkpfb/G+G0UAGHkBaKcAhpoYIOoSoAJR5CWk3Bf9dE8w0+mEoQ
Ck84JBZOyx9yCGn5Q/9GRVplYT/wf8diicTgiLZhAX/tyMGcfjD8bzZHEgkYEuAMwGj7e9CzH8+h
b9f/M2xdXTwJiJCn6ZBXVFIFVGGqgIaiOvl/PVHBBAIaR/zxy9B25k/2wtCWFo0moVHgVy/xqNPX
fLNysolVx35/RtV3fhGppaR0TFFxZr91QwMhWu/VkRzbDnpzcr/LwcHYfTni0aXXp6geLBLJ7lNJ
ZYqAUVjtEy2GtKamHpc1qVSq+WLp0GJybfusHnEB0htFp5uTVGkS8uRZnT9++8Utstvbx/kLjrbH
HZsZ6yb1hlxtvp55jVtrJ2qQige0hagrJtzri6ZUOFdLfOJv0gRVIUxbqsPq/TfS2AcVC0BcurDq
YFzG1mBX4M5x09MJa73t86b6r8Qn+q9NkSspthfvLroFyZPWNAsM1CLWSGA1a+sIHGrrDg/9XHHn
+10lMLismUH9Is962SZczG8j642f3yzThGV11ES9p1565/D+ZauW8NsRrfFaOiom0Z1KFoVMRTGE
7ymJwwkRS6ILs1QxxN3Yei+FAGW7W0zwd0B0Xbv+2yQHlw+yLIG46avQAG9CgoRpTKsTh2sSgZMv
KhdyOyD8JDys5bN/VphASj1Fo5Un9buW1TGNQmUJoY6jHzo3sQH2HIr1BXZrA/04hwIPxmq5nfcz
ku2zDb1EGbM7bCJZV4vpe9ghzzaNLcqhSju+7Sdij4jPlAJjyC+UK5ju/uZK5W7Xz6m2+vXTuXbf
Z/keuNeS485/Kh4FUltCcIzgrEThKD8FiYnCxWyPonNHB7K9KXRkQ9vOnVZkhHXepule9NSM7J22
Ah4xIH0sHaoD7czNgOUh3B5Frsuo+WJinloosr/JYpkeWzFtHKS0fy5crKPjqbmQ7zER6ZnaaOS2
JDQXd3nb1MfRM+J7QGSjoWztOSuVvLwV6wLNhm2+5xSpJ8tVZb04rtzNOQmJ8k130fJ32dE3gX7m
XfmG2SO8Zqxm8zeNmp5qoa5NDjuVGseOSEPhn7XmVkbzhXJB6hDWK4WAPQJ8HgNKuwI1tOGOStha
Eo/AFqcyJBG5dv1ISBXnM4IBb+/0VzARTSv1t+We6p3M8gLJZTMW9knLdLCE1oBI/Ai+6Uv+T120
s9g1QS94w4V5dVNl9dwsu+kJCd+OU5iJvUYWL6ucL9VCjHM4cqTkMIy+rxZhYvoApr8XY2U1upSb
OruTgA9N349JqSoeCL9A8h7yQIpX8BbyhBSiMhSYpweeW1trlx/jHZ22rebRMRjWTCuitDwcIrdW
lM4yzE23XV9RHGD7o3I6E5EMyUL5i4Bs4hrHr90ItnmUg79XXb7yMsib3fXu0ZJXca/Mj06eS8/N
sMivH7fa5P/YXal0dSGFvJZ07fnQ/HLmb96RH3+DdPWoigiAvSu27TLjNrcU5ibfQoXW3aUZ6xlV
QWMsu2j9kpEC6zNS2z51d6Vr1TOFvkcVdYzj+Y/FdXfL3FTcsL++BcGe3RbhAKZXrVIcL87ztCoh
Hr1nUHUT8cY7Y5sbXI6fynvgVRhwhBkz/9GLmSh/WkClZnW7tf1D9xWo3TfrBwrhrlrocnVr+hN4
e+FSHat1pXuGZlMXTl5mzViepzRUeDM+btIuuO7EwpvFFlTyybF+Ol7gFKTPMpYfcHxqMvogK36X
qzGtboUp1Jn57vLMPdnHO+/aTixWZlwMtW6xyJC7iQi792t6ZFgQ3We9wOSmmCX+syeWEOw7pxLl
rpBsBr4/7LPP+XiWm+dhovnNXD5t6mf6Wid2SvYqBByaqFFS2U+qrM15IWKCoDIPEsiaD+m/lGPH
zvTVlca6lE3UWLPdELSVXri3l1iEQVdN3hozM+GFgBm762b4C1jl7cbFoFvLn1ei47vc159hnump
vim05dpaUrdQO87pcJJZC35DOKVqklMA/uFDa/JWpqeQFRunBrhOEtfoIzva1LsU+ajr8ftftNvY
uMiTcOYlIeANW5pSQJRozO8flPA2lPtmUqisoyL7t85YTBeMb1FUXltFNjIck5rlLOw7ot7HWJHV
vStQl7lqvz1176j+11/xZ41vy192GA7Wvb+pbJ/cN+kUHCh9S1B0nL7+eo0NoiMyj69hPJYc7pZb
U9szm6gzvjFhd6JCOg/HgXQayRxF7PotPOW6LtWje7OBGwS5P2SfOBL4wJnwIeXirlab7bzXOtfp
vKNsg8MD87x4oy/biLK69EHTT5ALhljDPb4htAhJKjJn6rVtEkeuB1+8l9mQS8mA1m764vr969Wa
OgUvk/Ledc6r+hkEvbfZDE8f2VyDJ2yRWjwCgWYXBpnRvcHoMtlORPmgt9VQWUyBIZVB9qppa7ME
TG5W8oZMtAhJ6fGsJoO4s3KQCzeYIsTxtiSkUmA7NfQbA14KvpO/8jBII0paJ0OYf3tZ1uSKBh15
TB57wp7s++Sh4KRkm8MrjUW09kgRDs1KR9665IJQURIxdu8eDh+VON5fY3TZ6eRuYXQMxwocNJX2
sYldcO1F7058gN/SCvMevdvWbwhU++tvsbPDT6oEQJCNjvhorulfksu6CscuBtpcax2ABMjoTq+W
x8TWny1/thshmMB0OkVDuidCSvDGIBXvlrBwliXCNZTBF/9QQTMbXvJNHNWQfXvT6WVS3N7FKe0p
4Rv85hWruOGR5GjFuq7b7OEvnwyrZCdB4vgoBoOe6DWDP75DuV9IMBk4uUwQJIbak8gXcVe7DFzX
bu5/DmyrvIcXfu66kcATqDRfolardum+Ws7jjG/xe4Uu7uefnOYZn31C/zbhPeeuN3REqpmhgq89
k+jM/XziKakfzR4a7ussNkVMe+zwAAGbWeXBlbcTmrPvhJh4kd6tpJ0/sa7sKju/LkNhyKKSJGuc
E7+fe+0P1+ugv5K7wiOX9DufdYg4iBrwvPnCCan7HPDUumSIaF/1G+rtP0TNqrveSuQq7zV9Gibc
kYOnbG3QPd/ztSvqGxiTRxUXyQphLUl3Hm0rOIbOm+6na8StqRDMZDJnAnatzMzGGhVCYnTlWIMk
Qu2ERC+UcqLXUx9vmQ8P3+QZLHh/OSkjnHjEo9bEmNPi7gJIkKWhh5I3P1/B+ixY+7ydtWXV6WRA
Jau3bKMkanQpnExn7KGWFmfc+xJD/dVo4ZxC6OpcUlpUU9X1K9VJZl0JqF5hFfp8w3xDuL6QklGZ
YaA7x1eXBkvVviJHt+h8KnsBf6D41y1P3bDr/r5vWUfiIrcUt6rlf6eCeu/ubIO5q/JFd3qKGss4
ij9RHNOFyuEjSjeYUsTcVC3lQs6SC9/v8AreRcp+ZbRVthbzA61kG1winRhYDmGyYk8rVu67pYlp
0XJoT84AyTaTN6ZghF9WOpv++DWOu6quw2euwDh56OGXRyzf4JYU5RXZ0DIlIZDMl1PeCzOZ1P02
0BFMC2ONXuaCuL2B4ycLTIr4LiqN/xp8DQxyjI7qasJLWu23Sc6xX1quYqF2sFVfAAd84+xRNnuF
c7PPYy918d1W1Scb0p2P2fajVJT2NZ9UMtAqdEXpgVnP3V99aqSnL+DCpHAK0ULM8pI92kI+wxfg
9HX/5X8AWawnLAplbmRzdHJlYW0KZW5kb2JqCjM2OSAwIG9iago8PAovTGVuZ3RoMSAyMTM2Ci9M
ZW5ndGgyIDc1MTQKL0xlbmd0aDMgMAovTGVuZ3RoIDg2OTggICAgICAKL0ZpbHRlciAvRmxhdGVE
ZWNvZGUKPj4Kc3RyZWFtCnjajXVnPNxb17YSJUqU6HVI9Dp6r0H0HoQIxmCUGYzeS/QuOtGjRid6
J0qUEKITEr2E0UV4Jufcz5Fzv8+H9+fDuK61/utabe/NxKClyyVrCbMAK8KgLlxAbl4xgBzY2VzX
HApXh0FhXDowB3MogJeXj5uXlxeHiUneGWzuAoFBn5i7gMUAejauABWknU8UABQR4xMW4+cH8PHy
CiAdn6m7ws2tkT5AJMHLCwAK/v7BAQIBlhCQC8ACbA2B4vD8VlWGWsEAQIG/eUtXx/+1uYGd4Ugl
AOt/1NkASG1LGNTeE2AJtsLh0YC5QEBgAKs8zNHTGWJt4wJgBbH9lucHWHgC5CAucBfkBw6cAGUo
iBsga28P0PntBQfogOFgZzewJfd/R1R0tbfXMHdAxvzdA8DvJgB+d+H/8TN3gNh7/v94KruY20NA
slBrezCA928KAleEeIAttSAuIBuAi7Mr+G9aH2oJdraHQMFaMDjkd4cBXEBegf+y6dlAQHZQMBwO
EBL922QA/rtyDZizg7n9f8mDoZb/nTmy33/lzfPsiZGRrCHH/zHsvxwVoCCYJQRqDeATFAKYOzub
e+IgZ4hEggBvIACCTMgDAPZAVsDDDYW5ID8BOLq6+AKsYM44v0coJAjgkf1N/Y2EADxyd0gYwCN/
h0QAPE/ukCiAR+EfJMwL4FG8Q0AAj9Id4gPwPL1D/AAe5TuE1FO7Q0g99TuE1NO4Q0g9zX+QCFJP
6w4hFXTuEFJB9w4JAHj07hCyWv07hNQzuENIPcM7hNQz+geJIj3N/0H8SE9zB0fk1psj5/a/LJAP
WYw5HARBLoW9JfgfXoDvN+0CdobA7e4CIkNY3CGki4U5yA5ubw63+SMgshILZ3MQ2B5s5fIHLfgf
+u+z9E8Q4N+0HdjlX/6i/P/w//UBskTQP0gQmREIZo9c538SF/jNODjcFQ5EXg88f1TMi5S8KxS5
fzzgfykI/bY7uZrb37UOmQxyG+3NHf6Igqze6i7KbwRzdf7DjvzG+i4m0m79+24D/+mCTPWucQLI
Btl4OtqAoX94IDnIHxCZq+0fEDlfuz8gshd3OQshi7b/fZTv7MjO/VEAEOlwJ8WPVIK6Olj8vhSt
/8gAeaHywO5yRIaAQcF/mJF1Od6ZkSEdzZ3B0H+NUgD4H/bfgxRAFoPcRgjsbjQCyJ452rv+kTMQ
yTjdJYlsmJMrzAVsaXFXKPB34/5i/71wv+P/Rf9bFoh8Cnj+GAIQ+fWdoCCyQDjYAfLvnRL87QN2
+2MygsggcIjHXebIUfzXOQAi9e9kBZFNcLFxBv+xeMhmubjD/vgAGcP1bs+Rmq6/L2Y4COb8Z8eR
U3b7AyITdv/jlCGDevwBkaqef0DktLzuckZG8gI7/53Bv+9xLXMI1EXP0/GfV+X3xf4XBt5hdXPk
0fQAGAN4kc/n70P2198f/7/4P14HOTmYB8CbSxDAxccvhFxSIeQ1IuL7b0eQqzNyW1z+erCRb8z/
YisI8pUDgz3AIJy5LzCQ+CvbtMx0l2rynA8jT4zHfST4+cn5+L796jwRVaZtsuqND+9BX2T8NWBo
+NRsz/u9/zzriAX243iz1bhyPoCSZ0OXxL3Xra1DJofMiSPqOyWTO/ENPRvyLtscH0NQ5TLjKlXc
uj40OsDOxzN8TVfacreN9GiM2jEal+UnX+heS85DD3tcRD2KPklRjuyrECF2VEeAhB1RMdkszkKU
kO5Ewx9Viyz2NRXbgMgkKqGJyJSziQGnCxpV8ejDjz1bqk/mHi2NvVr1rQzS8yvdMYVzeRyK5SsI
ex964Ajr6HhDQWeFxGibRX3fL/lxcMrb74n4ESPKT4EMdidpi3Z2G5hLWnUhS02W2tqO8aYcCKby
jB9s+RTEKPfumXkaCHY/NhrC2e7MQT1hZx95/iJ16kwvri1eauwmp+1V4o8D/X0YIsO74R5fIc8x
ft1Y52pPZ/CXh4hBxUYEuTRK/cHLslji/d7MpTPHUwLbQ2drvkD9J2Sb/kcCqOomitosPaFKHVKB
uO3ZQ5eGeAyT20qZcfcEXVIFGmFqmOmmbqmEQWE2QNl3XzzQ2xKn6zEq21WZpleYjIkI6I56XyhM
qnyq+fohnMzgzZE7g5v6C85vKSzQMTpzuUXu/QvpmfcG5JhqZ04YtIml6dJBk7JlNHx6C58XdcMt
LNvzYrZ/xhmq72XwXQYVPaR1kmnzZO5yWbMSLSahDns3arlBxbTkx3wC+uUhkKKov3QhKDJOuyMJ
Ai177rYtyCV6Xmi+KEE32XpUDJvvuXFHhxm/cer6WA2yycJLddTW0MdbqOlInQE5Z3qMf1siY2Gu
O6YkQEE/CeROc9fTx7JS5ctre2D/WrxIY1cQJGpmmTy22LQDBZXv5Qgazue2FGidPIdmkugFzGmL
h+2RnOuTRHy9tINEEqqPVl6SYShPa98Xqzs9313aHS4of3s4KhI7IZVCZG2cq1CynYXCTLYfMXH8
A0P4w2bY8mXDZwS25wqpfpFicRLK592A/PuvvRSKBEw0tF1ixEx0pHNeXxdYxChKl8/qeiVFiQmT
tlRuoiucUtjqE7zzeDdpseFUFbfYzR+AG0QhMeGtkRf7viIVlnAjQaK007wz5haaXXO1lHa9z7IS
j3c6w1XoIIwBU43Clb0/yiX2pUf35GsHeJvMUs9MYhQvpkH5agDaQLlL0P74aSQ3Y8K479x8RbE8
d0oCYh39VjTCwYtdsM/nbJ2pjjGYgCu5UVZ8rVFowiG309R6KANniixFqbbHWprolqM5dBlSGoQq
mt8wSbq7pn8vLMWhzjM1BftrVeaXJSi6R/xUPe+S8EvBrZMu9vequoO3vIbCYHEqzKB5nKd+CQSJ
djTO2Im0uJzZRGlou9HZ9ekdkvkVaHJX3snLdlseweJqSyajUUeV1I4K+MXkVp+sl1jgjNGL9Avr
GrgjfAL+HLgZvvSRxTY7H4Iop/GVCwcXbRX8Zy186NxTadaDBb7T4lXLn3Opp8AB5BY5/Z78wQwP
RMSzKqw0p5Uep53JEOjE2g/4l9GHzZ35tPCSypbJPBCysD0Ej0+cQ/qoB3gxB7LXbTl4ax83Ri+f
GnBlx8rrC15mCpHbRhKlCDiY5JDHSStp0ZXyYPX5a5qXGUjuhzg8m5pXedHEoJRxgC85ennQnBak
PmzItZWOTdJh/pwMU5dT60xfv3Wd+oe18iFBt9hsZ295V3ForODU08e/PgRVH5heEYkr3z4hOac2
/NZAnBqFGMrkd4p8pGgin/GgEJqVHfOx6eCnv7/goaJLQzaiZg0cL33ffw+X+VNhz2LslLhZULnj
xBsb7WaiL+Sk3rRB5PJJwU7vAYkJlF9K8CeE53ltjhmSNxp/SN1jmXtV4qwVymN1ejQTuXdBnclR
rgK0VRrP77TetNMsrk+aP2R1qiLrKHnyZo/Sh5T7YDIzDTxX1Li92uE9U2htwF0R+gsXkhzqIxNA
iVo5ktm7E9a08wIluYDiF29RRtjW7Gqxa23PYpkh782p5YfTUTiYzciVdC1xptahnlHDhBSB5Z6H
7n0YqHNAzsbMr3bhz6LyGFrrBnopO1tC41kOUBIg9Gg8uvrJEuNBu3bcfJR/ubg/B32DN0z+fg/P
CI4H9q5azZfpDPScXEZ4bXA/ZkgKiFHJ+5mdyN5jYRPB9uXoMzP9QsTWYGHPWomgVX86t5i86bnL
L0l0BuMxi4WGoU1ewXW8+V8VlioyDauvqBoMikJVlBRE7SyY+AxZbrRpKNPEubPrdj8WmWz0o4QV
sxo80prFRHGV6fZ0j9Ls7ej6Um3SziWqf7uinlRtswHSYuoTw3qnjYhMaUYgvlB37n65sWj0VFLP
pwOBQWQ2uBHxopjehKHTc7rPcqqqS5lqXuRlncOkM79i65amku12iyzNEAxVflV8SI+4bKc2Ib94
xPTdjO3Lbo7bxKMyg2n8OErL6e7hxiDTfCjriA0BUdaDvPWbNys+rUpy5jKcHR8fJBX5zTI3XnUl
+ml1fV0lYEkqrE3IvGKTMNTqkpW7wa9IfvJ8LWT0apljQfmkGG1VLeDwkVbOL3lRcSAffFxrClWR
kOrYRrLLHtKfW3P9o5+aZfCg2kDcT0pgioYRp+hpXwaWeig5idJGGf14bVTFZ3T1KOOMFCjTXAU+
W68iyXDYkzmM8VPKI7s1glG7jNEDnTbvzZEDh/QoAsOKD2YT7DQt38SotblwZu7Fd1MnBFJqT2fd
r7jYmx3RDgSFs35Y5Epxmalye5Zky4olEyK4Dbu5snwts3vQgyXBp8oHLj2yAdgMthUo0eWmvvtK
k1OUHlH9i+qdv9oTZ8mSjLPgx4yN4wUbL81h+c91Kldw1R1RK56+QXX5UuNjtivG6BSnwZyQUj7l
5+N23vWJnUEmazwpaBXR3xrc17J1O1TcF/XuGTz0yCeR40Y89Za2lKjqWSD74SpwmYSDiTrzp4Or
3Ms4s6fEW2zPeYhomtdWmpXKbRg5xe7v4lIJTCSlGPaI6XIXhLTNR6Ri7UvaGamWDegBwmL0s5cw
nFW8xWMTckqeKeKqzb/6ZckN1LrApNc3Jqtf0V1LeMWv2JQ6wepNVxI7iVat8ZpSJyi4mZFCXNIA
2irWXVDFl0q77mHGKXdO8aLvXbq6Ltem3XTYwSmhLBfelgiL34/FAtwbopCw5h+UFoiGT/OXDui3
NxrE3hx8E6vnJTu3yrsPCPejey6IUUyHnM19j3YWzE6pSL+zvNcKn/Sdw9bTib5OEljJuWkdE6LT
CAurXT+ieluxpzcPIGgwCZ6ejlMib1B6Uv1JsdeIeZjroXGFpbwBPMmTJpF6jaNHXntEomaqctiB
i+0lsOZKIo/4PiYfcBhKvTL9eR9Xvo6eLhLswdxQhx2uhVVS+3Kd0duHMoPXIfsTaaSzxAPTpQ58
GIZCcjOMYxrEKCJJkrgh932CTJHF3dHrMep3AwFIJHMwh4ojjKzzTefPCdxc/3rM3W4WxsJYCNA8
gqRK1J0ljtPGPyqFwggoVfUgwyn01QkHWsr+SKC6jWtIFBpltBaiMJYQmHAJrLoqqWNbSM/kz5uk
uip+zaCiHKnp/1xumMw36VzB37f46MBGgSsMmmMmajFNMFO79d1jmlwbiEOsLfMcVTHD3IH/NEgk
z1+eNobsdt4dJvZGkKLGNtCkXm62IHAtS5hnhCLB1GCXlIpRtdQcr7/m4cTbJ8+ogH79B8+mUOmN
4fWDZkkqebVvGn7KnszN9sy/o300J3gQDJA/EFQo957nnMIt4EKNiFmWF830MqBinyGJkSOWUM4L
TvuM9jkqE4+Y/9NIYeeps5sQJBlsjLk7tpvzgI3BUKhG9rZ0yyX6qM70hzN92bF7l98LEiX70RnN
+uvWQnBfDTRZeqYJQcKOcn+Bo7BZNWUXS8U97Wbi3BulRSMuO4ulShyhr1KCxl27cDA1dELIJ8XG
VamgJz1x6LAfk9meCr53T1w+3uNkUf/wKCkYO1Z4H3LLELWXXWkyNTHiNbl7/poeu81GQqCKm8xq
VuNUpRhFWCyPl5EKuv5zJKYt55HBIxWyYbXdT1y7qBt0/BEYbC9eNRJ+b87gclNIrHwwyCdTNRc5
MjoipFL0ym4p0eX+UIJiNctZ1UbE8+DOOdH0HuWoED/2ZN59xk/GOhd98bnXpm+KGPezB0WsPYgn
rks4RiRVPRgjmTL2pprZPBM8HssHgmmrYPpYmBX3hnzNy9q5u09Ia6T7STeYrsoe8Vp+/t4sXUiB
4MVWXdFv5Flvgm+XhGfq7uxvf2gn4J0UGuSKusa1Jqt/9E0oSgxSdG/vqOwBo95pTIFFUqnLzDQW
y3v+Y3+erOt7Ng2zGTurrP6WS2yA2PUfrYvlBfygIEb7gl9l4kmC2q/2XkvNeWOJMuyOeBE/i2L9
kWTBkDL1VGpZs3ImM/o9qbVjXftbuHVn75tAL/tcICdOfnL4SLpiqKyZV9jApvpbSpHRXkcfzcPS
/ucHVrdCIe9cXopUVBhHxKFRPsfB+Ij29MKgjuLdvmLVQLlZrmFPOFGBkPTGKlxqkn/l2j6p3k8T
W0YJzbtkxlsX7Z38+/S5nmW/aXfMxRcV4TGkb4/vG4e212oXUWfE0sgeytSwkkvyYSUeTJAoZ2cj
lM7xhIdWaRrpgjWjrkwpwqKbdojHVuMo1XlZ7HCMo83GiZvUUZRZe1FeVvpOL6Nac89GoUKWVx+1
OE1/85UgMaRlw7styIQ0Wu1mz3cucAWMBunXa5qjCAtUHg0atbzRzgzJ4jXniWdeE3/TI8f4S9H0
lOS1/vc54k/Cb7GbmLoXhT+T7T88SAxctFadlMS/ES2luSF0tepPo5STUiptocW0NDcw64+y/im2
Vadlw7CXyREN7HJn1b33aZjF0jeDVXunMAMRpXKY5JYcWxq31HwvYgmEMo3Q+1KA0Uv4LZxIoCZC
A92hq6Tt5unX59lG3U91jpxVXS+dcGhS7r+J9ZcS6oKoqbxU79CE7haNVrCNPWTFTCQl56tb+xwJ
FVWrrjPKfO0/lUqOmH0YL7I5QOC7oYoXLmYbwazCJNde5K0lsJlukueiSm7x6ZQIVdgOrKcOI1/R
1AqsVhm3ePvjoE8pT/8pxdg51tWqqoCSvOTcYgOZZuEbNHqJAnHUt9PLImzPPiXV+TbYRD+Fl+8p
jBDEt4h/1rzlzkc0Scf/dG96WdhiwP44HltdwF36qjWE3u0hBnaO/uAG0zPtE6CDOrE1ioPWDaXJ
J8AChorl0reeG7/iwWdGZIi6LiBetT/RV/vOKk2a2zLmgjN5oYJBma8RDHDJn+kyqimV37dWiHHt
pWRYLpt433kHT+O6IdwIL4MasEXJPFpDoQ2WaL3adtsU4h2mEcI0Iy00faNMXRr0syJ8jlPEgzPx
UoHYAtNWBjh7KUV1rqlvfZIHIBekyfa85SSSln4TN/s4VvgPO6coQnCY3x7mKVbb8NZY1H7IyY0J
NKkx/IKnxaynLce1t+zqFpwXTWekXDEWoF1x1feJzkOqA4UNkYYCxHvZBoMzULo4QzGYT/g1PNk7
gzBLRLnsJPQu6KEB5ZyOS1XOoE6bKZqj/u5g1vBfwB7wIpXDzwPXeP+9aqekPe4u4fb084pnns9v
jKXXpfmv5c8CH/w6vxyLJamP+2J/Y/XpYJS1zxrFoie9pkoZqgP68OCllEKQ9fTx0kDF1WHr6uZr
X4+uZbcFldd2Sqi+BLMgfQ5gyU6y95D0PIFjUuFZ/YREenf5QJGxLmIs+EAnzH8c04AqNzkt6zV+
2VkD4sAhe0xzfQlG7fjFss96YkbgFhDLf5jNOHFTeExJznp978raJLOUom7dUHkLAOSUZaB78fZR
7EGfdCVNMmJ40Yt74hcxIpU83HqDLgc3HF0Y9wMTXo7heIvi0Agc45p9ZdVVx9zhNl1dfwPKFJHZ
gLgVV2PK9fKl4kaDFeuMljYTVTzemBZ/i0WkE4RecFYcd1Z0GfEDVelkaJrtdcDzdXcUi8A0zHpJ
vtITvajDT4PuDt07P9Sd8R5PR4rrsxNBQLSTj8V/RrUQNAVaUb4Deyyr8Xfj/IBlv5iTUCQXA889
eW6nHsL5+gTflyLDL1UOgm68yyNjTIglh8cWo8FSzeowk2Efl//SC5QeaEVj1F4Z+xAuRHfVSXl9
SisAOuYYuVAMZIGG2EVIfnsVgcvt27bynLjX9IO+yWJIL8lBi6OZj62i0VwbV65tnqfslpgYXNPq
uP9g/b6In0dQ6y2lrdOntFshByse7pG2KepPLT3ds3HRVEl7Nej2fvSpB3007V/7+2EBQ94dvSmC
bBbGiIO1vPMvSvoiq96lfi0uIeT1423HuSNX85zNLJIRUv4N3ZKL0k+2rd/FJhO0aPKUCgeRLnZ9
2OYC9A46texR7HfFx+us/Po19N5iOXuKMvfNsFTpC4Pr7TOceflYoeEnvQFqbJgqvXzii5KzudzF
BXgxnPEovKa+HWWB796qSVJtU01ofiufKGpIlHDmEpvPdGy2Gye05cXSgrl2ZVaOn+AdyKfG26pe
yBk5aOlK9sPXokKXEvOT3qin03iirilCGnFDnUvUZzEeq7jRlnLlWe5J9A684N8x8U42q9dTIUtU
DoKfzQqf0ud99waTv3drczeWVZeVmqfAJvrIhHNsmEo9cs8Sd5e6RWCXO8+WFMusJjFzIUH962lX
CbpRZHG1uoTwq1GpwxX4dkLmmIC+rFEb/S2Gq357h02SLoGI9v65ZmadCF5YrSIOdaTOVO+Pzx/p
10o6yYh8BweL6ziSX4m/PT7ncgXxfhRFTxmNNsRyjHvSTz0maOKRYt1JgBARvzHlfHD2ITigZNat
ceySolBEJE7vepIhoL0m+jMtaTs87FK6ayvA5MsZ4YdB3YnHDXJe8/nj0hM/YaOJEiv1lKgeWs/K
AHDb1jMpSWv3q7afGfzCb8pDcYtIvur+6qePMcqvu2isIzY7DLJdbnpJzZ3FXl6GD3auLzIo3Xxm
yGtWQRdZZq063DO73Xi+kW8XRh4GGs0aKNisxUnLw/xoh43hndc9V+tPNQe3EUGPT2dA5IPGNkZa
JpsEd+bF/MucYO0UXPApjUGxpKOnF9hi1tCl7xTvJ79Ci7AUeHucCCfv14cYqsC+uH8eD3yuK77S
5JQvLr6rdZ/z0vUQtyzxoPxhfuJA2P0OrpfrEc+9ir9LPSysxVmZIH6vjGMK+dhse9xJMT6zV9dS
PudL6yytIGknL/d9bEzowWBmuzdD1c39Mut1g+yw+kzVSn6nbu73XX4rpjCl83ODN6BhG/rbhtcy
3xxhqMWeHVisdh/ivKyM1NI0CKq15sbdD6vqwpK1xoD1nSa9COdT7jmtlb2n/t8KvzrXLgnbKNgN
mCx+5KYfNKWE25/EVTjoOXuVL2Sjjq77txnvFh+LGEQ9iSDvrfNK+vGV36Wx+JGB5gPMTk18+mce
T79dyWu9kOh6npmeEKnVM9PZnLFRXeljaS4ngK5w34mCz5TsvXO9uqnIB923ufS1Lgyh3H0rZikB
Tq14ETK5Tp88N4j1mfHEUBKjPjeGywE+oHsxpvg+942btJ9ReIJeqNeRyMLnmxcToeqmXxw4kWei
QIgiGEEXXjx/EBJhv3qgEkT6DJ+zjdGJInbwwO0MsVYR89Jo07zUPtGnxGdvVUkaLepps2ungJpe
r5e8mTmD037StP+Cq1iWqtCjxLzwLdFawbil3oto8AMmPdSXPdgLQxDnnCOxUvFTitF172ADEkb/
R72KDLkKYl9mQlMLxbIU2d32g6saujL89VJl5pgFIzy324dS1jSU6lqSnuIPMOGFxRVWVVyoHbM5
sghUl04qpjzo9hK48iFXdUKL3Wh7w24yvYkRfq9LqbzlUbmkXzanj1tEbWQrffQTyQCC1OM0UWH7
7QNShVdfGFfTEn41Rx+sKja5h+A/k6ew+kRszbj14kkPnXWyw4+ftpEG9XKfvgprMFircuc8xp+D
hRaFT19F1mabH2hPyJfiubDMtSPSuDqEs+/bHL7itpuRx8+MKrbzELsqvFfQjU8L8/fAxCOWnLGn
DbVs3P/MhS5CSFf9OpEGLE5B1By6jSJxru5EuMOy3zJkEaNU9O7bOc+ovqHPbcJLfd86Eyabl6jb
Pz6fB/tt+hFFfUd8a25MpGBoqpsazGCSRlTWgw7aiu9fEDqqXU6yC6xtnkCOuixXL0pdlzcqycsz
cqJLRhikHuuPKGG8dWq38aQ4M/+OQ1rIiT/VDz/hRXvOpaYY9jl81EnGu8LFvjW7zB2B9qwwg2tK
IeM2XuMdXaVjK8rW5xwu7p0AvIVZn/hWbx1nZb0jynw9fRu/t0JMWf3x5tuSrbq6BgiHsqH3O2mH
F2TfsJ0z8bNEdje9/czESecuEpaYvyowXZsfqqRFN1ULunWwFYwPyTGrFQTNVskGzM8R+QfvSmXp
F45qpq6VW23bzr1MV0O5CRBGbCSx677XmP042gBv1Io1AFJ8l/D4Gpq8LOyiZGskEo3xo7NyJFPM
1rGasc3gJ99YpQ3bt+SPH6liDw9b63ptV36CGlQhtbQ334IVfRRa39PJFitVmjo2pZLHLDgvJr7u
+yEeRnPNXHIzPJZnmCxYQXfLvtRc+00oZtWFXf9kTsLzh27A1P2kgc35wsE+vPeXWa0M3GUrSZtP
DHh00Cq2GwfXMMoPD7hdBjIca74/s2eTP3JnE0GjrQ/2bTxYZfD3pEDt5jCcafr4/RPDtYbh+CDR
piEXQhQDFpvVEAOdMc3R0FhBaa0D8g7j2X1dUtPPDXibzpbmXsbMCeRxC7ftKnoRbnUF5DneTyWq
UqrqaeHwuLWXMdt3jQVAX+HCA0M50MPfMfI7KrKw2mjPfMAcGTM8J5LyhjjwwZOX3owSJObYRhy+
OtsSaRni5h6QpKJkfl+I6SultJ/FMUw0ERDBlc1h5cgLXu4Lufne6/KiM593a6+trZtPVbi33IBV
D0xQjik8R6+u2KtJqle4NnYAXDan5iUkmQiTIme5cRo8yMC3eAymjYqSqdskEgNsDISzU+JF5UeZ
5UU3hI+dmBIPqV6yb2McwskpDWkYCaPaGmgaqVIdLvZzF2RQZAgfRn/Tsqt/7YhjOFlzJsD1SxU7
JwHEnv61MDIm5W3u1vGX9WoIP0JtNHRZnslrzlboyiLxw3L9cqpyApZwMcK2Ke0Cn8urgcpBM6Zr
jbif5nMu3uuCigEJ4I15nfugqM/VT0dfPBsswwi5njwXBLq07OVHZRb23h03SR2zCa5FubQj6Idp
OzTp3eOSpGq58Xw23gfVg1tsJYK72xNEkv1usd2VUYskfScfTXyU1xkQwWM5DAS6eHb4k6W49RWd
Uu6M2H1FRFScqkbygSFqFFuePd810PoBqk6EDkKdNSC1us3LGQZ4y/u3M6yMDQpNum3Tr2/gz1eM
aORKar40JXyWpCr2F6jte238Bf7kgLihMc7K6dQSsudXtEAlWhaygJp1rBxS9IgHhQAi8ey0LI9I
67GRckIOfgIzfGsuYDE6fBqrvj+QP6y7EU35RbPVyHwFV3X76QtD+9BxM5FLexWHktpCYR9cY/QE
KUoMnWOnFn5oyRA1MF/zinaxOWdaQFWEgLQjJvom3314deiB+yFCElsx7rbMbul6GUs49IQJb1M6
/QX1zFrye//xi4UbyVdOqrNo5Nj71GhrCSQnTainBf0Lwf1Uz/Q2kx4GCr3an1fEV6yKHGDVaAYu
EFHpt3RLDWVcsuUstSRhF19TKU8qXwx4U/nOhUdfxO/X+8gxGkBepoKdA4gSntQlOPa50b0Bxb4q
5ISjJYgVfsS89n6uhDY1s5N/QVW8HM7JzZ7lV8bnj2cnoxJSQ9VdQ5Q/mTQwMmyRPTyf27NVTy6w
clFm1RGAOlxgV8mn5bxrlPUu5WNBh2wv9z3CVe+vxKmqqs3fuarpemfV5a7fcIrwHL2DHIFOVXdH
Y95pXxgN38vGCplS3sDY8XIXjzzMWhYlcxnJ2tdNKz5CV7UESS3Kbma3+sl4urtfd3Ow5HCsp/hu
DKY7epsbX051xI09PQLdywt/RR3dylnqkVXxeB7zWOwEk7rifqtNUOTwh5H/AcgAVZIKZW5kc3Ry
ZWFtCmVuZG9iagozNzEgMCBvYmoKPDwKL0xlbmd0aDEgNzI3Ci9MZW5ndGgyIDI1NjIzCi9MZW5n
dGgzIDAKL0xlbmd0aCAyNjE3NSAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp4
2my4Y3Rm3bYtHNuoOHli27ZtO09sp2KrYjupmBXbtm1bFTvfu/c++9x2b/va+jM02+ijz/5jrkFO
LOFg76rm5QhkpmdmYOIBqEqIaDEzcbMDmBhY4cjJRZ2Bxq5WDvZixq5AHoAm0AygCnQEMLMAWJiY
mOHIAaIOjl7OVhaWrgAqU+p/BwEatsZmVnZWzgANB1sHdytTSwCfu7u7kLuLG4OzmwDDP4dUgUCA
qyUQYG5lCwSIKippSytIAqgkFdQBkkB7oLOxLUDJzcTWyhQgZ2UKtHcBUgPMHZwBtv9xAKYO9mZW
/8LkwvBvAPbuQGfXf4CZOzvYAeTF1YQlFBXUAOKijGqiAGN7M4Cc1D/H7V1deP6pBpqaeP5rOjqA
6/9atsb/a5n8r/W/WWfP/1gMcMzMADMrU1eACdDCyh6O8V+8SdubOwA4/hM2c3P8b+ofQC7/4ANQ
/cMhNcAMaP5PtZutrYKxHRBAJepg5+jmCnQGyDuYAZ3tASIOtmYAcU9XoL0Z0Oy/1cZ2VrZe/7/1
/1Mh7Wr8Dx/C9hb/MMj0n5CVi4SVJ9BMycr1H8rNjW3/oerfcU3gf+7nX43+c/qfVoB/7tXMwd7W
638a/jPMv9sxiohKq0iK0v6vDP6dFrc3dTCzsrcAqLr+w6ixs9n/Bv6dVjK2+o+G/gvlv5oCMP8f
X97Y1dnKE6DLxPAvkTD96/uvpf9/qkREHDy96VlYOAH0rMwcAGZOFlYANyuT7/8F19TN2Rlo7/pv
2v+Z5b/+v+UEBHoCTeHWlh1MeUOs05rDyv3EC2crIGlnp43UaZeZQVemum90Ua0GLc0MD69w79Rw
8z0QCGYCTfh3L3ek75pIjOOACMcTk7+II/SXcV+KSSss/Gq23pQLXusiDK4hNHDsTBUgbiL/umas
rwUp0UyyZeWe18g4lfKjSjL/Mipr74NE2Y5fXXiwl6TWp0TL1PlCAO7TVqPMWob+vjYRfNlbAwvP
D95FuCHHMbT8XR7oeBiuk7//YNz+43yDJYTWDmTEIYpVu70te6pEoFIc9DtiR253bTMPGk8lnIKd
OHVuNfISGRLt/G/JFYBIN26+DbFcy1AXAHEZqH0hYga5Yh1agTQ3n5I6/b2k30T72Mti0CjgmUNM
tW1+lJfpEzJzm2ElZFdMPerHhuIsWMXs/wM9Ysiwa5A3FIwpPXMtobpcF39rcM3zhCT6QoH1l8Bg
IFQjpeLa98gM+A1pTKBRMeZ5Ui9s2d1CLX4rBJFBqwNBmu7D1fZqy/wonrky2QSmSQsqxpuYWLat
/GZB/Y6ME1zyY4LQph6iFteDXXUrhw/CBOsxYivWGUeerpEkx8t3aA9DvjfHs7LgYwwNJgKygHSs
I+mDGYB6xWYhtRD5rkyBvFcvfqzgkc8e6rZRvBpvnQmqizPBdG5JaUKZMWx1le0cV/NheHPyVbLJ
SD8trEOC+96jnutyPkn0iHZ0SmEWB2S5QlchRXfXi3wJEvkXvFSzB1Mbm4CzCOMo+SwTDdg392DB
eckiNOVJFzkPeDHsUoxkvuhi9yQCqAONdZO/GFJAx29NDJYpQGgicoR/BsFEmHGyGmi4jVamyPCS
+VMEkyyXVgPrHFRYLRQS0rjs+fSn8+5pYcQVnJZjkNbEW2mOgRfIN+H8xJV1PGLUzdKXdX5c+rhI
LJF9z9uVp10HQyJufN6bUlkcqy43KPz8fMNjQuUIrAQDFhS+kAFRmFG0EOndBGc31tzCi+MJow9r
XkbJ8yAYMZRK4gMMXvDoxpUeegevM+MDE52tYfIRdrUVV3ABaYcEwGy2JcSza89JuzDulzsmAWwj
zV/tBeoszm6gC66iZBQV6rhXmKgDzTNF2H377UWoy0eANM7u5QWcr+6GNRojlt3JyDqhMF+51QAs
1pFXRCSFGG6TLLlFliJEI+WL+pp+pPJYf9Ppk2TT3Oi19OaXIMhQBw8bgKDSrYU2uAXMmF+jTQEy
Bh8nZWSHh8pRWzqvYcaZpRzmhVahdOT3JvBbfiRPZ/m7ALEm4cNPzc7zPNqvndfZU1pzwb/SQjgX
gMZBZxDY47nuM1esJ6ITSGDo3DkcGkdkiZEecipBD3hCSrSPilxuMcmcYIH1l6ZAC2VpmzZT+UiX
m491/5TyYaoMRolFHmEvL7davWyv4NGrVMagyHI6jAUrcHf252fdQm/77GtudjWtbw3dRlyyM9S2
rafUx0MAgq9MKv5cXQw3XkA/KVS8KTa+/wmovLZTTpihXF0M2r5vB2mxFvPyd7sZk73Jz6B+ludm
/iT1rwrIUHZ9DFO6Wr4lStFTq82vu4ZUxWbrKWtmLA+tjFfIf6ieEmPr7i+rWN/3Pj7rZ94XGqlm
ysJsqej8wRqepu5NZioZ1nOVVahqtKXXRzLCJbE4qUX1TLRifJTUU4PXcpdro0B52zSpmtMEa2Yp
udFvSXm3A5s95ZVNAUTrG8MqZEacbn3Fb+PrwSa6GZvXgEIlefUJC1G6QQSvF+RCx/4Yw9TCcXPr
eXo35qcTLHfksFFWzXJVyt1X4BXIGl4WEtXnnUJgMCDvJoR6CtGNAEJbCvJq6OFQuvUxUtZ/nbYy
7ohsGzWDGFbA5oX89DB8lDmSmzzIOf7j6ZZGWxoij5xe5Ix3e5uSu4t/4zjBHjfUVGHOW6SVp2bE
u99Brk9T4iQDNKJNmaEtjZFlh4ilzNa0P7kUSBtJNCTreFv0n9+874LDhggtSsmAy8l2tN40F9C6
lEpSjLYkViIA+0hs7UE/B6TtWssyCP/oP1vZzHZyY9RxQFd/VmXq67lg7RtSzQyCGxkKsotAZzGl
BuEX+jwOVWK4suPXlKEtvFBv2VvoJmzrvUIUcKj+rQsG0yldFOqAzpL3O2MruQENpUiQDD7gJxQ3
+wrWxZSY6P6mOGUTW4cVGe/E/m1TOsz2u+E3HWMnSfi8WgBDZ+KUeDZ4OH2jFVHNTxlxjGgfI3k6
BoSBJB4iPe6eocnGX4I7nOyIyr2MtftJl86kzF2NZWCfcRYmRn86/chRIsHaeOd/vEzCJASLf3FJ
aqgcFHI/xemfKkWQg6v+emGoiNzTdOiiO05tfT4cuk+Hbip9D+k+3/xdo4iLN92G8xClFKwW3TSn
sdU6P45opZ7F19Wr+dyvjF37M0PMw5ftZ7TxJKoydr582Je36irNyKcnXY+Z0NDPwrMwjczv9860
rrqKwwzSPlcYFhq9JYEB0T68+VRDbW1/ujN/thUU1s7wZZe0rK+430dsQZp/ZjybqqEACEiQwKSa
psWjt8VIlV0RAskFereHe+58xjFZHXQlsJG3mdrCFY3k19ZU9+zlHTZynIJhnT8LtPToX/aJTh64
Ht1KRcqikW/dcZI4s364Y0SznN6jgwr2fUc5+xpWv154RNhAcgd9pbA6ijJIgmSEgkY8+DlDb/HC
fyndWps9qxGDFQpfahhFBFgeBMZexzkH+6wF3bCcj7HDLInlO/ZRy6OgWLf9EDsOAibtnprognKv
+4zar8e4lQe1jml5JMbQoT4BgWs1sTCk9KKqYHoffrB5YpyWIjWhjKRM+GLotmLN2Qiw+ZLLgQmu
aiuDBZn+y1P+a0V00exuX3qsRvn9NK0xhkouQM8JySVI8FekSW9+ytr2R5+BD7CE4Vb9o17WUTx/
mlBNB0ZbC49wDxMdzZo24mwQB85oJxrdQ4lrkGgwTDjZqjUBcHcLF4XUbTuow9ZqA2vv03ButEHo
bRs4+ncFw0uVx89Jld1KdHGn/sw6MOYnIM32BKCXvZuiQJL2QaTLzc1fBsenWFgfn0rANAsQg+Lz
a1NzyqVOTwUkIFX23QhZa1Dg4mlb4/RMwm8ny9mQSpO1vCewsjX7VGQXYYHVkdW/mYan7xwVM8Qe
UveD5WiGK93fq2YtycRbrAnRCAlFPjh9D87/NajZ39u1UPWr2XeV3Lo9t0kOmfnc+wWfeO1aQDoR
IfoSNndbflqIw9JW1xgllSamS9Jxv+LSEDcIbzUK1phCOLyWThUkhR48oo2rdyoNBT/Yq5zKAE3f
NGLWufMHYrRO1Gt2fIm1naw/9YfF77SpOb8vemcoORKSe6x4JYed5UQW0bM1mSYjzFhY8PQFuCye
9wcrKqxtptC6mP5Rr/TUeMHMuc6EcQuBqQkvHQVeUtl0HeCxytCtY2v6wwdX8YpQYCeybqW9RgIP
oRXSimSdUYRmcvy0F4n85vAY3zf9eTu1wCXzX99gNs9hpYMjGfxtIDErNQ2Vnr9W3MCkxdUrbcty
7XDbnReYiQof7FZ+SCbYWUR24UpDUzuJnl+HRKeB+/mZgLj1ZoN0siaJFC5tba+ITTfhlxckTzSD
alYC6lLMUWOYOALHiGxSn2w3rfstzwv3c8OTGOo4yjwCnqzU+ZoUi+af11p5mLPP9R3u1VRhAioh
p/n4e4MsnUgBW1Eo+SrcAzN0VKqxXysHG0PCYyRmlvl8bBLw8sVpSgXCKJxY0zfd8+QQAZwHfc0L
60SYERbocZWz7OAIvoyPf47+wJrlS+TVn8s/EOERLDFS3XWaeEQeWrF7KTehNpHgL67zQfNIe9Vj
iPNE6Rhi9HPdCG2yKfYP65pyQRotOVfBS6I19CRSeX9HNw02sUPHFIDz2jSF94mBF6/hfCS5sTLv
6wN/NAbT9/QehJGgJXTIkG5/3/adXIFEz/DvpY7LMNYGaCVes00zr8RA+t2JCzwX7WaaUdoPvI5m
L9a/THKZQPHBrwj8Ogn8lYegMdZ9YVJqBdJaDzeY2ZQE9ceTiSayKNi0md57Dsu/BfpWfQAcUNf8
R7OmALwNfXfHRRMXpcdE0IA6dHfWQxxxX5MCsfYCVEGitZ4NLIn1CuxVNzOGCnMmCZuqMbY5woXt
UJ0IizvoQ+PgAaGL0zshpeQ6ikPXoCox1GCbcjjCGsZE+jsY0wnVZ8qLop0lUBt3E1nxiJgM+91V
6/UFrMmnaK+kqOP13CDa22iTXEjCihIjtVpgjKrE+b4WRJTfIx7qwhRvKoNi+kwdvKCSuWy/Qy9C
v+oyIhXYszQDq98HD4wmYBjF3joP7qOpnmtuHl6WoO668uWTvDo9J7ulyNmW9/7J8qT3tWd6gIGV
/soNNi8/6QeuzFeG4r7Pl/n3mFQb3AXj4wTdjK/kvSdZaN6UENnpBjysRLQNNBYkCG/ZmsOzMTE2
wP0tgpfWUw2Bt9QVjPkmPy674+gQ1WlgyqIrsEp3EW7D+oKTPtEyaWswNE4YicyEufaXjokB7o2q
N/gKn24Ro1IfWqtalI/4Fw6etwbdYVV+JU6Z1ZPIVlSEnUgCYj6V0Lrv/oQJQRkIicM7wgSSsM/n
XhGJU2hmrQllyu7oeBpELKBetcdfoVjZBFZPNPtnKzqIsPwc5KkQzdvP7I8TDNv7+1az1I+BlKjI
byeI7TPufuxYoWR5KmWxMGQpfrpxTFqC13hRL89tLEpozOP10ZGRx5ZZmetfLVrmAoJRVGhVBtSb
cENFEagvd2gp3uOZbSqxQQlbixYdHAegJxlmTAi/FETrRMTOYc3COo2HPpRUTKoqNH/lO2D/Hsc/
E4Ndu9II1eH/GKVvxzptL+35qrMbHqNO35whhn+cm0Qu6ax4520F64SeMFCtBXSbtDNur8FE4EBh
0FoXyzX4Q/EdnPU2EswL5/e7dBI0CMma560ZgqtmE/QUI4AOuKS+lgQSoiK4CA6GVUfHglBCRX+I
PrdJeio4skEjkUSjpAB9OJVqsNHyv8qeMKiBRHyLE6npoBYVOXkt97psRWNGkDzLk2eKfaXxufE5
JgbRS0kggwoPsvu+PKJ6qnA74FlCJOg7WS3nbf5vrA5CtmP4EOGoNxBIG3+vKKMazsbDJztt30lC
GI+FQs4IM9Gk2sodeAWHxJD5l35L/u3kbAYTbVAPwfXV3COrIM2Unzf24cSdV2W42bOzMcaWhp9K
feQ0ubrPyIe70Yjp3yPVdl/RiXgGSTqUHrIxcm39TRlBB3jJIJ8ZWtWhav7RdlVQ/vmDDKyGXbQ8
hKIQfiH8SBFv59W+VWhJr5hTbtgR5ImvuPNgpYnXPalmHindi8n6yq4fKcxDCQ89dBJU1ETDFmYF
RB6p7JBM2+FV8qmFKY3JVEowN3xCV6fwGb2+SLkqzZLyCMs+Ar07XdEWnb22s/cvKC7gUJ3uA4+J
PM6QuZ0g4NJ1jQHLyJ+Jd2aJG+UzNNpMT8enrj/hkJl+hWtX6Bb6l6tHUg/r1a9kFr6ev86DVHjp
t2/MbFpHiNA/VuGsGmK5eeavJ5qJja46oJOr4achrpIyJ5dwqP2dLrJLB53Gqcl/PVdbeeOq1XR3
tY4o5eDE+mMaAksTpGIK9t95wBVGFhYtygIMljQEpRORM6F5DEQTGzVtVtUkmUWajjSzrjj6jr7C
I3ZUhhX0Bpj6qqXk63cKxp6je+0etr8ANMy/2Wd6f+qBi8u98vef6n7iaPiVjmQ7muv2U3hbu+EZ
gGe4lRxglPx1v8yRD0JBcQjHmqXB/OZ0Oftm5iusQ3kqiTcL50As4y/vzEeqwpGOKJ6Tjt7xVzie
t4n7+XNFzhfjwPxH1ylGrCqs11C2A4KblPI6bpmVKNolwTTM46YFiNokBLfr8yM+nhUZc2G038WO
EHuhj5poKbHwuToeqgPqOmcmuA5rzUfTgyWJQCQyJFNJT4NCxenMI6Kio8hYBQhBxqssUOUB+3zJ
dEmwCAIPPgfhG4n+WGnb5p0L1IdBS7ngR6Ikr6nyn+BRlGsWUvC7O+777LIkVzHY3SQ55d/QWYTX
7raGThEwAjcdCWR0t8Lvj7phdJ8x+w9kYsAtGITyXlnRFF3R8Pfsxhpf1A0OmUX6tYiHOIyjnkDL
HkqhzzzfCsxt816B21VojvYRGBTusEfkcaoeJ7zZeWyy+k9iRFODkBjmABesKVYN5Il2u1vWmWmP
qcZ3PxRfu+2l2PDyzfZZI/06K0CbKGdrFX33SPf4QGKAeZe2dI0Llzw1WmP3gfrNlX/IBu8ETa/4
hjsAT2re/M2v2slE5406kSDmZzi3tudf3AGYZq6iMfbRuVmaF0JCETGxDktZkHe1zMQg1J5KeIZB
2aHPRn7/E7ZybUfcYFC25AG4REZfkIAPGm5D1g5G14VkDNxIfVmywhDDJ41r4s+UnxaRSE5VTYFS
G4VctZm3ymVrqUKFIOow3O+mGkHe3W+N2PEPNtbrdRTCdxWBO4Q/l+SCPJI9OBJHqxCXJBi9bFLM
IYytA2hw9NPxzsa+AHyqXyNtoGlE1Hwv76juBCiOX2VedAXi8g53DbogzH+2P48NwMq7QDc+V10D
+HGyxxYlwfjNmKb27/YK735jtBQqZcddE/QsyD7/tBfFc4HDTAKvnBPEGhonhT85bmaWVibPd3yT
9tM0KtECMctECgFfagWeAYN9J+Jm8EDAKY2wdkCbI7gJ1NOX+tL3li/kelArDenbcu64ngtDkKiZ
z6Oef2k8u4O8jJD/ufoap15CAJH/BklDR2F8ul39OqKi3Ze5Pxv7mWqV+6Mf6oPJ3tx25nYGlUTD
Ixppx2cf+wM0AbTcwLZXW//cugUXZRASWm5XSi3rV2Jdy6ndfZMuBjJQshtNlOfCdoGXRda9xJYV
8eXQt1iIK57/Cc5rUEyT37aVP9P7VJ4J1+TQ/7ZFuLFeY5+aJX1hgM71HEbMhuClfOGKGHy14inb
uCUp7La/xOcIArvdEQ2b95eOVWSdKX81pefVysr7cTN1DSI4ZF9fPpV3CI0Swqwxrj5Wb3hYalXO
hm1Umx+R4cdwxssreMw2caNbwZtXiGXozpdwKsDvxslqrIM/35iEaJfZ3yaodx1JwfMnsDV7ZYQY
HkyzqVDWUBjgOSBd09DtcKDVV2sg6afiAHvpZtp3sWZgus5HHxdiPBsMlvpocbhmhLyTwXe6cgE7
L6BYMEvxLo0cI1baFmfIs3c06IRarHXyFmJmi86t2XPLNmM/SLOb13oHHcW5PYmCxxFHYZIE1Rna
F/AeqS7GbXTVz8wAa2rqGrUhxEOW0rAkuKPBUJmvwp0sRFjdThOBLJmZua2MpfmCNUkkPS4gggad
V/eSdR1c1x0X5PaVOeOtshvG479WzxeRzlq+d6HW8zJWoyPIq7o31pSpzJBGFOh6g2KS/dfz6+IJ
kiklph+sQiOjEu7VQPF9vK/A2a9tjPzteWOyrRC8CPvDVTZ6Bc3PUYTiRdQva4iG0hpKnFIL5nWF
DQpZDhImywwkmfnXeZcI5WtQ/+0F+MHNDApdhkBEacu9u6ti0l6KBwZfZ4FTrkc0AkUrjCmB0ZYi
iAzYUof76AgDBjx8sKnTd3CIpFxh9GwxK4yhRVTnju8y6U535dJ4BGnRSeFVhOGZeTAvY+g8aTqB
KmCrjFUcWkGSW6D2Ol7sF0FRBhoXhG7Eg+I+FhQ+XgHju6rESvEQmh9RjJX1kjyKvd9Q3F/HNhxL
tFajrsT0N2GGoTk5Owdxb8pK4LuDvAyHUpFswagJb5ZjiL8nFCVML1Nl+qnKRKNxmoPEDSqV8UL1
pqvB6lNTynNZrFQwbW/P8Ra9GkRnRuPk8e3Q10PK2l19TZLO21sFuueihLTmlQvKsSvXR7N0T02B
miUKYrAyf3M56fRpjxckbQsoW+wWYmEM5N4HBZd4u3a+CE3zpWCFJphH3t1Fqek9paZmtfxPZ4hs
c4EdErB0TrqBrC1/TKOluDHLG4qckjnwP+CNxGycfC9FCPxutV6DQs1vTT4Qo7X2TYWRj4CbaoWv
2q8dec4u2JFyUESaxlUQ53A9UKeOsynTAmM5LyTpQAt8/WDVnx8rHwK6CDvTH5afMIFaXDP1m8Ho
t0aPkxHOhpxThn+yX+X1CyyOCYiL45jeUyI4bTRNmlE7jtuhSi7UEx8RutGCjsCHNtUSC79hYBGH
HkfkECVzP5uZyoRSqbsObiNbOfz6lkhb+nO76Azi7Gt/p2HTcIcU+TVXuqa6d0Lc4oaZ2Z+vENoQ
w7RE46z9sBqiXcxKP9rth8cs0ov3fV0ThkmaFwUWzOUiDvylSbrFakdZdMT4Vaz3E182hgPWh89Y
WN+JJgv66phz04p3OJ6+b/RBGu0X5VB85IYA5ToVKN5+OcK0+uO3VPqao2VujAr+aD6mXfiVJEnY
B5azRKV5BflrC8pzf1Gk3ur7UF2hB/frZlpZh6b/9F8TF9ne0HgkGv7IduQLovrg/ggsAykMdM0G
4I2MMHuw+s7d4vplEUdnOqeZO0M35ub1QgY8KKiz6ecoyzWaH/rO324HAR+X6798cb1HxtA4NrK0
QVBFWIlGz6X1HpRL+9PEvbwSvPFzF+oNIlvJpPQ6ie/ZrbiSn7VOj6IggHBGx7MnFCKdbz1+C+HR
5B6BeG6b5E56o4lR6xYYslYfyUsW/NFLojORCBO1cHcKHZAQKmbV//t3j9inE2MlE/p3e46+2LiN
NFIGosvohJBST7+6max1qXoxh2+7NcWtZnYx32YU9n7jJVzyYLTcwzsXRbCFHq7wHdzBz+O6HltU
ZCegQYCymfxJBfvA07oESplcC5vtd1V95kgJEzu3rpsy4C8mO6oX8zwo/lpVo9JFF+XVNHdjuBtU
j6VUFyCi8AZUqfL4xmQej/LxHUV6YEyeaAOpbI0M4sRTC0BongdJO826ok91ghrTyBDH0YFF7oxq
uUkoMGb+LOCkWR5ByaqjwLOWKw5N8/90oeDZjpaUepNXIUt/lX0XYVNEVbeefj//k0Xix7ZSbCGx
aPA1JE8OCgWiQzKfxYqaD101RYiGFTambK9yGl9Uxtf80Qrzh+G7tSFXCpszmE1+InVfddE0SMJ3
/JBPSh4EClQ4u18chGJeuBnTR7f/dnydZVD/SL80O7uLAvNLyFAuosHsqmTaeOHRd/GF3jf66qe6
s/s3qeuBfdX9tzhx9J2MnNPUFBfEx9+yoXPuG+p6bhkKF+WTqZU/NUbJqlMiodgwzSfD3LEmcmSc
LQFdbtJYmthfJCxxA+y2OgRmBQms168F/KfnsIlArkj66ctd3Axsi35YS+7N28Jhw46SWleer3sz
gmcmBuI04sN8Fe/qgPwoETysdXuB0UIhhlQw5p9H1FzXT8MLA72IB+4VbQ2dHHiuWFT2sflG8/m/
cbWjdTAJv6WQtrYZ+E14SQKq77DTNNWEobRDbjvgaQkEbFrBU3X0Mhrynp2LzjamDwIy9bFzwtUR
MR55EpxOzBqltRhuhZQmb39Lk/pkyy9/TmKuLK+EQSY6QSkcsGPmU2msAjVUFzImJTvIqr8rM4A9
APdcC8KWODfmFt5fi4HD0FLma2kjZ8LULTuIrc5Mp+DOslKKBcEtviZvF8bYbELILFU1VDJBLaD2
wTuNjspdL7jLI952cz59QqQZ7WUNisN4qWdLPLUdKpw6ze7nVo9d4SBTquTkoP1eNpineStLZ5d4
Y1NAaSUvfZj8lZG0ki84KDq2kJnbWZy/f5m73E+koKPiFET1bmVkhXnptY6mTEhuKt1emp+enZsc
GhVSTBkx0BuHmzKnAKQ3va2LF7SgS+VPtopB1vRR3vzssL+0Y1i8JF6v2Lw8WmLUHN473RJlNpxE
L5ZHajR+bNCwF36VjkVz5v0gGCejTC+aQ+LhDKd0N8Qjy4CP1zCltNhmuLEgzCqFxx6ojKafzOIH
87rDHfUvZ0MnSxuXjc8OnEvlLF++AHCarZGUhGHWtRDEQW58aMqbW39KnTEccTDWEELPqr2M+Ngt
onev08CugIDUTdiZ4NgbM2PGYS48Y/S5y7EZ/HIxo2zzAQPo7v6RKyt9YEPSYJKjVjpDCuktTPWN
Wef05hEI/8N/+05ccSzLOyoXTwdXeaMryRW3637+CyuYy71O5SwN5YBMlGmVWRRDi/NdbDrJAK/Z
iBPcz4tH0gFuW5SmM8720A3KPgj1gVdda9srKC9GsgVk5SHYiJPAOJ/BZRKUiOtAIY0tE2SWEbcz
gvXbkbU4otQrmGlDx1NKg3c4OvrVUCjVYQYj93zMhBbWeVxWY4AnMNm/kjKW7go6kNnTW5elXX6u
TetbSJ1r5PFBe9C65yphDNr75fgIGUUZJ6TA8+3Zi62mq92yuqemb9yBtob++Pu7i190sd786vef
tFw1RZAtdeXyONYIkiquP6He8s8D0WezvD2D5GLwZ0i8cXcJMwnj3R5DBrMokOUZlLdXf270Av/w
348OqxJvwa26kpCdlFqw3Wn01s51ISdjZMM5G5W90GjBgdm9RyFgdQ99RqTf30zVSXLO84uyVMK0
Rq8yxv8FiogctK+gWSDkL2NQwn6Wv2fQN8+1notvntUbkyCM+/qLkygMUlA1B9T/2YdLsRNVH+rI
guQpgOQny+Up02FhsaCXMa+gTZG89ViwP9b3+CoPSI3TSUsKph6Z9pSaiQH7BjUSab8ezUV3AIGv
82yw1xN+tVDRRgjP25qBNXM5InzAC/Rck8C7gDX9bfnHHFoybXJcce93GmUqwX3O3rX8XHWSF2ft
IY/uzrQalVsRYjvlrNClu0oWx/RZ1OVfRft0glC89IjjEN+nw8m3HA6oKvzNtbY6avYL7YbdZn14
sT7463NIhZe2Nnt64mdMZy70bcUt7CKyjpTUXjRiWUYL1zIiJT7DsWA2f79bw0cUpVplH60mRIOD
pu+gxlJe0lRhomTCQba4TLtVKhg5TReU5f/nLbUh9o6R3CCkOchby/Vn5S81hcis8wh2uF/prWpY
Yg5jp8pWX85aeu8sMAcVNUyRO0dSqo+QUS5Zo+Axu3neTDOKkkVGeb0qSOpIKc/XNGOHtWwPBR0F
YGWdp7h+ZAQ/s7KvpW2V0T4XCCXOZ4V45EyXtn/zdzz1UcZXwKzE9J73oq/ire3ie0mo3bWkxSWe
npmi+W5MmzSOkcCSXJqLXqdKF3kFtDyr5rYyndmzF8Nw/npABoi8x3n/nXZAfHhxHroo0lA1Yxjs
nLcNub8jnXLKEcybwnatSP9tNMZ+Oui68/LH+RZTQdarzgQFJE8DEbY0N1sErLEZPQXI5lc5XWFZ
8eG2WD/Thdy4zQpD+bSYBMZT6BMOCwdUY0VjXhdKTf78/OETe4S7jTxfgL4F8AzGbStPsfLW4Wl5
bx38CethHO9zozoPcct6mjxMDOkSR4rqkk4xc7dCYNFPuDdaPAWdXaQ62LmzPIqSMj/7YqoJPnLd
Szh/LnnwA5yfnBO8qhjS83Zr7hfxXaENSqNDIu3IOEujqgaTuOfGCz/y1W+462p56zvkDGjZn0iV
od0njZyBI+9bI1Vs6VDgmlVtJpc/9aoZfKvocwYZlaHOlSk92qVPEVmJ0Z/IUjME46rYOvdc2dL4
vzPCqPtMbx9fKwoX8nRwnRuZbkB2e2gWPoebv0jW6ssYDLPQmoi1f7TY07GSrc/SMnUn9kVCPbK9
G2+A+ChYA2ZZdKAs9ljttt5q1UmtMTjism5QLhEkHrrf2JsPja0ey3LT4GS1YAQdo9wprMPVAjIq
/qxT8NTc4eVIp7sgmNns7x2RtFNkMFBoB21Z2zrPk/YXQ9TmCT7wQk//ovZTQHSg5GpwR97xR18e
9UBl9/BfD9jWAFs/gMqBPB0fjE3wYn8F6Ua3RKuWZf6TT+Gbz2i8Si2tAGFvBSvHwz1Q/BazGsLe
xWYJRzIPhqFnEqBJdgb7bXChEAnt9zH5TDx9QogJRURBJahWneKGbnsaQrpzD5XoPWvDJyGtTUwp
Ddr4eVGJe+vAU5Ab0oeYWRyQZyc6VZTOD2iFTKXn42uJojo/6+m4K6KjmYqCussQw0hzvp5ZdVGy
WKWTG1DdFfrZ/fp080oAeST5RS3GLnNAAxVbXf9WpWh4yRFVVbZJ4gsSLeneTeysTro9K/VFHf3E
5vbRGpl+9leQbVJ6m2DEAllFshMWYvfMLq21JYhBAwX7dtopvhCvarCudIzNXevl0NRkoQKjDeGX
gQAt4aif2n7dlmiR/pB24Aepj80e9UbthQH0t3JoKEU6p0Mep8nyNPG1dUH5L+Isf9PlPi6hicSO
gidfgog0yAHU10HhGe16pmfU4j7HbJSajB09BClXqLO5ez4iVTzEWPTe53E3K5AYm+eYp3V06cvB
8l+9PlYhpwXMCJkP39K+akGytgcoSI+2jSkBvzYuhWwtdEHPSQgpjgaqrk4Wbq4rzjZhglte5rXU
Yp5rUgf5A5OG9hMOmzWDOYFZWedlZLgJn/k6d4WfwiB1NB3SHb49GZwBs3qrUk98zsFSr4KSz0nN
nfwiKufiYgFt3HydfJHvguDAtkDv+MV0JEMrT+JnnynnOL4QjO+z3ZPn39pEKnOwC5qOso+4Z2Rn
AYidXpLHL5NYT+dBRaGy0DU0vl0bLfjBeKBK9lOR2nDmmFY7CeMkNg+3aufiWJ/Bkt8v7GQDv7MF
KcWqG2plZPiOJqg7wIPnOOcp2mdoays9dejr0zh06bIA+NINeIhKeyIWua2HsZzpQRRzK2cLbcfN
lDsMEDmkMqvpmTag6DhFwkLjynYeSV1EaZZCRSuVo6pnd+noNlKnTvcQjTsTFZBl0hAVHgAy7IiF
1nJ/Q1aDTYHUvtFzQJlhjmbIbLN1/kDRj0x1ER00NVQrTN5VViY/Tv0FXjdz7qRPfLpyUWNKyFvt
CoaPXoHxahnfD285Xnfg/PXEZCIQD6ZJjBUGRLINmfLMsA9G5y33zy24QOzvX6a77DvsGvLTjxgu
pTmpFuKcBiDT+pENh00weXu8NOzpf5baFKYPCr7AGLXJhzYxysFaGaaqoDfppjenNwZLyuQSELe5
6PbGjNtdEpz3BRKxgFM4441M2k486dEwrCu+JMNFZ4JIYBisrMYss9Vm/c4xD2vCivgl6MfKH/Ps
+FA+s90XZ/sdzgVxMdv9nzEUMycRFKmUvCn4J09ri0DOcpQrZvZU1Kela7yayoCRsQ3SPSPMHJX5
MKjUnG/nxEC4QQ1jlNoGC//GLliJoil5LQ5h1B9B98nSFYfuWrGZ8u6/12mkLHVA/GebaOgwZrLp
d9TEErFNbUHz100NsSbAkcWulkGRqpWJyVMaXbFvVLqKBKXGsT3uA71JFQe/JDtmYkSRD9Xb1igM
OEQHFQ/1XV9adNhI213thoqEmS0SvTLdAXYF90Wqa9FxDbuNhRqr78b7f/0jSAz7U9l35D75o1v8
JWeh9hRABd08c+GZmPN9ucr3pYg3FztMU1V39EN5guprvNLPW6R/BARIO1o8aF6Ne5LJw7O8ke64
njTeiB1M1EW1eMpwFfOq1uT1AfvJUZctVTyFvn509VfzaJye0Dje+LmaySFyJeKMLk/Y2bit1UQq
HB3VlE3w6gTxQuZLTNRuUqhyLmTEKmZhsoFoN2YIrQFnSByhSuVEhbZYsNrh76YEN/NCPj9TRiEy
QQ11qnIbsycrCCy5ETO+eZqIHDtKLviJMroXW26U5FcRrrWLsqH5ZjG3Z4mcoYY5VYz8ReCNZUR0
eqPZhV4kugKxdezY5PSB0dRvpN4bFV3dHu8gw69jBPkOsRU/U2mdRAhFDJp71jJ/+1Y545XyXFEZ
Abf85Rj72j2d29Oo+anc2sgaW3wvVeGmiPFAodre7Rhk3+sdycCjLycMn98YeqMLDQjIfU9NoHE8
jVHdhFEhFGyD7oc+A3un99mh3I37nRxGIWAoG02mCZs/KQrgrp0FPO/HxNjjwc4UcWbhtk62z9It
C2eqMnPsCkAmVxVppB1+yefjoIXymJDnyfkICSyptnWZPpeo6hEGl6jRD6qP3yfhZKZQLsFdtDDq
pznbYgr0Ytyp5/yJauXP+YTtalYBr8IkGrlBOtuxiykRHZ2196I7b3gR6eLnhg1p8OFdkq8h3Miy
imS2fMrgFjZJajiYvAvAQ1bTKfjdYLndwLs8z+2cx05rt9ryHfROF4l4H70tisWjPEYQdCuGUkA4
0yaTuktD3D2qvYuyoXQd2cFx26NjYLE+Lh0r4wwB4ru2ewoLrj4HUzHfriqzxzyfpoU8KHhM15nR
u0uP328Bdhznz4S9VpaTZ1ZZ1BRa4jpOb8hd0PXbqr4ArYJtb0lBgZJGRsPR+Ber2CRBqH/o0qYm
5kmZgf8yh1R/UqmW0RHcW78Dz7m8XAKLHzz6jsfp6+FvR4Km8ZWA4DIk+CA5xOUcpgBG5JCDDlKi
LLocUMMULY/aiuJ8M3lBZYg5ExQtw/nJHFj/EfBQEN4mMI4GAhzEg+ieG6WKmlTBMkybw/69spu1
4q0Jk8DGlKB8IJRUeGQ2KhzpfBq8GCENe/Hw4Rk6IoebFxieygp6D4gec/1jwqRU69bUzf6IW/mu
PQfSAe2zYHAQmNap1TcvjQjtFk+ixu3u56vPCxfU9uB80RbMin4WiB0hY3U0d38Gjd0zuU7VM/zL
GGFn7F+2qiell+0VofNd3vSouHWtRbPPsf270pOLt6draRPadc87Kt7lJQ+9XjZ9Zd8m5aPD+hOy
IcWTJFBG0JEv2rrsSb4lKjXvjURxDQDZTynuvMyrkPQpNSMKTWH486k/+QrHqGGjUuKBy3BH9zgZ
/fOBxkoQ0/mYktQkVBnjFcJ5KhPbppL8kBjpJPnDIhx0mtMlxleYfZjr7UIkwlYAhYOflR++4okZ
pVES9+pKhBdSdnvINGybE0anLLet0AcNvhzaRPf6UiJ1foS/7NT2RpVWRBq2ao/iS1qf4AlHxL3X
UOnJ+rdMVmjfhjogTenejlSaWQQOtNSPTuRqjhk7Iux+RvvsjR1+Ja+z9pIrlxFIhBY0jw+HgSiy
r3iFHz27ss07RDB88GChX5YzSpEFNiqv9wertmNJ4a28fS6TdMNmw5+lXyBwckSzbI42bjPwk0uy
3cmJ0M3jajYhY7ByMqs70r8dXZXSBaKD5HUtLebLZnTqIZvPTBDSYp0uASlLKBqMf2bDs34Tal4U
UksgPGZuIPxe8sw+UEE/LsyaNE6KZiw19+1X9uE5UdITrC5/gwjoush6gdxtKwZPmDKUJq/7mba1
Z5WsIrgXr0WwhcksYMOhJqeeWIRXy5e/zXmD/iMQJV2pai0ellziT5I//GkjoQ2lDD7eB+6LwTbE
xn6KbrtZRp046usSZ/QqdQYUveciMgksnwvjKarE6yEvNOALtAE6AbZtjaPUffz5/O7RbobSopSj
jinfdw5mz7oEofa16wmOy3yYzlymfsB54YnUe6v4hx8f7F2ZyGlsI4OItc4dmIt9oFlJRccADjyR
a5184RjmmYtAvzm3ye+qHW/z7nKIJepdSBA/5j+nZBSUcErKUclIJYat/pSKbip6VGnjhO3iqjrk
YyTVRHe1n7aJYqKmNA4muXvNCIhel0fIrAIZhrPcQAT7AtRzWeI5A228jlio0tNsylq+z10ThLtC
2jRjmq/6T1H/hCH1zRUyXSf/hQX+zlgQ+QhYiHgMlu4gHxlSakmvu5qfswkgsadaTxddP/SHV086
r/Wo8Z43M0mO2bie2U8o5T0H7oQih+lnln+M2zLzr4XVo3fOxrSFd88AJHSYALdypuNvDBrkXNNL
BvymqIMrh1TauRl9rnGD0Rz8/SXW0qEFUykLYGWBx5GYL6VmdDpJO3+5aiseriVIqCooMLw5ImRf
OoM3zwNhYZ4NTgsYQt6KtmCbMdpTUkK1q7GLCLDvNEqE9YNZZYOygxvGBM4Mw3FTogxVO87iJP4j
nAwyVo9TR+H7k9CljcciWkP9hz4y3aWu94eN5Ljdtn6bvNe5WDXfHhRIg2vOeyLNuDLsgs4hpib1
E1TJJdKukw4uNMkHYVNGPZ/dt176rsqIA5mGYLIfomsWkAkB+ziIAfuhwtCP6s+qJsLsQUcbk5bW
i+bdPfRfXc2airSslCsBSwjF+xsY5f0HnuSC3ca7THMCMLnZzb3LhNXvbO7EDK9G5X9XItdGu5qU
xb68mrd4Rb1AFwuVH+lY8UKo2Xg6RUnbNN80QzGy0LFtVmnGp/Z9o15U2y+g7OxbQZbKixZCLtgW
XaLEpAkj1K48q+JKIlUgeUJEKl+rpvcdly4MxMFWo+CS55u5Ox7JBAuzR0oB5zGY3nMGlW1DMX9q
hKKH/fDDwtmqRUc/MDVZ/4Ivll/uxdKKlD6PFsB23KaG/UmWCNrO7sN3kkJ6nXBpePR/JfydDyPj
pUjqQ+Sw50BOBgITeMlJ9Ulox36qOU2qUGcVSdsRO8AhFICq1OjjwPj6Wj0Gmi5zbP5aFK1Y8F42
Iyi+8tn4+8sGIfZga2S2tgXndSFeuqCED5w1i2gHAtIuYyC+rymFRt0P9G6EqCuNj3QcK4nkkpme
JGBHwzOLjzH3/G6NCOvjWz2F1Ie0SXBEPK2pLDPBAT37Jwp36Hz0ZrRUFebsOkynkVAIvelAsOlJ
twFdXoc0dDHLxOd7XsfLDZ6NCsDuJQvNv/LGYZb/nISO8qRYYLCgY4cq/TnHETdNTo+i9kbCMMjM
YN0I6Y3QF7HqbbzXDrkuTi6j2IhQvAJ3zTTw1LChKqqwFnuvri1bSvj7aSpKqRFdBICtceSxWsXF
rVrZnD848O4jcQTX+07IncvPrlcubOvpFHD3iiyO5E2JV7panUmgXDkB/dF3+a6enqupE4hP/agP
Uigi/txday1ZH5VJZgDofKhfzLVZQee4O+J9dMAnPTRjrW5lYUVxIbWa681sSiiPz7cUoWyNbI1G
XLfJxJcateiHjGLJd37X7twlD+7YYSckeWchjUIeN+KAfY5+y2jNCS8JQ/VbjcRH74Nl2mT/xtpc
aT0btDSQT3DeQw3YjTPTFl5bUnhuGOlXiidGYVFyo34wkJ/Uf0yaXhoIswJ4qvdbaTMtLP3xBMP2
IdnMKz1/6LPHLkyBq28jpjEVUhd4gZNPadS4DTAy81HiChPVWSIYJjLzzwD9hep7W98lrBGOJju0
CjY7iX9q2U+SQ+QhPiEkoNpG0ZR7ZjZ8tPYa2ajc1PxIbI638IuE0fxur6a84BTpfZXUV6DRfPGw
iLKm7Ri+p8o5Wf0EmJjKoHvZ7Zwrh2I6jOEnotlcUzPxcdwPx5LwwCm31o+9Bx+te41hhKc6Wmiy
1IU1WHZlEkxvTRXTMHdBZp211jnebG1yuprJipdDnwGeOEZaDEfAUyZK2QLeths6UonxntXBYbXt
PQfPU/xhPmvuSnkgZg4xrmo1/5D3J4FCgSnaqWVhw//k4gwpFf9dJxjSIwaqmLI9pIxA2/oXFiL3
epW1FRYoYw8opi9v/kY/8eCL1ywe/ZhV9cC3+pOANRarf4GFwWqKAHm16id+VGJZ5O9DmJEfxIJ5
MDvDy0E3cl2Z6loPzwvz2yvSp26OO+4RkAahQBF1gh5B3N7U9P7QVeDJpIjQGxbHM9sELzRBgIGR
f7aKn0ONjaqvSKl9tm6q3rXHSfkODoyIfysX+linvQqYJFLTd3Z7Dgp0hK2E6YlobllI/WBr00Ds
JF5pNhvZkTX1OzfEbTwXBSRopbO32fyS0fTyeZD/U078rJWvp1Z/FNkLSIBpxEVCIwJzqQsbWrp/
Dh7c6//9qIaOL+KvrTAwEyTDLiJVyE39car8dHNyVFU68BCmJIzbUtuFUQwK5sVMCK5LMI5P2FyG
Qn0XDksS+kKCQVsn3PxWTPjUz53ujJzoT8h2VsDxPt6A1N+6mrwm/tvapef8MM+Nl+q8VHwW30E5
gW3ZkftxxJPnaIntWG8HvkDa9neXe08YwQzDuO0XNZULHMOg1j7it7jgfg8DPuelavDzYPwbwROs
Og81SNPfG/3UGzJyWO/VjZ1+rNbFeJ3GP+VZGuLEhJ+ZaGaqQtUhf74ngaD4SzeqrHiSYxd/Uam3
FRnr0hVoD8v7++n3D2KgTBf2Y/MyzrxxOSDe1iT7aQTusBxkw9YJYuIZD3+AR2p99CHHZj87ii9O
Pget9nbA9YiFg+57kwhY7HO9R1Z9aS0ZSChDC4tGHOK9wn/NsmNg3xtj+klGgHfWBFxqi8r5y8GH
Kv4U+kMBvstk3dLFJMSsqi7Q2aWggyJmiWzyvNZDZozxAE6D2ETTYX9DDYMdVNIZ3np0LL1ttrob
gk19/cSN2or33j5wvOOh85g4jra+tUJe6Xk61DAwR3vV0a9o+gD9SVzO2TDnokQOLVy5tKoIb0Xh
eFc1nuGs2OtoiJzi6w7d78mhl0IDws+mz2jnA5fjm3wG1rk51S9f+ZazATF1WtouMnZ9+B4BL5W0
JD90+9s7aLA6ODjCoU6iDSKGT6eCCMNqUbishU474Fqo+++OTtSqM0mvKE7k5Z3q3y5YskrPrh0s
N1KZ+mGanIf6hJRzUc/pZHqMQ1een1ISnRTAeZTMMJHylRwbkK/S9QwKjJ+3osMjNO6W1X1S7pgr
GaQKowm8zAzgmCd7fPtOAZM8wbpUYaib29dNqQ9qVJn2+6LSZDFdPGmXF/CmiFbjCgZj8Ii5o2tr
TZ0CFD2hdjePfaoRIJZZ3cCbgm+CfJsdxr7+9jMYcUndtZhgdfwuTU1cVjZqqYiIuZ8we/JY2H+p
5Ye7zQw3Iyl6ktJwevja+bofJSjuEGPqa6aF9Sv3RLggxBW1ikftwMdvxt5CMPO4lhKlFDCP+HW5
Zh6bDk05mgs7TqNa61p717Izwu59LUAmL2sxFeobv2ZNTQn7BX43KHFLIfj3idnsP7etSF5vH+Ln
wGQbG8rITgrRH3Plfqfe7bE5b9uHR2GkP0ES5yLCDXxM7WM6AbCzzd05xAhiOr3V8j7VrkQV4HSP
LhSKT4hsu+VaZyXkRIPbC9hLyTVijX+qfWmvvmIyf+yziEPj382Ot9vWbrjI35XJXeZo4fYfetyP
dydnxmWE966BZoonNvdpnmPVJfvkS6ZfqBglNEZJZDsrY/88X1LHQobba8UkS9AWvZYHZmE56PZM
26nr+6BVCvAT+ZlQQM8ytSHig4lb/mejZPFgvSJ09QCv7peFMvuNMH2VfM4iYvOsMjLjEWWbUHeI
BVjp0l8O2uMTdl86KrOfoUhKRiaRyaeZ7PfdFvLYKmMEjU7JeSv7yZTWqV/YWXQI3sF4RS6UDzQm
JnscZIq1myyKr4vl57R4NCOqYZacm8OKcw+N/xGljpAPcKHeWgQLZOrFLIHAyc/PjRVsRTI82xE6
/7uMWHIu7XkbnOpEUUSxVpEWbhiPVeG9l84sGY5y5pSKoTZCVNpUwkVJ+TY+by1wF1IuJhtuIQSz
4JuED+zVUHi83qD/g8F0Cvb3Odvy3BG2HgZf/ji6D3Z/2iWRETUbsQR289Hv4Xa0l5nRF2ZoeV6y
64UXqm4OKCN7PdRJDYVsAv8+4FwFjntIyAH4I3Pd8pPHnSvWFGD9gmuI/rNhx+QBalaTcKhBGby1
+QqVauu7yIKDWtUGDTSKH9UicZiHYuN0s44sraCw5Vu9UocLcdXFFFuVnMMD2l2qZiSJMcd1VPi6
bF34N53exRo7Zj8BjvESV/3vUIfF5Rd6nzGXLUcZdlNn5XH34pBwH4I4xgPlMI4FReMfQxQFELRo
FX9g2grcu7+KaBiEAhTB4SG2EUH5kiseHMXSUsP6GKYLRVX1M/vFASiQEfSbGTag+9hcM5AMGrZD
xqA2NvMbMKeSuPqQ+xhrK5v7eEuB7cZXO7ac9SsPnz+wldQPLKBNUPsK5W3w7i30FR9eYpDQbeH4
IEFU7DzygoEfqkffNJt7eeMfPbrF7/1zfX9U6CjXSmOzlGcuxR8JWVDRBh+UbMZDOduaprGu/7Mo
Re2qZvPE0MgM9ScOxHNN6evMeUaThOIntggIBMN0Q5UtClm7OSgmDT3NX0KStnt+ul6fV63EMfMh
XsOLYBZxQjxpISoPc9T/CMDMoG4+gNfL4+4Rc2O5JitZz4TPA6CdKrgh/OCfHF1+EbXqKRpGH05+
ci3OZPiF9LsrmSyzFFK5PhlaxXMmZL+mrmZ4v15Bq5Mv9j8r43DGvUk0UU1IDmjURiU1adG01Pr6
VRcFoOso3zHOdHs+x8/taZ9CDvqkIUhLapMh2PccQYJoEgkDaJRMQDYvdhTx7w3EJA5Z7gkN1OG2
koKkQpB5drV6Ct+nhDB5JWSELxCEw0sBdN6aWI9p3MvUyP8R9VmONiFPkjUU7kTtr84bznQSupgc
bQwVFX4xTjk8MWHUzgKJ9hhumL8Y68UDKUdaFYMEF9tngNz8IrpbW4AkSxOIoD4eepJ+H0mtvbrB
J57uy9kl5QTF/U7UcMk626XFb63pyiGvmlhwv8omy53L5d1APSTRuFRhV9NMj+yPW/ObGuKJtulR
4PpcFu3jpy2sbwBWDsMnNUdfLbLGMwEeC0QpPyTf8vRgFFWXm/D5GijvPNytMwdSZ4toVeG9DIlh
HSTX44UrOM/MyWSXeCpEuq7i0aFqzNRXAblS/TLhviGsNikR7bJQ1PiJ7MkBe2xzrmQ01iiDToLD
oxTlH4GCxkfLqWcfa2NQgVL8F+1fVQkgyW5MbzYY7A1633vnG8MlbkVNbnmiJ42Oq1tMscVEAxmn
uBxeZXOEUU2z38sFQCD8Hnb5XxNDBxvh68X38bDZxhxCkMakPBBHHvZW6i99wMOpsMHOrgQ3WvOT
bhgzFKCjspKrT4bPbCw3v8zsnjUX7mEiRTYGASkIdnCvFtyuWg/FSeFmy7o7CjObLZX1ycbcxPmz
XZ+17rMFxFE9eXvIRWhJRbInocZFX/s+pPBsSGuPuc536WJP3dzbc+qRJ/5GBItXhRA+e953XeWq
p99c0vPatysl7/akzExblZE8r6L1RhawyDtRNXj5kosvOQVpw0sY3zrwxekZShmaCHvSUXMyaTg4
Ck6exrRv+FE1JAtLitArN8v9zrZ2Pq5xslf7Gg6RKAnpaSlg6Y0jPZPrI/BFSkx0lLcKFSnjbDyC
sTwbTL3CtpJ7J6HPX4O3di0neGx/52qrSHfmuksw6s+Vl690KqhvbdT7+uOBjZI0inUFHnfimqNH
z4gZ9dIMM/ebbOtqeWWHJ8EXCnC2AvPStnviYHqRl2hR64YAhMDVZ2DLbqQQJ63oSfUTrK6AeisN
pzQV3QP4CZHPtBZNkmnPw5TaSYZjnLlcPj21qU0xLtclyzIuFTWS6OCTYo2Vkr+OvW8K4UDbLWUW
3wvrP2j53/NbzVJQShgEU1T9fwGQJW/a5vDn+xO2B94xelYY3Y0w0uCI6jbsDFHbEZpyx6BtaYcw
SZgVTFk2FU3QNmuUU4CH1urDMrm0FPAIjxng4ytyVNw1ouxFQAtx6und/d+T6npWC18CfZKgoa2J
+2tvB2xVXPudus1Gn8NwJ2BnMH1AFiDFA96l15Yy2jOvyQtDwi70LwCxH/iKTvMQ8nPxXL2QKg+u
nnQfiQ1bJoOTnuL0OHhuWLmc3bv6p9YVA09Xn6fW3n7i5W531B02i0WgZ0K7xZ+MLbhuxpvkHL8a
+RP0RaQtoyn44r12QgtD/IYsBXbykjPqSkBpY8E/rNRNwtE4jms3fGDXObr+QIFfaGZJUGJSM9X5
uMVyDEJtlMVyA1BWDKRJAlI4F4NRNJuCjujloiiRLNATz9r445vzXe0LEtQUX1xhtX/ia9nU/D9H
bKp7z4vZ17HDglOsgz9CUfBNFZ2mZ0aHiK71ZlXftTARwtlcPThIZK9Fv4GqBvLebEfHZEtQy0ip
XK0vymKEMLXb+xg9zJdHf4whFUx1aqgXzj2rOTmEv+58ZO1f/yAE+/g1JMMDRS+2F506AQGg0PE+
bfb0iynRYaBh9qs7LMuX+4CjBZtnmFqbBCGpLnPb9pVtiFgO04N3/zPh+x90PKtGW4BTHNeNqKF9
ec2wom+nicrxVU5AYFrqOiiT3wrTGtgAIGp3wW93BGQM6rlR/9WOST9yKmYacB5G/j+9PoYvH/0e
2C1xnQq9YR/17zB5unTIqXRObFb6TyEof66i+yKt3C9JQXUhBymC7WgeLA0f/9HbcVeyEQiBYqot
EF9iAIDmmXLxCxNIhJlhFsQPgeYa52c89UuqtiNlfv+sBHyx4QPdNdx2LIWb1vJbR2H4w1aBCZTk
bTCjtySGpiC4I96bA3JlyqV26CmYGCyOx0Szi64kkXpOgx+v9OmNKaTmzjs4+QcuuG1w6u/y3PAO
VsRHF107qAzN1IFsb7iNjnUdXExHnB14asce1SCd8DFN2BxJrfaYwwgN1MFxJO1sRoLgkazqqsI0
/1bFvVunWoyrtvWElaw6Vbr+FJ1+IsEPuZ8ytKnjj4V/oOn2BK3YhbcFSZns6/sqnv9A7E82wQO+
k2azJDarWRHu/k6TaFYtW3NnF97Q5X9MQuCk13dS7EzXyOxaqJYqbBidBf4FJ7EG+TQNJe1e8n5d
u4EDge1kyJgpBZLoYMiZw3FkBxav+tZVPGrsAqykhOtBvKBnjZi93UAaiHdUM7/1F+9gCcRIGLjz
Ci4oO7R3GeJnhswP/hfWuiZhFtAz8yAdKklBXacbqn//rt7nl533V2lMs6ShaLEvo9u/2dO6U4c/
fkqUxIqncVo8n0DpRiYIPGJWMA98YGv9jsxRbBsDCPhwM/bSUTPyvTPi0jlrJfR78ltkKJQPvP94
cWMlcloDEl1sMN6xMJ6f5n84cE3NN4IrZv1YU1+N9FSAFoeX54rgJd7Pt4QOgH5vZ1jH8umNUiXw
amaRUvw6WOZcRRETmG9tCNQy22OEhi5rgiePG2ql3HsVrsJLpDOoqBTlPQwIZfc/VaS2B3dPYIoS
G3qlkJoge7Q4WYJl3+MRHh0YJupWD1fu2eOWkqsSaYyW6RBweu+G/n+6KE4b1q2hWM5eNLkF8IAx
haGPEPIaBMPONk3QAi930O+9CC3d/wqD841csm4xu82k8NP9awoIsrvoHSLRv0sUFbrqDpU4ptr2
khxfOIFDb/4aHO4a9ileSErGwLzLxVpN7nA9LMNOHo1nNOcHbo0hk5MkjxiJuitw4gRL3XSJzM2E
4zuC4yRbp1FCYPB8hTGortCQK0tg3NoUe1V2bvjdcDjSrMpzJubls+0ZJSVB9KLfBNv1Ea5bZ8D5
FvQ0JyOKM9cLGsvuN23Rf66inqWcHyv1LEUvebhdCUQt688OpoSHsfSYMExurvjaHdozbDnwkiXM
2LhcXbRY9lSPHnUvn+4w+JoFiDMI7HDHqOtQMOAh1N79b4cffvnSPs/GrkSOVEkZgiP3tUSYbBW+
8+2KEZS0+6eIQzf+BBfaLQTdqq4psF/tHhX3g6eSyQanJQwJIJ0aW6Mo6OZVRp0GDUNT/RHImrBJ
8yT4h3MtIcS/nFNlxLOO4vPDUe6QsxkIRYFYc+xmVZ8b3BdFUScVRtSdG7Fh58gtFbU+3N8nsZGm
01z4VtyzoEHuk51NStcVdhMEfqtDZS7XOI7M5OfvofeaWkO1urSWgOY1S92a9eOWSIzx9wmbaiYx
RE/AG5Esj09VHlpkmxpMeVehG23TJtGJomwXUgmuLX5Qh+2g+Gk6+QbTdARD7RTf6NWTFEmIBfNz
NWaRYMrbkA3EPmkDuX48urSFio+P5Yyts1Do1AUS6hMQdo/D42LF9tePfzoxsPqPZpE50IcxkJmd
+klwIPiHbUrXWpbBT5V/VO0C/QK9YFqs1KBp2vmkK2HWTg6oM0fVei+WS7H52g7heOYma3/TQg7S
0SA7Uz7XbaJP7GSqGls8fKoWBXPwN54ahtRD3+fE5SOrLathS0QmjcQOL9wVUZZqe8nzgshQcGxD
zLi4Obatoc0EbCjYF5mgBBQyHeyTbxtHfp5zhm2nEJ8h1TrzDTU/ptbDRC6u+pZUac9gxfuuLg7i
hA6B4RrQcCTHRNQE5snrinTeg2q4bBLEEZKThNTkAWNLIevbnhFmPZ56hyUkqJBXiadKfyrYqdmx
2khj1mJSS+a0gajWYldFAeGsQN/YSNHV009AdOvsJfwrlgR9X58hCLv4fhqVc8w54BXv7+6cn2WH
46W0Ff3YTRBYH2u5de/QGsxOCguAjcxccLm66sFb8i6jcZ85ZuiBOMs54+58asZEGfaF62MI+Cyc
Foc2Q5RHjU+jij6gehjQiWOQeKogR2wPMDJqtpF1AJrI3yS0+NMzYB+wje26a5qBomAcHOHP5N6u
nxYytG2kCL6rewHpcSJT2u+70b+YVlXMg+Xwd3JZnx2aYIuld0Qsr0LuQlIXzuQpe4rD2NWSnYu8
yMvOwIE9P3emTsKBkt/xRdaCdFY/j+rUt6qR/bk2Wpn5IDNyUCh3mFZ15yi4XtM9slEETui9A+fQ
aL2oTuAL73x0aE6+E3/xNENGTPwZPwtgw4eGzMoxGUfw1IdFcJlWoAF+KCqYn5yF9OK6yewMxPFa
Yq5HL0mCo+si40IusAWwEEwtFSDCt5uoD6ODSFJug6rPhqGNSWhzkROLrWLbFwVsdOQEbIoo8VIk
bWjCEKxP3T6FETNc7X7AuDn/nlYEauZAnBmDd2CKEIrL1/45/wfFK02tOtEuqc/Dv6hwIUhdHjtR
6q6ONGe9aE/LH3pJabsu13LK7XJlD4nn4LFTjF0GbqiJnJEM6xV5mSgiDfxOz1tLKZjXu2IJcfXN
PhtPQZL3jzKxSo7MsyIGz5BA8VI/MLSPNU7EqdEjdNToKKBwRfPRu3fxjyIXDKv18RQ+pznreANi
EdknYmOXt4yGLMkv4J8CaG8GxWH/0ZjP0KqzT6NmYtwyeRhQJrO9vv+WJHPr1X1dBYSuu2zNXHMH
zj1lzf9xwVv7SulCBV8t72cemx85Qx1dLQb9IKu5fA+6uKdnF6KBtZTC9mQNJOkIr7PSu6xT3faR
eB4dkszARCSRTnjxTz8E9CiR+pKisgZnw2AwD3lgKvLxukUtDXLBWaS837gYQACYN++ezJCR09a5
VLe0M3HWJNmwvf+cL6q3+KkY8IMzfN2phMu7PZwaZ9vdaG8PW2inW6KLUlyPVk3sW0MVuJcxUCXq
s0iuYmlsRraX5HjY8JnD2/GukDFPsBXoNIwvfG2lkszObyrVIjkauH2IU7obETtnlY0a+e/n+bRa
bLSdV46iar7jfYPP/gcxaIslz0fEV0UKl2Ck9YcmFuU2i1UPgFSWZx9scjNtROnBVSVpey8zvqyq
YRTFqCgf4Cl8cTbhfW1E8GeJqGmGaZoaYBAzPrPOwjEy2Nw1+Y9Cbb+oDREuyaYeUTYskSgFfOVw
IPcX2UBepY6qxnmtjsMs5c8RnmjsjAHJDPwPv+vUwKVDzewHtVGtFSDGvSETOAP3CilhPKcECa6e
JY0pLn8Ik8XuEkxg+B6kMwiHatk0YAE3W3J2KwoxSGdQRLDWGC9z6M0+c6gR7eWUC5Z7pAJM2E/E
2OPXJwW/j8+X2PuWVl3HOCYkuB3txM/iA9WXFseNgST70J883An4rHBy1att2x0PuI8tTUeNbm7Q
I6Xti2+tdMk0nAnXTmP4yxsGGpox999bErnv3nJnRTq/XLAPBhIEgrbRiFxhh7rTu4PRcosOjAuD
ynALst8yH5SvCzmFXrhyo+Pzz0j+5+wnbCoT3nqhWNLJDa8i7LCU2/GIe9keXqvnxMdOyypxx7T9
2TyG9Oup86LA8xX3kKnknbFPEZxQKt+3eFd7awkJ5bthQIoY/gEG0dmyy1etTdBBSZ8b5ZTlBJyb
DZ0EdZV6g0DHmP+dxUrpssUfJE5o9vh1uWeZ3e53O788OzO4/vmfTl1oouFbSDJ6RQAqs3ZtRpQg
fq4YQu2T5RWuMUltSOGZwHCqj/u8VvGOjCfpvUGkP1tfVLdyi0B+VzPvYZ0RW0tHIDQnVNnOthaA
zOqrAemRM7NU1QajkbVJwLdnaB31knYR+MqosMIVgWQyQCuoAKfPOXzY98S42NQAyHmmJSq67NdJ
yrJudd82lF6hfn76csnSj07Y8kuX7TYJ2y0hCebOE0IkvUCUR+Luj4KX5hvy3BC4RpaKwYBDblRw
2yxPXW20eXDCMy5V+HFSkTNicyLF39Rf60Y2ZJeEX7+HEGUSqv8tJixe9zo2GPCaKEH3TGbKn5NO
Bq3oBtRG3SoP53gOixDbPLIvglIsqyE3AdoYInUniDQsj4QRxFAsyiQpW7Rlu/avKjTioJuqRd7H
xPIsF4LgOZHQsH20gUxX6oPpnt0QEo9JYus4Oz/4u22wK1S/BTgJ7+D+PKHdUYuFxICLgFiIo5xI
lVUK9APkNfbM5l57Ubn57sJmpUdntW0PYNa6IOxSQl1VrwTlKNZe061YqhAmJ7wD9g8Mwi1e+fCd
nULOgCznIfIKZKht8nwMNFrLIXU5tlrZY2Z6mAhoGapf8Y9BZxRbQsnRTKZ66+H3KNmnPQDa4uos
MDsDRTKw5jYYub77AHJ/oWkBVAS7ii/DmizGtcEHbmQHgFnxvJyfWLwJKaopJKqsvVR+jA7MfVzH
xdvMsibnHwd+bGC8CH6teGL0PgGeECp0aK1twiAUA5HVG/au7znCvhx3vgggKDA5zLYcZigzBCT3
BeYnhio2oiXE2w1J42v5K/mnVQIpd+KoHlMkZt0nUKCGSPWwsYJxOswA/ZJ2VzVH+yQfLoDyBYav
U+OmtUjG60l3i9MjWQr7S35/i5FmUNxAoRs8S3yF4SPl+nWlwB4Cb4APQIuV4b17gdJh2ggk7dFE
FeeH21aONhycDPt0il9Tq2pHKtdKpKQNJT4CfyDGr4ewZf6wfwzps+lzOr0gDdUmRn54RtXuVx+/
JP+Z1uIRNohoXksKhaNVDu8C1zVYakoBAxA9ouyK/nt1sRMuSBqKdcZknsLXcAlHQVQ6Cz4BNlfN
/BNl9rxWSpvQM2QZaJ4KkYHl74VRJYsv88Kr1qdTdI0TuFLmyutqEnzawytaPmxwDyzQ93pqpzLz
3mCtZj1EcMf5BoDVUodl/XTIur2jesumBlpSeFKA8KlsctavGiT6XW7susPWsqJlrvbRjOjq02t/
8wW9z/M6o/6/euruOi6kwC0TQOs6DfUO+5i0ix6fpL6oec5ybeeXiWHMFTOBN69e24h4UIojOZzl
E+ctHURHl1giHnzE2Bndj9VPIAqVlcvlGVa5BuHr5I3SsfvUi33rRBoJypFhB7O8cX2MaXf6J0BW
l6KsYvTIXXMvpI1Us7r8NqcWf85ss+Z9DuaaMxz8YKLCI+joq9I/paZIAqeJD+LzxknBUyIIqfAs
ZlJjuWxqUIa7bzyyEUa/xwNuF2BBbPlYGQRirkauNYR4CFE3/JH8kTEAkmighjR1OSsm+nRbqBpV
jHVZ72ng9B1CbUyDdaw4TFR5RsqWw0ZouSJVpHQRB9ytqYP2e69GGs28g2tsFMtZv1ViDlqc80UM
WMcRXH37hgZnVa6TwJWYiOkBMS74AkOfQdwRjYl984UI1sNOiYG7Ea9umIxmaNBcgfIqfGV2bKI/
023PV2k/ia6UKRDurv3eNdJxSNwY6WnX0l0OZP+qLX0PUdHv/Bg2md9ZxJ/ENSt3Bl5HshWIcHjV
TTdthxqdvuJDxfoH2n7AvuYCO+RbWK9FXnFJXMWmH32LNzrtxnwsE15YtS+YGo9sqSimJ0nFIbDw
4EKGGnWOgsDzfFi8IZa7aCmO6heT8QyhcIJK5ccebjUC67hq6ER+LDqlT6tjp4KSH8oH4AE0YrAs
VgnHAHbcU3wcKewXIYNnOcqXTtfr8ku9bOXAQJyfo6cL6xw67MZfG6dgif7CdliyxdIZnL50SgoB
f9BeCGxkmAuoPA7yufNOpi41aUZDzM5F0KGQ9LeIKjLH9JiHOwx1Ay8JgsDdlaAFLMntaXI/zARi
PNUx6og9T8vGrdr6A18rIdEslToNdvwEPJw9zUev6QsN/KbuFZYDf5zDANG/w0zTcdDsy0joVshf
Rqq2xj2L6jIaBH5tWq8pgakjvz4JSoQBd60mzBzmfg4xAcB0FvvQ07OSKuAHwgmSvoELIJaY5nZN
Yh0bWcRflTH0RbJh1hHj2ygh92prI63vtUNr47GbNmDJVnm/XpZbkvucuLsWKdq+dVUm1ZerpTqN
teAL827KHkENU3MtAsNFEBd1nWbWryqjmAYrNLjh9BIMIJREWMHCfsiG3H4q2jXc6DZ37wPqUm7w
yUXQ4znyXsPxVFgtXSA8/tjRIexcnhLWcWMLsyM1fYnJEfKAS+tVdMdZenYV+IyEDSt/YWyWMoVC
0ol385ZcRIw2QoBaQDqw1T4KjjsZRPTALHW9/tU5JiI6XDKAiW3wu+uLV7H9rLVOSd4uPQjymMMI
DRuB/1EPrvShIQBhHEKo9LopO9gJp3Zg84jNYaGER/Jw5mn3+YufGQXqTELK3tavoBrch0cYZtpq
aBfGcy8LooDzN7148+wwwMySccz3TGr3sFNZH3eJCI7kQy4zljplfZjE0lGBovAIpvIoqA2DzhX1
w/rD6ApAe4Y1QvUuDnUGPcNEOV7Z7hwMbFvbBVV1eG+cYR0ZKtqdHGdHorxyJVT7BBiQwiQWNB60
YbCs0ugbqXEDuzhk6QZdHC2btktwOY0Jya72i3QFJP8cVZBS5pfRzaA5d8S2mNskfSNh6Jx+kZy0
oMj4QOy5OO8/6TY8ZOWqD+hRKVJHf4zDQWbYZ2nsaC/gqqmzDZ0Izb9YCF28IiYT8jwlSv1336D/
lLgEnio8cfAYXfnA0op2s1dFESYpNNgDCWH79INGOJ29LoX8vXbjdt6wLpe8HjY+MZHs7Fbqppv3
meVe6mPVqGhP6a06YXciox3T0RB0uDn1VUrvqIvAtUfb946GavG7lot8iiMhG5HdXcSnmj2enHSQ
7mvC3UWKhpsTv5f6nkMaotPDMVIXdqYK63cxjMsPl/bzMMTG2sTwDTsjhcZ3Z+BiIKvYE5SkP8c/
pheNPAWlYUthOzBC4Q8zEp2F9RvGn4+UAlnE062b4ub4DjiIq6anjO0bOW7mYVl2B6481wlerLAU
3vxUztLp5DhoSB16bdTwLxQSlSfs2T/95e7RFCBuCY4ayh5hyBVrZMur38Nc3KVCuZoyukrCO5/j
wIz1AJl0IxibBu++u89TzBbg7dC6NcYQKcDGkOe8U9WEWdZeyZtZwMqKs9qkrChFBJ6UrxAviC/O
73LBwIi54KYBsoa0UV9jfgOTHHE7IKZIhq+mfImVbZaZgG5bpbNb0B+FQuEVYlcXpZAxOIFzArTm
pCd3HL0ufEDz048ZAayBlWxulRNfCDlZs7feyi7q9Mxv8PIlNLKskIUH7pcPf2Ji66spJlfZ/Hwj
G49UWi/xeuUvnD69reu9iIoX7TwqoI6CTaEt+uN4YkQlb53D/ZkAKdm+E7vfZDkioZMo84ltCoPP
ofk9B61de6OyRRlIeteBGPH/XyzLyXLPesh4k1ExiLFsx+U+R28KK8y/qU1haHz8nlCK769EZGWL
MggvcASicDdxFVnhPn0vc3vdRwFATWgc34QnsXqx2Rwb+nU3dGplsHFugmNh2Kfzy8BTlYAUkipf
Ck1b0WqOQ7QQBVVk27x9o9TYgbuNrIhzjeAyKjPROgT4mqlz2UcNqFnwxNaLI7/39LYm5xocgsQY
UfmDXxem4Kz3RwOgN0DQZWn+qTN81KvNpvgBPZ6tifNSh2VDkuaX0NZdZQty+RPMdRFHgNVALIEZ
DqdpxL1GE4Tt5rGRu+jpw40WlTDy1DRQWxr5VF4Rz9TnfdCqRQzxQavwVVnFcDkZnpbyzN23dXhE
JPctVT8utM8hOan+ewQsP/JkyoEOh+OqORmpgHNIjC65dXT4K2IJAY3oAvt2QvewWfOawkl3h44l
pcwffaXsAm5NZWLgn7QPa04Iy1lfh1tYyPo7/ahPP1OAGWrA1mesB95pl5yyp9xEZHvJfWF0Odam
+S7R3unThRxrQIyKrhtQnMCbfONN0mjgihWmmZlZCdUy6iZG83R6gz2tY1E7+IZLOIPLJv3Qmexm
BK7CBNnAQHP7WTjME+d+tQfEjmolXdPUdtIOpMkYFyNDBisQByXAiFvoszN0VMqzy1LmlS+rg93l
X73XiexKuUho8FGCmCbfeYqRh/AgMiYRVm0un3AA7yTLNk1PKxQdwyXS4nrATt5J/7iDTJ536jcp
gPQJ9BsaY7Ar0RuG4D7Hif9dXJOFiMIXLTcT3ia4JeMv5BTR8Mkr2phxSGMONvvaA6C/WlsBt/YX
Cqsc/XZo4DFJQkd3YOd6rxEPrs8KmmUdUTL6b3ETLPz0BzPabFMQDvTizSwkI/n7UnrLjf5b5VBj
sdUvGBTabARUMXS4XULHCzrh7p1ZPX9jUPVAXhQWOphUNb2sGEEdO1RfCKggtuRBy0IzH9Kbth0W
chL+ewwq81fKgQ75dAPQId1CPza4hcN9jz0iJLEqHAwNYv2Wa+Z8YE5DQswwrBCNLIRy5f2dbPBo
yeZdENnYPNWOpjNcCQgSPjfCWnoG/z504VfTz+OtK7NbFoaDOCg6QagXnNYnV8aYRdR2hFR+iGPC
0WRa2aZlrIcdqwOqRLqv9bgyRvPoAsmAcSMWmuFMXIgbagNs92gudTMmlR61pxCDHvhd4johOlt5
thCq4610hln8qbkfjyDBfSK49CNOv3AGoPDSrI0enRzJWxup+/5eNP3RVL1fhDZYEe0P/n1lqOXk
I4IgcOmyYZhL/fblaWKXOrQ1pv093NFbrEhMcboI9x98+jcS9LEEBgCto69WnGucVcYZMv35PgMN
9R4gEidbcoRgTpEtNZpKzHMt9yNLyXwylPXYrGhsYr8fnNsQFSikTdmBZgouMAL1nfBHNVnXUZZE
V5WKnCAGCWF8WPP5nJ0pYxSmmZpkSKlmEeD+OL7jwysZYQ+iB1dynZZcbPNZ9MKv6kGXiOwJlt8/
jzgjKgYEGVyCFWAz+z1fA3hh/OFRu64wfbX1ie372zmuHjND/hG0NQRpPr70yQm7+XYZQeyKYSWS
IGNPC5VSUis1p4d5l1m0FaHCn+k4rkkBk76WFqe8S6JWAinRyXTmSRrCHeVpPRFc9rUFKCTkSRwz
U93fNrfiJsQwDtnRElaZY5vt6wd0JUfmRQqg0iVpaJpp2f32xo4lcVQ7yR2etgC6PPNnnFeWPvNo
2KXuotFElYfYDyhJkFporMdwChlim0u+Yq7AMLAcQeH8qTvviPvZ5sQOiFpOL7TMp7ilDGxsDF/J
1B1o3eh/MXeBgXktcUsPYo0uLHSKckrRIQIvfYfy/N7y6jyUwPaZTJ2qz4dHWtOGZcQ3acehCqQ1
gv7kF8tYO6AAwO5wDx4Jb/++rSNWm6PCrVbT2rTae6BbKK1xddBs5i4wcKopUe4lhvh4ZByD4iek
I+6AxN7v5Pofp/Wo4rwmolcgoqyIxGRr77tiopma3SxzRP8s+fm6uN3/hAt58SaE7dSPkT/rDFhW
5VdCRx/tFEThWFKn5ciHKipdqZhSm23VXrqkifZ2KK11Ug+BW9aMKvhpLalUWiQwEYDHUZsJeVdN
uCHJHxh7PKKt13e6Iss38b0THmmYqV1qBOYIKhQWBDW7c+Z+LqEd/LOVHSr7nKOuRP2ZxqF5+hQb
T8lyvRmIvnSjoG3J8D0H45YK9LEDBO6jLzNUyt8EKo4pt80SZRbmy4rMky0TZxG4NArViU9snMJZ
c6rC8HE9ExYnGWMl55b3j1EVQBjSXn9f+X4Xq3anY+FQFChR/GjzobZdw5tW42CXY/TcuiKEB6BZ
ccswCbctODkt5RNahCuw4yka1DthfPYseG1kWAVMXMJDV4COUEXvuwXVDCel1tsDhcfspkIaiGZG
2XonxQpgO0UXYv6omngoC85endDlfBKESEvEJnrp6V6FpqkkHA0oPEG99y08iCHMYTV41C/hFWbl
OhAR0xjTtRezHnSd1CZapReseKBGQlJOCYCJwxmAQSCJS1ByhLJmr97zKYh0CGtWt+W8i1/jET5u
FMYpajP6Y8NC6/E1q2e3VRwH6up4aWGUugtsWlWAtSIw5O8fc9J1U1De0CCwHBYWx835gIz33L2Q
yCGppPM32/bxPOadT+vVXWB4c1x3mrivwL7Mltemm1Yu6Sra63IqgeDzRPRFVq2uO9la4gdqoow1
W0R1mlS9T+bTeZZ47Vxi5e2Wew8le/0d1T/1LrK+CH5CeVrX3T+SqY8+JBNvW5uh/9YeWt+ZsKNJ
4vj/wGqUZ1hgJp2miQQjs0pCOwpeagDwKTkiykuUm5A9KTtfM7iFeIaPSiD96/pWHqFVjrTCVcjl
QYT9/3yz/mXUx40D1hJmCSRJFPHdomgWqX37uagUydCp5bZmeWGfBGQSDFcYw0FyUY8UFfYPtEbu
z2RjqElwToPE84qdL6bM47GNpnXLGIO8x5105P/RcBpJTbH9eFwLG214sOBZtL5owhbA5Cn+EA/z
QdsBHSF8AmbtJuYgF0cNSQtZCzi8XRiuDX5qnQ6QBfBk4xt1rRn1aLq+1u2rApaDSleLQSFuEjiG
Vn/cdVOWBrncQikZy1PpDS9Sjzn6EW+9vM4OvDhts7n0bOlTpumlPKyluZW0Ib900lbNpSFeg8I2
o6ZKhTiwZF1WvR6BzBtWwCKXMw3JDmm+UZwmYmv4MqqDjrureA5Q87F6zgsBDGz/krmgWlUsDRo1
73KPLC7fniWnQIUNsy0t5gPHbILHFvXsXlQSqsWwebDArmoA0I8fS0XCn148Y0ALXkDG0IdXobNX
PgeiER26e/D4Qmd/BdSJxeZ8ewEryDukr6RjzPPk2B7FuhnD0/XrI6ap32QMn8goMwPAukvQaeEe
9n6RlsibXNGUlw6xR3mM0qCH9j9/k+j4jUkBAlKzwIzgRA2mYp+JdWkCgPgg2FQKqPLGpDcJMqGR
HmyFJsudjeo6b3alrTaFZY+dBPwd1S1UezNDZuXeQdHQf0U/eszsEZsxFBZJxOEPUkhFily+unfJ
jQJ4r4FHg7AOEmWJ6zoJNQU3/PjTjvxYPJss5gZD3TQvlXqezliH69GK/gcXy+JwmP90An/p1ONq
Yxcp8jLysBr78kS65FxM1P6KPgsTxg6cQYA9KPDVzCcw/jsUemnNEGfgcT2FTHLeb8GfTrGSYm1H
QQGSHo/fS54DcEANrdcYmROjmwa5HaGn2mUsr2kroPW5LPCHMX006yxAzM6eMSILKWpku5B6byCh
8YOqmv7Zh7L2AlNJBFFsicw5B7vmWsPkXMyrRmG2oX6Ase586ct6hkRXSRZndjW/2c6ho1E1dX/q
r+cPNIuMZa04y+2hw3ARuqfU+oPGdfx+uWEbGxkFkl3RrCJ/uwCFPi57GfOT87Yu7LwFCf7Uk0Lw
49VMbhdegddBNAKe7rtU0JuLZci1gqXKl63T8PWHgZmSRqqRAfMxGl7J8UXMt2tWtGYwRq/79Zkc
X1XD/zoFDyirT8rrTovLK7jpKEtrSOT6nQALBmVjX95Eq9Gk8m6JdzyN57Iyv8fGESD/ti24tu3M
Q+OyTli8li+iC/EN9ihKEbbrpDrB+9AIiiTS30+XxNJZz52+/gqZy4/ZDr80jPLNSCwOrw3vjjoy
MsvL7IZRueAoHs08IeXhTNLsib373yL/j2DAAueo4VlC4bezCnDDQ4mX2Y4P/+4lXsEoWmmvoXOp
E46cfW++w1uekkunNw/yvjfJH/SuLEntPh+uE3Jfwy0JddCJD356xqUE34OLqCLYydRIVGfZjodf
NC5RUtZDPcS+Q4HWL4wdUOOn5hVDgbjArx/c6bR3Ilaj0/MWWQOH/SzhEceq5Kc0IFxreYgBtVpD
kN7a9oKzxAl653XlyXPZ2D7nRmSrlvkg1T3SuQdEpUE/ZgkXMP00/LK3O+y0n+4Yj5YZkW4wEHpl
x36ZPJu/zshxAWeCAblyDIdVsuW9PkxhxHhNzAkxnpVudSuyMBlHvD4DLEVRPPtu5WGsqCZ/IS/5
KrnYt8Dz8b6V/r2bT9C0cnY9aRSJVO3/bAnp5cFo3/fo7GAJArJsUO/HLMdPK5W1y3t3CDdljY2E
GIAYE/OMjWZTd38wjOw/y9jKNBCtGR/sBFgfitb11KPG4h7gtSqO9VxZ1wXw9Q97YhNjQm0c5Xfe
z9oZ1eosYk6qhHUKZW5kc3RyZWFtCmVuZG9iagozNzMgMCBvYmoKPDwKL0xlbmd0aDEgNzI3Ci9M
ZW5ndGgyIDE5NDY5Ci9MZW5ndGgzIDAKL0xlbmd0aCAyMDA1MSAgICAgCi9GaWx0ZXIgL0ZsYXRl
RGVjb2RlCj4+CnN0cmVhbQp42my5c3Rm39ItHNsdo/PEtm3bdp7YTse2kw47tq2Obdu27dzfOeee
937vGN/Y/9SqmmvUrLlqjL3XLjIicXs7F1VPByATHRM9IzdARVxYk4mZkRHASM8CR0Ym4gQ0crG0
txM1cgFyAzSApgAVoAOAiRnwD4QJjgwgYu/g6WRpbuECoDSh+rcToG5jZGppa+kEULe3sXezNLEA
8Lq5uQm6ObvSO7ny0/+zSQUIBLhYAAFmljZAgIiCopaUvASAUkJeDSABtAM6GdkAFF2NbSxNALKW
JkA7ZyAVwMzeCWDznwXAxN7O1PJfnJzp/03Azg3o5PIPMTMne1uAnJiqkLiCvCpATIRBVQRgZGcK
kJX8Z7udizP3P2igibHHv6qjBbj8j2Vj9D+W8f9Y/xN18viPRQ/HxAQwtTRxARgDzS3t4Bj+pZuU
nZk9gP0/blNXh/+G/iHk/A8/AOU/GlIBTIFm/6BdbWzkjWyBAEoRe1sHVxegE0DO3hToZAcQtrcx
BYh5uADtTIGm/0Ub2VraeP7/4v8vQsrF6B89hOzM/1GQ8T8uS2dxSw+gqaKlyz+SmxnZ/CPVv/0a
wP+cz78S/Wf3P6kA/5yrqb2djef/TfhPMf9Ox6Ckri4kr0nzP23w77CYnYm9qaWdOUDF5R9FjZxM
/8fx77CikeV/eui/VP7bUwCm/7eWM3JxsvQA6DDS/6tJGP/1/NfS+38oYWF7Dy86ZmYWAB0LEzuA
iZ2LFcDFzObzv+iauDo5Ae1c/i37P7X8d/3vdgICPYAmcKtL9iY8wVapzaFlvmIFM+WQNDNThmo0
S0ygy5Nd1zqolgMWpgYHl7h3qri57ggE0wHGfDsX21J3TcRGcUCEo/GJaKJwvSXclyKScnPf6s03
pbzXunD9Kwh1HFsTeYjriFuX9LXVQEXqCdbM7LNqaccSPlQJpmjD0vZeSJSt+JX5BzsJKj0KtAzt
LwTgHk0VyoxFSP6VscDL7ipYWG7QDsI1GY6BRX5ZgMNBmHbu3oNRO+bZOnMwjS3IsH0ki1Z7W9Zk
MX+FGOh3+LbszupGDjSechg5G9Hv2ZWIy8371iqcXO00Il1c6tvTqOI5ff5TUi11GczskwRdWW73
Pdwlki0ZjzzWi3TnkTDldhMzIBWxZXUKh8SooU6qZZ6+Y7Y/uzx7rPjIxxEo2uzj2181qxVWQQJj
ReUcbrz2EvNk01aNBxcbzR2R1ciad6Id9igmlDLU1xgEPMxii5WGKSA5XMlpwRtzmYpUTWRVXTWw
Ry86KA/uL9BYfdhb+ODgeItu8sFrmg8qBl2TdQKvDKB02tIYZ4WtpPiboS3iB58kzHRwvwXfXS1s
QkffxHzxNwFfoSNO5f6hy7qsDPsu7ke+ZYwaCnXRvFBnqKpQlCDrgQQvme2UAHxuh228Xc7PtJ9f
iYw81Nnl0a5yiHsrs9Vhkd0yQXpUPJ5519DkHbaxn1lLJJZ1+vhNbiYaNK/DtLPpvHoQFrm9WzbB
Yx8Y+kGDwl1saiH7ULK76TepInuVO16cZVipqXKgfxhNesLDrbN5sDn2NxeYbxoi5epcMVkOSd1q
mW1B15aZqpyWbnLh3uX73uFRtYw5j4t/QarwBMYrEFwHpQiS7Lk9dFjkXjpwCbQEwQfgQeDQOmZH
M02bfFismTOwEP5u4nLjWYo2VnKJ4dZVcrQwa031iT26bZWQqFS+iWkgICc6DSgBcgeMS2gQb3ik
7n+Cq/2qouF9Ca+E0pE7yJoPyHndUf7BbWyvOb+V1fGyKo0rcOVKv9AhRHZAftTTGt/yp5d0yJcV
p8um4+AXnOl+G+9ueiDZ3t/ajBaYzgzsEV30+wCqvA1zEIfCSBlzZ4JxQjpsJH7WiVQliDE/kdA5
N0fz3Xr1l6Q904uomANi8fA359QZYm+boi30Gh1oIjPpNKx6aKhUtLi/M0VGnFsSSG7fQUg2R4Kt
GrJn9zqQCENYKcxa8hTsjLaBpWHXMjQA/03tDBg5chIjpLwxtiG7La9ZeO6iD7MZMxeKfVEzcNzv
wtU0qyPUsvwW92kO+dGTqrPGVp9yjdWdIenGQJzLuuBjUZXODcdmWgo3C1eQADPWuSMrUUBmC+xq
y+szoIR6aa1I4vnyvaj/QmpV3ma/3IuqYNmBG9WeMKbBL1lyiUiLUT4fzmgTLnwyHwfOW160lu/r
1LzIfMNbGnM2SQddf0GuQMyle411UiUpLdWBFAyj0wJKqSwCL3pGEHcew4rbzjV16SgDNsumKkqG
l3cUilwoCvq7AFGG5yxnCbQ0DzY3wIRMFIicaJ/Q0ipPHCY2+dkh1VRU9RyzxQa2+ZUEKg0miE2W
qtCFgCVM43j7Kn6oxIfco8zmu3NkEW4KVgI1II/A6wAB9ettnBRDhI/3g4jW8lD+Altlum2BbTwT
nNMWW4vc32VIik4AXgIjNEWewqNcGqnp9aB7v5Ed8mEx80VxcQi3/ruQYcwRFj3IfEG+qWZJ+nkm
VkjAWdtnrvm5hqwMhfHPHS77U9DrPpfw9pj5tJHassfjusgk5shN7stYD0ByVDIHXGnpbaYBW03X
siso053yextRqf7FJf9YWscspTdALlLK2NoD7j640UjGv+QD7TW0taETs6jPx0SGgA7x2zZiEqM9
We27BI0RA199JMz0rfqd/nXc+gKBeNZ0wbrpbQ0hyx1sWa9prTHuylHL7W4QMwIJp4GDQjSehhJ5
UNIWpMitKjjTJTjgT4Npymtm0S+w0MK3X6qNZ+O+iSigL+HEAcDk/GwkzPfKrNfvE3jealt2Y/LA
Z8qJHOlYaZE+aLZyAVSC2yJMJxGZnLp2Tj1P5+y+IPF9ZIu3Thimt9Boj0fXHTbHWVA8pMmEaovS
sKdTx7wTNOQG8M19uHi4fPegAd1LLqT2pZVE9Dja/KezTLNS4V0i5dBjbVozqQ+Asv818VFHtuJS
Vu+w4zXb96Ce7mNiQa5Y0P3wdgTtvednrABhlsmfUORMwYqRPyp9jwJol8PIa/x7dadvReFYjYVt
LvG+VmYylPnVH1Qul2o2FSvOvoxcJEerSnOVnwiQmj1OTCkwWRMvyBYXFFqAu18Uy4nBWd07dLwm
Mg9zngFEWmDCUxzibS9lsaK2E66LsIsGWCidhrWlw5moatWvzNS5Hl5uzvT+FLb9XKuzVLVO34MZ
IEXUUZL3nISiLoaNryx9xr5nfzfo6953IbHZqa9nBCIjGSy8s5BI9IRywDsRdjtmDza6Lr5kL2Rj
+AaYAn/oKqoQveGdv2JmxuiZu4OGMyTMHuJN7i4xwAOfb13Ot+JnLws1oahPshInZ32/6JygZImJ
77HiFS1pJ5AnIoIep9Eaq/avb4hYSex5f6Z+XjJw1GPcwvziQbF1zNFhy7hdnZHSuNo1n4NkhmxH
/6mQ2l6JfzgHy7Qjb0KRB/74A+0yN5ZioPs6g1N1DxAus3wEoChO3e0/TBJQpLRUvJA/8Sg9hNc5
SXs6gRFJ/hVxMyFyPg4W5l6eG1s1N4p/hyBd0cUZFFLj+znEZoQ7AItfApnUdSuBIQRCDZ1mnNTm
rw4rlu0Atg3eEKTqepPEtfJM4VRY3TXAzrdGtR4wxwoRS5GlYXd8wZ86nGhA2pK74iON7h3nra6F
V6R6recRsmJSS91bkvyjUQUImkhEgPgnfwftwvvPHlBMCnYcXs+fbkAx7eKJM16GrmTwPupviwxJ
J15tN6ETQ7vw4TYf0kPW6JBVUs3sCTyqs3KSU6EkvwvkmkmtgRguaFlSsym60uNAwnYu5ejtuDnb
fN9a7Y8GF6dL30wN6rIdC65Zy2Kmp+r1RnMI406vTjVYvMTaJ4cgqT51/0vbamI3vLZ0Jg3f8ajZ
z/HTiGaQZtGuB5OVW7KF5J8l0LGewd1XjQujaT25BJr23z168/buMVGVB8A/1U78FXR4OQxYuR6P
BoObCz7MU7yj4Ilv1vzTT2UaSHt/dNTRQSto73YSNvEv/JsKK/0lD8ZZL/Dj6fnYOupNHrdUfizC
sgplLCne68czzPyNaDqw/OyQZDrVpBZjZCtHYL3VFWKQ7QfRNOstbzwzYfrRKYgRcy9aqp3LSLPc
pOT5KolnKsgkffWmqnFUb4RCE1owNrw/Bz2hQbmkE2oimRxTDMdgbz49Nc70wwvR3+v9edILfeVM
GXbScnCmDmDMs1av15ZygyHCYaxd0dTNnrz/bcGJpk7LtYBo8hPec4tTt+nAyPcYW21KxpqnFKTT
AnbRUmsph4OPprOnSi6wjKUGRplYy5H84EuFBKRfCEYeDzdFJVMvmKVJGlkc0YEB+OjspjMgtMBW
uTKgqMMZX+n2Hbyz1ZotVEvE3pG61zjbyjBTjrfxvq3lpLWnU5Kzl16AkP/xNQSq/xcOwxJjCqyI
yall7pto3llqB437PWcIG71ONukZeukUjuIsJ04non8+S3uaTzyFRio7wk6LLXOCnWr0+2x81Ncg
OEZ2Mz0+MUBeMAVNcnmIvNwwgItg8aZ8bpN1jtx3x4KOclVzzaCZDlXwFFJuw7bhMwFFb5IqFVPX
ULJ1d+wDHgxjTw33wFZbFo5R3OxgRfQuJm+EBqGAWDw9/9bUNT2bwOUt0vkOgUwQl/qbgnsUfhhg
3PA9MhmmhbGhSVjlLPrCHkpsxWM1pNHclj4tQEXxanSiS0kR9OSK+CAjT0T12gf/qPIkXdIBz8c5
2U2sOYJQjB7yl+L6vIneYGPPnbqU0S070MvavGi3JOP7OWLBOdu1/24zsspFbnclJz96Q7eXeJhT
fGFCk/KZcNno2NEACdmDilWKR0IGQiDBuD9bylGLaP93OUHk3CL2z6mUzHy+dxFzbiSheFKZYFJc
P2WpKMivlPJyECKneW+uxzda2HYtaK2NwZaN+gzumIMGAzCyKZBxLScx/WUi4977HVvDcMykgREr
O5s8ULlCh1Fs9XJDFVTRPKHj5XEB0uHpSoRRRaJtoSdjKCOryVN4GaeBu807+LoO1tMLX4y2cp5W
Hi3iOHlK9h7t8ng1cUwBxJR+x3Jzpkxj45s0Jm4rPHwiB4Moq6E+lVPc+g+sn/oXiWD9M7QZtM8E
yu/Sz0lsRNP4XF3IqqpsX/DTg7rHaLvXDVAhXw4+gpp+mPeNqFsHR5VS7RVzW03rS5W4Bq9AsiKV
xem9nmiJGz2OQTaGD5N9xS/4B8i5wnDqaMez3dZkeYak4HOBT2VUbujG2015CBrT8o3DDguoLJ/K
Oecm+L5fL/tB5CVc+wBtRsTprPLtyPvdKaNuCXaXIoQj04EM374BLjNE/GxTcUhqweqtvbdFyf3q
k4ZXv3ItyADm3bOTkgewg7RVQpGXNjKM9wHmpc9EvdaiLtEdkBetpcDrY9F1SLTzKgUidbopwO9d
PW8+Dxyttbo7RGYE0xT8BkcO1YULs6bbV2R4lDbXxueQSWvzZ46oXaLY4okW67bF9PLm1ryyvVfI
cmjbPO17/31kFv50gxkuIIJdHuqZDNGSoFvKc+fHw/YhkQa+VTysbP2PAZQBSLAue5W8UuHB9IWj
zu+qlm+Gsr5z96Wp5jsws1sUNN7qEC9m5fXFbl9NLurPBrUvlW6IEI00+YmvsaK1z1TUcLGwqgMX
tfQXCELZEW4WiFReTmhjiTCJuEpeZ82v35b32hWeSeKJsuO15WSlL6lF84JD7DhT/oskbgVHSitS
LQ3dG3ijz5v9Xu93DMMTbnN/2kH1HP0AvlS6JRqKmLpyuZFS7yJ6Itnl7yO8g42GVoc/rztVVgz1
vkt/+RorMhzWAQWuJZTeu+TYsjx2Pf1O4mvwOzPVjNsWI0Hv05C8L+fEg50k8bcRILTQZsxKu4El
HF+mkxqg1suxkjXhWz+ZMdTTyxjhLOe69pJuhgN/pvE3oCq1HInK0jle3WEPnOO6ciVV/2rcRxCU
lHQMWQbSXZd96jApW3IiDkGz2gvpia1cI24XtBdgIAcvnCF5GyFmmW5UZJOmdRvaE3dSi+grjoB2
fG+HC8HrEQ1Mjel55kuV82GePSH6QA/OM29IMHq4uXf+Xfk5TtDooOmvYtGlV3khAmuhRVzWUUlG
jyz9hoR3wvr8l+CxKKuUiLyyyM8qyBomNOoD3NTIgkH6wRV71un0RyOAmhHjNPzW7lOELQBR0fgg
FL6cZDL4zwGb2oCLBpSA4B8o/erVr4FYHIbdSRsvA/dzCTuqRtyFiOt8EQ/+FdFctYbiUThuJ/2r
SmVZ+LU6W5fWl7uY+6u8IiRLnLHDMYfdP33Odgj0/v0jFNjpks/Y1QKcnPcwTWh9VQfb/HyZm0qY
3tylLS1bVzSNeqKhf8KXlHqG+oXUsdacdLnvSjXY0jlzhO3k26ftXWYYKVPXUAfQJ6kgLrNoZi2H
DdqliSpnBvdZydUqlsv0WY9+2N6zsefmwHAcFUasVloRitsB3DBQ3BGpoeaz86q94+U0AVq1/cPB
G3o+mDoVoLiLFHtEkMgcclcRgqTA+KlfcGXlXHo6yUnUSSWttw2DClFY0tmUTTr97J4CsWmanFih
bZv1BIaC6iW2wxshRBDs2hnRJXllEs4duLlTvRHSSYbxXcG+uOp4N+aWXxcNHv80WEWgNxdBCGIl
ZzUqxhlzXQzp25qdGLywDPlYtI2jIf2Wdf3EHpvKX6yXGsNECjGOgor1uvSfcn9OLzXM+1EHO4yq
FUbjGZv/ubx68v9hjszaqfDVNC6ru807IEGQhgNJn2/E2PxNvYQvj1d8eeaOy6kcQF8L9cX0e8Mz
+b7qPAYWcPQ2vXr+IYbl6hUzkKhp1PiNE9EOcWGChM16nOZ8xg8v0d+OhZg1JA/3TLWewektR1JS
+Ciyh1OKk2rHo+uJQAbCOCyrMRdQEfaF+foh4+HA+6ZZjsVxzWlVsyahoxTImDutetPuEdk3Wyp0
zwvZxP4i5T3G6mau1JgiqqbOWiIekJe4t0dTBUlOsF/Qrj/7kCcl3Qoev1fso483RK6u5MrqveLE
rWKr8mzPqIZBMOGRj0JLPre/gTh3/60rjx4EjrDARLYRePpJAhawd5X2VggCm+keDGpZhdmhrMOW
hHhJta8G/fOxfATGLODJOnkXhVTTVMeIYzZHixzldQ7ZoFDf3+oiitrzPttFGO5MoFAjv4lhCZ3j
KGgexjswJSIZDQfMiu0mlOYOk9IhOi2vC0EdLaIQMcZ71eVb23/PjTDcFG/SmZWMytFBcy2t2ahV
JVirMnWFiEYXvqLYYAf4mRbL0rKKyNMv+Q0K+BKA9+hS2Bmp9cNtIRPFzdy7kiTslIOEGVwQ2Tp+
jowyxo/Q//qNb5yu96OzS44OveT0yRkn5+eRToERBQ2exNpO2o/fEJHas08m73Qe31WEYQyMgL4R
S7N+K4IDr64umqxQkkJW/BZ26hzgZG9A9WPUtg//JtZQQsoiVcAbhDtc6nI7aIRjTqkHOKkxuNkd
cr6OLM72U191aFqR0e1OsHdyoSYOMFe+eaqFC0y5LEJjAOUVK0WADT9YKd0PJGhuS5hbz68y+3uX
zUe43qPmUH0Wyo8OM7PXUkvizxDZGoXLeHACvTikK2c+epv9wGxVwQb5sm9Zx4XjLchqq55BqLdc
zoarkJrH72JNTcvJ83sgQ88PpcQfVKLQ+H3lY/eyTs6MnwriyLGkr5RVzGQx/7z6PU6RMcTrTYXD
IN7OqQDc8KiApxkWJPitcLfpy5RkmQO8VTkXOiIO6JRAEmsHmoGcMKwKkjxIvH18VoqmgdBN7ASG
5XlToHJJ+JXdxlUlTB4OFQ3G8fPTGagCN43eQT6xxEnUwoDW70oqTmIa18qGh7Rcwk3f/Z4BbLyJ
ri//BfYUJVkJ6uFYS58XLuLznGdIxXgTdk0Ys22d/Lz91/xHPCF7R7H7t2og4v4QhmVsvx6LgeGU
PiKK9Uzeze6PMxeYLSwKJDgbhoif6xR5bOlwZeztl2g822ECesxpJsqqGTz5ntmvXrEnbVbKywh0
PMniRxsd6AmV3yrbKpm7UtC1lcQFyMI+UGipIwpWlpYV03R7EK3dhMMztrztn3stL0sswb6Xylz0
r44oqexG1ODZM2TLq67i55vi3DhVbutnynyIonYdavAGy7hqHyX6PbBwMst+vdBg/ITKFBn7pmeQ
fHxxJxI6Yb2BxCjUR6EhedlaM3EKxLruSILSMnQGeZRRQWFtbiOuTbBU879t0phDEdsa0Vho3vTG
08tcf72HesXjjxSD6R/tUmdcUiCCE4IZ1rG3kbPYMLt4xLxf51YIC9HFmG/RzlIlQflTr4vC5OMK
5e9kH/WEDd5HRAGFjPr7zxuA+oeaoVvO0nldu27sCH8kqDoS048Ko0crfjeL8qSe7tq4I36nj8fA
Xouq9pfWU4f4+XWbtSRzDqMqT4eBKpITj5BXkZ/fEan10AXZGO3Ud7PLqnWIIE4H9Y97rb/5pgbr
T8feNxfM8go+g3CuYnMpAMY8ZOyjs+Gd6mdIkZ4aUZZFcD2nMjZxbPNiEmtEAViOCtyu7qGKZDQe
CEsZ/jqPdgkCR0yir8MYSZUp/q1+8oq/y6vdB4hUoUod9sJaGuI0kWWzVEpn5mYdAs3b18D0apGf
83I/DH/wrBl5ebHouC8vLzOLtA1BmCSIjROizzEI/q2bP815MeSAP/pcWQVRm2+gO+aGbpZkKzkR
Tkow0B7dY8QMffF0I6WiMv9Fk4RwMmkcIkcv9i4jAdFgrsku5IwiMq3ZnArJowUG74FxcVQhBo0n
NYHkzh+HLI9fgggTMbNDhs/lcyyusf8Y01KFkRbQyQ5XNm1hYXCcFhThpsiWnt6/yJJ3HzA49LIQ
R4fvAY4bmUxXJ+Inms893FKKknXG52ojb0WJ2SdntWXV3pvfdu8oHSuGgafH9Lfc7LLNDiL1xV0i
brwZ9i7LtEAZMzHb3y5B0W5PYLClf6jpijIYKpQzDZSI4Omwl0r3pcblBKWqQcuCu9U6Rg1W3QQ+
181ChrYmjiXMja0Kg1yWxcOlL9Zxx/GV+Lum27FroB1LyHX/+AR2fhXe2Vs5EWtaE0vwcrLWK/X3
mqarfe4yA21H8Dd5QPKuDmr2IRkq+KG5SEjWt4DmoDgLhve8dW8GZUYyI03953vGmQtKheXNrGeg
49V447eldkXrE5XzV2/THAWmfVFbH794C1v8hydRKPS5HPGeq3QEGPsPwLIKrpTVwSWygGqEdMHQ
w0El+6XQSVxaIKvbx3wgl1p/dZ9YIa1Eu2g+hfOyse+ySijbiVzIOX+XJ3LIR1gmTcLGYGtlgq02
9PTwn4i0shZT/e58lt2cKZpBqj/Zj3ATL4YPi4fCFt9YzrAMWhaCig9Lrgp4ZggOqli7bnQ+tNc3
tMytbfh9rPOWaoyKXLHRjlfc1y1J9aWW2+OnCRIxQWQodz3UBR5ZHnlT95Z/CIW6zCVeTaMCBzZy
+jI213/IHzIE329/8ET8RVnb+uDpJxCoyDp/yW/ImTmjat0Kzjtvp6B1WyEVMCHqZ8BwnMtWXWtU
Lhv02sOUZhoMFCydtsc1mip5S6RQzw6ElWVatRFfc318x4C+mGNF5uPaitjdm0nH5jfbDvF1YjnN
QVOPlF2sx00LdXuQqUg09wo7XZKaOcFxdOYDYTg+paSyvqCINKNeyShST0aY4TZ4eBW/7NXkBrOa
Rfhdly1jDVX+oA8x8DmtypWGsIKELwfenjfmsCLW8wiqUIIgqot8adMRnjjMdnMsE1JDSCf+BCNl
QKIzo74MSznwrDiaIqqf3+FyoVrZbs6YthHJTBUfNaNBXhaEZ1IO7au5PqFkOW9aFoIsJQzskyVb
7zWsq4fiMZ39fCZZ/zo6rK+I4U3rsqcbxc/Z+CWLeS/K2Yz11SGxlNoL3u51fwhRFTrmcT3Itmbv
Z7BGotGI7OEfJnA4sJSwJChR5Bq5nuSziboEiwKGUSLw+/uMXmLu2C/xW+eJQ5M789fS7GFn8Vyv
W4tJ6brpz/lxsnWuVs8r8cH2rDBHYrdYuK7gggfb02Y0bG+f49eh93fQhJxxmskNDCfvTuUUdHW8
qdS5YIv87nfU3mb8uJbPpJQdLDZEztEG+GL1ne89ZgrW2ezJQ2hGXcwEV1w9aLEzSPNIFfm/9ViP
jQMHWguuoZFiBpm1xf5kKPP3a1yD9y80t1JMbY9tYa8afyAyajkJJ4nf3EG/7ubRzUr0sFFZFWGQ
e9bnivVHdA2n48uYFmySsfhQfORznjW6/DCrcvAkfTq8LkYtm4L9Z+u/4mJ/nx8jVZkYt60S+xz0
XqAXniscFPBjOi3LlioQCBr437WZXmpEFdRe9grAAy/A72Lg1V4+yAvZdhmVsuOdnsecAdc9rQs2
LVC0bfkfCUR7jgsTO30Vw18T4kwHkhjrsx7jdo9SPPKOvDO7jtiNth4a7yyqkr02XP4lxr38/b5s
tViI3OpunIQvu73Get3guH9T16BDxDmlEpEzoHngKayn/r//jWEIH1jyC/OaMPs13ONtiQEsNMw6
xYrI/lBG299tbbbULS+qNcW9RsQkjL7tHMdLvzp3MCYDuWej/ohZwKGoT/9damhDUjYq/t93QgNl
52zzqixvGDYgHrAWPYlxfKIHjoObhIpGZvFCyrLsmoWgKLs55grwohIv4KqFWgbytXSVgMGG8z3O
Q+U9w4WSGhsoGLrVJV4u2mmwZfjQzOdkMXUvZIXUt0FB+nExHZdaGrk6jRZa8HksVfM2mvj+ZkT8
7m5hKhJrh29to8WbWgKXYQdjo+ml7mwV33BrC5c9FAdjYulH7jGwjszO8b0+3v63EBV+ojdMjBCi
J0nwzBG7TBTusDGXJucbG5c7KB2rJKkcdd/Qg3k2GTrTikMZ9oy2jwcK+S6EhwGnITSrZIzOh54z
pZ3lsLYKRIGTB33NdzOYA3wAYAPRMkipbkzjq/2ATaSIDoUvqE8Yapg071dDghaWkbFKJJUR1lOF
SWs5H+xY4PLpm+/kc/MTedyew9mmzQRzH6+a54QJkDHa3jYhsPeVwbP80KhfY6epG5A5wJfstCLr
yJOXflTK8yVbLphA7mbqyorM6SwZJokkaeL6bWitY2HntQF8T73n4cmtBBoOsv9rPkQ/7yNRXznL
k5PWPHcok1mtEIn+YH9pfeaF6xQRvqGGqQzUM1pQYSNj4tAvtjsks8kp/+XZ9wD4IwRtc+N/hHZu
OrCBqbM0JCv6IC2SSajm6LZw3Am6XNAHTSeFTQLSrww5O9NF1ehwK6gk53O9o9JnAVR69SosTDzZ
6TOlwBOjBD2uFPm6fbCOP6qV8pWWyz3/I8gInkrIXRDOLlhRY+1uf0VIWrUoGdhrYuTlvqQnzD+N
SL9aqb6g91RW+IYMp9vguq5HTNwONALtB6GPw7u6Dnt1c53FKXEG/0ATklAcnQwAn74vrKK95MLO
Ycb1xI4oWIGDhYqLeZ4+jqwWt6JzYY1P4VdT147o42raguXHkMVfoxW8TuAohjfi6ezKNsV0fPkR
rKJHQtpmGOTFDA1NIX3RKFlOpaVnhHdYKuj5C8N4GYKSNwcOCzs5L310ZNedObxaoq7AAMnvleDC
u4ZM+xleEia8n63tfBMdS9mkZ2+QoXEVPc7l792Ueg36rr7OFtRfktaAJ69g600peJyq0CBEVIox
fm04XsP05vn6GQFjklLkZ/FbEwimvtBRkFLOSicoFr7Xyg4UWRs/vMYGsWCMvRGWuA1HBGhDbV/e
W7etEopu/QCl4LKclwA1J5AROD8FCclHO2iiAO65/LCbZLeLdSyLKJFMbkd8ul5FxH2/LoUNmh6W
38JjqeAa7/kRTxC8iFROetrXmu8G4CgnOcFYn7a4dhfABTSmKphYowCd3MUIpWAmNAhxdJbMiogV
GsOs834m/W0K6CC3iXCAycgt3F1blJoJHu5MJ67cL5pNaqw7dlPfI4W9tYVNrlfuGp9l7uZnTFyh
rhJ/yy76vzbX7QasDq5Tcsm8x7+aydh4ZgQ5ye1BIP+S9YpCZ2RDza4XvJrZuk9vXAqtQuomaURE
ghh1PZL35wSAOPtXsCnaZgvaExFgVLwvvXNE6Igev1YiEts6vkTvJNb70ZtLxdqF6xpDL8vrqEv3
+YKCaD/TpiA3Pxw8HSM8pKJ2H2fh3giaCdooS2cKFIhw4ym4zcL/iIZdmJdhHKPuxwkOWMbwABJ+
WZF8hFA9YNf9yhgXKDeqXqP4qfMuFZcYG37qBUaaqz/FhUtTRr0oOgfeomNufYOk2Y/GSBR/HHAc
UgPRErKxVDyS2ObVOj4WlsYTtZF3Ow6jXEk0w+RmNZ7u6NLqQCuurdpw2j9d0z0rGY9kks1gDmis
vhOEc0G9Xe12S69L3sBeuP87gErFZWyoK/ZzrUHPJlLFpwmMF4+pfwD4HdPFJmJXTeLMM+5py7YC
PfIj5f7PnxPfwX6qRaK6xYI/B1gxeG9yucDQ0uUJWiDUXoCuhzdHodBvRUeLfeTQdh3KOKwFmqci
vwGgdFEiOt5hlWl13wHalb4l/gtnFFr60Qh/GuwCKs5SReTY55YXI6dAXlHTDfyERJU6VTxmQozd
MsQtSbK8Q3luuu34XdLrWdPRiYp2ehXeuOI9WPEJ8EHMP9gA5synRe35acpYyifZDOxENUNgbJ+E
l2JOrpZTS9gHgensQyU+LonDcHt7K2GxEfvyXDiTf3HPzcGihu+q8WX2BIcmqT7Dg6xirbC8MFgW
14ynG1vojP7uKNHVcnwSozeCJopTm8ARMaYHu4X5p0nZRZJDRsUGQj83I64sg4ug57P7TPZC8RtH
uEBteFLTnriu0fjTOKcQZoVBDkInb0Vbfd445Be5M2dXo45bzAQ6imuLxFMTew6r6SDEkTF8CFHb
1ywJ7IElfx5iOeQOSU2a84cDU6PuakhSTLHW7A/T7b1HNz/S1PiFwvrfeMCQ/o4wpbYuCVEoZuKC
h4o9mGfR0sFuzeGien1SgjTw65Twvjy1likhDr2OQD6zGM64ryBMOc0cZM86TbwOt0DUbGNHOjox
OC3fcvQ33IAX6eiFQtIgI8P7hoovEcMUPQueB19JkR/0BLlM81lFgR70lzDwpmlZJA3N0cwrGY1J
97VY279TjYqGWfgjqZ5CcS5To5akvx+C3YxD38ZDLNh2T57b0IoojkdjbUYxh6xxIbpzf3yEzw+t
Nzlvh3dJ/4mJ9kKyZvKW18irGegBtQGaSK9ISpvzHwVhinfgQFlKnZug50KdzRq6cr/v9oA9mnS3
oh2AmOEKge6sekpSJNsiCW6i9Ixz6b3LDWG+pL+o3s76hsNzqvfssP21f1MHJIe4J1AjKSMyuizF
Ob6KVDmkHYRI9RMDKDFuI2o4B/7E0jv+FIc9zYRGXZXzXU/CsVyAV33Sjz1+Ksnk0zaCOA58ncXt
CtmO3dCaJJQ8ivGHTMC4Uy/QOv8j5MRLWoI3u3nzTKZF3kHtWMcJU6/9GpaAg/ebztht1xzXnu0V
14ZPA3Pwu98byaDKlCa+xMyvZSC4sjqe9vQuDTJYEb1M0wnt416h9A6Dl6MW4QuzG8LOsqe+Pco4
QG4Wvncv3O16iR41zEwZcLM8LCP4Yp34COe7Z+PR7sEPMbHZSv188reXmuSuF9vilZNKKXoFQUr1
8aPGGNOF6rNNOQe6RA7jhuyPL2pbjo8Cg2ZJI+jTcjYEq3nzGQMAStSLuk1TIJc25ef1M+KMk0vr
lHMWyqUAw/Imk5PSrHamJjSNIcK0u1K+YDEmNHfOT1Zy6imxkIWPO1i8jFbYhIl7xiPI1PrzXsfq
IV1p2zcAUH1OwJJp548iT9n5v8ZsjCWjzRuzU9qBot/HevbqEeAEnxpeyA3xY990q1AsSj8ybyPq
CEc7gElFG08x53FBb217qMF1bwNiCaRODCthZZrBzKfU7U7ymvA5eT/H4omriXjeJzs3O6u2vrt+
cmOXPFt9mwnUjqNkhqj5SGnPass8VJK6SSi+80oy66oxoE+1Cq9GxzFApBpLELFUDF86RbpgaaB5
BYs5tAdAaT0dVhCR4JdHfk1XUzxk28MpV153VDqtyZSelTdCdEgpOqFJajWed+2NIh+f19HItniK
4pBSJf9yL1/OUcvJ6u6s4sYa3o9i4fWivTmdx2nSdjAZ+25k66OG92r4vE8IZ5ded1ypqfsKaqw4
Zk+xGPhpjPYaBFLJePCVLfaGIyuwUXkcFY+Atiw823EOOMayzaUh6vobNrC7rCu5CQLDic0wGs0K
dxyT+PvGGA3cMQh2bW4X1z5RfTeHzN8fV5zL9GlUa2g/52958gAfR++nLuE1DB2EuAJM+7gEAd4I
TCeVUkJJbwXPcoCEspwBcRRcigrYoPQ73zbMa4XQEOv4HEI+kWv474pmOxC4L6mhXZjhQJoDME2u
aGTdibShhu35d9AKQjO1HtMqqXXM2+459/Ai3LPaNRcSivV0e8qw6vZhcuY9fTy9wJ9T2zk55ieY
aj8O4MTY/Xx/EZI29NmnY9U/CKnNctpYGxUdJscwKWH0pI3VwiWakl4lj2UnW0EayYqAY+uDPpL5
Hrnf3lPVAy9/dJzT5BJ1IMNNiuda2+B7+VTWATu/kStZfskflqnXhKQ+ccdYl8s9sgcDroHSP5F5
Tqcxx56qLMMfEqhnont1zCiJ449uuV6iyKUjbOL/8u7UwH4XIZaG48E29cuIw/oZdolbfN7SxSJc
9gb/1rZjcEg9I2wJnzX+g8l/CytyZQvJ4YadGb0wOIpLqP/X/ordLB85WeUN/eoyXaF3Xfp8H0pa
5+QCi/IMwBfZ36y6qm/D0vEEJyZUDSdp1rxu9OvPAV1BwNvxPQRobWKXCh7m/K/XyQSQdAkf7HiK
DbCGzf2czz7wtsHp9q5tubCn+tBQlXa1brVmF7sQu/WJOz3geHdyDp4teLix/McB2/Ai2zfWxnLr
6YCFvlyC0y5ayyOl3CdcE8dBmTw20NMrLWm+iOHx9du/yVuhWaKM1HSk1g9RBW2i1kVw5Ghfg6/5
Xfe1cvqnUnOsgJv5WPEfHb+B7ikqXFDwEyvRxA0oUUHL77vPHYjcxzCLAs6F2RGUg6yVLQoTbfa2
PZ2jkIy05QpC8D66wpfn0Kf6Bdyuzew71yD9cPWTDXzvZU2lub8BZ4cSjnzIXkXoTihkVe7uhd9j
gYMYWgx+FbcfEBQEtpOn9h/9R3+5nohqEOC8ki3Fny7wyHJasytCLDvz28BjbWaVu0QtgS+cvaUO
NShrDMoJR52BQslXIfUJlR2vTVeopXIkJVm599tobmuIS/mqMTDYJzZZpwT81WgPgaqu/N8a1+RG
v3+Y+ka8ds3l18+quFVQ8hzXQjcdS5StLDiKTzZNIH+JtQfgcKfuwpuUy0XwcYtE/vG7msEkS4qG
dI+BKqJoDxPwpIrZfA+2orlVc7URLLGS/27CaqW2o2hlvJ9MEcUHJ36GwALbcsvozNh27zPE0mCW
5HNYqPxYcQWNkCkmGyqR6jezMW28x+TQNQXBxDNvO0TMUB+RJD8pmCxzVfkFkKOy8FX190HB/N8z
Zwy0l6to2sLSRe/6s9KBQBJjhXL9CfbPAMlyCZ6ET3qLxovm5lpfldveqGjQIEFTO3PA8qc852BL
lWaxtKuAn/DMFBkNcJ0CDeIF++X5Lb6FJgof7ZAlXBosEEy3G/y+Km3y13i2LUrDpczpv75u0DNK
KkTIPCdyqc8vLSbP54RfiXnpMMSTtkyeWqMIfQcCwUWMnGoZYAKScy0/trxb90LSDocExrYuSqRS
d9hAFH06lTWDo1ets3SLbzwlpduqynhl40yCSHQGYAaxNnIcAjRjcnr3+rSJY60GrKxZqxL1+e46
dOy9nS9s+zUATjQtNcfjp7H03jNFeEucHQhk3Hj82rqk5oiqapPoBnZ+y7eGky9GrSkgfa4Jo+ZH
gYa6BydWeAn+oKQsdhVMHumBi2boMWh8OSEZrCYN0WBYSGcE4CTnn10iv/K+311n3VFqV7sXmGyp
kS6Ykn/gqT68+S3ozfivq+kmKmnfs5TsDSY/WtT2aW1fP35LE0nc6v9mrGgxPRmC9VK1qoYwkiuM
IogVXCHdjHIrQqVEGP7413SnobkX/Inl/iN6m/GxKSaZ1VHeup+kzjA/y8RGNsjufGlV4xi56JrD
20PSb+5yGoObP4VoJHBcKcXqiTPDrSh6hPpiRMn3T8ywVVcGXih9MKupDWSxM9b5l9RCS7ciOzxS
wVQbQgFVSFxw0uG4b807qhlSQU5hrx+RdAGlnCqIBQpqxEAicNpYui+NNYWVs6Q7lFmVRchVa5d5
kxODeonxNqSYK5brpCk7vUkcCGkAUlj49PeAFSsAbkhnH27MnQCLKuGDoBotvy0odXOP5x000u7n
zEAVx+yIDHZjobU9cxPnTs2KiIU2zEWda7f64XNmCdVXcXXnyizxbgGWUdWh5eaLHXceCKWTpEAr
OO3Y+iZ68qXsd3BCzrlu7AbaeMGNbvQBKIeZeOhzVy6+ZtKPc5z1bRqElyqF9ep579nfLokK9g3k
R508JR8M8U701yThbWsw5wQhZqMD4jiEI2MRzcTTKSF51xOITOFyd+ariPxfYCFQ4b6FdvoeAoZt
4ne9z+LdAomWobEBijZioSqfIpCgkao0YTQVHoUNFDURE8+T8nm1B2HO/SQ/y8H4sX64ny3J78An
V+x0pUP4DP6Wbk5VJ1E4QV7D5RRSoLQ6p6DWTotGZ3+Kedq4nVp17kV+pgGBRXrW5qRmU7PyoHUK
oYaB5axpn6ZT3YVT5/2I4ANVheUuYcWWsqpt7zMxRoBq3UiWvwkyHzRHjTUfYWDEO6kVuhPm+etl
dwev/RsRiY1VUQrir7pbnGaQOyE7rKg+jvqSNONVFxQW3OMUzU8xd1W8PO4X7x31j+oY+g2mFzTv
3wPPAiP5aBOWf6xopyarjDElV2NNSsDXNu7JsTafr2hIfSWYDyoGcDVFMo9+JX52ZF9rEu4JH+NX
H5/jH/T9WNDM9uE8u6u97o9qmq+qPqBJGXtmDVPF6gX6P9jOd1jtwaeJLXfVWEQqYdEf/R3Wm8iz
pwa3NP1ZYTygXrqIb1YPMstrxnHqMsIyxRyN++6kTWZxZM8gr3ll+R6OBAyeS5YD1wJVmG07mpz9
XqL3JuweSo7mDuaQ3HWKuEm6dOjhqcFDGU12+N4quhRUyVAaflQpz+i2mQ0QGtnL/+mBu/oYydT6
9euWFBGVOS/CJYNA0uIivcWS7pb+bPVBXkSk/21mCWic3q1LF7p7/6V8AeYIxp46HFuyluk11iV5
u7p6Bu1gOKzi+UTTaa3hPLuDbfUtE/Wn/CNh/KfN6SFpGNWxX1mxgA3B02thXt5wFw9FtFAuyanb
MN1x2UfveKIgpMxi4KMrvIgDSZ+hhYMYp/2YJkhpUODG1IdMONKm82+R1/29RDo2VwOkJZwVKeca
TMm6tcNUY8lfAK2Pyyi6epM0bbLblO6lS9j79Srp79Th4YLi4I+hB2UupRJvdJd83XqeYt7RT4YK
AQeV/tzgLVU60sjEGqrsSQNQCjVmxkPVwDSXgmotqovW3e2AfPNf7TkDYXw5cnbogi5RKT5L/UkW
AzHjVmg9U51qGe8Hld+CFrQucqx/o0gGRdM5VCQ3A+IWD/hKptXVJFlooBlf1RZuAPlgtpwXNGyg
VeJ1tAJdsrXLd/Zbcb+oyLIwtNu/6MnJKHXLaN9uNYlbBHc4y5v8uSW5DpSi65rMiCnptYzz4guX
ZU8mw1GZDQ+s8p7ivuDZy2kYM0hVj2+N+BP54ZRw4le4JinX/RH7mVzjMINfCp8DITX8y5KRa1cy
XOWIl/rRev3fl0f/ZNVE8HUYT4raizIpMMq8E3D76VsmAlEuXGtzPRS9amHlLxP0bx26YsH9CEnq
Yc7YiIV+F913HZMl1z2QHEodJH77g5F6U8aRyBPn9uTxpiYXGVxPh2pYrv3SNOUr3sL21TfxZ0nC
+yDCbdPxMnbBgLvsFSzZwdc36SfuR3uIBmFZlFUUqtNBUTiQ4VI5M9I7RfMgUOVzotj++tB/Dkmc
aS+ZuQNPfPfnNzyFjecv+9mOgc1ko47tEytfnSicLuk8M6GIppgyibApJwAuC5A/7BVLIcpk4771
ovKEFjAy5mJAWt7KZYmxaCkvUGxyULXnviMNdtZ8ud9ZoSn7ccOtFwZ6oq58VJ6HBYTb7ZiTytqj
XzIbq1KeYNxLXqN5S97yixR38xElVa4l1VjGefJN+N1Kn4t1lG4h5/GdVrdxHySvNO/2bHX4C8ZH
ajY0gBsDGNTjyTW6U5AdaGZ3REWsuo6LlqwHBVlM6zdRae8IIlewYYZn8eavCsF92s3SmBcP/2Eq
azt30OJW4L8X7cM2ixdLyt9QwPPlHU5BW9HHG5UhoiNJwnTYJHi9kI2ufqdcb1uqRd98OvoTbxT/
3iwxaVc8IOT0fS3Ihbc8KlL5Blc9nvqRfDGdlywqQhAHDtQHrCE0OYoUW9abnxP8Ex2+U5TNFXsy
qzQ3gD1D8is32WcdJZIDIUji6vSVoB920kP8TThr9zJL8krXmIFcqVik9+5TqU2MIWT94CJafCPo
xoL2M/BDnhtxTzPbVyA6Wkn3MA6Rhq0yhan/mFsi8i62lQQ9ITqBXKYYNG+GLWst1bw5F9Y/MZG3
yiJOrPZjIFk8nnWJ4Hh/InnxB3vX1IATyyqSgYi6lHfFLI81FSisJpWgKCS3it6SeV7WWSejM7MC
7eplUrK+DJFoJjf56pAAyXGmz6mXhLgPuq9xvdFS+RvhuXcbcdQhlAPiahLiXCLBoJDNt4zlgEeV
/v5iJhNQImohpF9JAEM+65mkW6lXqnylI9t+SHcdGikStXA2nQqq+8hR7nDo4pfO1PrvFq4a5Hd+
FTw4vpKqn4TgGpVtxjIwpBWDEcc3Gt+EFQuO7EKTHyNdpTRJmls1/FZdbyBsP4+hBk7SmVLTwQ4z
fSxro6V6m1tURDtkpr6+bH7rVBvMZAS/2SsItiiLcIktwwbJarC0Udrsa+IBhvIz9oA8UpECVDCE
IWbPhG7FJ6cVzsH07p7HFar6HVSMN0UQuZeIxulWfLqvyPZpbgF8bsZwn1lX54FPM/fMSY9p7QTx
dLA6hdk/jxfrHvrV2vu/HFJ9L8LXWr2puYYezb1rbycffM/ilqLvB6Hh2zowrFs8Bo1X7FkHDxaD
IwwNKZLeSrxNG+0P8iFt2E9Acr2nnz7JIrIi9dzKrWIv5Oqmy/ZkPBjAP4IErA+2eP/YT8WFgwhL
XyFgYiQ4VLooJ0tcoUgHWF7jshm1cEXErFsx4sSczVC5hnVfkl75/AqC3oZ9CV6/0VT1caYinyus
EI4pTyy62qJSOkyGwAlz75fnZhS3aP7nEIIrspBCvLW3x+QGGCLRDJLniDXqn3tqO/QyUge0mzKK
GqwB+zEXaPoTeh+23i9J35x3rfQ8vz/hC+WgxY0OFwZOFcDxW5Elp39KYobd3dvLWmIXG56xNan/
uJe0CYSgn36093QonUL1Qz3TtodxvinvVYMXvYIzNqgHsk8YQQcifBAZb9hlSHt0yr8+miXRq1e6
87depelIXqQn21rfascMAcCKTgpAIlBxB7MDyDlpRDapqEVYYKdJInDXs1hvjSBGG20eTCTFedw0
3wuJI4LANc+uxGmtr2wdmsVOrZ40ZyOd8ozn9Uw3lm5JDGZUVCSYariY27sA1Sa0MqmDzByiCakl
9lsmZBpOzlio9SPUk5NFSEjBXXbofcOkPCtdUw1Ss4jQ/NJFLE4FbgMjh89Bx3XKUm1CN6KTjw8B
Pphdqt4jqLCHI6c4JTCuzNg0RTtyjbczknThDNxdz6mZFv07eh1soEnOJVEVxXeTm06crmWqUO5v
8qnj0RIXj3ZcmanccDr8NU07yioUzzor9Gg9ii3biq3qj6h/jeOE/27F5yrYJYHpSaaT7wQu0nkL
U9pdx4FGSdchEhyhXkwrnnsiQ4nODpD9tdcrCuwO+Qoa8sYaOjTn6PwUIgPLQXQGTeGrEH4UCoVk
oJ5fFwRJpW+z9iwUQDgP7K91M38nyjrlOPeOly06gdk4Y4zv2Y3r1JMEi3J2Bq4g288N7BP0SRQf
IWaWiMgV2Ga5LfG0a6t0dx+BBVhVyGVTz8WKWNTX9heST50UYh+j0/+Ws6XCZ67rDsOjn0HbOPlL
NIm15cFjIvmJRAHX2ywg4PImeTIh6t+LujH1I6dxRVhUU+ekiaBvxLs3XlVUSe95bhCfj5HcOOQh
aSeZNNPmkUXf0YpGgBx0HbXM3KjgIHP7ZUqCtX9qVxA1y0dw2zoEH4rzNtWHEd2g2Y6xokIF4XdR
FOl82PL+F3RFLRMdjfIzSyhoKkoqNNzwwl8u8lxe9lfgfDApSYrkmRqyuoDARCuwjoOStiXn3dHv
WNQlV1IEge661yYjkiXhpYMWk79+wXSwThtjBBF8L9Jg1pJbCx4RPQpumV2gzUMOl4hNJMPy8nO7
gKuRVqlKC79cZj6ml8bTkdMG43v/+WMzX+jP4xlpXatqCLiE1HrgIyMTYQjG7Gsgu8La5BbAJtg7
Z8NI9oe61WsPTPOpFUGXxvWaBKnebxPwGr/vuQcfjfheoj3ug9u4ISuRwqUTGPNf1Zp10lCL8eFn
yAsKmoxqRftB3Z2Alt2+/VPtNit07ti4Ekv7LBFd7upPBhJOgW2YRDP8LuCH9FAzjdTqfnWiVyg4
99k9yl4JZ3B4YKdwXSAbQgnrj8Kbr4ItfxPCOLc60VtSXRgDfhxjNwjhnniVMaGqjahUSDA3AUj+
wdIyUcsdQoB6oOm7qwoOJtdz6SavZluPmO8PuIMVN1fPXzUUtO1vnq1vUTvGlNu6XyZqZZvucWgc
Sn8/WMjBs68PLUr5lAnGLntw5YxhIl72ybvajTEelIiKqSaL3mWrYcdrl43QvqImHI+PJ+xl3NF4
lMtHlAGjNDe4mMZ6JjeRQgyU9bsnMIftV0UQvOMz1XDrCcb9PbiMf4Dm6JA8W/UrEe0MKuPfqseK
POVN9LIvVWO9JUb7BLOECtIr3Nyh7MScXfdr4M99xwHRa9mt3EoXQNebdxUdtj88L/n+AVOXHXYb
kle3hjv3a1zqvhdrqHHxUZPMZOwZifwOR0aYi7UHfHPBEZPJLPNkWq9Nj6nXdoVrMGLFoqNMTTk0
v6i6Md8sQu+OXBG7kCyL9oKCyydnkuU5o98xbRtDd0bKG/mSSZD7dfxj1d69VJL5GGZzFAX7Hu64
Do2JBm5DOSF1jPJ3f84vcs76OgEZXkfoSjMiMjIjhT461NYGaW2snyB82BdR0OQOHiC9GDOERF7q
vKk28yq3WjWeY8wobCY0Nk7OeTM6qPhRhKwtiz40eYsL775wPBs5f1nTMbb+nJ5AN5pPCS9ZU7Ip
6yiS/w4tai5ia8bgpEf5BT40Y8sb5oec0fZagG51LtR9Q6m+Dx7pHrFkHBW3fq/H2BfAeH7DBq0j
2FJYwOiRLmqUjKHlMKZyCFfWKla2C/aslABwePV8N7NMgJtNns4K1maRXPywUGSPV5em3Azke8WT
wr0zi5nsVYhWqMN+ow0MpmYaD3LrtGAIOSQLshWTg76f9Xa9s+bfsNDWl7KObYQz5LcJX/JztvlS
vTzO09uFuoIPisYIBS+VmUI/Rd10EVBbS46O2nOnWbByhdiHb/CGdH8EaZcX5LGjy/Upi5R7xJEK
zym4a1tXm7/oaObh826YWCUSFhxOntCLlyJwN4Qc9j4JyWo1FrWN0a49l5Iu/jiaKO9xk0+wHndy
uT4fZPr9NhPWcsS1HKaOtYaSqhmMUlgM5uYoKRRn9sA4j9+Tcd9vFdc2S6nJ4u3hvsriyac2W023
ImRiTL4s/6NkUOCFPxMzO/m8aollMWBt6wINzfsJDHdAyX+dM4K/TdwQH+8q+uONpqGTe+PYPZRH
MSwI/GxjUtBHG/8IdsvSTwawLYvejvshuiA1dSscJhwZ6NVNbaskDhXAKCEH/u5u0HkuwbKI0jkJ
z4Q76xFEWsEdSzYx1MJ/aoC/BB4bP2k6h26q0D25+QSOqNeG5tzkCKHfz5td3lYE7u5Vsi+gk0FL
yg8qbk5312OjH70yvyWV/s4UIxIWPCp33RaNEZ7a83sbbaU9bWUMwmG8WQn7/wSbDWTyR8ZLDCEk
6ul8MXM/G+TOhAqeNXQP/Bh6HciXGdKKGeH5WY4HJgZ4R1W4iX4+QzA/bx0DPooNm+QpVnvkHZEO
t7KIQRdWTRf4FpX0SBrwic2aLrTdqbRHWMLhRo5+oiFbpVVxP1Q4g9t9ArfMgS8Ns6ierXWeb+HU
s49AMTnOyCGwlFjeNsAwBX8AOMirDvob75kNlZReCnKm8eoUVjD07l4Dt8WNO0hE4JdVBHUJRu0L
OWCVMglsJ1ow0vneAI3T/ukX6QgTcug35994mUtY4EaRnaZTISnArsgjzRfE1sIm9fiVGoLUFAJW
Tl1gp2a9dRNdocJulGNtYpR2S9Md3o9f8aymKu1vFbPYTEaKl5Bgqin9A0HKBZwE7ayhLqyK+2Iz
7XhrYep307Kk9oMNIzCabcm5uiZyH2vanZJsQpDlsAn8dIiObO4ZFWLVEi0AcQKAV7b6nTQonB47
B4rBMMmibREl4gGYqO+fcRhGpHiulhFTS86Wl1v8ZNP6rGdLncsQRpY74wLNuruWwmbruTj9HNex
GaznfHpaTBuqD2nu1vFPseIIdprnc3GFlnAw9DiEfMXcEMlC+/+tyAYS/Erdm0og86hpBD5jqcni
oWGi4aOJHJYw+vyxJK6UaDsWdZXUN8FIAFsywzGvnGPJEQ6ZYaNauwrXeCN1nPzNdkxQnigi+dz7
8qeHdlvqO/Ov6eJtYKlaRhjugtdOAumjCpM41hYQzn5pcn8JDYjg1ZtHcovW7AD7LrAuSvTphJZ8
hMZkywFW8bDL8J00JqIX8lStZcyzr2eJucrW1V8B6KejSPqgHM9tSHyk4qfMziGx3VP7jzdAdNKF
RhWQcDGlVeqLG6e/pl2aJhM5UI4pYYZfErsGicLmd1wOPRMkn24sLZaLaLrGtjnZLowEXxNii+p5
biafMx/tfk0jp9rN6e+jK9O74iEZr+tr7NbzsV6fEz9TEeftavn+/T17/PtLL+k/89kXAA8gqhFm
yCSbQn/T+XH2bmZ0rj6/i4GXpXnPCwJ6d9C6hdk/Cxpsw7SHlthdVKqlRjC3cyXYZx83X4e3VrfY
I61s/ulSvJX6pkzhkifk6dmLJjGZG9hYvQ6WkWH6nu5gW8jE97v7izxuyIRFdsrsNZA98u0jN5D+
YHuXYncov/vZcAFdLNtgRQwf6VMeNmJoRTr7hHQbO9InTBjDA8ZYYFX566l6EWXA52EChlmil+SL
VLDMJ6p/9oyOc6LFNRUxJWAI3VHLSNPeAvT6YvpuxS1Sm+nOhBVgI6+xEj785s84peolkGQOu0gT
HyqyoejWrE4G11U3DG51Kaw79/bFiugIGKeTjLSREdsjVG+x/TE/Yqb1iQna1CvoSfgLPJOLv/Cf
pLFCTURlQcmwLgBWVzEQyaoaPZSD/+txZvhmeG6pzk9GIaX28IJ42bdkr6XaIe5TFPo+Sar2EjIa
GvJOyZLhjzRJhHRDHFu6bK4ZAnEoWeLV5De6mWQbe0wIBN8ejJUIZZMzOUMCCrWSC7B7qusxm5mC
p2g62LmJrkAeGhwW0Dxral2QGnS4PLuSG2ibJ+9cevrM3GKOF2Kx8V3Z7GT/6drMnaUgdXJCufac
+sNU1WmM1vEB5g/K9G0PeFKXnIlSFJGqwtMhmbZGyWlwDp6p7Pijxh2SB04zA7ffbi835u/WdNwg
xTZsxK21x3mWnAQIhisbpL7koyaZS862Mm6iH3sI8ivGUQyzbuUsXhu1U2hQ+LRa2omO67QYS8iA
GqfdlMUAB3o9t0if9enZjcbx3AMa07kYq4kpC5UzPdcmoC7JWOhOrJFwSc1lEPsA9onRiUF+m/sJ
gcxWa6PVypgPOH0OWbdtAraDu+Cu+gz+8zXaElaYnhnsuupAFPk6Y/VVRCQaWwnPL88THhQPTDCP
v+kCGqWSFP1wjD8PGzfI8066xqKvsWL2byjrIZPbsr2wheqIRQJfDnBOCK6eKg22Vw3LAOtYkjMM
YZLAn8OLbIt+aka38pwn0ty6hWer2Gsw8QR38cuguA/gLjFHEqhVyfERHRlG7Z5Iuq+dMGTdQw1Q
NME6U3xmKqBu7+805dA1YwXPmE+LvWRQwFhxJUn+1tvQBQUppLTiDcwu//nwgsvr6uR7zGyrIErZ
Xi6AT1CLge8pWvQiPhCdKiAvveHeIl+j0g+FzmZUiw1kon28UmQ2zaMy48P8D8MF3q8CLvq5XfiX
bCQdHR/TFgCh0Sul+LKrDqfozxuHURUckyjjaPAM72Fjc7Z13YVJ7jvUGnCXn6QK2xZobC9iuIy6
ibkZa+W/Q6YxVUkbyKzeiOyo1V/325CuGCSxx95g9eRmIrBBYtnZmT1vTyEWH96uoGh6PCZSonoL
DVBKt1ITOglycO02ehhZzT+IyEKxth/pLnsjQxgzvcVK82Vl2a4/ZzCz15M58FBzKkncUbuN+DmZ
F8vAfq5yMDqDWNnetwGYT2I8WNVaj9ZXD51Cdet6joUbfFLgIbQrmpUtZxXTePp8L36v9B1s9E1j
K1RFr0Sj6MP9vERcynoNYrNijPMqfmBZKy+efxnGvEt74kgUSeDmSrBUUHX2tQEY5sciahQyYgY9
xvvBLJuGWuwObsgQ4UtmzGfINreBa/xx2SwjVOulcYdTzH7IPoxNiq7GI243X2M6Fc3NoBgXi09Y
Zmr/Xa8bhyWYh6ZCp2sBWLBE+C/FZufZ7o9qNwPC6dR3t3koppjKHT6WuybY18lqwu1Jp9yPtNPd
jP4jbrc0WoKWsLPr5Nz3h9mw6PYt7OmbuuZoKbCzW3EiX8WD9EQR/wD74POL3Xk4phha5tb1Pnq0
VAmRmOGEoTrJXc9t+ErH7jdpTvh9SrvPY+Vbb5/8+A8kk7W2RCpIA6xm0I0VWKrDXglmW3F0V+ka
BADT00vZqFBYdIqrHdxJLvYISuuqmokD1lfpfOczRcHORb1oaOo3LY00TGj5z9RWpjE4V9XyHX8V
qZmzpzeDbnHZIDqncQS9PxlfTuK1fagjI5xB0m6hBNPKUkNp0V+W+wDtYzUXG38+ClAmtcTIZnHJ
mTUcio3upP6vj0d7zvDENLRwA3K8xkoPr79xtzpRywnATZtvRwLiGsJJ5u9Ot8cLXswBuFsUr+OY
zPz+koM6mEMqn7+z1W3bpQSmE+uxe89+sfLkpid50WCd+cTU3EGQ3G23nT9qGFgWY9bx4EDTF2wr
qVdqiIF+YpkLJ7kjvnPFNLjIApB3TZvVqr3sHyP4d4y5wF1W3qb455Vk70xvy/g21LSTetUje2v0
HpYW1l/QNxY//Q2DrdkQNRyYhmekzjMKQIdWrvr3gun2ViElTA2xas38OSYj4FNif4YhX2li4lIe
2AbmBX0WbooW9H+m07yWPCAuSzeYZHpRIIvJeaC5S4QaZV8K+XcGPelwrkN2Q1SG3W/dDls45BbQ
USmd7OU7bigftk1KqtPGNnwP/ZLMQPLKRfxaIBFxZ6zfhGEk6tyFA0a/RD7cAt9EVbhaE3PJswA1
3+iRcq655nFeb+8M58n4UY0pEdtIlDOaF20azybfv7uzNF6PAvvlJ49hh/QqRYk0XyP3cznKf8iN
PJ25HJfuA7sW0kDYgWDK+jL149cbZVqz8cAdNXH3EUuzdYvhqnSFWFnpaAVQvhcG+FBlQ/cWxdy5
0wUSq/BAleJBZ6rDNS7XK8iqoKfjNNQrG7HuWm9k9zbRkAwTAvWiYGyCCHlckR3Nq4RHFX/NfH84
F95N714JMvoJ7kmIhS98ZjaOe6tCyCwSAadyj+VqIT8fpVP4r5mSlyg5VoXnscYTXwJKOQ86ur7D
0ZBi1I5Pq83LZoZqOlppeYmNiPc8tIkdgKggKNCvtMGmNaZitxQDHL0YEAVYv/Bhe1juB6T2NiG6
/SAO3z8kgCOZrp8/lT/VrogNSwa3BDW3/5H7Wc5R9It3s/eDoVM139CdjX7MLHJ9pyeYVl6eNuGT
8yE4XItY1ybXUjn1cdxGMcxkQpQAyVt0BD9dDKwCRtZNPZQn0UnCmO5FqS1B7xf5oEdP4gLqLFcR
p6dHe10a5FGloVLbfixARNAdeAUCJqKUUdhzwjNw6pcTXVOVK0x2Rwn/RT0Ngkz/HTTylmiOcIcN
C8N6kMWhe+u9n3kDzGtjPA/S+Dl/5/rNM32mxjv+oc38HctwL5X9JERA2awR14ZTE+KnTkHzPh/y
HUa8ywBV6fjMcH3rnFomMnfZvxAFe9ElCCso8XnY/RqqGCCijdMl4cTs7/fFblxrqGfWVFJvBykR
JsmHxVWR7HOTpJvgtxhmILaS2qJAUJdmVy7xAmbD7dG1OHhF/AYjaW7Csx+smrpIbKbAPBKrnsro
SLL/+Z6YqFlmrMSJMUi+Bwet6lXy7SaM1nNkwWVk8xaJHntB9++wrIuZGNFfR8NyCs7k6avh+Jkc
/wa7Z4wURYxEC7+PowMojqSpW9f1lavERaSS0vCnc3wk9GERAdY0fjAIeekVqzZ3CMA+lOtjCAhG
7lQjXk1Av5cRi0KqVcPmgU63t9t9F7npGfmSPD1+4AVoAwl8/qYU/WUGjVbniC6qaKJs7VH+vRcc
Tb8mq+LvAEpIRrB6uhsIzqzK0UUdPCffn6mp/ChMgzoAhq7Mbybdd61bcK4QJeYOheFsZ8ZtW+PE
Mo3RWwplbmRzdHJlYW0KZW5kb2JqCjM3NSAwIG9iago8PAovTGVuZ3RoMSA3MjcKL0xlbmd0aDIg
MTU3OTUKL0xlbmd0aDMgMAovTGVuZ3RoIDE2Mzg3ICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUK
Pj4Kc3RyZWFtCnjabbdjcCZcFjUau9Ox8cS2bTsdq6Mntm3bttGxbdvo2LZ535n5Zr66t26dPxvr
1F577V116pARidvaOKm42wGZ6JjoGbkBv8SFNZhYWRkBjPQscGRkIg5AAydzWxtRAycgN0AdaAz4
BbQDMDEDmBkZmeDIACK2du4O5qZmTgBKI6p/BwFqVgbG5tbmDgA1WytbF3MjMwCvi4uLoIujM72D
Mz/9P5d+AYEAJzMgwMTcCggQUVDUlJKXAFBKyKsCJIA2QAcDK4Cis6GVuRFA1twIaOMIpAKY2DoA
rP7jAIxsbYzN/8XJkf7fBGxcgA5O/xAzcbC1BsiJqQiJK8irAMREGFREAAY2xgBZyX+u2zg5cv+D
BhoZuv2rO1qA0/8sK4P/WYb/s/6XdXD7j0UPx8QEMDY3cgIYAk3NbeAY/qWblI2JLYD9P2FjZ7v/
pv4h5PgPPwDlPxpSAYyBJv+gna2s5A2sgQBKEVtrO2cnoANAztYY6GADELa1MgaIuTkBbYyBxv9F
G1ibW7n//+L/D0LKyeAfPYRsTP9RkPE/IXNHcXM3oLGiudM/kpsYWP0j1b/j6sD/zOdfhf5z+59S
gH/mamxrY+X+fwr+08y/yzGoqEj90lCm+d8a/DstZmNka2xuYwr45fSPogYOxv8L/DutaGD+nx36
L5X/7hSA6f/6cgZODuZuAG1G+n8tCeO/zn8t3f+LEha2dfOkY2biBNCxMLEDmNjZmAFcTGze/y+6
Rs4ODkAbp3/L/k8v//X/vU5AoBvQCG5t2daIJ8gitTmk3EescLYCkmZ2Wl+VZpkJdGWq+1ob2XzQ
zPj3wSXOnQpOnisC/oy/Id/OxbbUXROxQSwQ4WhiMoooTHcZ56WYpMLUp3rzTSn/tS5M7wpCDdva
SB7iOvzWKX19LUCRepI1M+esWtq+lA9ZgilKv6y9DxJpK2514cFGgkqXAiVD6wsBuEdThTRrFlxw
ZSjwsrsGFpoXuINwTYb926yg3N/uIFQrb+/BoB3j7C9zEI01yIjNh4HAoRVHhD1WrUYm/6Gwino1
E9w7J1WoAWdxrsYaMIjHLuOnwlyVSqh2+/YoeKmqSVL82mmAYTpuCiuMfAzNgc0LZD32XPS+1lZG
dHtLpQuWcU9zgY+2MB7z9IFaCukaYwRzI/nHm855GKsoF+9KcWzWEnG7465TwmZlyw48g+WBr4Ze
y+ffb5bbpkNx5VB7b3Q/JO37hCzYC0O8qxSoC6kVSBwQ5ES9Y8qCT4meyRuExCuV+J+ufRMhxG3j
KNnipuI9u7Wa0sGEG+7hNzaYIcH7HZFnuGAuZohGz1TDc1+hDcKla1nRBx1M8x/tUtexNPrh6KWM
b1okaBgIF1MM2u5e+TQvJno6iOVxS8Ho+2gGua3MTPwVxvXV+WaB/eYfEBlEfJmPu7YQevoPC0rU
4g5qGXbN4aWV1CBgTl2cMC9iaSLgTnRDNI6Ot5xQsCeKQRyCxJheSXFQ2hG1h/7i7RUJu85QgdK6
v29KBa/qQPuyZ/wY0TFXDN+LQouYRT7eUEa/ivbF2KIh593Tknwk6jJZ2GcYsiw31l9VYVX4wMx8
Pjc7BIufO0kCpREdExZu4zjBLcetbDki98P6zfGFuHDHtib7vShnog6RU3Ut4R3l7Sx5jUdAypFx
vf8UjjMn37BtNUJxGluk9ERhwkNx/Yis14b0jVIfTkbR7ezExTnpq9VRy8VLVRho8hEjzoxEtM0k
jmC3QW4wDmKAoktUOU2oEk8dZIB2UnwdIfOGzl4ochP1grtgJukTy+EI0rzW3G54tEmQKsMmBMhq
4qWuXV2gGmiMr5DavvgR99tFEZAUfwSqv1NK9IkMTtD9EuymxhZpBWavrAC8Kd2q70EjuaI1i3Ip
zrSYPbdxlTtUwAcDDc9mF2et9deqQeaVtMjAjjB9tXjimGonYgn6Lf5MQb2bRfHKrPlFLIeCbICE
lpqU/DRKjTxWP/5G70coFX0lwk0L6Q0OF9lkllYltX4T4XOlflanFm58yJr984LHBrk4QAPDBXq7
w2lRj7aMja+EHVC8en7pSl79EUd1HWMcpseTO1BdTCQcpAwF5lYbcV9c97LgN4l63xDcOall4fdB
CVsSp8a06+4cP0KnaiCUYZ6XxZi9ZnTbwFFGjDZ/S2bIzMxhJa419vEYjAraNYCctvDjuiwCiqUV
yd9/MT+n5Ll7s/asaQRNZFENpsYo8Oka3KMCWU8Mn389YNtmlvO834HxgwQcKC+Hny5VTERyxEJt
lB1JRCfZyL3iNabmpDErgvxCdzrcjBYXGztOqFRxo8627x61M4F6LVHmoBGME1y2MmIU9DQWHdlO
RcYTqnQd+Xd57XnRCmq6R5nOd9Kbzz3AmY8DjygEu1oFlSVKOVcSCwTwSReNWsK3H92/h0fr091c
sng8tnmexriuDzMz/rFP4wVPBrp/JWI92gajAoegKvCR+nTLgmMzjhmg2JN/+HrBzrZT9og8PEh6
YSIrEBNOin/NTPpLqn6i2tHQixwHDV+EjPQ78yNruKGQ589ABJL2GREs1Abw8rM0kSaWv9ji510r
NQaYzUH9r/oJMNMaflp4pUppf82Z/VxjGEJl12t84tvfBASnlQ9lVNWgNNjCS5myt8VvXmqDc/FD
wcq3U9zxIXbUZgwgTZif2Wx0TIWU+iy6CLAPpV+V8nG/eVglri2ObBkLOvrU7+aFDB4sNVx4PidN
3ZKQR26wAla+S7x9Llcy7O1/pGtHMEDpXa7mMub+vfLEpef2pkljIFsif26n0T4cOebAEhpA2Ymi
DYDsY6sRmzOyQD3eZ8C2/YX+mzMBe3R5wtqKbcwTQyUfcjOoWG6W8zcHz8IGbQvIajgF7Z0sIG9u
eg4PGYbQ5fRgp1PcwHSu0k6H3j0d3+Nak7USWVc/YGu8GzSpFM1dkCv1ZF3CNg8NyC1ZsdNrOhYa
3e3NB8PPYFnBuNAyttgR6xh1chTinFMZ594dj5BkKLZVd/tjXroxilI5zvhQ+ph5pAvFwS2eVWmV
C6ZSo7RkaHVmI0hmAcJTYUAhBl7U4iaTXwrwYBCy8kvd7qtMscmQu3Lgo80hbYZrLy6lmdw7jddJ
Un9q1sKswuzKA+jZgQoBhRPs+/leupLCe9m4QAf6ECW9WfXrRPN8+9jQS5UtempQCbHXnqzXGEbU
Kos/XYNHo5hZZxl+Mnn/q4Z1kJp2mTiiRt8Y8q+JI97O1mxJZZOh/anOLjS9bv66K2/TPZw5NSqy
a4ktssj6ncZJCNIBnqyYoBp0KpTyFopKK5kWmXTyYd8y2Nv0mAzF5al6BFMAd6+dV81xoBi199IE
6duUbQVzbtQumi9AFWyNXdnjkydi4QuybHtWsuRdheRZWWssGrnssVdpKBrR9tTtAZ0lgzpub2uu
XuHTwaaa2Vc/fMDYrFI4R8+rZTasQEfOcZwpZBw7qn0csC0xP5vXRaSWrW4LjoYheXLetGM2UMkb
nbeiXhuNGUC64hv8zdRDEoUgJrVd+0cpe9/SN8kiMMmHEysHvYV7E8tzDOpgVWfbsjchwXMmSGNJ
gTPeP05nbw9/WmtvVgDdmU4rYhz2AKqGsGQb9uXDqK4jGAOMUfpLe8dlyUbS2B1yQ2Ie8bZ0g4A+
dEuUBeYcNb6Db7SxtbPFVN5u/ANnUGHVW60ivKDjsDArpDD6rf6PzbcGIJtxqFw35MgihuuwQ15A
VoiHuRbXBrPjVYTJIjDAlCGTPAGKOGT/W51OarAE+H6CpOx7QfpkSIzqJmwcNoxwspbaHGXEiVN0
rd0ixVthyIlOSMB4dfQ3lMKvWsW7OMGg78ZgUROqQNW8+PjuMw+Qwq3+7R5F+wIQChATxlWu4BkI
f1lKyfDJKJnQM41ZSM/IdpyhiuW7C5Kj41p6MvlZFZMfr1CsVkACWnD8TE9sapQCQQ44ROFtfqpj
2W7X4gfSBg7psr6icBwzSM6a9g/wIBhQ92jwvzbgDg53qfx+7U2m46TYLa2MzFc+1lc1f4+/bE0Y
7+XW5bVvMsOjgoxjNFSZIFU6UUfbDXaSNk/TOjqX68sEhFysqFBV6mQ36jViw2vXXK398otIFR7y
tIVtdULzwWXV8ifJXBxU8YKV6K4WJOcHNiGR7L8nGBzm5Iv7uwjGTENCTpER7o27VbbRpuwRVWpr
SmnExSpTjL4WHBFmLsqCmwSpPYNIx1Nt7a2rsyXHGYKyfzFXEPyCfBAo72Yk9OZ94dRzt/DK6ntw
pedpqK8zd8bZjCmXptmmV7VnRI4dLi1RsWfAGoXj0tdJHL4uGhynDGlUg1yb5TuJ7rw/LQOH3GIR
IgrQrPibaC2RM0H3NDclchiPFPBCSWHplXnY9QJZZZ1t/nCCRD7XZtxWmNNF9QL53bshxSDnwxRE
/um1WbNQZ3v5vaM2wersJNvFC3Sh6xKnDH7w7etpaNoiAvdExuCahpH3El2qMvt1j975i/fZTM5T
NB8WPq8sWJauzBkQnAB7BRYXHhChUopBuVQ865vraV8essM9dWTYpIUVna01rfnKxtvwh5NrJRBx
s4TNANdO12CQsslZM9aaP/hxgGKIrQJIC2/3EMtM98zLbUdELyOOW3buainTKOfRy96rjj+ZjqD/
nhdrLG2I7hDhF+VSddhCVD3mD5Iuav496H0Bqdvr+Z3jIDyqkCdYbBqd1rUpiBPmqsLS84h5RM4Z
JZJ5nPk4G0t2vr73pyaqam8NmVpPZCM81YZsKF73OlWmqrSzSucqKF1+9B66V6OVLqfcSPFgmMo5
j0t7g9P2q97l4FwDt6+KsKXECPuIimwS5bY5FLMUxuGOWB8VtcoVo1gZ2oePkfdWs20IGqQvw0tU
4vjMxBEJAPNOccbao+kDydCIyxiKM3q9KtP5HGznP99kf4tti5sxPTxrftDZZt+obtOfMeBh8wNQ
55TTUW4Ga0socVumLYPRsEcpUIKFRW4kPIS2iHVQlnFhNUPn8Jaz1pJFVGfiQyG57gAbcEun9hdS
pbxhxtrWgOUXesuk3JUdXd42BcXabgVdBrpwOmJ42x0DQuZqJfgnaIHhylYnpdwB9u4vC+6J/UXQ
ijdBuMLcF4e2KprpWr770S22G3cM+jnWNEMqYTJyCEuKx5w7Lmb8IRJ6YTaNDf7iB04WlCKJ7dSW
H0/VkYrZKcrfK3eotLYJRgJWlwxIrhy3w80tj3g56ynLN42FADeUSgs8/axoiV3/Sw4zcm3XDizh
RV9GcW3BZnASRNHm5TQT+1hpKG5Tk/iRQHk2RutfE6FTfDsRRbdOj/X9jBbXEkcJG7OsxFbSGTpM
eDfo0m0d92hr8o/sc0D+6Kc+wQ3kYMzBo+jVzIIREx/ods1mQmFuloCgNj6Ui9agbyXo1zIFhpjY
5bjn8n6E6EOMOT/Udxvv2TB3nUh3AnDakh2yYFBaZHiwBXdRb/ZSh22MPNj9k6Mfx+cloFne9unp
8iKV1f2NPZ8H3GiAVUmrn25CPlw83i0xIYdSyV/mrNsX0jOBbR2stjKsVX8ikb8/p30Fju6DVIny
kY5xLZUB1i+ZKL6V17azfJdN4j6sYOi4R+MjAfTv1Z9Zm81GOvxPJvfM9n6TE0x9sV80JUfpzEzH
K8M08ZODTbMF+LNDvbohZMr6hyGHPfHrWifnHLl22fD8j51OPF5OX7FuP/d0gTkfuu5Vd6QHuoSX
9aZMc5L5QX/U+BgfUSrddziqjbRD9SkQBuUReO0goDzeJkjRRfj4dRlPoKr8UjmhYtzcwqOMlZPb
oxYdc5wH7jYjqpzkdldzC0IXMGaNsWvKJ6LGwkOGZLz4KZr7iRqQlVqORGXp7K/usAbPccFDmfdj
fTgowIQAWgS4CEP6VJS4J/bQJRq6dseSTd3wv2v6vIWcmWMQbWL0FZNNqZ818aFFR1fzFUU/USbr
PXWRUbnA1hwmo33lzIOTUAj6hxaLuzj/1L/XzjXnU4zONSYwrzYToTb6d4Z8VW2pQu/O8iVS1nF2
41nMStqNafO/G4s1HvpENgilDKzEYHtrty9pvalkXtGH0hgAEQleICu0QiC3hkpcqTr5k/4w6CUG
9u+HyqvyvBPlwDA+1oee2VR0oqA1+cEUvHlifisC9Vc3REvQIvJXyf3Q9c65NaDXzFqlfetAxKPE
qAx4V62E9VD++plvuYctaINYHYVl2BznoS8Ii4/u5Z51H1vGotxkZA2EQNd8LLWryz/A7RZn1l3I
Y8eNj0J0Ck7+4MYkFF9W0jHvDsx0pfze/qFU/+JUsJsYTg2Uj7XVT2AeoUTJjkQGiFlur/38s3Kh
D5GsBIS2saISAMEkcn1HjqX/UpmoJNuPEBfo6/aYpVji5bEr1/RqttWZZCKTKUkubcLUSrw/gXDX
6wiGSz8eM0Y9rr4PN8i4sBhGNI3dQg5Txk/FvxOSwUqv1fTSKnD/GO+R/6SO6Vb1YJ4Wcr9lKEA6
BfEttx9AJtLa8z7hEqR9sHUa7fiIN3LWI0vDtBNzcxfHoSsfASYy/pFcA+fPA46stVDhW52Y8N6E
edmVD26lLaKtcQSoO1Xw+KytqulleYyiQY1p3Q2kp65UivheE9JCClkzCRrO+TapxJZnmNVkW9F4
H3T7hD5Kd3ioJybzk5+XTGTItlXXsjdnyz3AUKu4rLvYLRO4NSyPLn9PkF/GIW2Ca24StSmxcxsp
t/ZpIPAtzZ+gUKODfuXihKq22KR/LSmfWbKrrsJaOz4p3sp+vYCzjwW6S84b9Y05inBjToSGUCEN
Lqw7HGkwUxJTvxJ2Ba0NkM5vmK3DIPOltdw82dxVVfU4ZIA53HdUkjpS9GRFMU8oAuBB3S4mZNOr
u/kOPnw+2CyRrR+EtRY1q0p00na5oDs0Vw/jCujOKnAOGY2wdByV0XM40UZvA86Uv9rYXMSgx6mJ
dtMCmgqhNoj1W1OMN4Ev2lrLSdWkwWBQt2k/P5PIqoGhzb+MfZpX7DhgeBqbej1/R1uqk03R0y4D
3WO6hL9aTaEOxXFAllRhduDr0tosB3hiInF27NRsVXAJCHDUGgywCLHrv0jIccAdhl8E8EIdM3Mg
fmP4k+eQInlOW56aR2RoYmTe6NcoGVPHqjjo/oLl0GSeh9+KtmggDoWTXgorToUOo2qDQAgsB3XW
lO2cMMB3UrbwijPofQS5E6+zb9M2yPIDfo9Zf3SGgC6OpTYP0s/JxeTGRTkJ8yPID+3dJaUKv+kI
SgbYEY5OC4e5cArkFzfd/Ch4kcHPDPQ9czUeuiEn2Ul34x7EVWTnF6NbhO9jshy+ahoJIsgx6GBO
MqydROCa64YMa1QuIOJRXpei8Q8CWwYrN5YNxKhw7OWLaVF3R+qAI5IARKcRASUV1XuGv8HQML5R
Svo92IWk/z+z3Qy0BFEq/Iu493q9cl34FGcB1gHD4hsOvWnfJBmRhGc8R93y2icARwyismc4eJZP
x9CKOwbebNeYFtnj3Xn1U+A2qXd6j3LdPF+xs6+C8QjLo3BMQqUpA/NHnounFZzSk0WdyvpxClGu
c22LptPGGNT527L4BeaCCpLPRnUASlKx1pq2tYzL/CHeXizHTLlnLKJ1ZQi2CW+murIHqm0en3sc
1TTo7CQi8RZyElNphmV1kkhpiisYKWxLXc3NhsmrM+40bOY6JDuta8bfwITDCFB2hpZROyqEoxll
oN+WL4rbuI5pyntp3yixQA4rgkmirMMHTicXnWEDKZTrk2T44rfhIASDJ1yh68ck9/aD3DVLJTOD
Xe41AyJDaa9Ch+EQJ9/c/VJkBmflZa3S4MuyRB7+nBVlksufvtJ4ElR3m9XcNPmme81+k51qwqbs
PBiLsnf9kciHUUEJX2Z1nhGE77D59dbMzi3Wmv0uNZ/uS5t4hCX1aKiJVDFfIQEGiOsiAFXRwapY
+iGlA5hp7P1PONZ9RDAXwp6Yba7Rv1ECrDFeDXBCKuBm7bkeYXlB8hEGd4h0fOKauYM4DJrwPuQg
PPBfEGdmZ7icQ/VevEySKkuQ+E+upWc3iRuPBIZcx+g4xvZeTFeycuAOVTuIvEIYlb/5LlpJTArB
l5iolwKRX/KWDI5T0VT5J2RTqoFjv4LnBGCrLIVcGrrSu9gxCiqEbuwL1h6L6/0vipnGf28Y9yzT
/DTspPcju65l+OlsRpTAqUamPAxAtgwzuN5+TwdBMEJNFu4we+Hmh3fxNYkqbtk9Gvjzeyp9BkPW
K1DBKwzVe4+2G0MMjBrCdc98cE0PvTAUaZ/zBaRP5snm8RwCQeVjqtXs68mJh6V/7+Z3StswtKB7
0RP1gmqvTznd7ru5x+ob67AnQmKPKnOgcxFZKPm8IHMU1QrnfW6dSqAdOog1oGUFtCSo3YPgRQBn
ateIiWF66HLfX9G0w5BzeVLz3Wr9VuSVd5/idLshTWa77pQa3k4DoSFe520/1RkDO2NEEgGt7X2k
OudT1wcy/vs17uH1hO4NvHV/TFgEdHCYnwESZKm8aCHo2g3dtA/7PlfPqUJ6Pzz0h5EJuSQGe6pc
wJNNWWg8QvpcpiiVUrBX/fUCVWObxWMnimhjKti0A0d1nUDjahrm+FUQNGQAE3eE+RrRHd8h1BLK
fnHn2skfE8OVSMFlvsWCMJeq+XaJYc6L9k8oN4qBTkNh8M50tuFBTqw0u0q0w338PjdhzKooOF+P
+Z/lsFpkP7oEwr+ioJUwqdXFR0pIfb1i9OmZg/BFs0LeAviwDosid/MSJQ4kW8Ar+3h+whLR14Q+
dwoVLwWzdJrjUde3ayt5SraiR+fAYZA49P+8CPNcvebB0oUwTSZ1SszEFJsixdLW54TFErYOjiCD
x8LYeUvc31wmXwpVIJApZDL6qpx0gLXuV7cgOUlOkjnAXZNzoiPigE4OIO5R0nzynUD5lVH3qT/v
T1W8So+8l06GKK+v3Tiee3YVsWUVz4/1tsHJn6rUeRPlQXGgHm/l2sIm7PpSwTm8HH6cQ20QJdRN
GQEcVp5gp64q41KO9fhkQ/VXmQNRdk12OR2Qmv8hW4+gJu8/PvjNvtEoRPrNhno+cXWYPKFg/F5Q
95ZBWCKv5GveGgka/HG8kwGfi3WDE8uP+ULcYQT8tuCt3dUMmq8V7ewMUPHs0JvLZ1clUFik9niM
g7aFEzG4G2QYOS4vTetLVdnuBufiag3/rOi68z3aCAxDuhQVkwzg7cB7aEb8gnbm9z44S+EHBHmy
Va3ODs0gTmgEVyXNtb3FpkHmHG8r0Npy3BtEcDcw4+Ue+NSDDjOaRcAiUlU2MQncQdnRy/JkHpOC
dBP4xBGYo3eSl1uTSjn8wSgya3XL42K+CINISh9/cyh3FKYYhQJumugtmAzpRcpi3tJmY14T94nJ
docmMkS4iVpYskUY1ApqVVnE6uKB/RJDu7l00YPCW4fKIhBgLAkJau4Z2ltec6EONfe70EELfkYR
or3MoJPzRWdiIJGTAx/az2l2r7i1cOd1VwzLB22rwrjULHAxH6xLqueRp2vLrs5S1czhIfcjXCUv
38gCg5oiPkG37mmBsFihrxEkD2O3Taj6a+R7tlfplkFowVJPWQn1cQOqaGhUYi8BShIP5tCJgloL
51xlYepfHBiekZMse3C5hiYRz7QWhzVyEVj1KILpUcxYNYTR/kdDt1RthV8uI4JL6wF1LAjy87pR
F40seTGZrbmwXHyY8UhF6hDsedGf6PGyQPmml84T+Ck518ZGsnabisp7XClAItvWBuWmMkm6Zfrk
p2gQYVQSiTW/ZC2MAxOifXlqRovvF4DUTryPnqQGq8lscXPMz8PW6lKR2CdEoGDXrsezIyYcmVRm
1raCTH1obp08VRZGA9evMkQvw4xY37NRZkRQJvluUFIrOn608XMDLlgeTAgfpZMdnlqnOMu/6paU
FEShBZGLcdN6DmI30o+7JeLDyboqn87eEAH9kqMkVr6ppKxuELcrXjBeNDMRtDuQ9rui9O5jZmis
5BNE7zz1IeGTvpj/oZ5rvdJ/5lK5/Hdq6EUM3+LkTYsJySltFy5uEi9OeaJdvwz6ucxSPxKQ2TFx
qgh3elzejaO0COl4lFvXTX1sriheQymZhGord/KWVeVCTj+WJHRui84D44nrYCcVBMEvB70u5X45
4KivdVcuxOz1n2+xuIGgIaw7QLc3MTBa0S+jpOwbgBqg5gzu/BSGcpwHbgf/imT3ITiZT4qhkWbK
DmQvacsirnfGg3x6P8xnzkeacE2u2BwygL5n1kCJOvfROlM5WEUU2Ka4XY4leWN4SEDczk1B3Rry
SE9PJV6J90XTdjSuURd0XI/0Kbaq+EaS4cyaSQweELyz9fEr3hEcc06/M0jWE7XLYseZdRdvxFPs
BhN2/PGJbgVtYCbpEEIZfzfEjXDddgEyT/1MjOmKSiOClVWrU1i7ZIbYEGcNQUhGbl2zr5Xyxoz+
9xJlTtgIr/ZPGlXXi+qt5VCpVE+zDch9YEdGni6Xsv9rG54VgU8vTyrwBnS5flyjReELlXpg8GE6
yliboW7shIaEKhsPnFoowqiUjpq/Yi274JCdAHVAUh1RLBTt5mPCvHPxGBCIbPnJXoR8EkPO6r7y
pDK+dJF0ulAhwxmjhogmDTG4S8GfPARA5qIQOPER1roE1b1Ouum68o14gso/bNZ06pGt7LSzSMjp
jOs99kF8UYLuQWJDqopPvbzmBLYc92v5A+voiWfh6LsqikHvXo7v5QLAmXAMAm8afBc/KA275Ub/
PnAONZZWr23dQzuL7S4FZRzXcf9VEWPStMtpW0pitqGnr8bUCGSyx/S/jmlUUjTd4moJEa+bwrhV
op5/SkF/iBZUNLWfZTGS7rPgNSL3xyTi7+hEtArCbAPLZaN1sHu1KlWyDjyzpmHim9biLW9tveua
WMyVLcxepplEQGV4OUE3ZqWCCqdC+XNmqBow9uusuVKj5+9bFG/iptrQBm4acWCQzNMEhhB71uS1
0ZXS+7T/HWcdjRmCfRykMEbETGROZqXsJxq3U4Andu6sB1kYuu1v8iAaRjuF5tXVgN7kWfncWnFU
ugcqp9TycoMlk6xhMDMVHWnzRknjKf0/obnq5HPUZAM78jJMqbNw5n6+TEY/b6HmoQIez6g77tVh
FkloTQNWVuzI+XVsf74owdeUfmNleNGaZzslBT90cKihK/icR3JiWeQ/cjgVJXxh2oE+Jf5Mp/kI
zNvpndB9jSVX+Oc589E8IBQ/+mtJ5mqTzQEva2SxDUWfbDckNP9p1meoHCCP9HhfyXW16IJ4HkyZ
f85177bpLBm5vIi24jWcDUsUPBQ7rWeoO+hKDsdxDnYd+9XbF2fA2kI/g2ywEnXsBzeyaK5G6zqc
o0VWYviUWULDs2fIlJapgdXrQ9JBfSZvYeyuXaXwyYPYhwKxL2gkh2ArxNROUBx4GxITgYv6hfjT
+NtN+Ny9bIQ3KWaBdFwwTetHwfDM15ignAgeMPwBNg2lMx+tZ1bMQZjrTAvrdnR3+KDpHEJipmWA
N5kcssEJ5hNfe1BMgXDeWsr2wuc1rc8HN99fIrLYkYdTdtfoRoOLIktHnwDcTkg5m0gtEges1kIR
cnaJILaO6O+BgdtEY+EZccf84gaKq3b1ik+1BFcUhFsjvWtskretsiRGPCZsao2GRA6xVrDGj65q
7oM83R/7NDslILMbOeyel7O+3sPbjIaaGYq8znPbdI+pPsvOMfzu/Dhz14S2rV3l1ztEWovxhH0Y
C5Cz2/JplbtIKzYRjmJoDpZyLhiQYVgF4tBbR61/QCVIzJ4391NXPiVzki8NHh6yKVQJF1NYg53c
mk7uI1ZYJgO5Qxdu/FAH0a4v4lVdl4I157q+alfunGeoNLWXyvIQPyC7uS6imdbtW98TomKtSZv7
o0A2/cMznB+DwqHNzV8zAo0JRHDL2yoXj90Ovi+kN1LGWL1Z64X/DN/NoYoWFJMOz/XO2UWS1+/X
5td6OONu9ywhPC+AzJTtF8S54GOcYl8hnnG3NlrBVO/9DE2uG49PMPrbMETdd0fcpsOeVJ/3iN5j
5Zf1KM8cLirh3SIQHj4PcHS2mqquEBCNcn7HH3nll3U9TCbjeuIDkJuuMIOkudq6Wb+1DlL0j1Gi
/AhijNI+J5X5wFPaDmFLoTelG48k+MzbhkoMPXjTovpAeJmhEySS6vHlTzw22+fQBt1+2Z18LEYS
J43elQkc2sqcMPXXxC24tvi4KCIZhXzMwhn/5TTXvxJ7JNcK70aOQwuHQ/NDlrMLwbQsGipO5KFL
6ZCT8Gh/7qmVXLxMhqC1fQU+LR/FelMGNUWTFm/Aswo1mlEd+hbLVnqMW0ciecZ9ubx9/1WCqcRA
7eJc2IIBVgVh/qh9ApeEohz5o8IMJtLIJOfO2pDHhdJHh4+KCqxllclIKm+sNihrGLR7k5Ovk+P3
xfWWpOEHWmF7W20akpPr04Uq3Y3HyaylwjN4DEmZnn0memkiMvL6k/8rpVjZUKpdNDCkbf5h0fUB
be0BYNCk22KwjnxeAazv+GlaK1YUml63Uuh23K6u+lrIz6Z1AQWrT5hPVgcNauAA8PsR0T1A6hm1
LU88wymlo9eLDbLAUZyEOM7omOfiNHYaZokdCVv7/ZH8aICehqdUEO66X4ONLaojIid/W0d6ldPm
q3qJAbaqEXF75s9DQ1V9SMp6mrdMQ+uB/Llef/LpR6ncr/+v/02v2l/Y9bELT4gsiOmfjptJEvwQ
yhFxg0hhOInKvKwxVsbVGgPGlDNIhIaZytcaW9zPBCQQvJiiJzF78osMWteXZlPn88KvxLx06OKJ
W4YjvFzx9tzC8opEAna6cicaMaN/Lw2j8mYFis1pxJUCnTO97ygGye0gi65gGsS4JoMHWysxmeO9
7Qapgn6CL7zXQwwvZereDSxi/1rhwaZ5koGAidJ7c38F6a+XNvJCwcV4e4uMXWEDujncEca1Nm8H
XQ8F/nC3DaosW/2DcDD7Af0Ledk29uEH/mcMsIL21XBnq3hQCGg40mk9LxtKVTB+t4CdgsuVtEUG
F6FuCaJGAy8KN5iBPrLP1S4g9Epb4hZujLh/nZoRynQfEjkOOw89kwJ+5VHhwq0wE62AFpGl7yFS
8oTxcEfjZ1f5e2lOa6L861e3d+4NEmRaL7l6MLteyJpxTZUUyOaEPlhISrE88cGHxoxi/i+7+gqi
mz+DU3hruKVIXCLwJpSRWbjACIu+pMA9kSmYsONKTi/YF4L6YdgVdASVnHcC35CfsRGiqwaRRftW
3GwVq3Bapg+Pwwm2xp7zPNw2CFwZd1ASv8pdXxKwu3xAulyCORQQ9+0APZCrHuasv6FpWbkLiH5u
DLfitY1UcTCVDd42ARBtEnXuUH7sO3XRTgfc+PhPVSbzfS/dQAa4bU2n5bpauYfkSTbP2b4/HJfq
Sa1aO79kgvnx7zuo83FbnQVBOYe614GybUZiEJF9eIJuh3+2WYPV9KDvl+zVCoxj+blenBiID0x4
SGezV0cQdjj9buk6/HSm30MA8fAkKXkj1m7ujKsWPFHqHoVO5zkQFei/7CNiy1jq9i21yPKBjcGM
QdFznYdfHhf151aoqf+965K/1PdUBi4xORH3zrh0V51Y+XOps6BWPJgiAHYBieVt+8S2ECVwhCPp
Y/pve+Q/TznYPZzRckl6FYTNmsHjb4XjasCAT2I7+LV5Iy+yE713WBSXCJuRLdBQP1Z2BQ4/+pGl
mBAkMFvNiBAZw6yfplwEQ6r6Tpoa3+DpxsTgDb7NQ2lkdVOgH32b0g0iJue3Tg/Pb0zHdchX+dNI
v8SMknCoZweEwe/I5j7c+x4inAXkIog7Foxi3B+00Rn22uvW8ybiuwnkw7oZ1zKJsl0f0MEdJpEv
Ohq+e8bVGMGbJ/FNRh3IqniQW/uRVHZGyDrFs587d2mUGXXNIcNJYGBhCr3iPVsP19kQ5sI1i41p
CMY3vF00WuCzJGU1j98hlrjPWmUi8bgWj+MTJPtDMf0xng+zxBEb0a2WxunH4apl3gZLpTGhb/h9
Gz+tTzapYwvpoY/vPJQavch1Wkf0zAzTrl6W/ZtxsBvLTM85G1Y4ZROrwk4ewqkgcnmeKH8oMKDa
sD6qv2YfFuPqoUE5VCYT6bYlR1d5wSj16eqvJCOoVunjW6D8NWYmJx3/XYtoaAXy8z2MAtJBkNWm
p9lxiEKriFUeUo9oV0a8GibCtZ5K29+Ct+35Tcu+pGDf+jZ/ljIZQTupMVMZ9DKlKOJAzFZbsJcz
pJ0b39N4zreIYCcDrGs2FedGRRtXQxhRYJhrf4yQRazKvtNWXbXYWEjR1M/ZjdL+dAbBQKBS0Rnk
ScjsPK8mmv7y6WMN4kku70xqckP0D8IGV/KDUbIeDSOYZZfIuAkH6gSXvBsqE4eRaC2tJGFeeead
rWAG4EQVkw2JBZn5d8mQ6UsNhjJx4y6gChKRZe9gg3k9BxuAjEbffe53ScJ/lMVb4l7154sa4IrV
3jZDeK+ZiSQwPKnBxkzTq+us5lQRXjB0YyEB4AskFVlonHpvHGreVmBRBImF5c9zmdMzDtEnP/sW
6lpsPkOKKiXE6Fei1llXp+rUmpBLhlcXdtmVYG9CsubCNH0++JWx8+TXZWBcRpkSyI8KDFKZBXPZ
gzMO4ki1tIgbNP9+woRd01cZwWP9HrSYJSrjW5Wuj12vRs41LaGgE5xeV4mRGaaYm64XXEqKGwqm
98aXC4ZOySILIkp/h+BClVExRQ4sdVA9zmIwOvqx2gwangXH+ZEvhE9ce2jNFgl12CxU452kZWck
m6OjGCM/xIlpj5pFKowivJBoioLHO5/ygc7Ytz3c1TabgFwBmok5xmdj9thcTGy9zggZKSUlq0sc
7PUuBC5vYnoBE5c1aSR2hWddTvgt9LVh7+xFy9z9GK0OOtPBConZUBHSX386V4zFImTjmi1YEGR6
VDxYmPKDYvAvvqIWCk9tt7bMYEdjShQJW+eVkl9AYpfo/ZnCVv5PGlctO7S45eo6NlK0uOR01fSw
t44viB/FNsSrX7vuAtb8FN6+DEjdmn+rtxmSfGcDJe8q41A8RMITnSP3t0WjvnpG2M0jRsw3ifzs
Jc2md1a4ecWRJxIaXml8PCj7RRpWdo/KicE6HjYD3Hkq6QPtQL521SFWGDqJ9+kbVAb/ItSiVYLk
+s3Fl9jU6bv0deQ90MM25h6EGl/TsY5nz5xmSagoBXpcOFomqO3r/1LbmNJbbDGmJ26K5gytnNzH
nowZlcJIP9HTdLqiSR2s+xssVQXvYEugFLl9Fx2jAX/DJIJgMFpD6lsBF5XLzKW/36rxWV8NmUSb
FR8rAJHtjZhQ1JWXKDp3e4Qt3YZIY5CXQV6QZ47GHPiTTa1ec+E6LxBeLvphNmZhxE18V9XqJnOL
YokzzkqTSxosRg4WSEHyjea9VGTiVHP9FQHDcvzqZF3295InRqUGXa4hOnW+F5p60NwXslHWPQOU
bupHf/B7QOArg5nV8SM37E1/nJj/O1MBfkU7tPj5IG0/T0EuZV0Qfk0tAm4zmjwtfMN3ege7rspv
GYZ0Qn5bbkShuNy29IQRsAFmWM/ohytttpYU7MR6qIPPbjN4YkIsvYFhHD4cm2y26VpPF9QNQ8kP
8bk1LJHml6nzmUSxU2FXrUBe3ciP9l3+TN7XNKLXyQ0LXijNvDCLKIiH2aPNqe31XY+bBAx9Y9zw
dcEabR3dg7/yk0/S2pZh/QSTDdRg/LuVgzWKYn34kKBJLs/V3ft9I+W6KA+XTKG5T6n2LXLoIRLi
YdGHRLrwT1VYa4FT4XCWtJvvQu2OrbncpPmm8kNRSFEiViYHjMLkLgXBghpKH5eJALcVrpIvx74Y
RTi/pZN4M/8WVidWr2pEPlTN+ZynJHwxEcGUHU14HM/5LTNI9/OMwQh4TbWwZ9ZGkaoxpgjuzDs7
e44mRelqBooZg9ZCrcmD2NBT9G74yoZB9WndTVKt9CMhDiP9aEoyKCZ560JqV9DqHtrH8LYSWO69
xKW72TFxmdvG5WsMYCIq2+/wMuWB9qXFgwiKNao6UgsYMSEK2QjRmI1BsYrO/BlMQfmvsgJhDM9c
EiTPv3N+IDni9H/y9/zSxZxVZOWXLNwev8plYnSxQ3zt9ahp7zDrOx+Mzox+MlV5dflWvud1ypPt
uX4L8aFRLOY/vtNsQaJ1bvbvfwfjh/Pe2J/sdCtQFk5VgTEU5O/MUMEoX6msPmIFI9etDdEBAlJa
emgeaPrZwzGc+K5C/cLP7qf4ZHloiHGxec1x0Ifx/AOeKriRDbUjPE+zjg9szkyvOzsdH3BWcyGw
2aABGexS/sgbAywciq8Dhcy1lozKI1IrsJ1NHzZo/kDuYc0SdqQYDaoyge5c69nUmwUb1JiNVcXS
VssTdgjSlboE0kAFR4Nloiq2AToJj1klD220+2KDRN0HepT17uXnbm97qO9hoIUs8nPHIUN5IOdT
KtJ15oTNY9/FXKF8Hv0zK2v3alcQaDzRwUSaEGUTqvcz6wC32IpDOucRZpy256jrgAiHuS7YxWfa
w4Er2A0alIsEoja2sYy8QBh1jTik5lOgjuGF6kbggfXzz+mYdb7fFMDqfA4oFAuOOVoOrQZ6TRud
lSwXHWuwgr9FrFQ6FIR2m6H6OZ7Pk38YXn3Q44WjQgnq8srXlKdTAkmnnbXQg4NGW/cqDn2T5Q0F
B38ZpnR10PQ2XWvNRkVxBABdpJvmNGvaxUEjqSy93E/jt52hrzPpSukGXAEtm5iF0ExxOLZuw1vU
i4V71aFQoin97LyjPCBwgiK1Qy3HCxQGLfvOkvBYob8KNhGQZSVk15lJdSKKtz9IBTWMjIllovDQ
zxU14Rvu1NKAJCHMzU+7OrK0kt8vXuw6VoRy8QqsryivuMx2Fy5QJs1vRsMftUqBRkevUPE0EvZ/
QcsK1dddtbooKO6for9/h0+x59EGVIhJ91MljytCpnhn3uVzZEr68iTydnVRMvKD9Ixi+mmYN7cK
KKGLK1Z+JjGsrebKRihmg11xw9xdN3Hcrf2B9wOx2TnGJMWpK/6JyeuGjqNM4jlxZeO28ubiP5vl
6m+0vPlakSFTvAtQmfag81926iy8xna7maToboV/X9DCjHTGr+QHgCZKRrZ0OuJEDpyyThkitrf4
tCaH9zdJ/A7Y5A+o7e0+fUOVyVKDtUQIJITe7ijtfuvfTQPVoXp0gAI06WlMRaP1pifFYHnkN+Wk
NOaGF2vd0v6Vo5fwcSLUGKqMNReVL52jI12sInDrxqO1UH7by11ylwb6zXn1cEIudWw0+fUEYss0
ZTYN1cW14XrtI/oP8x/4/knrxELg6ln2uf8lZ0w+XTJHflfE3WqD4BCvHGmnAgf4wieXjS4qo5Iz
mybph03HZowQSgrAz/kqdcjFNTzLsCsTomYrRVjiIcO7KrGscBBStizdvy1nYyiErFKvwydIZoym
Yw93oebGxm8SX90U4eGEivjhiXNMQXaajx89EQpZA7LiTBQhpP2yLVZEFKleDioEQjB9KavIdKBz
6lIgvPdaJ/G8mlmGrJZv8DHWMIu+a+P9XZDRqztJ1Nr3PSUGQxP7NDFNlE+BEW0I347+ui7vAcZB
iN1yD82GKvV9pnsI1oKA2vQoDn6Blf3XA/gTnYFK4+FS1iOkTcF9F7YoNsNQV/B6CQezzomMMbVF
J7wVv0BtanXjB1hCqmEYlUHMHnjV4eXNvNlLv9bQzagn6UxuL97LkIkvM9An6/BEwYYjUuHPaNvn
vu6Znbee9/J6/oC17+Ugwy/iGXq2i1xO+bnXVc9efmQq7scjmiR+TN+VBt8CjKEy1lcR/Sv2vR+i
DNiGTB6ttzF3nCg8+eUOKhaXBIuz2sdZ4uWuzw0dz70qnbCF6UislS5kChl0qbK7tZziHXZIhoMr
qU2A8VGh+9Pji9/w7EAffF8ksUev1T+RFUjskRnkQlUXfKn6yIT126KarsqggzFZzCfOOivrRxbq
JeMQYWnw0qYjfAQKP6S/NvpDW9rnvDmj6lo13yaYNHk581t8jY0dz1NqSpc/SKzKETUTATIbZJl8
LvKFZ2K6iJaxibj+srbGRopLCaleYrPHCzMkKdMeUquNqPl0obgINzSexNYx1Q+e8eTrsisgeHDo
zBEDm9KZVpWcACd2jMxbEv1rG9T96G1f6YGmEBuZr40xEsqRb4HUPJdy9/CZqGFNb327IPmBp8id
SiRhzO2ewpdwNhy1swQMBdK1juPD7ilzfKIB8LBzh/uysB+/oH8QBGjdCeny79i9St3Ne1jsGphX
8wQRE1JQaLvaHFvmXz2RjXE6QjHEx5WPD6yCN9hvAI0/TGsgqM1odw4Ft3hrip9qrBYsz8T6icm7
ejB+SJJG2ra0Ik5M8hRVridQxnSwrFIivzXoQCdiGcOg3MY319SOMqHezUYdYvBzqrTQ5R9flelB
Q4rzPRohG5Vl3KbahHBnBtiRdZQWEplgnMf8ThDS4XVljhFsJfzbnWsiKVYZmcB3egOErJe52F97
csdJHzFqflwf3jq/J3f5HUgayjkuKSS2uYHibHlRslxrB73u08pvnmfCzSTmyd5N0fJBlfwEexME
dBUgPM2RNkDQ2O2RjJMv9jqldjrY9v+Da+MTPWp4vGtsnAQjVhL+B/tDMPJFPWdAjKQtYwhODN4b
GYShDeRUlGYtjcVEudD9kxm1pFQgGlaoBdiejvT7c6m6sF93jMB6RaiHiqchiYP7WfrR0tXwSuGO
1UNPQ/iWFHdwylSedyoe2XD3lquKN7lSTis+sIeiKiPaza48jsY0BOk5mAWGfUcWufcOoPL240e7
WHDfG4MuNUtWI19GonA2D3qDTt3Z4+76GLpttf3A0/tCoXxjPaza1ouwo5QVgBFD+u8oKjAeN3uy
x+qXOzXl2iHpQd7AgSHTd2Vnyvg5hDmdoCs24ZOQxBSzNHgNFiZjzNsUEYjy6pXlwt97gdHav/q0
DrtQ1f0BzqTDxhVWDOQn3bR9RJkBenaFeCKSH34vpuhlal8G9AcrmyB8Wn8W+y766ZCgjcYQSEYN
sVu8d8pl95NNcEi2UEcC1J1+m77jMk+CYWKGqpEksWCtBCj74iTLxgG5tNaz/d14MDA16s1Xn+Fw
uhJH+AvUfg/AWSGy4B0HJD+t7goZmaNjmlu7hKu54j9vdnpGBRhZuCbJg+z4zb5hNWq2Up+kU12A
zzHwXX9d1JBJMy/mS7oxXU9DnkYXaKLdYmS/HPTHMmQiAn7x4RE/7T0SU7FTG5nE0yhfyI9AGfau
koFq5Jzv9AY32BOiEIovkqkS4Of33ubHQ29y/5hCUo0S79cI3hOcGECz9TQ2WXsLjkHJ69NT20U7
yb0cikLleL7uhIRdVhlHvJusTP2q6FyLnQouIXdYA1XmTCk+VkSNc9ybJClQ2LSermf0fp077Qk9
fEoSFOjCXkI+6CJpX2qHJhUwdIcs26sJAL9ng9LL8s8fHCfvAEnJaerEdlRSbIQJkfWQc6KEEPX+
MHk+zbHbVBUXuBwdr7nP3HDgUgRhYF5CVkdn9+pKb8Oavl00qyrvHa/N/IisLxk5NXLA+QG5I+At
S/1WxR9T0cbKjusO/hsch8BFLmb19JYlfHWwbgvEM3TmxyN/6OJqxBlBt3uOFWo8Y4GQnV+nIyYT
xXJN2HFu29zyb63bXqmNAyybBe7lO9Z+cmAT+iyf9vQa07FdZh4YU0zUosDjW9V30mRsFFyIJZ/K
PCNF8Vot0EXrTL9HFnjq/PPDwf49T8lNRmLqCec8hTvz8hlCSimvJKTE9fH+4w+SIk7qlTtIUsRj
aG07uNXaRgvRijQEHcj9IONUnREvTQ2X10RKJAMhmuS4+df7NLjhaUYZ+Zi/cuVXtghQ6O4NAYLk
vNgA2qXbbYcWK6hxtd5XUjl1RIFl6JR0/NjPQTHL28OfO6QaurKFfGxFvWCBVq3xTaJ0jyEZN1X5
pQh9O47cYYXNUZlWSrqi6lufDIapV0bDx1p4S+QEHw9uPHSvNHToMiY5WvtvqtC3zhOjQR23PtZz
BY+97FCeo71vpP5egqzXR4ixU+VJ8hnMt0cuF3UYnOaZdRPmWGw6BI4b74GKoAq9kqpIeFzX8GKL
GXipXshvl04JVeQ0rqKdpYKrrWdHQ3HyM/I3F2f2m5d61dbFeqfELeysdWFYJDoEm559Db0SNu9C
aNv6FQ7s5e7thjn80MFQH31mNp5qeehIXzR8UtDOmxr29nUnsZfS1bG9B8KuX77MR4onTNjeh3le
fHls6x5/SBV8dRbFUJ3dP+M1q2UQnfTuCo/qwo99Q0T9+PrNLkQ0cThwen5g6l8lWIQaVIDJXi8+
PEPa6ZaAeIe+LWrQ4pKR12cY3DjcSDQdSprwZXXqLOJZnlkUkmpk/kRTlDqTmo8wHmOTYqXbDYHo
y9U/UdB1lbaGN5TJ4ba7J95bQprrVJLNj4zSmf9wPCl5Vcbd82HcZc1sZLfuORliWPvGq7EFRTVI
12JPrDeUG02imtw6p7mMqtaYeD/zrZ8v4ORDus4TxXlrQgdvM4N1LzcbcKCihWlekve1Gf/lnjJj
9feQEuP9LIOjdWM2WtZv0jpfF9JVv8QO5EVdYR+PcNvhvDw9by3duPlI85C2BIRzLNLI776AoetA
h8EGMht1RnnuDtci9ausRx7mtJmjhQe9S/aQUFbV1Zt5ol+fVz+b+6fumUf25ANTM/j3hfXyhkLD
OFbCCp/SwXkm+VK/HPQr64jodr+5F3kIen+ZimK6A0kRtvJzlGwpxFb2r6rJ9NOxoVGNAxQtyjRJ
Z+GNtkGrHjP7s60/HqQHrTuAV91hOiyMBF1TYFgsWrMcLPLruZdDAdJHXuuzfj4upWmbBUvLAtKm
Q5ePn3TqGTnHul8djMNHKVjeA/xaPcs9iWOfgYTaDWeiJNxNEUfvVIWPa6ZjvdjIRqr7jU/5F8vu
3THi/dSxVhi9lmrV1E8Kq+wBvWvMgBxh1BH1E61lKgWd4EB0TWwpKp94BMdtn+h66V37I3/Yzdxq
Y32y2SUZrrgNL0VVuYr+8aB0rUEnN9WxdVpHxj+hdfxV0c8n6dQq96+Aeb+wtxhPA8MIBw3KaZZZ
q6k+5ktEAFWbzhTfjslRgWQYd5wprAT6mz28tUjRVg5ryEbtNP76lt0WQIQa8tc3qjR3zlmJ2ZKG
wM9EP7hvh+wDUETc4x+DM9x7Oju1HBJZ2sPuBm9PxN66zvCmzG8sNfroJELksVdD91TvXyRGgv3o
VL+xDb8EP1Zz527CcYuYXgTOqKEfsk6yIMymoZXZFTkq/5LOKzhj3VETIZiwCyaps2Kd9DbFafrH
G8K7m2aqycAuXqY75het7jA3SCyWiFhpZq6JsmJQ45F7fBl8W9rt+qxbWqk3OTR/2Icts1rpbrc2
0qAmAJUsu1X2IrUqGK4PyVBupPd1oB6lAMliLmPyKdYyRLFNVqEL/etV3TYuL/MWbsJ02Uyo9TdF
0w4NLKnz+PbvT4aOQTTPOBWriKKvjfUpalf+WphZjuabWo8W8MoIuOd18rsquuu62U2zn9OLIb9W
zCbatuQztGJlnqvCapGpFe/EfCmN9b+Tjn2zUAztPVrW/r668e3vf/3OYxYalpwX8OcnuMVDrxLs
bzkiD/zhBYga32OSw0P2PH8zP2WXK7TjpJenXWe0UFvM0XPAUD3rIL0LuoenlYRKK4Oag51BIXAH
d333BMcMFVIfdriLXSOv+WlGM9UZcqxW9nX0E9kCzj0cPbhpF7Qxy2cYzX6AR347ulUDfQ+dRzgh
WED9JCztJFqStPUprCKucvlBTFb/Ep3kZKht+3GU+KjC1xpM6yW0v7UGegeiTy5d19weTQD8dPlB
3w3HpQN9k+sYSepAU9x+6Ke7bE/hsIp4R9HaLw4eDaH/B6mkgpIKZW5kc3RyZWFtCmVuZG9iagoz
NzcgMCBvYmoKPDwKL0xlbmd0aDEgNzIxCi9MZW5ndGgyIDE3NTAxCi9MZW5ndGgzIDAKL0xlbmd0
aCAxODA3MSAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42my6Y5Bm3bItXLZd
1YWnbNu2bdu2bRtdtm3b6LLRZdu479n77n2/E/HF+pMzc2TMkWOOmCtWxCIlFLO3c1HxdDBlpGWk
Y+ACKIspyTKwMTAAGOiYYUhJhZ1MDV0s7e1EDF1MuQDqpiYAZVMHACMTgImBgRGGFCBs7+DpZGlu
4QKgMKb8VxKgZmNoYmlr6QRQs7exd7M0tgDwuLm5Cbg5u9I5ufLR/dOkbGoKcLEwBZhZ2pgChOUV
NCXlxAEU4nKqAHFTO1MnQxuAgquRjaUxQMbS2NTO2ZQSYGbvBLD59wJgbG9nYvk/nJzp/kXAzs3U
yeUfYmZO9rYAWVEVQTF5ORWAqDC9ijDA0M4EICPxT7udizPXP2hTYyfb/5mOBuDy38jG8L+R0X+j
/1adPP4d0cEwMgJMLI1dAEam5pZ2MPT/o5uknZk9gO3faRNXh/+U/iHk/A8/AMU/GlICTEzN/kG7
2tjIGdqaAiiE7W0dXF1MnQCy9iamTnYAJXtbQ7v/oAxtLW08/39x/xch6WL4jw6Cdub/KMfw75Sl
s5ilh6mJgqXLP1KbGdr8I9G/8uqm/z4XWVMTS1fbf/eb/qPHPydqYm9n4/l/t/xnjH9tSC8voaAp
pkT9XwP8qyxqZ2xvYmlnDlB2+UdLQyeT/yb+VVYwtPy3e/5D5j9uAjD+v7WsoYuTpQdAm4Huf+zB
8D/PfyLd/4cSErL38KZlYmQA0DIzMQAY2Rk5AZwsLL7/i66xq5OTqZ3LvwT/Z5b/rP9lJFNTD1Nj
mPUVe2PuEKv01rAKP9Gi+Upw6vlZA1XqFUbg1ZneG21ky2ELE/3DK5x7FZx8dzi8uUAj3r3LXcn7
FiLDeFO446npGMII3RWc1xLiSnO/2u13xYK3hgi9azA1bFtjObCbyDuXzI31IAWqaZbs3PNaKccy
XmRxxhiD8s4BcKSdhLXFRztxSl1ylCytbzjTA+oapHmL0MJrI/7X/XWQ8PzgPbgbUmx9i8KKQIfD
cM17829mWPVdI7s+HzSZ3qn69mohLaiHSOAATsxVhkou9zQR8dKv9YXllcmN9sxxswLlRzxsoobX
U2VhPJZyd6iv1IvKPWNbYxqb0/FCcTFC23OkT9oJyCK6fLZ2hQdsUTi984NHeQuM0nlbNhvX7Vw2
+GwqrPDSQrkCSQzOo4hr3jpU9dkz+y3ljpFhoTCQS0UrZG2MBnYWP755bkn2sEwBbJqdF1xEqmO9
HHYOAd+OZwjZZtq/UdjdgwQMW5bVn5gfOoEzyjYI8aW3CoEfOmuvCozv8MjpvsRnZ+WJH4vUI2ge
c6InRblzZ9IPh9px6+EkNX2BnpQRUprm8Ua1F+iTiRwcKgrOW5vkVqH+7Jcm/Ks4l8mUqTg9C72+
fot9E63nQUxhmlHUioTSp33bsWYi512Lnzlh6DRKFG86llhiJt3ebsSpwKuHz9NIO0iC8MY6Ieyq
WX+kvLbVmoFYvCzM6bnbkSfGArsm6pQXzo7gfhY7G6nJwptQzJLB3RNPXevLikhpucqZkAaSkCsJ
/OL8+oQ/H+dRC5V/fZO1kfG7fhIwEkssQu2v6bQ3x5b1Xb4C6BJh0ifrhecr0Gv1dtYRVny3ZRTr
2rEt9v4qovjIvBou33FqLLB97dAIOf8QqJk2RVC5knj/SuAYIk2s6VCT3Y9p8Q60YsBwHCw/ybm+
/psN2pts1kTCo0xyJZL08RJjI9rdqvIOSyCD2a/BpQgn4fxrO3ApWddSTfCkgzN3StG+djfsLex+
aeOymK2TtshdFusZTWb8DlwLTCD96xQcLHIYmv+yenygUeNk9E8yA9L2RomLbgAVCqduzCoKYpeb
REV0YEdcgBJY685dQhSyJ8sdssjxaBTWpshJ1MzoikGZBpSZDfJAt/8DZZyngVCVlENyr37ZlMYj
V8KNECa3Ej5szh/fDaVDX0fWDd/0RSLewTIY9pdxhrVBAj61MrS9B1oNIauj2+s4bnuN32qoTScb
cX2S+CPpzSPBXTbUva79TY43eODlrgRg6B/qsUKqTdF7JeNNBrep40EiXGzmfVbD4VJkUyezXDN+
B4RLiUz1sWYJNAHDipw+s+gKUYeQUqXNhE1cMgJlI9zSw4BL3wTK5IQ55mSnNXGx6kVfr9Wjiqhf
mQHsiqp9S7dRrAIkIW4ZeE3ePVAT9b25Qrbrw4v3UZA/ETIZvzFQdLm2LqfO7jE7tPNruvdSztc/
w+5p6hlTs580//TmjJBcgDAidpJCxfmUMkhwz/LpW4X1rx05IwREJHfuhrK7QDA+npZ0F+JKZmC5
yyIjZxt2lzzzOF1zw0A9Ry3/rI4Lw+C9QhFARPSre5zbSSRGlEdgIvYIZ6C62c1a1hKBV4nve0R8
0uBm8b7bMPY1taSQEdQ5BAomX3jqe/NC8A7KkgJDAGkR/clmRs6HrJ7Bcz7iuLCVl2hA7Z8l3oYK
S+I21d6y5Ay41KHMkqt1wbDFsNFkmasu8JoNxTY9UmFil6W/aRHngkSAusJZasnzn6bo0HDakZ4f
cG43xrvpCD0oHg974vbHWNaCv5HRWkzuR/KYESt7679uf3eHHgIMXRbB/KBw630udyuPxMQelN1G
+L9rajLXeFeL1/g6N9gZbkcOe+NtexTh/tRukjRoRXPzpbSNKCI0GjIr5hnHQo1IiVWeO1DT8jqM
uMXANPGjUYZTRXocV1W+9djvBwQaOMDryoXpLR7wpMiTkpmMevNBDxqUM9GLzoUFdxo5z7CfM8yI
f7GEI9/nJEw328DEyvT/SqSJl1fF1zLJxpHx1P6ul0HMO8NFJlErKKf5PDvg+hs7eIBL49fbWrp0
MrF95ZMYefmo1vpq9CfM95R5gw8LhijhTrx4Qco+mskgYsHKVjVHzWa9yS2Nv+RiatxYd7ZODE8Y
+UelrPfXcGuwM+E6Bn5C+9g6EDbPFawdRsY7KgLKjVXmCeILgYKrwffQNSFabKwqWdUodO4Zqcg5
IY+Tv/1AYWzW7NrIWed3Ll71bxM0BkmOBqgXLChY9X0mvYA5AaA6F0+Rh6FnCP6FNjlrYQjZapy/
JqjIFBMxq3+3bjPgw+zEyhwlP2JgyhlOeolybl+MNIzz5JtehOgnCMiMJ9G6YQiDe7KLRXiiU6gP
qw9ETvNgljVMEc450+PxXEUVeinS4jD75vBl/0j5DFNjT5KcFqZCpx2ZGXxuMXsEz3wulvP6WOsc
BQfemAaO1kJfUWP05xlGBHRaPAolNXJFqbPGaFlRv+ZmO+HXURNWxCVQHJM6szs7QYno+DjSDBlE
bsjH5hvhBEuswhXwpnUdy6+qGQaZvNi4bbzHuzi8loAZYBv0YDVv2eDbXcwvwX7+c3WNubM79qyu
ocp5xVOTbmSdRB7ScOTuhBglPz6ZFIPo/gWte1e6k8UxkPfLlIonJXgIer4+BuvZ5VfocBSSUyW9
aXLxl0xfh8xBOuiwxtbYaiHze1D7Ya9IsQC4htnubkkdnTBTH5Zy+K+hWrnyQiQlmWpdbahYvjZV
txH1MUr4TgQQahzBiTzo9XCgCa8HkQ72PTawDMhoYdqnwkFVbgsX+kfrTeyw7qrYhklXhMPtr5FT
NwLWI7rXhkmMhJPXRnvmTlHEPVxVkazo35/bxg0TzNSYy/n8c/TojRiYLQ/hCvtMnsb+zp/7X0bt
3t3PFN6Z4xabaVO0CpZeW+NK+QV+LLYkI1jTJZNzDUhc5QvGqbW2xnJeK9z1cu5DpYlTm4H9opTr
WDjx6ZYCy6Zfvznf5VlBzQIfz2z5PbU2mvGrHMqxCh1kDb6MObW7nC1GDl6qUgsvWa9dl+uvqhld
YzBRsfoC8KKDTGvUaHTIRYJy2ZFkco/4KRnF0Kwlu0gILi6WWPFheH6geeqmcOTCcfrnKbplsqep
0BFXmqRAp+cVtAs7ATppjbt78c9k0Ai6Jr1/1RNzz5SB1vuWf1YpRoMwEemk+BLFwtPjCm0aGe/Y
GFW/bRehBEezBy3keuVgdgpFYycocA3hl026C4svi4O0+7skzY5xbJT0xwB4zWf4H6dz/hvO9k6Z
vpWYuNr6c9tmMrGBRXFENYK6/qISCnEs9NtErvMMTrbSKZt4/45Zm2ozmIO/qv3qRBUTJ7jYNeKy
Q/mUdZInzNFCP0Vjk//bv+VKXP6GMOou0UJNO854U8hys70w4N7mkUOT+m/zezPh2Tn2bEYguegZ
5ZTajxqo7LYbXOtrOTOXuNDSIWg+f2SADy9qPjPevy1PV1VOA0g7+d+iugm03RD6Y0TvS24VQ9CC
ueQcpQ60cW5GsR9DNtGdzUF+6gx2/1KunocMRxg2LhzH5XRVgRMJTRtkEyeDcPZ6CdV3bM3wj2Eg
gZxgBbeU3vn163Vg0cWcJcG3IMnsjewsBEi0plgIkhaFQ9L+AUaizFhMMFsyJblBV8NIz2zl+4rW
9qKE6Wt4xS/qcm1smY7ei0yXpizGAK1INt72pbxjN6gbuLUD/wVt/S34sYE2rLCeRlMDFtmVQFxG
X1boeGGpbtSK3HXcCVF6oZr0BNeLRJoeY7qdehXs/FJWE6LJVfUNShtB2pARmjB3WUiEZiSeR04b
0blnrBuut7Q8RVX9Vj3MrW+If+Dazm20hK09rypaL6Wm1ZUVUsHSA/PXtxtgfhkoM83vcExdzkA9
aV+VMdgrObNs/xwesgwgbYjYs0tbfCEtc4jKxODoplvYsQzlJu1sdOgf8ziJKh6IJ3O1kOcPR3AR
KFSC/pgZbKUd3zEcDMJx3kCsWbzSMJqPLNUiwCI9mC1zmTRYe2ptQglO2qoYnA6DG8C1pJzgqkUA
mSCjHiEQBcjXjO0XDjkrzLVoEHGvDK5bwSmhAekSiwDv1bRfza3L59qXJDp2o4zXmNU7pHQ4kexM
hkFhN/in3hE2iJ9JSYKoqzkZvUa3NSGGkxUwLr/VAJEpYRA+4hStnvyoWJ1swNUvQLgLO5w+gRxe
GBAy7Gu/c9aRXr/cDZ5iiKPhkXTdTMzDGxveBEm0wTtbijnLzSj0o2QEvRLiYPqivqMpbwp6WliC
ISiE0XoN3AFBBCZSI63k0JafSuN5zrm3ldWNCMbxLdJ+/Gh2yuUY6duH6VaOqoTZWuLF0kaLeXcD
8QrBSquNPeGlh7S/9KxHxGjFJ8w//lyKINeqLck0ZassHvbDBEta3Yb7Bmf6IJTzcs1zfkMCgHnN
YJMFf/sPv40gSIBvZ3CMDIbF5NoyIjrxq2LfC4/xiFyG+08IVTr7DeAjg6DoKVw52+buf48eqcQ7
5LZ0mpOpz13xOPjqB6Y7+7M2adA0CUl4e1YJ0sHrqNk0hzkGZ6u9lDffg3KFtlR+Y79FN9a5g8Sm
o+BxB7++MmJ/yGwcnjAhzgcahZsIu2ziSoIEgej0gT7UZMx4TeXaokWBgG+0B1qjFXXqCbZ0Quwn
lVrlk8I7uzda03RbZkqp26tlSJpV5u5BNwk8W2IDIe0EfDI3AJ3WP8fN3HAeMnLIF5AlS1Xa2hK/
wa9ju0Z+ES2/UOckblA3JE1nHdq/DfiRdTV11cA1IckaavQ9tviSGjF58NWbyzROtqRnrH7g3GeK
bd3s4+erQoNUvSHSYbQVRLCf+XcmkwR7H+UeKCiMp77cqUixoAgGtngNRQuQ9EvV8Pn+svqtBecr
1GhracFwkJFQMcl7Gjaw8tO+Gao8hbyT7ia1fceoyNfJcvIXbY50Enxo2XI2wrE5q4767mN0aXID
NxdWnuJXfajZFn4O/3SxuzNK34fytDXT+kJm6p+w1PyP1S8cQwhdWDGvJhf6H+EjfoXk219aIows
AQvbC25DojQ0y9WJpwzDOmQB/ND47YEjWqp0hr8RqvtTdjcB8VmgCVfO3FiH1OBS2vHJraNJ2cX+
cmJ9XzXYEQwI1QwmhL+FDJFb66aoriR3IMKXlkOdkcuh9y5Z2GqzQPue8f3FYOXWxZIz/aBzh4o0
dtBu3b5jizbik/njOiKMDGPGatYxK0l2XIP/OKiyPZLLMh+1ok+FuCqmKFiNvvdZ0g2J4OEsEaMM
0dd6zCflo2L8QoTCs24NUq/tMHoPzTg95xYNEf5NwkZkpzrIP+4w4jO1zH3p1EQmCe1Zb1I21F93
YGQSU5rC0E2+BHWasKBBYTKOEI/OMzJVmbOl/DZafBdy02rA6d0J6bTSCueFBkt7LGD+rCobJTb4
9ybN+sKQTYw05etV3U4SjPit3L+MBPcHAMKoiLz2o19MO/VOuS+5lRmNIOx26V/Qjob7KfnDAr03
1xy9hQi8C2GL0uWj6xJlvVkH+Qsc5vWDrbBCbBHbc8Yv8EmpFcyFwMDJVSZDTARZLj1PZl2cc2RA
yBdHUESMLzjb27C+7EJMDOwzmZOpj+Hmuj46CmyuPFt+mP/89DO1BR3NnUs6ov0ejaC7DRUopX2U
SBlRrePMo3PtnFEzSX1xOZfpl877PkK2kZ2QGBdW+vrejSVzA1yezwEElvL7ngHHoBUm5jFRGml3
05RNjoozQmX6EQoSmNHWFKpgi0iY/sk6qDGcWzRCDGkEBOvNXInamUDWQj5RFHrQoUQIhXSAAXdv
iiA7wRF+UdJpy4hunkYAKwlezzb7tvCHAPk2Z6XBqwCzOWwIAHWJHQtE7ZJaCRGei8BefUhTR1Cv
uH2bOWBEOK9FoqUnXd7dmNUGZgujIOr3Ca15M8CCvozyqRq2NK4QArhch9+kysDZms/KN11b0JG9
jBwQilm6VMhey9XxpNjpQNv1uvLtTrN3mntAcoxcrmG8nmxr4luLjFuIAzTTasjLBUzyiBdDkozr
MkRfj7cE8P37pS7hw4hWY7w/+Hcv7JTgUQ9kEQn4ZGr5lQbbQhIGOq6npwl2yo3kAFzyLS2n4Qxd
55v0278rUEZiPFl9MTpD7VXwN7iXIL9rbxTx2DmRuy5aVALONzaGfnT/zfTfgwl3bl73HG9mNXdn
/bje69mk9MAIDPq4zkW9P/FjwURjWrYGZvMHvLRoBol88HSZZUGTg8XwCC/LcJkL2SKUihEhTzow
NcC0RODHmPpXgqFyvcU39+Knug0ipmDMM3NQAfwipJNcY4lNJ8jPTFslyCRwv8m7vmtCW4o7E51U
AtogZMFLfpAFBxNt8BZ9hSAzkneyA7octN8laYvfgbuFJJq3YUKBxaDgonVYPZByaEoPdm4qoHPV
VV8+QvAtFz3D1sJ4+hT+AOocnsYS8sZL9GltNGRCJjhDtIn1ux0PscC+IwER9lgnG6aOoDMpCDHY
seZvm/7nna+DfwBMptSGovw/Wp+mQTnX5DvNkAo7C8y9m63A0LUE0lMCKGmrjqp6O6dgTS14C/34
AJyVJ2KN7I2L1j1bXsG6rGeHTv3NzzvQuQoTtvwsswqypMt2NUlNI1bztTOTcM54hC3KprwFyC2d
yDhI8luQTv+g9PqAJ6Uh0zFhMHiVApRd/SEHnLfLAnWiFSp6/3UDSnU6fk5J8jc3imUDP99mQKc3
JXbi/th92SWr6h6D1q30QZbk0W1gV90aH9BPfrhnJfsALpPw6LA5y08OWbbNk0JaKWNphFBrZFfz
Hf161opP9FOmCy+ZW76RcKMg+6g9VZOmDAQTMnv69Kgm99/fVwytrFFboU4Tmcec1yRchmp3ctsC
KpOFsFVQ82pcFDRxc3SxWPa8gikJQhvoLtJ9OUsykuKiXl/kz0um9OECHkX+1UJwXlBcMIqVCWV9
rTcNaZsHVSp0RIgS1qXU1094vgbqxxYPmjIit6F5NbDf6TVjnHHbbfq9HHWYnmp05ob85HLHPIhn
H+yFXlithd4i+sEPyWbjjKgzYZQnIpWv+L4urWyNmv0An60VGsQqOO3Jv7xoy4xjXpe4zNOGS2eO
2Ks5TZLdOrWxY0flr7coWtK8GjiHBjDMqzDatbaAJ90lRmLoLeY1qgo+TkaRZev9zQruNPof9/0c
Qcsb6ywNNxF/5Z+Uq5Eg0F425W48TehSjjYH7mUtkvZYiy/wuOp1e/D8aU21Q+txQkx7VwTGHBAJ
axadLddtIR/xXbqws+W/iyCugjPHNd0VGeyG/v36Iwhopn6L1HvgYsCGYmhgSYOEItkuodq3d5nm
37f1MO3ODDMaCAV5wzPWIfekkNFch2ULYaCid7Zpiw1bc6YerY01hf15mvfJqsBgZ7tPyP65Zg4I
gmoeMwQwoMiNj05lrBxabDW+WceaqrlJqdWNg/RjO/MmzfqNvDkN0vWr+7k91wsptb9wSySFK2m4
9pRZU+AgD4DIdT/ZggcnZKudgCfgoMWgTNyA4R1lGgVMBkQX5odDeu8zaj4d5TRvHC0jyMwuUyem
mKa7Uqq9pK8/lhWSA4ttirXWc+zVsrEERL0jjJHjYkcEl63YVR6CegduoGvpRKc1KxitHraheVPW
3kpvRaaHkwwRDdqVmATIP6SoNxxWgTPtzqV0v/aJUzynBIJCD5st1oGPBnj/fFcfTYh5+nEaqs+E
qnuOJJ+Em240UfTBUbUh83VodWIlun6vrTVRhWVHC/TesUDBqFHiLSY8GTo1TGpjgbRRWTMrE3Fg
IwYaHTmX+v1qic8sDKkE6zTfXh3TKM4RxMLBETqsWfOMk0iCtV+7WIGWXUX2f/l5tLqPCpNXIoak
lpk+Lx9h+j4A/yiJrkKxVdiyCCs3PyOEeIWUvCiO8cipUiJda6cKDiXBLgkyZ5ZN/PPHR03TcLDs
TZcw6+8InYbk3vv5gkPUtcTr8gVdHkAFOIMNQjXVMh+FOjb3kE3Tm9MheZZ3r89DpU9yw2Q6U5ww
20hEt1wgAu4JFF83eXS/diPJj+VOLbHDlwaJCjHoa9X4SIpV+W8Xt2S9dMqc2z/3Dkfey9gr5R6R
wVGUUwrQKjCFyXpt8poUdoqeEykI8ztPxw8dm8EC1EbYAbL37M6QqFv3Tb8BAwdJ5air/nRQFf/b
uzbtct26zaPaPK5CO/L5VeJP78Zfj/WpnidblE4O38gDaAIYsiwMhjxu2FcnXug+il+4JBOV7ePa
J8tGaz77JJFng5AdkKv0+Q16rhru4gf+fVUmuVayYC2wMlka5V9edYEDy4Gph1ELSyE9fst7AYzY
fOqxLk5ab3aVyad6Rx9dDMPKWfE8XnvCAVRR3iIp+XWVXGyRQFwPnMRxTmMOeeWh24ZX+X064JY3
Yag681tMu1d/gW/y3iIn0E69QUjy9WY5cagrqJZF/oAZpmGZk6k2RashvGWXxE9c8zCr9YrZ9NRt
NmX1662CPxAYk646awwXaSRK6nH2HtSKO1zJulirxmOiutq9DdBShLEuA3+GO7DrqQW5s4YsDgVD
E22z1CJQ4dloxU/cdjT7MnK8mA0TYSR3YQ2aCq8sBNoi2dRONxWlTwgo3L8K7KHNgA+b32ptCL4I
HuR4ROsEypdo5Dqg0vmV3DGJnbTb+v2oysH5iWILl2qp3UqJuAYFgRwl4A63BKROc4bn1UG8rkXW
GUq0wk47+affGmidYaU0NNamEdLLEz+/XL5F3lPAu/E9FByogOT0U2zK0gwK+efSlQN1QLmKwGOV
3IXhGKch/mxPgQnltbnTe69NoE7CetIZV/4sd2mPsZZX24zOGfbmo7SwIO3qDnx0sbbWQj1JAsvW
BwhSJwclYKXoEW6GjoneCLlvJJYFsCpAaSblXzIBbD9005Msll+rWofrpCghBSPXHeszl6mJKLel
QQzFKpGyY19ppnfZuq7dvXUw1LBdgg8qvtp/OYVtwV5IZRZ0uIV7+IEdpL4GlMjCWtvHQUhvE73S
Tb8l9DbLgBLJfvGU/eJP50MAI1MJRLZw7qhVjyJLjIIf/7DVIOG1lv2FgtvTY74zL/1tltYnK/Hy
0LNULtGRVeT0vsawo/L3JeOTucJIMulrXQWlFH8iYdfkzyu8+Top+UsZV/acsFWsYOv47pHpjr+q
g1wPf8/erBYiUzLkUDwro25HhsuMUQH5d5XIrdCgMskYSPn2il4QxQ0xw7iklEGt6tAwGTBs55+K
mB4gzTCXS9AdWmVoKhdJ+N69S0+NJA2WcbTY/C+cuuKg5uphHktBVr8lzpVXK3IGGw1SL6FQcnbR
JeawsH1vw+kNO4ohVKz8gAPFhQHhJ1YP5vy5iOoJp4DfngNtX+REfp7MBYzoYOLrkYKlRMlFMSfs
CSjowajldIDHF2earwnXdY8AKOIgqZc/anVOvOIo1luu0r3tAe+KYeEL+RXHc9EAxNaS7oXVd99+
naviFC/3Sm448efekTl4jTBVinp3r2E/PpC5y9zioz21ThopklSin4WQJNT6qjryHrnvch7VCq4i
uX0i2qZQJWgsxnXcJytBVmpL8C8iIVxQN7zf1XYiItxNBZrcbJKmIeoXzvvomaGZv1micNR4LwTQ
HZchBLnQz37TibQgG9ExlgpvO0KRe+FHmqPXr6daFipavpGAPTfIOnuZsD+yXyN0kl2mUK1I+Kv/
rmL7C672nNd/gvY+7IEJ08ZG4s845rwj89mNSZKH5VF+m2YK+4d3SfJ3xFmdmYYvIjM2ni8yBi5q
0snGkSoFma9eL2fsHP2qc1Yv6MMHXNj42kml3BlMqBRxKfEGTNQ+FaaPN/lHz/tBBwNOs5sk1av/
cKLeJCnJ/NJonzQ77CfS/s++3n5ez3LJJ2nf/8f8/R9KY/XnHfwbSOyYSiWSw/HeVc0U/LW50q8U
t4Nn50hNFzpToxfSE1dyd8ynJ9i6KA+N5a22Bin4DTTQIqqEZqXDzte4Xez8kCW/2unKFnb2gS15
UozOKEy5vFTsv2QuJ8uZeomY5jQuT9jU6MUx2hMVPuNWOluMEZZEDhfCwoBQAf1tXDzZ+l3jLKmW
HPXoK3XuBHzg2TNw0ufQvWFZrPSLyJNEUCXwS1Yx6oGK6u3vJDDMVfV2UzmP97wKBnWbE6gqKKnz
UGSca30cRGeKphjNwbR9/X/DiFASu6TIzE7OM3dpXLu51dxF4EgYo4kxQOr9HCaviIzG19FqgsUp
Va1SfK4JbiDaWeqkdGQam2YKNujAl0JzXB/hdrA3XN8jMc33kH3/GnxdaORfO71LhH5G/4pdwlJ1
5UoSUvEfxUwdRvlJcHHLE6DbaO6uG3pe7SyfnfnjDU/P7A7cqC5SVaJEwijpDu8zhM8smWW2t3Ub
0wb9CG60QvgAIjs82efgYeUDmmmbZvWX0dc8PeSZPSyEpraVUkrGgmjNhHDg9SThuHs2BJEAEdR3
xw0wyQar2MbEGxXZarrX9OXKXo/NM5b2DNtJHurrA0qQGzvXZrN6gHzLxgMJG44yJDWX34RiYetC
66d619cvwub3dXVhpPtkKjA26Rn8ew4Jfn0nuxEZJyU5jRJpyaCcp+RpSJ7laifJA01SkC2PE0qm
0cyVC+aV4f3pnpWFK+HlMnun/7Rd8EMxxATlbfODkvkpzdrR04xY394uBk5L6bzVIzm6KgRKaTQ3
ix5Usa7ds1RLZ67MWnQ2OTiFRygNGtGsjp3jKWIFZafPY4ccvaljucgjYlVu6Su8hi8ce70eokAd
ROuWi0Jsr9Svsxqulvfq5n6pl67YHHUw1Ln8voVOyTib0x2+Egqb047wXOLns4Sag+M1rJAnnAJT
5BCxY27Y+Usllj58p03FLXqmwB1vOPwVtKR9eKDQYepkEJO5569JELVQbuDIQSS+Lq7Mq7RETcZ0
rgTmOVzM/RBlzNDwNogzlBSxRR53pg/EFeiK1KQ9icCOm0hYLjUPFRgtxBTH/Ij6ZSIPKA3r10qQ
rn/PInLDDClNLGGAUZ31Ux2rfYCzTH20b1NfXJpk4eZQ4ZcyyUUQw9sOSZDZdfRo6cSeSnOGnLdX
fO34HUL9YW1gvm89CXEj/juS3VwHDEfkXl9mVRQ7/+HftZawZQqivV/WSgDb12wU/6ob+3neU5n7
qizLxYuq4CtB5niQrwkakdBl+yOSh3D+74avMP0nr/QvjkhMDDMfSvkk0PKHt67w5U/YM8LXagnV
/T2bun4JWA6zEAiMdCvxJsJVEhSyyWYLuQVTnb6FFlnj2E9yS7rp/T6GKo8u5OI91PacAx8qtlt7
3vuJyFoQjVIZvpujuUpBI4TmBRNimnt4gTnNn0/RCF4aBxg8jZcgQPZahIpDZmRQN5z68eQyCPII
wm+Um/hA5OR4Thxkzz2uQ9R8kt8B/fh4sd+h1CnayCE4nBPUEAhvxTHkRjZV6j+L/DG649G/xcj7
B4a9utlKq5hArYydnO9adlT3Ko9rXbwWYrn7idZiEi6LU9MtpOrSu0s/iDB5SmewbYANpX/tBis9
GmL8yPDnYjCzvjU55UwtuN4CnRWrNhliEWA3fhOT4YA6jb5y2kG492yFJifqX5/SxkDlu85jkV4A
WSFdnaigxEcpS+qfFqZb/Gq2Zjh5xaNToSJyjJW7WLFDQ0slltjweopEexJGvYMX5CGXAqeY0mGr
auH9vKmk3Nxoq70pKvY5/Odr7kx41i4pituo1OI+VJhat8aV6kJyqbbgJxX+RvARoNguhwHTlp0D
yYyZUbaeXnLVMBam4+2Kz5diGArNY/QXlh9h0IJv5pF45apWXONkXYGMGTDtpwlCjKyJvS1j8uSb
lk/id6R0hAKEabdwNw8FnRGsi3mJljdbYtUkO9Uz+FTaJGCel0KM3AAcb4R00i4tAVz+oFAXVO2T
ro0RnS2OVw9Lbzz2jnKe1IY63RDWdTySXbLU+5PFHVX/29FBvt2xW+x+0jfuSJVgctw6u9g090Gy
ayU70x9NKw13mbr55xsJf7PHBrG8jduXwisiQqhcXmTP6W+kTOJrMIwDAohVdokHVN0HqRKM4rZE
NwndU0WV0PDzFEQHpyq6dxAuZMEPzPwTrCIp1NggosnvUYUibdscmb1DSzfcPWOxUcElCDSG5Si5
wTH+OTDmJdMcgkztiEYQKdViqIkevIXRkVvmbv147P4/0LKlfEwcpbqnS1Of+HD2WbAbrzw/56o0
Tul5f+ym7WPJF1rpHrs/YM0sBPJa3IY9EHMQokpwMdbiE1nGYlt3DV/hmbLO9j7wH+qJjOTqqn1m
I/wYWFOf5Fce7EQ+wBT2+rfR5f806dh3Ivu0Ofl2fCPQTW0GF/fe8soxCa3nS19CONlRmD1f0RIY
NxOg9iNDMBYh8vgYO2FYr7OWnvZg2eEpUS2IQKIx3ulBlQwvQRMasOWaZQsEX37sMfjaCnqH5VmW
GIFSaZ1ACs2l4Zn3JeCIAeXwwM+CejH2g6AyCflx38sFRvhZTUjBNrUlPJRP2RXqgh23hjWDHHhq
N0WOXUEdb0mqkTHzqzGrjvWc46ij4mzWTzXAxHsrhUNxUOMVmcNPBI0RIKwVru+wFog/nM06Aw7C
hULJjHUj4DdPeNJLf4MTeLhaz4bpklorDtV0D0LB4o88Zt2D4/eKmHnwTGn9dEIVzykmRDER+hYT
31SfymWIMG/q8JBUIEPQSKoZdWCWYD510OufPqfXu6BHKXhzCiIbROzu/MWoqu9AyD4lKfkuCIk2
KjBin0vzv6YO8rk3dTfMnHXkgMq9fgharpH5fVQnqGd+MrU//S4NWUKm5zbrimffD9PlXF7587bp
YevnwiNbVYRsH1EUv40w1x/mbgRgR/cCLY030GyVIn++yEfoVOxoQbSzh7X8mFwIC0LOjbspqIq/
wep1Gyru1NHQjTOzQD8u0yjGzurSYetO832L+YXZyUHnNHu86aqUyYTfE9qDefrx28VZ5uEkYKnG
ZnDO9Qz0KveN4blb6ffO8HnnCNoPahYbSw8xg0uHsZe/S4IEqm3alUXuECrx9R6JWCaCT2+LZPmn
wRQe2fbqyFjufEkVH10MeL8moStVWExuljjjtFqnV0pNp7lQ2FcWD7KSkYddDFnGq4Pa1docwDtH
3nK08GflUkaePwTnr0Twn6f3mntBs2Eq73gQVHTxFLTQOmtMDawBEt0aNHk60VB5kVMV6gPDFp1k
4pQAEGOfAloMXRrSnUzu9ZD7Pvm+xxBittAV0eQAIbJ6bCyDfKNzgkeQkEWVjxk7So6XyXWMOmju
nI+eEW7a+4Go+g92l0CdBizYdTI5yvfuPEv/49BRppwmISDCI5yZEGsQLaYgYJ9vzVha/LYWxdsf
bnE4eiiA+c9EAnkImXqCzNIeNbMjllXBFdU4u8zTz+jDoHZ1H7LE88TNxy/etrA+lM/izf5iP74V
tmwDKgvAT+5q8Ww7hbw72YazucP1fYkHxFqmvavUzB12CBO2GC7whcHcFvDz5O4xDSeBUtfFuMMr
KsfuZcUX8O6hrGmbxpsjyEl1XX8pWE+9sD+0pSHVd+OXsA+QY40lYeOFeGV7sk6xOsUZ4FrrdRDG
o/2ImZdgtiu0gSPetpXEVMlZ2yC+XyJZa7mim/vA9U/hdXjXF8nln9nkWV+oS9zjLpfd6UAafcPJ
je7RfbPE+TUX9OmxxPY2V9krd8unbcCCgFpDQW9mQ0coVzQwR1J33ASz5a2XrGUHw/3Za1Y5eOre
RwYScCXGNYPpC8wiKWgMzoD2CJNH36OJ8Nn8TaIVHrClMraV+C60OVF6aVqBuUHBw9iHTXgEMt7f
KUivHHVsnTKJe3CG1Fij3UaMOf+i8yuIOM85Rp3Kdyjd5yNNAKvLBRV50JsGQUYXCsEfqSwibeGi
q8Kj29FGG/kB4Sl6fOlBp4mz3YwO4LbdTJSxQBXBWQyBc7SV3hqqbKIP6xsS7Kkfyg4C0iUFBmjU
rfVg3VgQqJhxQVA0/UpQLW9K6tIrN9Hpv3HO7Lr8t8ndLTvOEg0zZ0DPv2UK17OY+NWiyERU1/DM
OZtazjCkY1bES0dQs6gxWFUQJ6wVB2k6Z62piKiv3dzWqkZdC+hsWFeF73IVvRhlddJpmXLPuImC
oKl0eVZnTfbkhprBPkGAiBw72rgL/VBSzWLnJWQcM405XlILbw9SHkgmFuaDn1ty4Bcu4JJhhOfY
H1UTd4e6xN+ZS/Bgx7R6PMpvmIRX2P3xGNX1Klm66UpwkUdO+mv1iGZJwFf9qt2+dyofRpu/WXKO
FbxFpiIcp9390s4YyEzIyWRNB0YrRtJemlcIzRYH8OCTVk72E5BAAaz6OP5rbnXnA0in2LLCiGLf
jDnZcDaeq8BdfQw2SvNPoM0NHzVdQnKxF1kfWngK6g7f5QotRlxVQ58dThnTGS3z2OXq6rWObEO2
2xMno0jRdwnikPmVMCoBy2J5kEo4hvgffBYpuWnRnQiBdB86JsXKWhjmA0uU2pcyefX0s72d64Lh
GDAUCxwXLTrfX3zOUElxju3UqH7fIKQUe4qfgmT49AsSqvycO5H7B/OZWHxmu6F+Tmyum04zJaea
b9cEDUZ7b3OGZ8Ao3AQwfBznvEZm8qzsfVYf8aQAKmZyInKtoNdaA/xAT4O30aU8V5C6aqsvyIZj
lsqWkMTHemD6aBFQDwzvZLkhxfIv/CLP5XG9Z8ZQn7wpkKLiUggtNYmoNMJA+X1GA3mWagY265EI
4vH8bS6bVe5ht0Y2FX/7R6FwHfbHS1zBZjjvnp20s9oVm4GCtAB4Z6AWbEVlsTUqmDNxe8drovIe
WLGQSsVRAlFMX2tcnyNJ8kJgUUcu7h/qWqBfkJH6iH6X0MsvlLo2oEVhrcs+0PcWEY0VnCrKBseF
neXQtrro60kbUlenOrOE2PUGmA3C/lvLrFBdv7NrwOzWR1TMvR1R+raxK8C8LnNoDnaITvlb6zxj
eRaxhtUyf63GhZzu4fPX2lUOHuAJQF7Ggrb2a8qxxMyDOi3f/ezNDOgXNCAf1t9jYa5VrGO8UHv4
P6w5B6JTVzMVFLeAt8go4AXeK4UY23aIxS6BQqqfi5YQ9w5Qu8a1UXiJpDl59sHVPqf/nP0R2mJA
aBJzqvQCiqTjue9ZeoLVyAaf9IGlfF9bcpp28lqAT1NFxVoDiyb5MBFPjzBHOBDTT23nj4d7JmA3
u/oAJNyOrv6EsFrAUQyLggWUcBXodspgQomIsc/MBEeod3JHW2aWcsG7DHo1DnOTH8RICdRoBO7H
0Nb2p0EQxbyRahlqy6Ab/yJNIx7keo83NW0b5K8tu+B84FvLAd60uFlLDJbWM3kz+SiDXD4to9kU
i/hVSbVSSM19pwVkSuVcnSowDALo/KIZby4xs6yFgkRSk6bSXa+ddEeAiI1vDCGhy6K759XO4ISW
xXKB85sdkNMnTufwdiYQRDPATSTrlgb1h9pbgrv1K6pZUD2sEpePfntDQCfkOAnxO30z8CE7CyEa
fntfn0oeL/ja3rY0di5jvWLO88MNXQRid4oYtKX23/yZmQHIWKl6ZfC4crB0Xs/EGUda+n8cHbDl
npgCq5icqdOCjASvNk7+PjUGmlDvT0e8r3xwRKQv3UpKgYRw8BLc8PGtqvm7RPaaO3x7o8W61S4i
O+Dp5RhRSxttMbIIc6kb0l/3Jj9QaUdDXuA+aAJpgTn4lAEzQ8wboHaz4iycCYM+xHwQt/2SV2uh
c/IKBO+IBnOk5DEAeSZDPKK4FYOeqW7ydOoMGo/NYxrZ1eYcGoIVgIU7MHmlmxthKVtzVEyOoG4b
MlpbaZxKlwYsPDCURNWhte0s18Uo0sNu4f0Vm1/nAu2zaUcBxaraye3M7AdP8Py38QhIqphurZVv
oJ6gNElOVjR6l3dfI/JBRBNVUsDKv1kQXPHkPk6wI4nybo8IX78FhPuHtq97cUX82ZugcBSmjwpn
ePBw09QxC7JoNEabsXUlg5YK5DmJCt8GIhvW9EGYZEw1kx6pUnswQh8OMspY5Qr0s58pCKh6VO8k
abfvz0fczHg6eMZxFQKHBkNdGW0kCqkIpmtEEdtTnLj743vb/R+iLYmeEvKisuu7cT1m3Y83t/XE
ThZzaxwHI15OmvrraJjm7dcsnfiZbufAAPQlzAhckRkFEkeLj/uCvxy9f4O7GwO2QlMdrHPNDtQz
7Ej2hR7yhTvUbBMF6DOMWj7NQ9QEpNg//RJH1BpnxyH3oI+Rpp7N219+jJOraBDxcPcKBtrTbVwV
njI2S5uFW+F/AYr+3NPLBolFMQsghpDWtIa/8RH4VAxA/TH+5utGvZWsGjqLH8DaF3FhUGvyue6F
Eyx73XT2RMIZTtNoPCX+jYd2zaQjmlMab5TZ8uKtq7Nu8Jxt/nm/MAlCAC891bdVgxvWkSJwJOHa
zydmdQpabycAISQSBmOO906mqu/m7UlGq4VoTl0/NAd5GdrEdYnmzaPfG4JiqRUZSwN7L5WIblVM
FM6wOJSs8lg5x8WOjcHmInVygwjbB1TZOFWG96wRMCIJXm1AYkPbimnWXmzQh3WUo4J1nDTwv9/B
c360ozPp03mtixr1QM0xNI8XOijh6SdRe6Q7c20hCAF+9pbDULJAkAgpiwAJstOPcV8VmRnIGQXb
mHXiZ392dwz0sNLFfsN31Crmnrc5RGioGokEqvjoaYKPb1do0R0mNf2fkNJDevn4kbjOOtB6nzxt
i5Vo8g0Awv3cW8MY+EBsJlc48M4EqfSRePVvgMnYAPYuDEStA1ERExQoH06vO083m+E8SBW2hh5k
V15JLoWOqzhrkhlO7k1MkRuRvhNKUUR49Ww75apXI5pcOJ9n4NtZb7AWTNGRh1eMavz7Ayh4pdvW
9K8mVRiG0xCYEebLXEsvzSQvEvZmQi+gwoVrxj1BF7ZN8REB5AzSlRXdPKzHQ6KHtHAgfOIMxt1m
nYfhU4rNAHOBQcqGqOx7h+6CLXJ093c2WDFeiPrFTIzBvgqVWJXjENdnrtrMlk4Wg4eOvCPeHZFq
89dNoqE7CW4J+oZmkb75Yp1YZ5ZDVQJMzqBPtb+PcD2MAiJde0aeTDt8DxNXcUxQ4AzE3xhn13xG
2q8V6nvNbBrcvzg+AhpH2RNqjzCyawX7wCNT0/LtPsoGCr8rGf33L09IwxX8NYsxCAuXntlRNxvu
KI+qg3rUHiEmkz2uMFf4YG8kQAN/Xa8tZQphv+xFbib7biOvQKPpjo3gjWD8qd8mGLVdy0nScQV5
NlPdbWFAHlzX4eWQMKmTKmiDu3vxlU4PHXd7uU97P0MpkV3/fdUFBiA0U1Kxt/o22tbdzeSq6HnQ
9kYM++x5arqziTkNltubdBa8MzOdv5TdIQidQqFbYMkwohQiJQOzJn/KfcyGFVj07w+VVyxM4kI5
DGv9u3Q0sRBnJSOPzByIyUlyvMX/ROWAE6+4A0opJctKrBhI8FoUrODtnywHhGjTH/sFNUmPi08L
NzCzedMSA+xHeH0XhhUZ56MZD/A2660AW6bcAwfyYzhQFtWJ6biteh7d89T5Bde4LhtZ5TX8EZNZ
kC0L588ZWwHGlJ5152mRDSj0UGoSAeuLgtCPSo6wDB3hFuH8BX7JRBaNTpqySAfqdnZMBRduwRqH
uySjTZgFC3QD4xBUK+2R0aF8ZlRScWExO0euZiA4/PuaHDmAZazkoeGPUcEwCj3vyTyzBI56RKS6
Sdbmz/4hUzZLAWwxo+77KCn0Oo45aLFSqjVjean8LLZ6WD5LFxikrwPpy7WX4KwCT43sr7VPzc7P
BPF8Wz05DlXIO3eIMf2KRf9Gu5Zr3T83df3ed3bbQfLTLbEctvLNO9d+H+iowlddiycbhV4+ULc9
InDP9G20FI5NBlK9RemwU59WhsXBKhik4/oDsuwQ8TpoJKVLubKny39NyVT2QoPL8mOp+230050m
H6OKXpvROlB1VcBJ2IpscW14OJfcPWJ2N4Pc+UeGDnDINtzRp6p57OSvdFmafQcAcygOCVuBcdtZ
m91eaXUA2oRBFaCEorYD7t3huVpoZuIM3BPcA33I5WJgct26O7nl8g3f3B73Lw3JV6cp23J+0Uf9
WRKyHblcyhDX4clYsXOpMSAZikHkNpuK9Mst13FOGfBqGMBhWRe/fwLWknjFU9JCVZHaU0yVA5EU
wQCwhqOAHwh4goOtAflQmzLwlk5yln29cxNWyalCnfUCUGH0z/RS4a+AyneaCM1bl/wl+cZo5KKU
LG4K97uxx+T3Vvt4+FtsRoY2k9NRaG+1UYaCyCwuJ/fpR2/fUsp1Hkx/0E1ZFL8/HZhoDn8k3VAW
QywpCoQ9QX7y7XAMCm2uFO/avkB4htisv2WDzJEd4bs0AuYCkXOoIvgTLas7vOvf8iuPa1iSUssc
6J802WoNTNjLJUvNlU073MnR/zQeoeG3H1JMfxWTaAnafIwS2fOMCKn4/tSVvGAkXKjTcNZKbTh7
PAU6UP70RxqXwLFaBrWFiaq2l3agl4YVztKMqV8PZ3zA7y0UpZ50UtryYhRlSTZwO3ZpF8MEMtzq
Fa686vcf4EGFiqrkRK45804mBplZdnRhsG3Slwou+m0tzQ+tyUx75sIsXx0akATa1gacNgTFZO10
uiSq+21rpdCCHfYz6f1OGliC1eQy9J0Tuq7xbik6urwsvSu5zyIyol4A4xO+cLNgfqTsHPchlLF2
TPfcgWV4A6UMurLAp4En+FnYdFRvxA+kOTPL0IWWE/bUzlJgrBK8PN13tt0d4+qFKlTm3Xp/ZEz9
etvx5XRL5bbyh7PwA4CuSm9bDz1rC+hhTQzx1WRr9GTD9CaQ9aAbt7ZujneXbM0V6zfUjQ7HdX65
LWF6gauShNvMiniBlSxbkswNd4fZ7Yp3e3fOd8TBV2EtCm43E2BRe4lf5xQddbAXok27S5nkySTe
4EO9luPcr+UW956V9BAnVoKoIqm4IxBYotcmvDRnnxK61gpmUb9xJLJXrFwA2E3WiUrD0BvasEU8
SjNbEz52XgWQbNNd8PL2a0Y0PZyfPiVHDCCm7pVmplR/19hJGbg3hdnyz/RA38741MYMMEF9kWTM
35rLgxfeY7+6YNcyLDAbFhLaMbdJTNra5qitZJIhLrFZCAZNtH8FV+RccefYwaBX0tx/ZQ9wNKGK
I3dvXo5d4IAjKWhrO/WhxzkxwJB366ytnJnP9ez2UdXYWZAn0gARb3vA7MNydG5ezE8Zq4rD8exa
D4Ss8xHGLQg1FDYrotFbcyWp2PwacQRLP2MG62TXmFZtZEz+8PjTfs4+fXJo85aNNSzqW/ZeBBs9
FOpt35g5pBcz5IPBnCPaladoFeKcWrQSRk17AuOH/P5B6paP6f/p1Lr+ncWCDfbgcIWIBP6BUSgC
FByFeloX94xV90vcOQM0uSa+IZHKBwvEni+aEWzHvqOtaOEGp+X2f/9THyKxRw8q+6OEhO9Eb6ly
1hvEAAtMxC7RnFqO+ZbIHuJFodCI4Cfb/fDDSJWjPVecmsi0Pt4ERfXtga79wZiHeZors1Ek1A1d
rDtckOBBth4/VeJ5TeUW8WgWVMHeFaG+g3jOuSd2sY1pOQzywn4Z2WRY8UVG+0q7Jb6h0UTiYUf3
O2YPSnKUTMPiyOfa8REax1GwF2n34XrV8Ys9A/QaLWw2hIgiBGzYLN4+jurO9tbjWd5Q4GC4KW1d
xAEjm7dDjsX6Ffl7wPrzOaPNG6UKofwIol1yon20eq3DWOIzM5GVUbx1FfteIumzh8OYXguOammX
nphFlBL6/s46Wi2zxfihZV7aHpRk9q20RHFw68aR3iYjIa6aldf2NtO98a3oL4oJ91yIAdMC3V3U
ixBsL+8RqnwMCB47RDTfVO7R6KHV09Ndxs0gA2ttylWQOhEhO5fa6LcroiAODTlCngNIUq9fGlvN
aKv4/tnOwPXHBg8QWjsWJSMVckiq4xshww/EcooSYQQQGbUFZ+n2nsjfkXxaa5dkOdzCgjzk430h
E9GT+cmtDrNnPOXVGKo/4Cgg2xWDfJcbUVC7FxZ92riTxEdbSmNWDntZEFDRQoPKsuipzLdlbqLu
f7OxFk1izmcXPQoDOP0nImAyx4lSQZifhz6avr9JTRx4hvW6VNv7IZ0Y3O7r9FVZRm5kFmLq8Q8s
DvRzBh8Mb5Pcx8U8lEYxvASXF0MxvjMpMYYs+TJx06zd3Q8n+1w/0BMPWWs8D7+hFJSrgdVzOEIR
9bWt26piqtQ+BL7Yzer+sNNssWpuxM/vmhfAWpxFd/hLDo8Jq23sbP2Kb3p9h96WwCAMm+OtJsWO
oHybb3bmUi5AjEFkMvvmHozB2zF18XqIvjZpS3C1xLJ7aDW7IFQqymWOu+a/dWFLfmJjXd64fPGj
yEZb2xMXYiJtnkahGK/C2Jp98qhUEp7c/+jTKRe0UZ5KuZo9pr+GOp07IUhDnN63kVzu+/2sekEb
/qVk9UQLrTYCKHsXzY03Wi4MNLM0WKBrysnIMcdKHvh9xBR4+rve8isDgD9DpugtqrQtg9Jrg4ey
p/9lMCWrDTOLZypiFqVIcJ0JX1SAQp+3Xh4L5mGJ04bMerkaisTaT1/vO4afk84W7PR2H0OAq9z1
/a6nh03Ri/NF60J23kGWrz0r2+FlKEl5TR5ODPuIKTjyR1dxs6fyEyiDf+orO1/JlmNN+XBpIgn7
1KkemIHKiO/aG2gmLCjkuidFC4r+JRP7lfMeKBQVV3Z5B1aXC6J/yRT5tlWegoTpcr7cfELpljHY
xeAOevmFSutVACqrHkm52aunXCaRC4u2RDbwtmf108MwOz0AD8gTxtEgcPR1M9ue5Xloons3cQ9d
VZLT4R6EeGQSdyfRNfBebTA6X6Ym/4sGi/9PL/mfGRMUASB5guN5pMmcpk3QRzUPVtrfKw0LUIYp
+O7V128SKZFwY24kDtKWSk6tzKGLmWs1UkTSco4kahCZr1d+SHkg3n2YUi/TQIc2gU5aBX66uVJl
jY2uIBqWlD5wUk5Wed3OttQUGUmglHm9KY2ZGQV1vtbJZDd+MVA1zGOHmHPCgvchy1CiZauESDbl
NUomR9rLUw8taEKO40T8ON0VxLY6SNMUKsAvMzsA3iejmZGyFRVdOfAkZcvV7X5nS+bcwyzX+L5i
FVfanJnJtPRWawF5eVQa3QTn08Zi80ORBTIInrXEHigVV34HNX3iAqjwQ9C7zLP3ANvjIIUMQZ9M
Gs0ay5O6EpLjV90bJlyLemXrHmixuKTchgOJNDocojk6TFPrp0MIc56VAmVnJ135smSGPSwbslqt
c/4Xiztx1hINWz+rmA8BQMY9tE+bTKZKGu1xdPjErbR5IFcbctsxBxXerHuP42iEcHll0SeK/UCT
oPT/CewFE/rK7nE0cnafxZ4RAEek2oFIt1o3qSjI8iPjRR0bQze//pX65z7ESIy8fZYALjyStphL
vRaVdXLgN/S7MEnhlEBQiL6h/9JWQ6l+KDIwzelTlS8su+mFM/GUXaXxdFUBZyQd2FAVhi4DhtXK
amdttNocv9sQuxSC3Kr/RfGFaPnwYsEU9/wQ53F8fvpxTCB09qoyORexdIDEnD0UWndQvMwctERS
3SETxn1KCFpW2NmEgRSZDwEBYfp7U5GIAgysqrNSw+/JknoUuEsX61AhxCCvzsxJ+2gJbllQH9Tt
oUEDCiwm1ZuHGpqHwNcW+AW6V+YiwmmX0e658N9clEVR3/I8bSrq4b1O1ElnkxxBbrLtMoIsXqWU
DUxFUzYjACKw5ds8dTcOXgqN0oB374fPJH7DUF5B/jnk31aE5s4AXsc296a0BXLnvwgNJmGd2Bo/
+cy6EKp22/l0uFKevkxqlou/Tr5DW+lwkLCvzJlS3vnqen7ES7MthaKIbcPkfG2baYh0xDURVVVI
Cup2Bp9E1UsCU/NspCG7CHc35xukLjS4KE932g+dU22aLrVSsEsvxupLlh6lopwr2CGuIzhhW1pD
27poHhx122EAR4fG6LmJHZwp+dFvhqhYSuvvKVLD7PMqDSC8odRsyVSFq5o7AF05qA6AWKFMJLzl
7jlGZ6sdrfkTgyQdqp2lETwSkR10wxftCdt1fSLBeRw1faW2oWfhwFlkmrSIeMNpDXZzHNcVHwTR
W6FqM5s5Dk+UqRs7O2sCMGeF8GnAVZnycuMz0RTbsJ95r/b9Kc8OqgSm+fRFcsBSfJFMcf/dH72A
DYjML8wEh/y9diT277S/h/TkIpu6knYvMrIGHgGy2cXUpwYL9dGlSzRoqa9gVc0EGXKaKmg+fKh3
ajtAj1MDMslhtl83bWDLikgWOsy+Gj3Ec5jQ/CuqyZdUq7RaCu33BVLhQmH+IfWsUDeGtMNxAbrV
avI3mfLTCLAgkDBGp/i0J4KvG95ui2yv9nfAg/GCcDxpokpv7vWQ5yc6jVB1teiAZpDDzez0QeSd
dC0+E2yVrM0k1HSrH/pY6pGzvGalU/fovltr9jfPNa0lRFY/LshpF2SG3C3h5LGmNzUi1+P2hrsA
+1Rajb/CkMEBgGv86EEFgopr2RLxVuVeNKFdPcvUylRRS8+bc0uIhpNquK8I5UG3J4zz1pHFhVIw
EzPb9sHhruizE7zLpPRQIw0gBUOhOgPwZJCYcQ1vb3b98ux4aLEQ10sdI/RgW0lrM7+TPM3NoaTL
PesjZTWM6MACVvTIhux/o78KY8Wt5gN3hcxbCeBauU0uKOk7i4r74D9BzzPmzOiPrfGy6i3Zf3yG
YC5aE9heq23qyy70ZQE4/1K9RQ43MuwqjTCvXJEC6eDj+gE5ugGulxgHVVAlZT336+e7V3dC2wzJ
9Ey6rYyrUcoXBdU+k2X4O4t7LLHWqJz7QneI5QeDo3tphzeFZU9zMuqLI7gU3BMQBsaZJJ1SQ2W5
6F3KDtkD3aa+awkr/Z4YIMUNE0KkdYXp+mS3qL8CFpRzOs1rIoUesg+SiLo6Mfc9lZw3ntKBcW7k
Ts1+vHfmPE3wyWjg6N3xZ3jsyX2E+pkO3IrB7vt5/FHWKXc2lYMiWVdARzhEkA3POUWLNXGU8rlc
UETeVNj5dWpcrI1JH9H6DiW6VvVJJwlNfg8RDUISVWXlyMdSk15Og0PhZ/bcz7QxaXGxmYIeVPqE
QLxfGdrAJyfAYbumilQrdOVW7uxFhRXVaVAoFlvxlJx3+sy+ms/zSIlz159/C91dFtbnMAuI507V
hRU9bhD8F+08YuoNXBTz7bs+Enn533FqbGlDDjVjvBk2Y3e23zr2FV1zfVUyX3PhAY7fV8LM9ip2
qrMq2QJOVV+SSGF3lsU9nHd2OGGnh+x43iOvlrZ7KymTPqB9IYUjQR3l3p55ErwZs9r8OMv865r0
aThBIPaqeYWrvGzToh8+ZhpSJtXwETMmBE0G0UmrFeJzly2IXy7JtEiLVz8DRwplbmRzdHJlYW0K
ZW5kb2JqCjM3OSAwIG9iago8PAovTGVuZ3RoMSA3MjEKL0xlbmd0aDIgMTE0MAovTGVuZ3RoMyAw
Ci9MZW5ndGggMTcxMSAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNptUn04
lPkapmbsOZMY1qlDq/MrzWXkawYjOQjjI2JM+WhxfMy884557cz7jnfeGZSPNKkRDqXNiVPo4xx0
pI9tpRxKa2UpknzUYrKp1ioiW4jdwbLXua5z/f55nvu5n+u5n/v30Db5YCgRkiyFmdZMG4YzCPbZ
E8hwYjAAw8aeQqOxcZhHIBjqxSNgZ7AXFoBgWAqYdsCOwWBSaICNSZNxJE5EADpksQiCMDFPgEgQ
HIRhYkyBQCLgolAo3BUyuQ0ud7PRNAXDMCBEMBAiYhiwg7jhfhxfQPflhAJfGIVxnhhw5XwxAoEA
BIJRGWwBhBgOxEsJgDBUgCxoktksCkAVME5ohAlxTAICvUM8fII4IcCbbRvCBjxUAAJ2atpRQuas
YcMQLlnYzgoQK5GYtxLxV6KVKp60FNlQmEwgQCAC8OE4BKXYLvjmhwox4LgEC+TS5ZJGkEyjD9A1
HloAASzUsOViMYcngQGdjUmkcgLGQSAmgHEU7MEkPHSZxZMg4uT/y/uN4UfwND54oHEa5xhLECLz
QZJgARchNFYLeWKNRYv4XnjpXwJhASKXLPXDGj80PyrAUHHybyM1aywOtA324EbsCrRcOYDFsjcK
YQIEjQPBhMZLHi5YARbLXB6ydD3LYpavCTB/zwN5BI4kgUiGzcJ5MBbechT1O8vTE0vab23HsAfW
9nYMwGSxHMB2e6fU/5ELyXEcRolFwzW7LOeLhwTDSTBE6evGoL8eii/8+nBFmve5jkqyZceD2FDL
bqZ2z/36sUgD5BuRIOb5a5OJEJPSRF3T9gy+q3p00G/i+mZeHqz7orUtZ5MqqtvkwwWzyri0S/0z
u8umr6ii35DCjCUQhzSW9ZY49aTvIHdrm0PxmZFL/gn/djXwZebElt+8Q6YO5Pc+eof6WkSZGxZF
zOvCQ5ZV1A5R5tk3/B0fnvWtOlKqVOuO0YxjRGcrMqTPj4RPsug3tg921VqP79xSkGltSHZOJjWg
RrtOqE7c1GMrjnXxjurP8n+A1hT0G+vV5TG+qMkKdfgyotd3OtLYrFbH67x0f0J265703BheWlN4
M+VYvh5edFplumoo6/JlPJI9NQ+7PciJ0bHsvKO/q1jvUUHeoZ65qG20u++cnseb63fZSUVFMYwr
czndG1Oue42nD6cmnFnfenSfUXyT0bngA22SgkMU6/Z6d0a67dzRj3ohHcInH1dFdFawCkJNHVnQ
WaC0gIK+6CVpJUaf53RNFesrkn1oD+vut4+/Ddk5/6eUxNf1tPwM6qG7+w2i6U8GofJLWkR9j6dR
c7jy6McHkdpEsqc4pwmRDM8qOiozyeSsCdKzv2Xwd5ScKIm+BIV7lx8M8dr6quSVWuxmraM+YGtW
PZYtPFc0qnzhcND93WcbvksfvGih6MngPpo3rvtq3ukPmVf48pErCTtXt0bMBe2erx4Y0RVlzfeX
Oj/CeRs/8+/KlVT/t9ZWt6/1eFmcHhW4u7xQrv9XWvPqGX64/bSpa2Vu21AHqVrbjNiWt30wwnO4
iP7hFTLJ+oY6p9Tt7XDuIrSuH08nN5Alwqbimq36rORxrby2L3dfe9Lg3/L+ZHnTLz+12Ia5P1M5
+Tex/LilObIsKs34E5J5H+Q0aSMg90l/ehH3xqfEomamKfOr1MkqfOZwTWNl89iGUnVj7tMbOrPr
znppKTNu9zfTWecxalLitdTbbj1Tjx21P/9H0fBD0xy7tblDzIw6mnNnDXr5z6QLj2cZnTFb3zs+
vDq4lsvJri5r3b3m03+e3DLCUV2uGA9IO6L+42Sdv9L79Ztvm/tbbt07Xr7m4H9SNu71Qqm9jd3e
f2ffMGuPNxW7nigTVXntuMB/WVh2J9dpdaXxvafTD2Vs7RlvvnI2lNg2PHfyh2Pcn6HyoVNZhZTR
t35qVUnh6Hm3jfcmXBu1ns3r3Masgg/j7mZYwcVEk3UlBmYja61KDGXCcx6+DeUJ2X6xm7K+zj+9
JR4bsLww0MmOu11oHKtdNTk67WKlej8QcI0WtfYT9V9SJT+TPTxjw6h2LMq2nnynQr+rJtSbu4oc
AxvWSS3Mom1IWebFht/JBCnHq25ZVfRCStX3wfSwzbbRn/Nfd9EDMj99OdPi0vDjSLvzW8fUzZKL
xyZTe421D/yoH7nlfYP6jOH369to+OnHlXcErKB4Zuh9Eafwqllt+LS5lqxZNQV+yYmQk3onOD17
WnpO3c8seTyY8jLSyGjV01w5QpyiUbKrXDbsCzQwnL67T2DSeGvvlENtvd2Nb38FNG4a/QplbmRz
dHJlYW0KZW5kb2JqCjM4MSAwIG9iago8PAovTGVuZ3RoMSA3MjEKL0xlbmd0aDIgMjIyMjUKL0xl
bmd0aDMgMAovTGVuZ3RoIDIyNzc1ICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFt
CnjabLljdKbN1i2cpGPbuGPbtm3bumN1jI5tOx12bNu27aRj8zzv3mfvM95vfOP6s1Sj5po168e1
ipxYwgHoqublaM5Mz8zAxANQlVCRZ+JmYgIwMbDCkpOLOpsbu1o7AMWMXc15AJrmZgBVc0cAMwuA
hYmJGZYcIOrg6OVsbWnlCqAypf5XEKBhZ2xmbW/tDNBwsHNwtza1AvC5u7sLubu4MTi7CTD8s0jV
3BzgamUOsLC2MweIKippSytIAqgkFdQBkuZAc2djO4CSm4mdtSlAztrUHOhiTg2wcHAG2P3bAZg6
AM2s/weTC8O/AADdzZ1d/wFm4exgD5AXVxOWUFRQA4iLMqqJAoyBZgA5qX+WA11deP6pNjd1tv+f
7ugArv+17Iz/a5n81/pv1tnz3xYDLDMzwMza1BVgYm5pDYRl/B/epIEWDgCOf4fN3Bz/k/oHkMs/
+ABU/3BIDTAzt/in2s3OTsHY3hxAJepg7+jmau4MkHcwM3cGAlQc7I2B/6kytre28/r/rfu/FdKu
xv/wIAy0/Ic5pn+HrF0krD3NzZSsXf+h2sLY7h+K/hXXNP/3ucibm1m72f97vfk/fPxzomYOQDuv
/7vlP238a0NGaR1ZKTEp2v8K4F9pcaCpg5k10BKg6voPl8bOZv8N/CutZGz9b/X8B8x/1ARg/n++
vLGrs7UnQJeJ4X/kwfQ/338s/f9XJSLi4OlNz8zNAaBnZWEBMLMzsQC4WTl9/xdcUzdnZ3Og678I
/6eX//j/EpK5uae5KezasoMpb4hNWnNouZ940WwFBO3stJE67TIz6MpU97UuivWglZnh4V/cOzXc
fA94gplAE/7dyx3puyYS4zhz+OOJyWjicP1l3JcS0gpLv+qtN+WC17pwgytwDRx7UwXw64hb14z1
tSAlmkm2rNzzahmnUn4USeZoo7L2Pgjk7fjVhQegJLU+JWqmzhe8+T7tH+RZq1+FVyaCL3trYGH5
wbvw1+Q4hlaF5YGOh2Had5ZfrHCaOybAHpd5j0wZWwma4yOco7AI7uLwuy/k5FJr8imy9UVNnoUZ
tkMKx+gboF/PR/ejtho0MpA44gF77ucS8l9dG5XYCLAKHkOkR5qD7Uoolhtb0/2o1iDqXYmH70h2
267toB0aHH8GinGQJW1J8oLgskwOKb+KvSpmusTszSMokjc7bTsKQnnP5eHKZ3+9aURhxBWRsPw7
UHSkmFTX0iotfb5O58lWste96S7o6g2eYlC9Pw9Oz5VrtTc1LmWUiovCnTjhv7EyfgElHTFUhZeV
7cb7q9erthSfAqTyj+PrHTE1FZvhXCd2zh4Ocpgn7vNhVEqVXR7yvRehAGZoxqDbWos0ySMmJLAN
cHcNFYW2F74YGAdoyaZ0zfWE6qRvBojdVVvacLB91t0GqjuyICu9LxbVeSa8zDEkjCyeoxkYvOHx
b00O40IwGw0RUXj2CQy63Jn87e9Cc5sOwdShhC/DURzf4XEB52eh1gX4cUfjmvO3mDZZ0fw5OezQ
uvh9ixEXf8JooJxeGaqbegYuxxXVGC3A+RKQdp2Z5sHOFFyjgbN1x2Od4asY2BY5Pk/L0e/Zk2qD
9qi09sP0F4KA7kkaS/4Eup9RgQ5equhPXAjHeA0Kt/q0NDnuPYR1EqgNk+3ZkxZ3+SfRGJcByp1E
KFm/W/gMmgipcxDSuGPQlsL2GFaJ1c+vc4Sd+YpP7mBDDluyefg0Oxr3TqHf+ZyOo4koSUnRcm00
cY+8o7Ayqcborjo16pkuxsKHHDLKRfx9IVqo/C9c+WIBgj3qohDpAmlc+oPafz79tmzTaHdY1nzO
L6T2lsvspn+k9cexob9509Eb94xnJP6+udtYkpLQ5HsXnbnQcYckLST49T7r11grW8KpNXTLaWrp
L37SF74+kuh2fUr+m2bbHuZvrlszs2RKi9xd4g67PE7Q8sHdKDyfHfDoTr0FlclFr2zqwTlskv8k
tCmCQv475jvFkoFBwoVry9P8V5uM5RkPJsEOckqDJfBUtXSBkvL3UF59CevFFW5IwSSq7kO7/GIg
+6Q0tat5TRIem+aVW20YOWpInbgA4/xdv53v89G0W1XnTzH/DsK/2aKGVD58HYxbn/354gtT+w90
L8EWtgJFqn0WUxBLlb79fN+V2ifE52/VQ7/8sRz6UmEK7UuR6S9wmG9sajIurZD40V2cLPfqNV6S
9s0uo2IOScS3zlX4EcSAnepwhiu46h+lyuq8U7NYjo9hZ4vQHRpSvuSZkAMK+yCv1h7MXRffJekR
3DIGq5RXN/XIvqFk+LJcaGPeFbJx1bVkg4zv1Uyn/eCyPxErf3WfNHIGjrxvjVSCztErZrPTYcQu
hu2DEbrdJMGI827EMRF2wqPbWV5RFETak4h7SzT8Qhf9ZS68/pDSbTGIdH9MjNK4GEcZlJA9GUNG
Tva+YUV9M/AwxvRgMd4TarNLOIj18bad64d8NOGpEhP8cYw+xY2HGEWAg75xHSe9lQl3/hAgupan
KeB3bCVqlDP2qQc6zXG336/lrWh66qj/AwbkEoorh6ZN+2xMdEJyX/a2OpJtbKMst3UhVB2GATKc
nWfbTuiAbSarZKWchwwr4qFnYTrVIemybUUE5JeEMWRSV8rzGS9My0U8PNSkhNbs5WyfiCvdqBOi
g4haEFzYbuSWTCUXMOUCM3YjIlrIFsIk8QF2FVZNeKM1OwfNYNbvu4abVrUdbgLRMctzsHZBySkm
CocInBM0FUbukD7jm+WdngSzaFdL52YjNYRrLpxMsTwm66acGG0I/+PXgPCiSNz4PLpK+MUbcceo
QT39YmdyQmm7zoGiaJl6eBQy0CdmcTxFpxqGzrn/KHHbaLNinhyBighM3GRQTpyAc/gba9myI9MK
1+T8oyip8hfKEoFRZ3ircMaTIwdO3KE0CI7rV7XFtmcR0GygWPFqgVSEpcM71Js4Mwl00Hi/uENQ
rD2wCka380mpCI9HWWaPAbNakFtTUTh48WJfoR+O1QPvgjRo79r6GNSn1tw7FevmK8tkq5jxJet0
JEb5pvToMtEMVkekDr5Blurd0EaD+9B8KGGbIrlc1zrlTPth9qsaI4dAWSsEm/E6DfHCyISbqlWZ
+gys/qmhzGD17Tb3/g0xmATMydz/S1xYDsgnFXRmyiivhqy4VXHv1q1RI/mRmVLcsttjje/JDY1U
E1frgSRWta6Clls4WVdZ41Skz35XE+onkvhcORiZl/e1/M6Kh37DsYYXK3KGI+Hk8s1Tb0/Ofo1o
TmMRovEMIpO2bpZP7rJLPmyAlEB/ho1dk203T/0iiknpJw4B4C1lFbsGlUQ+XqoFNVlz0j5jMwYt
FbCIusH5hdkUdkd0kWQ85N9slmZ+IviGePvjdBjtLOeWhiEhICmVY0vavXdU3y/w2QyE/9fkBEZT
WEFjonPboCt3ANptjN8QdJCNVnKmFYRfwaef6E7jzbzJ4Dh/9dP5DMZxAb0QMZ2oUrmrbe8VaS7K
Cs9ahxY6fS0LAfQAxbM6qoXfn2euBiaap18Cmqjl5aodXiUC4QjXx78EQ0uetXarN9DGLdqxc3k9
Qj46ueaxyc0mhnvh0HHdIthKGXEw/0i3a2sLFahgcsTivVKnchDGrKJee4c5vPX4VM4Z4fdSPlyT
dDuB35dy4RvCxBP4VbAZX2ZEPxwb+pbBLY2b78BSbRzT/BI2LW2HqyrTtYdq1hKgLOXpukIkg+Mr
d0T0TttSTXIQkqtVNyZcKOF57MvV5dnCEOEpA9hI8Qxzhkjqhj+FtZOJ2GLScdOTnrNOSEtx2Ul7
P0ayNqnALmiMX68J8C00F1FLuGewFMQL/8CNaH3Y8jgWfwx5vtKwhNKqP02AziKetdx6fQHeJj7O
yvpTUvCH4kNsytq6hBvwjPisW5l1G/6AUWX18kHS6jEgf9IMn5OrifnbfS1oHNztxe8Y2f3EUC2A
TGe5lIGxDYaOwa4hNGRdbnYyNeBlAF7aCNgeFgfBX5oqY165t/EWeIoPUyNj6A0ZFPfFxoG96nbq
MKlrBycQDi+zD86Yz+FEc0GZZ/Mq0sKbLf/fshag1vGzDioaXMWtYC4fRlzoLRCa9iwX+V3lZ1r9
FdOTgZZOr7KCwr0DzasZz/8yiL6ijGxTWEHjvzlw2RQUdfu8DXD+U6MSa/QMprSX9xFnbwdiULVf
EL4YRAKzVWXgHgVB5yipSJC7Y6fxKhE17z/UyEPvLZixXhpB48UvcNG5TlXyipA+WOdHv50L0r1w
scwTCIRiHfh5hnykPLG8NDmqjG8pdcR0Q9Y8Tbmu1nwpkBy4S6FMeN1iOR1PDcMviAjamd2X0KL1
UE4qtf7LEJagSDlAolZBhoYCqDgCtXkM93oJqvWAVb4JFAN8pAMm+7+GmS77zqwVmXurqXlBrDrN
/kJqQIGZ9qxAafz6yiqFnfNyvFA5RtkwtNU0EY1mw5zdUcdImB+oGO+UK+MLPoT6/h7hEtx4j3+e
6sYh+SGj0Uvmydao6Se4aF+tsZ7RXqEOhGPmja84O8JB1e1OeVN0tvyxsOT6UTSBQts9Opeksaey
qyj/6ZLWjWxh/slMSQrWAj3eT7jShRGFLmyFUfMo3CKarXnfBq9t5gcXrO9J1vGmTwr+A+PQEE31
sByFz7vdUwCcyXPFVK+FkiDCtCfVc98lqc20jenMLUcrzJz1SlTZesJ2QaOZg9bZt4sKGxjA8lEQ
FmifFeO22YfP/VX3h3y0zobKONWIdxW7ug8W5t66AH1h++cxAlUTdD3MrcLosg4ER/CaqJ+JX1QL
w4XigUvKd8tE4iKmu0YNSlS/JkPimkLtfGQ7jcO9uNk+MjO9bcfbn76GjQKtv6N55FZE8yOzYMEB
okgzJWXmPaoHh3Wc8jWHtgTRmiigE5AjsCrtNPn54kt229FD9dolNh9jbhZJmXI3ZH1LuqUlJvWl
hFAZq/zZCco6o38fhJjdNuD83k3T3I+vJfFa9z9JjJMJ/lQY5kbi0m1Pdv4oJmGyU9XQfVykKucn
OPp7fkc+jGZxppn0MH/iNVr5e6KVk7mpax11VxvrPEEMF9SvIo5IKn2VP81k+y6fZ0YEhJpUFtPs
p93O1sTlQsHZm0/gdfNFVwzu2KWjqw1aYs5v3HHxO53sT7iJT59+HytQUxC5xtW1H/J9SZNacyiU
RDLaJtW9OK2tqhnQ5R65S3QAsCZIuVozpGP/Q4/BIcKOTPUjvZnoCdcePJ2rvq632VuBhko5F2ne
cXCSngt0W35xpa738dzjigQX3odQO+fkR0Byo48gPQxtdtZvqdwcyn6ByM6f4BZhgkT+cUkdvOHK
ovcvHkK9BJM8YQioWpzjVE0fHAsWEnTcyHwCdiii9NHQ/HQMYFNyDg+rcin+xVXTBK1xjZ8NT+da
ii1EMy9zNM6Ty1R2cnRcU++JKZz8CUFue77xCL9QRj59sHUPIwWRSARs4Htjz8OTGVLi5TT2Yi+1
eSUNU7HNpsi0xmLtuaPwq76njnm6XZpY0e3HCthHYxqMYzyabVCOdGDU18LVSLcJXmKx9Jz23eYj
hcKLd6COmSXTifL/selNsitOfOKG8RT33cg6lRakCyf3SGeMG19WplA7OtaIvBZ6M3ne7EsRvGt4
L5dKoU7Xg4W7KNmdZl1YjxeeOQv9azJbilrejeGjxJHZ5enLhg1Q7zQIiH/yFqI6veDFDZSZfkdY
HmjpHJuYQK+ZC3GUVLj3vONDzRa5SbFdO5hGDMUoW0HwZrKOHkRyn3Ggus7Qc9buQ2gM/gw76w4v
SETJ84xCeO8FRU2GFiu0PSdiHzJP8ZpIhE0y8IeTID+em4BjMc7tUocrN5oUrQuvUpf4gfLhfdyU
5KJlV6A7s14f5z5qoc2ft9bcJumF0I7WWDoY0juoaOpfH6YkBImONZOaTOquwy2IFfE3RgZcUGyu
hrnvmhyEWopw35f0o8+7aNRunPJyJCMdl6F60dHpZpvkeX5yNY/93rnlIn2EVvsjylneY1VqLu1s
cZl6ezQkqft3d1HuxW4QNfzkDmdcVkHO0YWBAmSwPZXSW9ZvriWqMh3W0ISza/E8oZxJECpX5PY0
VEJsuAlYT6h5hInRE15SS/Bkdmk1gn1S0oesS3hsjp2odBXSoRy6k87i8tsJaJUq4llmd5uJDCfX
blryGpmoF8iQhccONq7cUI8PKO4mgOUEzgmAYqBJwK2W1qBVmnM5v4MgDVfAYoknKt5hirsrQVSm
IVlmto+YaRfJQVSBURFIIoZFG1xX23TZpRTwiBM6zI5LmMhmH1T3hI/rGhSK3Wop0P6b93PBaQzH
eUT4keIIoq1sW71z7CybwSeeZ1c83sk0PcMkqNOGhdynk9g77s9lW5+db5FAs3fGjmeJyBskHCQa
FwrQbyju1rENxwq11agrMf2O5Ydl7PUvei+hUyVxfHXE41qxPzqv/B2bYJMikOtx41gVMvZ9cwBK
BgQwW78wUkWYgY/I/XPbMGno8GwvcR/EdHQQzIm1LvCwbNf0zjpFEiXQQIq0dekELSqy0Lo9rXxi
YbJSh8Q5P+F0kQkUmniHBzq4jytUnm9Hyo4EmOnreVIq6bc6aQOkPThoaHQh79AMQUpe8IJcj70u
QQ6f6eoeJBBL7u9SSoJ7BthzTLBuGty2s4GQP0Hbe62wTN4iokGtJJV9ODUsZivz0LwdmoLWGKiO
WGKCG1ZdHsArglvBoIfKULWdXrQiq48NNiW5B3Hm0n1tjIZKXRuwOLScbGBVQYjigrBRxhI6nWod
pOw0dvzHdk3vVMf4WWTGPiL+B/ggxV1Rfd8qaNk5jYOaETk5ftXsFAV7H7PPCh5dxGIbZIavxpHV
cOiDz0Tj61FRXkr5KfmjMtO2beqI8g16jnJL60puY1LgErSEYM5Yfu5K+WKXASX9scKPbMk7+Tti
73Tj48C10oNp+uDqPp+QK9EDafdN1mACYb5lRGdViFlNrgSE4r7bqfOnT+nBpTezm3hBJm/OkeOc
pUFPvUZmPw3mH8pydiXJ8Ha3Zk/62tktH5lnOM4PEnVVk5AyPuwk7cW1epdyfRhmwKpgKYhyxJN1
JCuFfg5Siq71XWrZQekU1+aKe7A5ToMMBQaIY5BDN/pf6x0u1kPruQ/8p/dMsJHhP+TlN7F+4Ydb
iiaJTJlCfgCNzip+y5WAhxjtMeCIxRf3cXGQjW232FEYnHrfjETN+ZAKiJTHhzVZwHvs42vUm/Bp
cYqcqJFrnj9Nouw/AzyhkkOjpnC1d9xDMiuq3O4tLywwYeOKCokoyAoEH9Kz9PQ0QGCFu3ZCff6i
D8J0Pf6gJj7mOLsP0CY1yNfRXSGJmmCjMOKsmJ7IhoY7OeEMUQNYgwvl5r1mjbW2mpnI9CvEL9ki
JsC4ndvMThRL+6k4wFy6mfZdrBmYrvPRR1sYk5bp2/ja3XLhESwdM09vqYbFCaWlVBnjTJaXvuoR
WOpb2wwJnUetlraNp8/+VoLIT/gxfjMGMbTk/TM6ExmmRCdbrM2KiFCf85krzmhzyXwR/klD2AX2
L5umYPDOeqbNT7zBHj28TgxXu6TeziVGtmdwXublCrAQO3M11zXqTAGFL13Mw3JiXJVM44qXidbW
K0OkpRz4y76Oij3pqFmowEj4fp4ANHHt+BDrnOZUmFLWuBaqJluSSsUyBob6pBVjD6rIzYdE89rk
5pvtL4espNjRiZu9WKLFZmgRHGpFpj0IapaWv+dqrWKwPfD6C7ngEdiIJafUUUDeXxcJchCHuq+i
VIiqNElSLJLyXzaq+CnEYT7oO2Dzeg9MQZWg5rsf8tjFCqTmUj3EGASB3q9M4BGRcXmTIlrrilRB
sxWZXroXmNl69flaoHFan+jyoEf2oyAVf3qGIAjKHdqz1H1sNXKcFgxGgYh/3HGW7taUXbJaZymK
uOvTVA7rtDUKnP6A4I1XLVwD14ywuEN0PXdxHlmC+YM/WnwhU8E3R0+RJ5WmXLGQTFjTt+LywdKi
ocUkU5M9lWTEbuIUcHUw3XUYNjIGz03y67IPRdi96bGoaaQltc1oxb8509jlNV1kre3XftDTddjO
1qOinsA/OdTRXRQm7xJRWuw05oLlNWq6U+iVTXuDlG8666ybONrLY4Yo9lR8LsDekN+FlS1W3pe/
+Pm2ERw9OGFwoiPllHqv+y3wSnlGT8piMw/qi2w5hukogyiqiOidzW38VXV9DnQx1ouHUhEz+qUS
UnroWhpOYKW2zlYyuwVXCeu/tFm3R5AmF7VqgCWTSyZZ0Hpnn9+CG8DEFkh7zcSmBSNDxxulPNUX
JoFccL0bBlOLmWRk2AGEe3ex3MpzrOwS5AJHyDTY6ThpvQbFsnrQd3m/bq/s0FBFwyejZbOyCrJR
DtGTIGr1W1FXV+K8lawqJD/8qOvBajeFMXFuQJAOEtXpOW+Q/YSg/OpLEN+jUwjDI+2vGbVWlztZ
qq+olFePQpLoFjP4Bc0kUoyZCUZw+DWQLSnRl6IGlA1ONG/2EZlPrgRyezMTglCZk3zFTl1enjua
NJC0LxUqq36yMAYCZ5ET6FS1RHH1+byLn75ayvBZ8goztpIb0G+Mu4zEfnX5Qdn6MrzOsX/vNM7V
R3Il2dawc3hK/wXP3qFbzHCluK71c03zRlkTLqcZ8s1xDcdMfdax/+btIlmY48M7xm024vzh58Uj
6QC7LUrTGWfLSYStKPJKgbUe9gwfccXUtAcx9xSLfdM/JfhiEcQliOWCpZr+MbQssdkGrW/1ISki
0D5gtIrnO5B3HSW5v1dvfi0jzB6svnO3uH5ZzNGZJX+D1R7da7dfN8eKgMl388jZm4Pq1F92gm94
LqJUdjf7lvNL7NFJFQ8xVY3RIeIMbRZgyeEfj70oWf6YOFdZpPEYXSPvvJ97mPFkQNR1E6dlrq0G
om/UHZckeTCe8qSFqooTnpLH8nVQpWUTLD51FvbsAEPu2CbLp72VCOdRWKF1nvCCCHR0CLlg5jTw
g6qwNtGbZ9o7CwBLIySMs70ccV2avGWGU9SQwHOaH111XTNOKoygJFqa8s1DcJD6a3wQ8/ztFbHb
+G0LC3LZJzuuulX4OJ0L7FqVHE3SXIhK13gRzoH4KSzoGhPPiHGrejvOyBerupQzUgEiU10ugBZH
84ttks0GKUp+JbysmrrW8C8hxnNwaeIYZCk5pHLtR3h0oOFe1BZMTf4jXiz17OWeBABzjHzZsPJA
3ugkHDqLoRzmZTSHcdi+OSfAju6lwrwrnkNehCN7UXRUrLfLkhikl33KOCaMNAHuUKuRhx+fNvlt
tTNGf5Hs+8BMJGpzXrCqnAt+hOE4U8S2ukPUZh0KE7EL5EH5loj4+3KumGn+i4Yb1eNnwE4eMe/K
dvRctFdG4kJsD1lTz1oe/Z+lP0HBm9lzo3gJ61mkWx3G2AYh4cn4Ixaxw4OJu49C4ufrtwrK4aeH
eMckuOMVEOHHo28N1SkC8mZRhDCahc1VWWe3kaPLJx5WOcz2/Jy7jnIifx9XTC4eNbtxKwo3sjJI
CNVuDt49IdrDFcOhb6zXlbqCeQFCPOqK+Tb1eTIQ4NuxUnhQFe64fg0wZdH6qVZPE9DWU09vfauJ
cT4vzOwHe0ZBIw19I+xPTdthaf2zEPCO2bonmMhWDAOpqY5rjIfJQrYEo2jCBqMrPsi5pR/gmEhp
dBdeIH18MLRNITV2jbBvDGoaSJvKnFQwiefwBaRgofGQessZiT7DloQ0+60zYDXKmm1XDZVjOsjy
6HtFfQwYMaK1Uyn7B/kn3RCBN+OYcL84905EHbr1jfzwrgdJWr7QIFPwkahkQaVrOzMsssU4rq2v
aJWj83TIZJbw8XnPL2CGzCZMESYPyDaWODEu/J3cVbGrWWBCRUwvc4c37sJfj2fzbdgjdvnq8r9t
hmfSIhYuRs/B6vJ+o8fCNCfbPy6OkXg8w52UKHjBRgpuvNz+WQqwV4OnxG3JL3FMCYGrFDwAhdVQ
q7GGhdkB9yPVlTWrVrmBOyHolVaInmyDp8XWN1TCuCRN/arPlSrJg/bcRSq+MydK9BrL1UAFJ3DL
HZZhrb2aUUfH+Sskm2o194Nxj92JFL7cetNxIfcxUTNqw6hnBslWNPE1YvB1xYKjlNmvnVIZT+7m
22q56em13PAYXRsjOZ7Zg/OJZ8CYJfMGl0KwLhPlE1M6m2Cjx6fIwkFtTDUMTftPzgbm+AEh0Y2S
ZfCDTdmnVDxMqwM06JUMQwZ/6TE+gV7kDGGIEqzOqbXch0lEz5Aj7YZ+iZRoajON93TLJAXc/QL6
9o/T4wcGnwPIhGxU6V9jH4dI1GjkBb5WzNBcixvpjQbFOLVpcjrY6zG11ImxFZNfQOvpVNO+vD0K
SO3ssYND8W76tmt9tpNnyeq3BprBR81cFXhlTu0K4bYnJ77rwdOLEn7fZArZECfDMaI3HAB0GebO
rWcJP+QSlT9lYhuVwwusayFq+SoBc2O578JyU/wqlOgBvnqB5aQ2V6q+op3bDA6h1+NCxUinnFBK
b20B9gM0q/6MuaQtO4EQC2UMmqZi/wjGZwii0y+8OuOxzhLEmOnFkR6rjNa+TakFKSmiX/ATHuh8
FMHQZFjEhihA1dwSsTrGJDcpI8EJIiXq5wzkllukSi4CBx/mzSNXNexvhask/HfYnEO9WDIwl9vq
vvgf7pYNjshn4du+QdVb8uLB3IaTDD6YKB9QRbPUod1nL/IMlCLm59HocnHIVpT2J6nTlubPhSM6
zSot2m2iEQct3pGQnJZSqLmxhQd3jyuOwZ9j9mpNrd1y6y8pV8xcULrpb5BhD56sXkSoxJXNgd7E
a3jh/ZKDWO0iJ71joSDalfVQ/oq84xNEL8OUimVO6pTDnTEjrVk+2NOj2H/lBrcMtp8hxFtufNj8
MotU4Lf6ydc3PLQsXH3vEgGhZKGms6iFYVbAq8elBVprbLolqVgByvrYQ9YuzNOweMKvG+4iCMEB
8o/+j4SwBStl5JJAkTKNQ1wgG26CADZb6CTOT8p5GtwaTZih384UxQd8XluG9VXwDbG8nzJkycP5
m227stUm1RqvG4l9hXDpPOU31GsnVJKXrGTn6dcBDYz60q8CtmWfmTjsktu1d0Rq6jxy1IztOIN9
q00A6kXMQFQVv9bdboRoRxbJFBD3hJoSkiGIGsL1nl/fwHMDqD+rAcKz45lyk80cr+O/vHmvLiaJ
bdpUoQF/LAALzUi4cLBVpc4puq2NSiP2Pyr05JPOxFNdDLgjEdZMQp3LUySSC9yZFvH8YmKHbrOm
rILTlA4f8hhU7ehckT0ntqwjxqXxD7aStZcc3GumsBkZjbNZNa8ExB9ZH1aHPygspLy5k1vCxRzW
oMibWX+L0mpKTyndUeQRz8TubWQ5gceshHhKUVNH2bL/7L9oQMXCav49nTAjRYGS/gOKoSgOi596
eSarRmN0wL0bAq9B8XOoydNlNo+pHB9p1i0MjWpGqE9YjvVvXwRs04KA1PknCYPuVd6C0d3yCaxJ
6guUeuygNpNHlq+UUXKQ+8qvSwOX0vVr7UevBsYdjZwVrEfs1ng7IS6+nFR9gWJ6R4bRLQindbT9
ZDkejJWW5CWOiuW3Ln+Xq2Peus7rFt/2ree0L6u1qOzUKjGUJtL40X622Gh3y1RLenE1xARCMD5+
2OFAkZnKHLfBp+VSwcZeZ5rC/L0cwyWctT2UGpdVzInVNvtnhYJJg6QEb9Qj9/WcR4WAgZatvwxy
5JcTyHt9jXi8vqu6Oj/wBzlGmPkJlaX1rX24wZPgH5hJIz6l6595MSogr3nuRRZumgWAQdaJL48O
G7X1AuSvetAx0dZOEXqQrmCTHsV84CnbS5n3jxtrOxexYf10bJjKZ0je1lZu72Zmi9yS9/TauP0c
pmAF6QkBqGTK6AGS9uIMnT8ylLHuXIW4E8MYKTzC7TOde6qOZuzIScasrsSvHfx5jZYyRhmc6Wt4
DpfLA5NifmvPoZnt7D+6+5OlxS//WDSQGMtUmzftGct97oPdBkEsePLavkBgoCy8DEi2a5jHtO8W
fgPP56Bk9Mzjsys/Pb7XOgoZsTW4J2IzUgheSIKHLEbScr9e3rYpmEGpxyzp9zWV0edXlPuTLH5t
vjTvwKeuuT99hUHW67EiNYArsrNLB6r0u0j9OwWonVgq1e5nqKpyhqO6yva/xxi7ebRpv/+ioZH7
zbbWdH/mKO97ycGNideN0o3csCkBXRoP0v5Ex7zBRoy4pb62IXnRkunj3ybUvs/L3HNJdmPitZ97
T8jtk0x2owA7f9y+GLGquJQryOXYKBrkiVeIycWAyHWRYzWJ8ZyVZS8zY7wL1GinRusJsfOLGKPv
U0QspHe+Yk8oPu+lVnqWPb8idYC7cqZCWxfizKEyL7UWMy6MaFHANf/k7hmabIwWYHh+AnFt2mcL
z+1WJ6Ba/RSRj+wKiOSN0IHU5Pj7rh1p0e4tXMzjHaRHZ9yMvjVsl3WGm1sTaifw1V51kyWuVKSV
9PCLjL5FDimIPXTw2G2RWmwEt5fHnyICtqIJXkH4HALL/6eb0JilptuW5ct8lt5xtfnqJGtXt1Ev
wHinDcrCXs96wQ0tkgaWnI9RZCJDfXlfbruxZmXiJrbBvlQpHJrWwnRLVC92jwWm6WE1/+yrvJ4i
uhNT2/9arhXhANM3wAguWW/oVVO18lGUT6bgE+IizUioacyJVC66/yxyPe/ELoaC2KDUjgMKIOKX
q9PRAXSBOU05lzw74xPfkGXrmLT31B6AVIhL5HMLgryCu471HYm74FO9+KKSWBh5/A7UEoBiKDa0
Cg78s1QeabbG0ql9i0ktW5uPZKCoySJEcT3UT6udRFEB1uYYconHOjqrPqX5mMR+dXE1lHvUTztT
8sZrAIXXh/54lEVieJowg+F0/ZuZJgdXt4jq9FhdIgcSQVT1Jof7dCkZ41iDAaSNRqhQLPEzcYSq
C4Ou+a+6CBJcjARdPXyWj4rqB/WfBWraFG2MPaPma6cDO6M/im8Cm0d7bZKLOl2u9n9BtsO3K43i
nkruqp5xjp6eHFDXtU30RH2lo4e3A8YHZfRtCsR+Zql/+6YmZUkdQ3YjvLGqs2JJSgosz+gwFWhr
OR38mePIDa679buVnIz1IOfk+ZxXZ/vSHAouAkljPdCfTIKZbH34c1X0tptHDruolt3aWxI+4apR
86VQTmmWBR2xgJeDDWoyzJitf5j9490DHFwAZ/RePkscxg12CbTr6WKEOvK3IsS978U7VgI9G05O
StSQtUbS2r6r40vEEFCYMrMPMuE348t9xVydV2LkgVBsh/3m5U9aKntyUWIpCp6kb53M/Fd6Tbz+
uoIYI/m032DdW8HaQ8QTaEOF2/rnfsoSzdnSA+rxKzjX9B5OXuhmvE5GvrUUztQPacgCn6r2kQCB
UmKceSl5+UF8/Pfnm8Xv0LroqyAuc50BbOdwqHVjLydqrbkXvMvFtgS1Fzd8oMmf7iHcK1gPAPCX
finAUcxIyzw/908wEXlP6BNCRUMcZV46gubjXlSPlGzv4+iXpYJ91PoVtgqHZTOZseXCmdmiiAsm
VC+HX6qAcvqCzznH1v9+oeIN6LUsKOcn1KBJKO8xXpUBA+ggnRKaPjRGvl7f3leNlRBydpOaESc9
1HBHLuaZnNfa3Zna8Hx17Onn+dmPjRm6bpjipMHdX7skp8snp82na3aJHB7WhIlkUCHxGCgRRzfp
XNTE9a0Ytnu7aZUtfoPKGYYbXvaPRNpSb+CdotvNUeALxnMvjw8eYpI3TxkWc+4IgQ+DHxU8xVXv
DO6DpA7bPv99RXTnEmYmiW/UmhBxczzMgi2F0RqGspKZFf3d8Vu0INa8Z6FLs6kULJrCu1Khc2Pm
sYUKcIjYJiBxiTMusfx7HdoyuB21C3iLkJg5CKkyGwyEpkf4dkLaYHI90+YwrQolNPAKF+Kgfyy4
VL0PcvmkjnCKo2Ma5OQztLb0b2mprAlaJY99WktvlwIBa9NLAOo9Nf9W3+xpa2Q9XaDrlVoWIcy9
pQwYM1Nn06b8Qpy2Iw6+kL4oQtUmILbojpcaVLkhXYnJZwSpi0Idofbe9Ol/DtaW398IxWaHxSWp
FICUe7Kl4GmoccyYml/7NHB02AviHeaCfPQ8bwjTwUNdJpwH2nuD0YLZ8K3+llLUbnecqleX2poe
whN6IQB/tXzrsaYL9zEJZiAGq/VtWLNaVBcYjmhC1VI+v2zPy/+5oHuu1ol7uEgusS7iTyevqb1f
Z9nxI4UuiA9JIahjh6Tvn4tjMIpg8wGHfDTn6A8oQ3SX5xVLt15E4C4lTowTk2Qkgdk5RUtOwNiI
Lx1QMwn9M4y0EJKU3KY19BdgULAP1pwPvl3JWW+E3MHQN8dNUzPaXI+rRiyjvw1HunOvmAJomJZs
zoO46E3kKF4Y2aB/DTOHILypql2UqJRVg0oaju/cxKco3JQq3KSkIuR2fLOS5IJKRz2ksX51yQvD
Iiqs0UUgbGy+RadQMS6izTniCJn0Jg4vTHoqcwHgDNB8AT6B2dN2ZAW+vPSOAkcex9dopjpCIC8P
TzhcMzqhZn+/TPbeoeFCBX5lvzBUF38SKVLsmejb1RbZStQVV8zsVDhi+ug2zZvzUoJ+1n5/imVH
fsQbgF2CQORem71dbx3RMseDnSnizMJunWyfpVsVzfwRbpTEkNdZ/OvIEfO6GP0BgX7fRSXmKF9D
NK+T6TMD8vv1vgCvv1lVIU0XGbiVofMs0tVe384fZjEoIp8KrkDU4i+z51vESx//B+5q0b912f7b
WcDevlntDY5IDoUfRabRF6jXFdGAnyaINjameD3cynO/zHA7xBSmzLV8WFmzYmkswF2/GWCbyk+c
bY0k4AG8kD37UI2PQ88srRQl95rMp3L+3/M9mWdgIhG9vkT7HoSSJztp9io5ppmqzIIoFUuz3V7x
lyByhTj/ULjS4GTkEIc3B7AzfuzAEd8sW/5wJwvHvJ8wTUAwZLn+nFTmn9+t//eqD3zRrjxlluHt
b5OTwkJESBioTCUC5jRwIg0XUyezikq0c06Qc9QcdGn4df8FJsAvacZATmohqLVvhqCmGwPbuKXB
Im39QjqcBJegT7CV94kjYH6IR3e5C/EBl8n1N/tS7e52QGECCWb+thnMrz6N00vePbFXQ+HtWInk
aolzOmS4SqRbQ90Yu2tXi5x9CxpwyKciOSkO4EVRYqRJ6c/69/J0bAzSq59Xi8Cd59LYGcDwuqhx
srCTQ8hwCbWu+kHyvSM2DH9bu8G42I6P51PbKbWwJMiTX3Zz7h44YQ/1Gw2/Lu0hsVf4HICd25EQ
I1l2qZPWOYOVdxlbnBwC5Z/u+EmVRkCcLH4+ZqBkLtyJH4SyCj5GhI93yLtMdGeqxFqeIRmkRh+4
DUK4AfU00PC65wbESEZiP6QqJz9RcdiwlDYqFHweMTPo9ozRUwsqQd2brTLAlxwRvDvujIGOI7gL
DZxgfwkfl4DK/L1GwNC/wOGtDD1HZnUdUYyB3IJf/pglpgFGZjzXzt1OK2JRH3yVvj67yVFFUttQ
w2H7xkPUI9rLRe6SdHgd36Y2/CzRUlAdyVfQF1Jkgi72K87u5H/8h/lAlfbfEucDhKHP3s/dLGr4
7gxI+APwmj8eUrsMUNA72Fy77MZP+x29J2T4Fhl3qo+aGFieE3TFwl2d8qeXVoj1G6YipOODKr7B
p1z90Tofrg0jGSTbA9iPQmgtpOrNEM0lxO25EEy7k+KlIinpCVG/Cv6OvUezrpBpUdFP5z7LLTa2
24vduTcpiPaBa4YhV5uP3Dk7BCCk9pMDt8XdJ7pAcZTl04vNqtbWS2WFrKAcNUVLSUOMwRkRbrCV
R6ouT0I1FGmtVSR5tPe1QQ5uM1MjIPtF+6nz7Ix+cE/T4lYWksfxd2fWntntsAtbNv1Mon1oXo/I
podhOvP0xW/mfuLSq5pFouxHmU2KysHq0yvRh1KDO6OIdBdxbz/76+YwHqDdHqCDuuTsjGeY7ODd
z9Iqrn8p9nmqdUG+YM62o4Z8dXl8uXaKH/0MGcgXZSepYhbhKyam2Vzd0/Fs+mIn8y4W0O1Zf4o5
C9soXIzZs8DMlXF/XU/C5IvrnQ86S/mEe8qIajQhhBY5O7C+g1wJvhwOlxycRIenG5vohBQdre6o
FlYbl6VuIGz3PkziwDckoub7XVPyZEpbLSgqsm8gMRNW8/lQAvPD3u8Zg1mlPRqV1AVZ4c2pj/bB
UNaGJNkxtl7xa905zP0VemvikNGc+AfHLF+5Qtnn3uDg6bq+XV+XZybbMte03N7aO/uPe4+4VmNc
Er85ZddX+4bkxm7ypwmIOxQf3mzkWWrmJNqjgPbiWXpXb6Dq9VzVsgPJe0f92WXnsvgrCdSLso9V
Sc10QGbuhGWgNl7htc3HZTHpKMSzr1XzgNHXsfuZlmpAJQfkLDVjHK1wePFo4kNT71GP/6FP/Utr
KNcqbyDvnD2C5845hTzihbWwmcYHw40nDSXaknwcdv5TBZ06KQML4pcd1oYDtDbbfQ4vY6Plihx7
eSqg3g2ewdJ+8LM+Dw5hOckRC5q8y9yCC/VYfMJ4h1YOE05LsUscHjsC/tsYU5+uTmhe2l0ldQF2
vEsV8tRaKkNAGnkqTVkPhOHj64LyLMwW80EucKlfEgyqbemUwscCi4FIt+mPF0mPbm3yvvs72CdA
uSRRr45ab2Hd0V4dOjfDjTAlLWn31OPU20wvVer/M7wYIEC5IcEnIkxkqd25JjZQz4uUwZhih4zs
8qcTZlGWeEowUmQyI+qznN7d5/plSlCm0lG6zuYsQrkepgYQuDti5kr3FIYVOw0gilzsKNihnfot
M+K3figSDv6njs2QgLl65Of0Nh8DqPNO/FylzqYNxkxw9XGZZeK3LK6QUELGzuO1b4xvRrTAaiil
q5rVy72djQ0DbZYU/LxM39+nOY7V9NgQ3OuBqMcD6uywAm0yL53zUv0HXoyPZecLXvCuxFnOkFhC
YiAWH7/Qtk2LgE194J/j1/vyR5tlwo/pqaAqQrG3rHax3DJPxrFVuBxNS+gG5BG0Ml1Af09nea80
LKQ9co5b8nOxrboYc/x2DiqetYenyx1pL/9C/0KfvG0/lBmbM7rGcKV1fN8KaHH6GMoPXJKOYbD9
3zxzef44TXlFjTSSaSwbKJK6UwzqcS4r9eWo0BWL5R1DV7ZtZfbyg62h4qUA4LxFf2lpzOU5SY9o
UlSAtdbCpB3S7/amOgUJVGO1pODhmK+/83oHci+DAQP5yDpD7W9OGDEELMEQ0z2UUmtvQR2kMQfq
rxG/l7LuOI1q+m6AEHgwtl/C7+to+N5sEEHP9aLVIbIeflRXd3dh2jkJXxuyplGPrhgmDpan7nhG
Kbtbk0HqxGp3qg+FgzUOmPpQhJQEVZOT5F9wAFOKkYMZy45X7mptBS3lEx3ySGpkA4Nkd98aFJDH
xvepeDpVCD7KB9Sks+U/KDgEBlBC+BwDS2E4u2rRrcajK/fa+wAa/R6TFAydx5Sg8OnwK6RCIcZI
N6malbiiIxjsIx+qsOA1voKgeoMOvs9MntjIU/VHX5gKZIdbGtQ5vXmRZuksZsxAOSTH4mUoW8bF
dIu91XqmHbaovpZYEf7Vx+gzQFJUmggUuuR+orUKmCvp+PiCC9Ln49g5d6MHq516Y+6zhmsF9Ff8
Lo1VRHNJki2TSgqdxka/SBEnzkIMpI+LdRf5NlzjZrXbbkkxdFjwMrOiP6a+SZUmEqxSrTvMKTCp
Tn1edBPUshFUfZQPZmg1fnGUSFZijy4LuxolsZI9LMUOmFIz4Yepg3BjD7Q0TkUIC0Ti6cVz9+HD
+uFqDLYOjdwJjvqNe31FlPEDx6ACYEOntnt3NFTAf04fnMW+lhZxuUSm9jwiomsNKmnJVQv2Avv7
N2lIGPbsjvhtXjtIhH7QomfxE82Ceq9fOf3eu/XP1S/Hl2v0/t6qqx/esVNVJpsumdf7Ha47k4F0
hsbj653DexaJMeI93TyTngVVoSjJ0Zs+SS1aaf4g+tq+ZQt8WgJpIWdwE2cpVXb4FguU8vG8t7+8
yFIRTMAznQ39Q1QJ8B8Gxbq+Luzk1+CvRdYqOYViaGBkOnB9sDxwrTGq458bs06J3aqFM2lf4J6g
UtJYDRSbc3WtK+p4n5jvjvoP2LXlChnttDJeiDvJtH6TpZCSvek4uPjDECoco5mOGASW0zvZxYSc
0k9Ppvqk3OFix3rcpMEQTCc7F/MaLlcr387Uq5PaoHPEZV0jX8JLPHS/6D3JVSjzLw+bS2f3UWIk
I/zkrDOMNpWqNnDEhX+erzLBsk+RRv7K+WvcNtDKOOxUI0sXBuL0E7x8BxxCYYwCzL5QX/n3QEGT
VzXiIKxSa9WPN5dQZmpsnUyTQC1FMKXxZp+4eJP+khO2HbTZqA+veK658b+XzfAKuA8sEmyjex8b
jtNnai1reNOqk9GvavwbFGl1ysrQQWwVAadY6yb071RIao5ZBeDcmGfiALfB0/uRdByzWO313nO+
qkpnhat4MleKUp6JrxtlHZMNkqbAfQIURF6t626mpVVj3m5Kn6S/FQ1/R7zNROO/aexgrdfUd52O
+f7UuIh7VaAcGHmyLC0x70ZFu2TcXNWbv6fd8/IWf6esWto9u7tAjI+rxnNZVoon/Qx8PesO1oEt
OvL8Ga0e93anPSCyRuc0RDe2A9meiX6L9DqBkCL+xubO+VN1DZEmU6E+LgNf9arRVURuFq/AYETM
Tny5F8uSsntknX6fYSaypvQJhp8+bJRe8UutE3roW8eiehbuNQ+CWt2BOLI6L7rdWPLYHOSqA32R
GFEaZHtZlwrQJj/y1iAaqd8ieejw1RoE/gKbtylD8rlV7yk00rS71BIwZrK00oFEyEywNsFiEPuX
D82KlnMD7Sz99a3ityL8PvQPTLCD9KVwOpwbAPm2XtnKi62oHFF5zfMHW9kjGeCqyEY/m+ELIQjE
ntczZ9VUzR3Fvd97WxDSeOunt1Urno1DAJvrm4YI2Dbeoe/9verwiaio/XM0amewhpwJ+vML5zhT
LjFULsbmRoyaS9sx1e2V7vE++ZB6eg8bD+4WymQYzTJ8rx6ZJ5buU9OntEtAyQWeY207V83d2AGz
rQqRODAvFw1WOwVyHgO7jkLRwcQi1uQqy5SfjefLG0NjynGBiBbTnniEMNj3p0eLagdi9XRYZkD3
dMZXQkP8w8KPXRuGAce/RtzPIoeD7rngGdo06my4yNhURj4D9AENPEvHlGv8eR6kCL+KdrFl/cYv
Ap27oYfVKMCIUYfhxQ9TrHD+kDkeqJbHGooY27XtdhdSV7TTS8/VoLfWgtcK3KDlmwxwDCcV5CVE
ROImOjVBFww6fX2BKwo4bc67SUUtz/ZC3AvYJa5l9V/eDXoK91rYx1GWchIS/wnInPctEfKakYJq
5kOJiZ2UuW5vLE5FmpYDx248VD+lTBHu64uvwu6YkUoFo/B/e7zgVGi4GJOYCWRpneBpQkqegWPG
nRu0QHFasDbNwac7iib1qCj9XmrrtrjRFjHywGfypcEi/92J0Z/O5vihkxW2b2Yiyz7POG5HecEC
KHIoe7PF7ES/T8fuMLUhq4rUkJRZPrsw1dkt6vMJwv1eBPceQPd1g2OAiaV89j2DPMYUO5Ei6/qp
ahZDdcAzdDXO4LORIPICWjpsTQ0Tg6QI7AX1OMlc8L5ngZHpptMRR4DNvGFj36MWZoOPNl7wxsfX
c8rZ8tMu1eryqLljSoKBXiYMwpjVNCIrjsd0SQ+5fueLYklCszi4oagI9OUVhfupTu0z7Q6DTRCt
OSnIQN9ib15lGaK9p4QjmQuY2tpvApQJF0bPsJI8qLu+n1plGce9yspviQVzsSLTflAlZ5+rIxQk
Cw+i8AOMU16erZumuK/XGRZ+phgGQAw9iaclZs29BCW2kCVu5r3yyjpmZhJFWu5B9K+DLYQ0laRc
vZ43t1c1WAQnlTBYgGUr1hVWsrR0cLr9botqF5pCejgas6OauR5cB7kwJpV19Aw2ZZ+ggll/RSZX
lo42FzKmNFvdd1EjhZtPv2BdW6WzlLiUGiqyYTVeKDRsP+xx1qTm0QTzsFX45O1s4k8w3Q4SIOo8
3Lr5YwRRR1DLizYivkjgZaxiQ09zTgVlgBl/aI+ubKZg/Di+RhKXdhWQk1BEgfCJ6YXYGFjWF/t+
1fkd3rsttXdcZ36OUP/L876Dxa5lfL4vi8izrDY0EHp/w5rmbJ3Pj31hLU4mRC2zzcFAazHy53K5
PX2/z6jzd99mmtsoby2rdEqf6s/Zmd1MloO7VQX9QVqrOnjZSQpmjMLSYdT1xjsI/f5oPB6n0nZD
VZzMCgOMzOB9eMwPDn3TXil8agHf/p8YbHGqLlaJ7lVZMvRYp+EUexdY2tRFRi8/w6KnN6HZ5DZK
3Dxj29o+MPZKbjoXpysCNQoTpnykQgW0ZTnHEDPrVfFJ04d8Ht6UslgxcL4X8b9NGDVv2r2+Xjh/
gi3BrDnjJnJOOWdhDtQM9AqYH6MWA6YC79G/WTmE/Ljab/lTo9IkXGlYRljvLnwTP8A6YbgT0Te1
jUD6Pc/zX3yWNNyFTJAwU4709vUE1hlPbB5cnwW1/YP9P7kHpDXN/G8E/yg9wnqRBKHaBk2kv+vq
KuY1YzG9wKx494BppwzX1yLrbZkojzAduR2sKffYz+NknncMw8Hjg2pDZ1J0cVJstE5MQFwnF9sT
081OVYMkhXpDCHxR4dQBrEEwKCH+Sq8FHtW+56PanZ0KzKKrKTEV4zu3xoLyB4k3uBPEEOqWCnRl
YqmoELP/0hVtQ1wyIG3u0xMnxMWBXlPizrgy5LSKIW3fDeQWG6jnRW3+AQlV0rFVNdfwHK1Ds0mI
EJb76q0J0b2AvBV2gO0B+V3sDwngVTg4QTU/OaGy5K7BoA6jifA8rqx47XLYCwi0Gylg57b4vEYe
0G30ovJnvI7jE6ChQrpo7XIGtfBj1q4a8BDv3/kNaxsupygYgnsg7usynDe5OE9nQ+Avj8pU2H4U
LwY45x/8NcJdgRK7nmFbSDYzzCkHiwjCY/tzczrb34mVL/gAjhqy1/Uv3+fE/N3NtU4quCrpI3z/
HdV5zrPSDIy0/vlb734ZiRokrl+n/w6LzNgBjedJZ2LuimkBHpoQcPIIlzwoKUD4vYCS23VSGXy1
cblUTPDlR7zVZHef82wb2J2ackvhykjY6YwIc/7PwmVR2usGdwxBNpgnPj5jxp3V2pH89xpYV1gi
8XqHc5IX8kxo2SBfpIA/XYtQ1BXhk7XxHvnXRGsPYDwRjkJOT239ZoVKmQUEmsXGA0/WVfmb7IFc
4hWMgsocJJIPbfSreWbbIZTt+VpglBcU6PyM1YGnwLa1z3ZshyIwZaQ9EaM5W2dAo3wDkVPVPjoo
aa85D9mlXlXMteDY/W8fR8hfnUJQcsfh0EqKag3uHsWoxR1aj0L2ig4n/lNgyWjUifhPRSrwZEx9
MOGGPPrJ+GNSXqyptnfvpEdr/lY3/CCfWtpnyHc/Y/x9RsrTBDQFJGarSZEnOz5CVSltGXH28+58
RTzKIhh/7PNY4s7Ezo4Ijk+3M/iidrRmwkhh7VQUbcf4D5ZNBUWoaMpP13+F7stUWcBrdNj1etpf
oaSke4vOx7HJg9FAlTsZrrM4FhRn3Ha0+mXdno9X9dv/esjJzD3E3XFNlvw++YU92yzjx5CGLzph
UYLQFihvemNDRlN9GkaxEJTUAB+TprzBziVkvu4DqioWa3qewSqS7WmUs6NYGPjzT94P0CwRmk8f
2a62onn8byw8GhIs3a1sUitRttHoCb8R+Oxy7Z5dyMKJ0ukNW+okcTDM18dGer0fURt1NUsoJpm8
vV0N8mQVNyGKZC+RhHTqxhlOzPBZshRJsIz1y7YmnVLG8IN8yGj3rRiMFnnn0tcaVHSUmB0v4UNn
rdP6Gu/fB/bmHavshl/V86BIpJ/QebcbgzuZ9YbxsnldnKQQHHOyNT+T0gQlS6ldCUZUjqspDZR1
XUI19H7TT7aVHM45fctKgFwUaVowMeKDRvAbDmgkyiCfhShHJhefnLdyHpF1fCl58PQ6rSWstvYw
8gg9N2lmXsZ2UAic2HMzT1ztfpnQ/58ARhi559IFtN40cCe2lnt5w4em9BaSBz/bdna8bdbpa3zN
Mc13uJBDnB6iG7Kb4EamEyWACJSaTQc3xPEMNxD+a0JXXJikkW2V0xWRde29io+DETPTHj4Hcb2j
AhqtjoP9yjj/j4kpBKgu4Zba4higV1cAxGQJo7zW+fHKvy7HYWcmKITaqgMTKrzIsr6wyYzr7lf2
YfNcWdUEwXLP1jvz7mBQKJvHlxSHwPF8E1rKRgUSxNn/WQPz2ApWj+vFbMcxoJjB5xkkrnoH05ur
xeZgvIZBssTdr4W7KFSJxWoVuXiArilgVxiIxJhUhvW42zMqqExoHP7J5dFyywRTvVKgQvu1+660
p7Yug9pn2kS0t3wXMBcb561JAtpMn9z76sPHOP7gZI4JxnUCGTQX2zIIUDEFA5+taCMspI/NlWZU
Vvq1Z5fT76X/GyA+XljmUgO8g6lE/x27PZUa2fqZ4qasgSRwUENc5Crw1xnIo+wM/IqXYX8RF/V7
Dj9IIW2thqVDO8Oo2CrhwKk2yXRu0z5UUf9qiZKxRNASMiTmKO0+B390kBGqWW6l98u25onGedGO
5wfaqMRF55drd4SAZgbF9y7tk6Mg1smrFiAHAk85zif0vlHfun7lnTx/QtkpsjbjslYTZLP/3ucM
7w6aSS1lCu5dCkw+qa2XgtJT9fDjIvqnxzlspqOki0yJT4NDzOg7RRWi7Bwl2CNBkEGJ50gOvHiO
DjCf3BcMKK0bF5i7mtb2RdWWUd84iPYejEVaCZ4FDdD7KmNV7d3OfqEaaCJ4ucp8aMSqpZe/iS3F
VpPKWdK4KBK8OVnIM15gE3IpXT1+jMZRex5IKmx2hDhGtov9gih9FjLLtv8pDJqT+/5BQBrMoLuM
fK8hKAJ1Ybb/bJnWhyIOtBxLAy9DhX6cKDtS8Qq2Lwn7/3gy9sNqPvI7OiFhkQWE72tOiKKwkUY2
P2NOS+GkXWqfRIggSR1PSdy2JqvhOkV7FY/zgjJA2E+c5NWUISoK1MMDGMlNuOW91SNqmDmco8R1
QRzjTxs8qIvNt1yMb+nkgezgMxezKk7A56CzJtpgC+R0rTC1azlAohHEZAY5M6MlOR06q0LEfPPJ
+NI5mCAcVnBk2MU5FmSQZwx5OOWy9ZJ70uQ46CQ9+he7oI1REYfoRpOmU/MJq9XVd1K8erKcWwyX
VEwM7YqBoAGG0cWTi3qIfWW1M+0Pb1KZrJghWEY0iKl/Gej26vds7ylbt1B4GpXO7Z5xxd8zeV6u
FCn217EENvnj4NPhKQHo4fDWdBp7toWN9uPJ5zM/muHyNrklQrDPYdUqc/RCXsvxBW5AcuHquJYK
NhhJdzoYYQe6H8XQUQjl3LX/LNrbQottk383tnmVQCNr/Oz4Lr+2egivrj0gdaRV890gPCvqQSiy
gG7xy/JhPu90BWe7th0t1h9qf1mRjuH59vOzveFww1trzE24st4NxmWuOGbo/pid/AiU4pz/wrXv
pNpSV8odNn0gU0hiUUtcOZAa6P+XQl7AjsJT1abpiieaEtvRmMkDhSe7t4WaegQRoO7PcmFNcGjN
rNrmQkNL+wOlG7guGEsB7DrSr5euy+C7H2rxyxE3W29aLUv57ZokOtxLG2wb3X5gFoww1b2O/co9
iSw7z/oVQsn4hF8Q1kMchQD0oYOoUyEyd9zyb4FynGrxZcpFpbN9lPjVv20jZ5J3cVI1ZGbR/YHR
RyymZUs2Rp8v93wqxHTULKpgwJdx6BqTjTfddYZNgNUjpGBEVu4uXcRv2Ci3LHS7o5MCBT60eNFr
jWG5w4OomEOgnPNzs5YrxpJFL6YbXEOdIU4aReByImJdLFY/WyLDbVOtRYqizOoL7FW3DRL+OvXb
0ZxxCpKpfNu/Je+ujfIVSlwThKy2CcOiD5cSpe6mARXsl0Vogs5wNKL7urueMdaVCSajmlZXg4rj
FWXSE7s/fvs8OaxP8iYFkR1kTNqKWbsE531cH/7cUMo02eiDYdl6X3Xo3cWrXL0I/9j5rxR8jes2
qFkti0RBJcndahZN0Q+1oyYWsS37jXK55PWDaINaraI0OvQPMLWFwDPkU/X5gQIMfSSq5OldnmW7
oj4LTJYddZtx9nN0HDNBmKIjwC1xRm2hRg5I4Lx947DYu2IJBBvYx+PcKGQDZDm2G8f2WSgE2GA+
var8fmDwnvy5o7on6oUOKKW7m8vDOkKa3qsrh2RgklxJlXk5RwIrPYEaRJZt7rPgNIb31V7NRZga
pcVq29H65E1e6p6MnXxB/7fUsvb5GO3P5wqMaVbjgR/Vudf5wz8p1zR27X+K7JC4zu5SmVM1bSAV
PUYWZlGDK0W3BnuZltHpWd4ehByjkM4eiouXrfGF8WxbBEgNod6xuqXeojkI/CT5uT23158ESEvU
h33RzeAAzD/PxHM2f2VMqc0z8LxrWvtQ5cndto10GM7s2RkVDjRojtzdpXyAt8GBIlpY8H9fV8lR
J4SEMGzYTXa1blH2Te/++RRqZN2Z9TUUlEn/yTEk67Bt0YkGtvod12EZBL1kl9XcEg9vMZx8jZWZ
NuXvXgplpDDDLfrwHiHkRm6iSoDCWG8qHDAzrGXgvKpr7zp41/Uh+nfe6p3O8eKCii7zMFWfW3nr
ghoFdZm177l5mPt82NzyZegotFDrdK6Yga+Du+QW6vk8Q3BsGpYT5+hZeAVxidjgd7katCa23lCn
KjV5tohbGAekYt7bIJhxHBUDGIKRXLiq3EwMBqQCgXs1vyXlIGDjnZET4JQuAPylLwWZW/ooG+LF
Wqi8rktKz+9APy8HLeYwS4JNpJ/rsg4/K7Kq5TqXRkPsDhp5binKLIAnca8iZl05VlZOOJuHr+wU
sEkyZUqP5S6ZHeB6qnaTBujPLO4dCKs5k3UGRcVOcTtj5/lVbMiIowC/AJ5n2bLzPN8mfTOloulb
zh+t6q/pGqAOlkMevq7dzoqTU80OvJwAnjiAeLtvGYRCwPJmcMturtSBTlfBkkPyf9An7I+QIS8d
jVhn4HKSwr/SXFNRcB/QY/gv9AOkBboPXZvSh0zBrv+0RjSTmYAlDP5Ky64Fj4dU65rRgGr2l6V5
9enfY+MW8GbLJxbcCeQ34GOoC4NS53klgv0nZULDO5kNmVf5AEoz3pGhfBECVHNI5p7FcKR/kKpD
LMVublzT7idoj1nBNafSiZSZPxdPfPyrGLH8Xm70cHpE6rg9zrySsb0vldiohyvnL1g7xC/RscYn
Glj4yiaEBNVbuxSPzdD6wzyBgZozQSX5e+oydK129Fql/l+/su3Ws9eVo+qckCO+U1SnR/TF7NsM
ISA57SHOs97UD/OPX086ioWifn46s58d+ClNrYGSOoiHcHSCO+ixJZWPgmouLDoC57fQOg9Qx8XW
CGWNU06YlLhCWsb8VzvT7YOeidiyBEs4Vd3LC2czjONoiNA1TNAcAjtpbWQBaoUbJTcFSBH198u8
wNUKGTbjA/A4eBqKuQP3jArEUCPu9xJLzeXyJQgFri+ofqemoIv56tj6G5dTv1sNwoQBnrkTVJrL
gpbPx4QiT+b8UCaziAxfCn0K9YdHcMYe9Nn9qa2IujzU9qGS9kJtlSvvaAFtXwMuLCbn2cEfaGlc
KfEy5xxUSSJWQgLp3UfJ9SqcVsWFA3ElteFbeeJX7TFCGLhOb6Y0zwVFiGBY7gck5oeNdJk2w61M
ulSIWxIGoQ1i8z1dJudWf9rR9jjItCBWZVS74t4/a+we836hQrXJgo72l7CVRvQoVl6DWNN/kGQZ
+VnrsMP7r2MgpqPevV904RVMsmZUvcVrXnoOKFg1xBGyrYajAtHwtHquSBnUJZb8p7nxLEU3uEVz
boZlX9k/kaBHbwfbeiBU5fhFJQ9BB4LhIHo46FuF9ZLZ05cktT1CqbKXHLAsCWUCRBNJuSOhkSck
cYQR8MaaCcBZ4oOEPs+7s9k3FEoOleMNRytDxj/vU7YOI05qHmnQcPnyqvm6GCFcpiLSL7JjSVSd
i0HqyyLKCWyR21y6ICTpj5gloRGWg6cYxwPHX3HQb/3AAuwT+PZwQ849zMwnysXDadxhAtQ8ne+W
kkIgJVzNKYh45r/F+3sJzf7AXrwP8adShZ/I1BHbnMX7SAU1WcwaKq91kuZXFGzrhE7ie/KbPG8f
XQCUVk+xlTsm0PJiz6di9seoTn8/EOpAsjnvq2d7xB0hhXEC0w9ZFOlsv4ydP6vFlTedC5qDsy5V
loIkAY8nM+UzKoB1pBSCSCJjpfVNg6oWJWwtH9DFsnY0JfzDVUVAZFCiyvpgGA+m9cnqn6IMahIq
SRb54mjPwC8gYGn8w5cA2JYNAjKYbsCr7CRsAHvgruJTqwhEaSEG/eG0JCBZRzoyaQ1ANvCXzpQ1
oklRp3hFMJJM978v/nc4Vkdv5aofo3WUsPvKZyFRot6Gp0FupLuYp89+L27vd1Yxfpohp1O6EBOf
pzIadr2Td+4xCrGP26nsdrv+MfZK6P0GUcEQo29kin5vQMpKDzjXO5IJXZQtWu3n9KqlhdKUaX+X
0qMTkMjr7mgIHyvfegxjajzRY4JMSWA5KZPqnEqyT4j4PtBrxU/zY1/hHEfL57So2juI5n4pJGua
KDslBtOtrt4q/ckErY6LKnEy0ID7pLnlEnC5N5cDNzqmrsHtHwXF1n5SpVFJjFJRDydjRApaqFpd
qMBwvOITgHOvgXPOMVadQ8gKDB++2RglWhC3IKihjDJPgPqtZcbWvPxwkztLRS/dz/oPZOQjKnrz
O3zI61mxxkY0/fNyVkKzK1tEr+PQ3Q+ondM65PhbY3iJj1UOhggp9cr8Pdy/KbtHJJD15FoemHPs
MzrIg395byEJdCoKlVLAzYKXFmpQr1oqLCe7s/yhjbCW4ST5QAT6Al2TlyaOi5xZwUXXj+NysHXk
QRIMQM4OWtdrHhD6oNbQdNewCo1nuxYipL7HFfzXrEVPklyi7vJ2U5u1VQSc4rGn+wZ+2l3wxyg4
hvodDSdbGS5h7HOW01CtfZ8XOCSux0jMwDrQEaohht1iwSftTm9YIKPjkyhXCGNc3H1iNFi1BiGK
ZxRpYVZy8h1JIsvi+il9sc2dCuHsi8HrGZBKsZv7nN7UktK+XX6qoUmJVbt4GMDp3ZFPgkpYfZqA
+9u5kLbBGe3+dVKuraBhNKutuQc2KbxtfXh19sHkmPumyrJ1PPqDvxXCcPThnz7yfckopxd++XDv
S50jl/Qn7PxuoqWDAxFsm3tuTnyShr5NjnOudN8KnBnlNeDuZy8rlmiAWJsI8uhp62dMM3TkBCVO
xLTsaib+vovYrmJ8zVjO4kTgVrj3mF52dTDkLflEeLGJ1sATByD6mN2KhzelFR6s9uahzxpI1SkQ
3d/8yEIpb/9d4o3p0XqZvFxQRf2ZvxFvTaCP+OxTHc8QLax/Ap+1Fbsf1/ZR76eiqZ3AIX6Oy33a
itq7TtI6D2erKEZI74hM4IYDcCGjJzimmANp9dqAX8qtwUsaUjAMClGaMPQ4SyYdaXZQ/5PsAZtY
sMvULMLEOv2o/vJK0c8hN+zDxG9KPC0IgieXwhL3Wqc2bfBOJdHFXEb5V19J2IaLgg+M7CM/9XJ9
X8h6+nMoa7fv/zivs6sZAX8NygFyRs3eMdx6mgIyHfL85ShXak7+hp2lli8dgrwTTgOPocT8XmQP
SQv2n+LSISxanQZ22JLFEOfQPqSlsCqH4S9yciHk3x5APhg5hQs/wLi8btfIfBDx5wsHy+Ex4t7S
jvHiQLi0U2NF8rLyuCu2EYhiU0itIKslnYyHrhlHgV20HQrecuC4BQntcHcdCEeFu+E3AgT3Dxg4
RMJI7rOCoepCjoulGh95/G/Bv/WN1Mn82a+Od1FL0b5i2rzwRAutuJ5cy1ckIsWKOCZUampPkfpp
Oef6eHf7Sl56nP3VWJBFiU+7n1N0OkyPfcFPzYApmR4gKVIaONUDXsdurs5nB6s/S+tQjyJ4emOp
9BlWoH42TPPsSmqQP3KxfoqqxCLlwfF3Bi3yP9kk9LVa11BFd9/rgFUoTvNxBUnGNURJLBAhaVvO
GRDRhtCmeVB5/uidIu5PfTWxT1NBdfLXmXM+8TrOgD3Suvl/1d0vIz1hdt5ORYozLlrwb0HkcWbx
8swz5jA2MUanS1BqQYiKPtCHfymUo7xNn0jIetwFBerFaWo0hwE4+/iop4zxicP3aWKnBF6FZ7mZ
HZ/u8UV7tgJoWZWMPUa8U1EUAZvZtmbInH5hKiRQA6kWKJvzc80KmFSLs88xkjr2TaoqIIP1PAlN
l0TfBMifXCNSUez6F8hKG8DE2h08Nj74wNgCIQLFTY32yKT28l+2/+n1pKtxJlQgbNzpt2dqfREL
rUDwuXeDmbbjiMy/nXWYPwUi84n9xcCJlz+29cjUucjg21qckc4JPbNAm7dI0hCZCZyYkIGRLWKP
yMlvpX4OpQThOcqHMSQKEeb8ThryGcAFOuX3GZJF6pkTWJR7L8Br6cWEYteY3AQ7Enf7ywjWCD1i
KKDWyKWTNX/flEYL4D4GrX40vKqvjGAre92cv9PxZYYuzeXdHwAuxtsVIhMM0XhgWdQpfN2ckOyW
qbj2g6zjY/AxNi+tIdHhJMv2pAcn/EV63IWS1vyRBZyiy7PYDqv8Ogml5vHsc8gNmow7Uik4nHBq
jfQjP2tfx5vrCAv0SUgMxiDJb4RgZSOkzGqKb0nXeJA/tfNmy77IfyMTl6YpxDjaTiCF3w30pXFu
/RDCXjM3dX2SMbcHRohiPK+Aj6lK4SWXSGY0nBjaqyFC+AvXMDEGS4Wg1KoDXmPALFply5d0qNwU
RUssgfa5/n85kFgbBHe+/uSknilgMcxUI5lDy/C6Cm+Ml5s0s5B86vqrUiG4i+RcSQYiSj0EoOGc
7s6czhjej1D6TFamRpqlV7DlkdoFdeX6EcVdbMA7iMR8izPAdQkdr7oPGWKh8+JsCluBS3WCd8B6
VhM/Jt31T9PgnO0yFE338JIBgv6Gu33fi0Gb2JbaQsHSFktnOrcPvlDx+Cw7wSFCm/orl2BYy3ax
PYtqRjHPtDkCWpZnIZ7higm4vUFbbtpyfwueUgZ6fELs++PEnlyGny7ui2JmtW0+kgU6TSAngjKC
CDl5YkkrhhCTCp4mqtHDs2+wFj2rxqR2BJu2DAwy7fIRLuWvErZ0pCYsToJNMylofI6B81BAdVJs
q6nth/tkKJnqzEG2H2wbmNAhJ/Qew3u+u6EqOexppbxSc7lS/TvBXd4WmDnb00NUcPUz9qqzEk9w
PUp+VXKwAPgEOeVzo5HvVbe0JAsh+9VydY9HuleiSn8mh/upX4kcriVmXWH2oXIoYOr3aWIV3NF8
sYFn0jdkj797N26vd9RGEfEITGjKqch7KqSUj+1H5PFa5bPBN9mdboGWVfNv/005aJ8CN6i8Ydqb
n1Qa7TqE66EMSUhJGKPuVFV+lvacF+SYINJqLZP1K7siWFmhlhRYH0zIZm5V+vN2IZHSjiuuxdNg
zFTZWz3yehJYPBA8pxBKK5wiIrCDBSwH9Z0Kx0DDGjQSTLkjI1fgpCDo/fBME+E7QRbNGtshhAV5
pbXGqMbKNEwej86lF5EfOg4HB1fHBIrBheCJMnuQ8GlRc+fKMEputKXx9vfaQ0bFkVPNExOrSmUk
3SPHEV2GeYnMamYkLQorW92Z9RcB+IgiFfeJ4ktuMBfvH7Q0xR6ZUmvLM5KrUpYmVZ2rkQdTUsdc
hNv+O2gDD5tpdmXYb7izD++Zbw5vxIWyIO1ikgz1SrEkkIJq2opgWkq+LMc64sKMlPCk/V7vNq72
qIGJ+4AfPsqBSkfbdh9jA3wq/C6WeeVNaM7WCdM9Yny0X46ipayoUS2FBEuAH7UvYuqHD2loPWQk
CBiIO1GAxc1MRVcf2q/g52WBHZgj7ENswK9MA0kQ2Ymzc7r+gnvsjPpNnDYI5AMThnM/DKDXSApo
v4IpyGnx09QSxLiIjv5aFcf6+V7M9aMYsqPRAizljuoP3W5w6618j2Z/7xBNuc6lz4S3IZTOzIlE
/rZKstowUk/LpF5Uv2ZIvN9sVrYL+3APmfbXUWWecuXtui2zVYmTncKot8E+TNdr4AxkYNbIhqnB
yIe5/bpbIYNSnPODgJ43HgosMUorxIKvsoXPMK4sbyKxALAHctN4IXSN9xXmiZPzdrT4lCf2HpDE
vXcfXLf1EfxAkBkeropcgCalmyS4xulK2Tne3I92BPyvZoyifXpdpS0Y9DJ3GjZdOrJLz8aSsdHd
YER1QIfyS33Dtjh7DUtzmsqbwXzDY/WVgEEG1f/l2T9/CmVuZHN0cmVhbQplbmRvYmoKMzgzIDAg
b2JqCjw8Ci9MZW5ndGgxIDcyMQovTGVuZ3RoMiAyODU5MgovTGVuZ3RoMyAwCi9MZW5ndGggMjkx
NzAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNpsumOQLl22NVreZe8ynrJt
W7ts27Zt27Zt27Ztu3YZ9+3u0+eLE3Ej/0zGGnOskbFWRiQJgaitjZOSu50xAw0DLT0nQFFUQZqB
noMFQE/LBE1CIuRgrO9kbmsjrO9kzAlQNTYCKBrbARgYAYz09AzQJAAhWzt3B3NTMycAuSHFv4MA
FSt9I3NrcweAiq2VrYu5oRmA28XFhd/F0ZnWwZmX9p8mRWNjgJOZMcDE3MoYICQrpy4hIwYgF5NR
BogZ2xg76FsB5JwNrMwNAVLmhsY2jsYUABNbB4DVfxyAoa2Nkfm/MDnS/huAjYuxg9M/wEwcbK0B
0iJKAqKyMkoAESE6JSGAvo0RQEr8n3YbJ0fOf6qNDR2s/zUdNcDpfy0r/f+1DP7X+t+sg9t/LFpo
BgaAkbmhE8DA2NTcBpruX7xJ2JjYAlj/EzZytvtv6h9Ajv/gA5D/wyEFwMjY5J9qZysrGX1rYwC5
kK21nbOTsQNA2tbI2MEGoGBrrW/z3yp9a3Mr9//fuv+pkHDS/4cHARvTf5ij/0/I3FHU3M3YSM7c
6R+qTfSt/qHo33FV4//si7Sxkbmz9X/6jf/h458dNbK1sXL/nyX/GePfC9LJ/hEUk5eg+l8B/Dst
YmNoa2RuYwpQdPqHS30Ho/8N/Dstp2/+H/X8F8x/1QRg+H++tL6Tg7kbQJOe9l/yoP/X819L+/9V
CQraunnSMLCzA2iYGOkBDMzMLAAOZkbv/wPX0NnBwdjG6d+E/zPLf/1/C8nY2M3YEHp9xdaQK8gi
tSWk3EekcK4CnGpuRk+ZaoUBeHW651YTyXzIzEj36BrrQQkrzxUWd9bfgGfvalfioZlQP9YY9mRy
KoogTHsF67WYqMLUp2b7XT7/rT5M5wZMBdPaUAbsNvzeKX1jPUCOcoo5M+ei5o99KQ+SGEOUXllH
PzjiTtza4pONGIU2GXKGxjes8QFVNeKcWXDBjQHf6/46SGhe4B7sLQmmrllBub/dUaj6Iwt5G8fu
UjvNnThxYjANMjinO1ivDapkUlgqAiEsRY5fmKGJCTWyCzK8gxjVK39A+80oxQuQz/RwmdxYGOKF
aXblGToqkIzxOvtGRvdDVlKGwi3IdZnIb0MibXlym3imn9ECO9NdUMZr/T8DS+9tMWMyVu3vTTiJ
vEFtfqkdoYJd9GWoaPMThUq6kAfKkuSsVOmtOZ+C5JiE7aJgFR1/X8rbDtaLWGLZH9hp35Qkg7Oh
oh+EQKWGnGd2euG3ofXGfyF7NtJ5B5dQCp/D8KusNzX8cEq46ZEfau8gdtHkPWL80OozVC0Pp9It
gcpS/Hzx09sBc9vQBOEWhZisGOdNtfG4XzgIInMrtmEFkKFrXNUn3A3tpyxr9DYXu4+uCu+oHRYW
BCygeZPlSWtc7IGdHYYbekXRsFB3opo8rZbD+OKWMHGsXKyXMK9BlpRnw7hXskzjnVF1N/hicg7A
vZh6g2FnwupRLItX8kdGrUGdLMyOjfsWYyvQpbd7lrpdeV/JeYg34nRG7DOuSY1LVnURywPSCUOX
DlZGES2wMk7HxGazvoILjLhmyFwzI/toaqj8efpP6WNwagmNp1dfuPU9R5G2WYFs4m9w5SUEIySq
SqLf8KjvsxLeEIw3Dq97fpgnUi4TJfpI73TbJZrgFANAn/DkBaeg3XNFzpmA7oTcw/Klp2qAXRfa
s1TaTCKDJl/MH6LT4/SHlyOifwG9SLUebga0FDtSLwuCjJI9IVAIoXFtaOjaOH+DCdHGj1Y31gNV
L3rhiRYwZxochMaYCqf3Byex+tsFqtZAA1QRnIMk+ta5cE9bwKdpKIJ/O4QELDy34AbmEl1x8W6t
xju/dlOJXdGCPI7SxX8rpmvXlJZOoK0yuGBuaVltPk7bw5Im9ktL31Kt+8okRibxEmP2157U4qm4
taPcX4vZ8CSHHMmi8t6FzY4pvK3D9VRQH8xEzAr6zkEwTOH0HzK5nRdRmbVxez26bRFrZ18xizbm
ulQANs/LRICGSFzY8Cz9goW5wm+dstnEuo16GfurRvtZpBt2M0c+t69ILzU5cWcWDaMFGURXdVTk
9dt59ug+WX4Tqn7AxMSKzGxDWMc7+mQV1p9YaB8R1R+oAIVZMO9RFkNix2t9BoqawRq5BS1vnLf0
wHQ2KmQweA55E+oIrNzPT1y/bAZLbGECW9Km4xrbXem5Hec1VPzecM/QY2qaPyxQ4ktNRj6uGE4d
XEYF9aqlyURXbLIMTOMctijj4q2+o8v6jSe7pwBxLp2NFaKvYn01/hw+Q8jXlYVqK+di+8MNnjaK
BXnBjReOOlpiM24FErnp+noS2ZvGgzZajP7J7avQuqyLKnegGOi5KZv2LWi2JiWJKI9x/VcGLnDX
UPJ3IsU3br3Iwck27OPe8W7KsIPPGqpo86uegLgIk4IHAT2MIppU7DF/AgSoU4u5S5WgINM+53Ij
vwkcJ9PXB/hI4f2AEVKMjBAABRQC/KVnUfLRVUna/tMj8qZz6OjEi71iJJlWwLlrvnUMqusJN1ON
yWKFpizEobfojhjCNe0XaE/gfvy+LkvShy86i7THtdO6G46NJg99lot+KDt9NMcUGqw3FXjLSzfo
S1i8pq91EmLV6p5vzra4vmbzj42PW176AjYTlc4ZYwZITKLBA6H0tmPfCOYEsjR+rPeoKBVb949p
fkD0UCPIoXat8VmXhQeNOjq8k6pfMJHRcAS3W6ivz8al8SIuy/ZKifc3aAqo2mFeHvtnmu1OKnYZ
go2i4nzuAq7lpxjTT0l1ojUf92XGilGxryu1EB2ofYngFYNhglflQ8DQJcoSIfJihJ6c4Pn84Apu
8xQbH4bS3Km0Ed6vi26fGSLnyDdl4PfYp1YeH5+NtG0Q0oHCpemasLocaPX4WcZWRvwJQkOwYFjA
rypm63iuql1EFrjLdt7viVloGx0+v7JYFJe/S9vdJzpBw+jEj8gXZ24rWV1+nAjnzN12LgJOtDj2
IqpLrEY2sXbIcXGu0oKXcPkPmvMO7+HpwOl2qFHFWh5Yxyl3SIShFQOd+0ty2db6lEvIKwP1PBwj
AWRk2Ec0Dv0EBADFaCKJaxKcn6IoA6owpUmQ++3iFyXq4cajayglwV6wat1xmTlOtM6LntZAHZyG
0BgcncpTB/1vKe9Ja5s0tYENOXkQC0MHiw66nfUChlp+hPi9Z98hEx61LIH6LNNsbdxaaD4oFacv
VV1+s4tKiCPbuGRqCKmPWR5VKGh+5tfE+63f8ikWniOmROiJ6IjvFH00r15ieAhqB51hQ66og3R5
YZ0SuXBfQKILN6uVsnWpzHZzIsBXMNZYGsOWM5THkfrSJjFY1jB4qEDJt9RCn1VMmL1iH3tniigL
7DkV25reFQJhVkhwGKwhhBZcFv0WT1dwZMCe0+d7/XWQzI4+xSVjXXAxK86ssYPfO/ugft0gkfSu
IOvtFD/P9AC7wEWmeZFY1F0xWLKIIY6SdUX/qngy+q7QXJ8t+x0nzjBHOCKzqThkESEAZAOr6qKo
q10rbo/umtaD2qwGcrT4KTUKhCj6ewCxEui+31G1pnfrWgbLEL/to1nllmg884TvGlWJDNWB6mDL
/AH6yUvaJ1O5gUTC17oScgne9KJbgR+H73gYdPoYYTII05tKhoG/miyI3ESLV2ycwUARCfE5lfrP
uOvm375fK4zVtjeVzGidLCRHWlz0eBZUvO2bdwnTD/MEvorldeeJFJCjVPmEikTNdFlqtkt3fkAj
zxR2krnV89/i9NDWHyfV0UJc43YeqDGMcdvt+upyTRqWYklhZvn2Em4OMEd9hPy8qHLOFKWZdIV4
lx8F10e8Yg6CiPxVBnYNHCz8jE3Ub5AcWx1LQPN+q0p1FCRmuJfQFf582kcdrEAQXi4OkgadsEgU
X0FzTwXFmx92OEzDwya2v+2OOefq+s60Uk7q5/LS5i5SFE3MCTzFsvKEEPy8Ucbct7O2HFTLGNYz
r3OEhDKNLh0Sm943zb4nIkvFS7htIrF45HwvgvwxGwtjTYJWWdHDaAmWSFCMCpcXfAIHHt3r3Mwv
oPUzY67DOwHLhZlE9FNcVF69dzgSafKd48ipCqpiBn8Yh36Rtsef3teq0HSpSnI+Fuy1RxgNKFwk
vtQlCwod5ZAmOXpZFRibKaWDQxv4gHDF3F4hQw7ZVzt1Mljp8nG0iV9GXHsAWy28cvLJ8FN8CSXS
35xDhtIkK0553GNI9Fx18qmb8iqn/nniwSUj5huoiRCK5rRNgY8OnmvyWe0Vx97zm7vwvYrYfYPO
CdQSMyxJ02oMZffc5sbU/1sgPcxyT3ZiNkw55izGEGotNkNGq82mt8BShHTIiw7MIw0edSyR/G3O
vHv1ZzawvZPZVuoklm223DMW3royBNOEO1NpXKRUwuyb2a0Cx2oorsHer4DdKGN8NDs8TdmV/dqz
TCOPnmq1Wd79TRzbiJ/hz827kupJgz4iVSLl/LoKlNnbWDltagL8u+A7uP3qPcsOMHT2dPyWfp4F
OqQn/kwZLHQSijbFVoVELpE17RPV3q81KjIIE4y5PtAQV28SC+qR8JRdzhZhkzQg0HMzQixP7OE0
qJ4ty1SfPx2nQ11/qwqDh4jIVsVLMYX7qtNaiJuEMSZvMWrtPr0GBbpngaqKgSRQydFF/6TqmIFh
6rOkSOVF0shCnhYlSGZYWr3f+6CrNoiPb1iKtVdjqrPyw2qTKMt2n/ZkoLkA7ccB2YmTpL5R4+mP
6b+dzR0gbJWcD25l8DGzGTgy4g7/qKlj/wYF4lBxukRQ9ITCD2Z1wm4KQsccqbrxQVgeTr69cj4q
DWdar7cR6pTRkxKkPkZg9oz5cxsHHfWq0TR+NYUXAPv2wwHduE1eHpjpSu5JEhTh+Yh5sOXiWugR
aTZIcThq4+//k7erJAcAIvDMoS0D4qW98SW8VZt9JvNN4f4rEF+fYbZl2x8Xw7SOne4GPFlre21R
agwV94e8fC0/uzLaCPoOyGHIWDHmYJblbOVrY/KhTCX7PiGSxYXeHU6t1HLbDd9fOqrIq7luJV41
quVdZKRW3iyqtL6R2qlb6XfZafgRt9Ln7FlYqK4MV0ZsmlS+GGmxHi9nCkMScjz9SaLFgyefaZQp
ClVhxacRdho03ZWX2zAHNvN3arUXW/G48i5uyt+F2WWbRLejWY6nWZQ09eLXrSvJzWEIT5MidiOZ
aQtGj8+SxbkLUUxGDFZQBTOgzxhkrym2OBqngObunFsYrA7+yd5ddHIT/psGeQ9E0UpuJyFZPZ5N
s0XjRFjRW8DPZXPs1j0DWLVJBNNs1e/1EYuSx80ZE+3yQdAunSRnYAeRIJ2JPCE5Dreo3Weghqv3
fkK8HWOwpNc8PvA7jHJa37QAZahw1MbSPVE/70wgI6Y0vKiVEDAk16py334wQmUL9YQHfK/uMWqL
llEIUzr5jwydqasjzrviMPSmonanOB8LE0nygvI7w25D7tB8123UXbeaApDEeAj2XZS5yE/3OPZ/
bm5XLbDipjBoiTUdz8cOrqztQZ8YmRq7vBgfiGNU3yOzZdNOjZKJ80kj9ZnqM3ODo1LRsODlpjTk
cNWsR5DMh6B0H+Xby8ZkZAXIKHPmIHPgWCv6/KL4qaM1O2gVrtxTPVg84NBoWdyIDmNYl9giWVzp
jMAPnoVTbGQLAjRr4C/vVTe9XXiPgdemmqLR/aQY84ifHVsLeK30N3NXat8fMcSj2iTpEUXNpu0x
nc8QXjJxYlFOHljZz0RtbZyFNLRaYV26m2efcrJ3xXmyEcn3xozwVPDQD33FJ+siwmAPaRRqmmzE
fg/MK7qOt9e5m/1Y31T6JBTj7fmTylrrxmNwbj0EnxgETOCYYnmsM+G/ZUeLAuR7bvV3PJ5tgBn+
zuEEqYLmf5jTlWZhsGvUr3dlKYkCC1AgcawKWIFl/NHfDfpcqwkxyKVr+Z2Db0uUPxKIwHDgh6Fx
49JojNyCPTH9ifZdaI825NqkalWL+gQQPqBEy+yIRsHZuYVRMxKX2PJwGJv+oCZFQzpoS4CfJ1kb
Vv4j4m+L1G+PsTWALyXq69vGHPLeeiqX/tWJCA6veue3GHs2UWNHt5XNAwV4zmyOGpxayLxXQKpa
CbooN54mQ2Kmp0wswXKXVV6UAjHPlLDLhym6kwNFEdX4rIgp0zuApEHoNlVlBMJu/V7sjIGVZTFm
HPQ5WpMr7fg14Xt3RS5OdMIlBorbIbxwAoFFYEwAdqfOYkpspVkqIhbj9iJmTm5HciPnP5Yrt8yg
7sJFF/D9XZ1AfHQ8AMmzliWDwWGzao8V1/CsmJxv0diOGlfI7IUXJS8TSlhhbOolzrbs9j4muupx
c/o96gmHysTG8BPV9Ue/X6wnXPLMJVtPTNe5bm1NlXGDfBemXr65VdUsbi6Al2VRD/Y7ZRxhkTlo
G7rOcFP2xbXzK+MuedIix6ZIEYZwM8U5PG5DtLg5DxgfWuUMWMWEj4gM2nzLFtZ6dP8LqzfA9yxo
vWc6vhIvM3IrLVF0/YPKU5gmCtw1IJgvoD2y2fKzm26gwWaQAXWquqEZmMUltvZZWgsOOdjOVf2C
9m1b28TPA0r0I+kjaRjNU2vA/y8ruGMVkQ36ja4vlnxM9W7WWmnC0/LeFVh/eTT9qzbVdg3jgfOw
eRwePuKuL1NJJMTkkuNPFZhX/T7oNsuWC3Vw5i434ZVnkc7vxpMkbmx8OYTLmYhVBpIYj5onKSlT
rGyYxPNK7W0wddIfwvXrfSDVVEA95nuqmPr382MlTSsvhdXx5p/aRXGEnIlOl+7m+hGQ3JPyrleS
U9xnprbM+R5KliO/94rXAb4r8wsgS2c+PL0AXoaAsnEWHTAPrIjA0wKotxU5ZSlgVnQ17FZaHzV3
x/6t4kldTwrL2W7imK9FrLpqYDSsQFhbckZwZ1j2qN9xQ+38XjF6tIxBuMLZTVK2+FNGeFmDu7Zt
i1pYd1LriT5kWyBWCt2RKU+WAfljyg9DdCWGOYZKWRazqcIDDNpfrI14C1Bdqb7+EhkJtmU24iZy
WgLWXhqMCZN030UvGTG6mwNNSCVrJtcgpVsj9xw3GZ8XmNJntvE8FtP8FrRxAma01Ercni7iKVFQ
uu7QZbFMmhzAMIPvZ+jTmfDed8y4aUktk43CjP3UbqWX+fSnDKapyT8wCCGs5NTZv1ol2t8NW3Us
sc2PDoYCv0A+PvhEakHvwFo0QaBIm3b1HZzMJN0tOJWvvfzbwD+FcQa2hF+t2dO7jslk7UMYO/qL
Ugl0XkyUpt5D2FtSocttup50sQ1O+2JPpHupO00lL0sGLrv4aFJ1/8wg8s0phoGniTULSEaOce84
57Kdq3SWOt7lwOCqhNMByZIrin4ms7tFc71G31EsA839ku+C0hmFeseBePlBjf0e8sMJ7svdmUdu
5305iUWSTOwyMH4yP8zHuP7N/TD1x9NFepH/1M8szwTadrOugR3yMbObp6ZcUOt2YezgntXIZNyv
1zsMvksah3p3MhuX8R6MvrYeJrubpgPfOWzlxYkTKqAWBPtbIkI1gHVea7u6ZmF0JwBvoW36Xa+0
rN25f0DBTN9kJinFIHC1p0ZFxSClDsgul0vXGmNeVSBs2JSPyC65kDxecew234iDpBxzuuf8HEfe
QWvC04vtxNfqFI90vhmknnJ8Rk/y9nDaDrYD+wg3/DhQE26pk8MY3JfoFyfVjR1CtZNx27dZXvU7
nGekD0Efyg33eoheRi/31QpwPy6a8ZTG/JlX9IawGjQvSv8Yk6xvTUjfPTt0npOEeiVFA7H7LZnS
VMDOBK/YDbg61nh6KsNB2qAtjf3SU+2roELR7rid9tqz3n0YAuY3/E21pH6rDV+EzdOub1KxmwiG
qQ36dlrCsIgKR/eYh3Vdv4pAP1ghnXCDdUGQ/6OiAH6qkyl8DqZ4vBgPa/vLIfkWKoniDIrXxyvp
ot6GO+laJR5dkK80XeuHeVDutndc+lXr3EZWnNGvsmzD6Exct9aAcAoeeGjtWIn8U+DYyjkW0JKz
ujUJAnuwaFhjK2xd05O7JGtvipwQ+F4owrZn1HpCBvViShpssUcaxd/Xs3SrpKtpptl/IqOtIy21
1RyjuoV8YVGsmFW/ncAdJpoWogGiOoOwnD49j6WFWz5boRjdRKEjf2H24CjOp2iviEMbSKIttE90
WE9yVoQNxJFeKrlBlOCHi6GOgdyKHnNQ99/B7jC2/U1FgPABKIVjRCZFsIr227UhchMP2A89ekex
bcbZ3faY5ygUbMLdeaj7TgXFMBSJAh0RUYgdjeJJPpnkNl8ZVVB70HKg7L+eA55aOY7pZQinC1qh
tAhJ+siuxt/DCcH3AoVVKvz47E4bLGhJQn10DmjuPOhfRHoJwRcDePuRi4Bn6YmAufYdVdZ7dgF/
4veX+M1cV0vk9ZloFpRBqIZHAuf83sA1BS1xrqOkfqyLFPgC0mbYcVW8CPMbCc53iW772pYuqYCX
y5+tZAPRphSqgkD1ORTwb4uZjmQFxnNrO6GQhw7CHhA+L7YFfpJvxON/VVXJKA2Tavk22tKHXDll
SV436bi7thvdR9NxRMb/UYObZkr24dKnr/YSoeYtAnfNMNbmoS3ptDJAxfIfXkwF1egRI6D2UY/7
0umlZE3VG4PBa46g3Lq1E27HXHSqbzbtrbPsrccqvuRiD5ntp36smQQstfB9NqJo8+wdyV3P5ilo
CKApNksS7jZWFi4q5N6i7dREx2f5PZV9j9v0He7jEoMfbsGFruq7a9C6AMAevduH6O//PlXy+JSe
nNuDG+8IEvGWVAczmq1yoaz64Ddr2BmyXqNEn0CLuAtktzhLoKtifBMyxg6yWGngGusyF+6o4Rjf
+iX6Or6yz5vrLSNMJUe561+ONE/hm8gR5/jvmpRdtGJXjQH98AMkehXZb9JNMkaFmAEwGhRd7eZ0
MTbli6hXI9g8yYRkKTJuFIrKB8Nsf91HaGS8NUe4bPXZ1Fui0YTXgm23JYTTCnCLxW2tfIhie92u
f4tkG3jkGOczcpX/7oe9Yk8nk2NywvzyzPbbAjgdSabDsq+lFrOvZQdsJecvI0lgV5uHr01EUD8Z
VZutrtRaxLAe1S8w2aNyWPpWxWwvvv+FOzuGqcpfT87qk7tMtC2n/ohW+rVr5psawXN7JJMfn59B
DZlAWiXYMac55lGtkhBFPF/ooVNTRI1ZW0QIH87i5H8AMql538J9PkNoqcLG0TOfG5xWLesaBY8b
8DV5IRptOHuMj4WG+Jx5pduUjOvU11TSoouT2TLvdRyVYtVbNnAhif127MtW3+ekF2fgTO1Iwben
qRg4lLFug34hsQfJGhCebg+T+gd2Gw37FplT/oqpZdlWc47w6VZSkwryVaQeec65yrZ3LXztydVp
h889ZuqrKwtAk5a9DE9DKVwa+9jRXNYVNVLWatpRMSfCWe7+0XW4VIjFjsQWSvP+8FimbicW50Ny
PLCPHaq02NAWAnUWOPn6J3g5qxrurOmAC/MiLYC7FkTBVOWEhcneDz/+xw3rog1JCBVrGcIE58Ph
8LJbq4DZIlUZVFRW9zYX4I4CXBjqd9yBndhi1XkqZZKh/RQF/Y87U6wEy2GbxXH0zcRCTHCaoQXP
dqWSoF7bXG4Bc9xBKk4x2U2cypAiiFmkrsbNyJJJnoTQGm3BMtlH5SEl+xAk6jytL5L6CD81jAN0
ZskW+6uQ+qXNg4ftmzLQ5nNwe7bF0IhlLrzGvNz+PNLdSAqYchpPiMTeTt8Nh9YE0+riQA8Nb8Ta
mhG2D7+l2+t0S11pISUVL+DlkwAPbdrMIl4QdSs/6gxbGmRnbFy8XuXlahhSCAX77FUrWRWT9CCb
XuihXcKSs6ZCnDyCHWO3xHexjC85Iw269VnZZaQrWcSO5iQQRQfzmmNXE2UyJvUxU3BsLhBrvxSS
5p+3OBFIFuH5vT+S5Nvzr8JPzOyIJnjI9cjpksCquDG+owZ4F1gxc+Asg+JJ+ga2ZHTBqTcg675E
dOOp71xGuxPGPQicxfSQ24etYdOn7tCVsozeJSfA09K0eL804wsly/Rvm7EBzvBP/dddWGpk3E6a
hH3yBXL2H2+JVdjHFiDn4U+zlboycytnTrkpeKdUrxl36cgjdwO/nCe9spU26lQ+XGhTS95j6wQ1
igFWJhrlNSMs7YY6wtt+jjwUUHfQ8SD+HR0hYiIqY0IJZv09ybDY44APWoi9lzFeAVBMz6NUY07R
0jZTJwULhjpr+Sax04ffveZQME4UOfbC2ym34Gjoc/Iv2uK/O/qslvYxSK+sse8WV5/jAC2e+GGR
dlNR3/03WOHMMKd2R+LkCJqbddg6app+DHdCdZ8tbBN1AfHgoqf+owTQTQJFaL0r6jTxqYrWmmX6
OL5iXTVcP+XHIwHkEoDpCAOFXnJU5D2mVia+N4SGaoaVU4q1Bqz3luua4NC+dbXaluD6WpyKkP48
ZnOxghUyGMglMoESD1nCgVVKz0Ra8LnxR6leXkEr3m9lvB9GfL07kdRUsT0LFblcwTHL/Uj+Vg7l
jIDVyw46H11V+H7Tmb2DydBqpEMlc+/OB2nGFXri9DCGavbb/nffsQmvAqCJfoKwU2R1mtfqaLLw
Mgvf3C6egSWs1sf3j8FD/Kkcn8DC8j2vOGx9XtVRhx0w6W7JBGGG3LXUD1+DcZXxuTQr5r5AXfgD
78hKvSdITPHT90ll6FVJpZRPLfBgul+D3DKyvHnToNAHA3DpwKH3O0NzCR2GONhuKkKQ7bcIbzVb
u4e71SLQhj/dWqIBrkmurAljVXDLonTulkmNQVEzW5DMUpvFzm4x7e2fSGWQgwCf8RRKnykKnZCz
x971uKteOXSop2M75/ZLzUL8/nUSlRecjF61mHLdajQJDLMItzHuF46KFRFiwKE+vwGUO0B7wCP2
kDTqWR4zf9jwDqEtGlGf205KBXevqsJSOuAEZsQBPnOKwwmyeYpZ2nOeIB9sHaLhis5RNH9S9zJu
YIDtKHVoxqQLn0lJZo5dAWMXupkEJnrEFb6zD6LFOo9vsk5hVvuMTZxVSUZnCJsblcL8/myboLNe
yHIl2XtC7V4xsvg6CiKejF9m26JXXICDaCdoRMdyRw+KfE4pHVFnoUXFkwj1erIVvHVCDekvfJzD
YyqmaM4cREk09pBCw7Lej+c3fhRcPascjnnX0MgNcix6KaTDA6EeCkq1K1qxAnhSqRNnCmw6SwZQ
fqxe3ygcdBvbsrhJy5BzcnBCwratneU4J/Q09+02QIOm62tgy9hZhc1OzqAFqfOkA6LkUjnhL2wP
coRvaoZ30LVpkbqYudAeRMqgUSXiIez7M3KT9WQWDAGOxGmoc0l6S9zHzis/onWqE27u8VNRIFFE
vQHBW4M9cnAd8JymR/7H5FOK1ARMAYhPA8/ZowSeFK0x38qQqsz25BC268bh9ngJUQHUUSj+Qn5I
a5nzW2I2kEeFCp+bkVjCEeNgvqthygf61q5uQ9cI3APpSrQmOnaE5R1NLb77WVvdpMdooFjEvK4g
b2eTjDBJQnopbD3YbYKK3KOr3DeU7W35LeUbHWOPN027/WI2TTXJWWClQ4dd3uz4n8krxJ5ZK+/p
nXpqsE9eELIo7oW0X0HWJ7qUJp9o+SvXZLtxGsKMy+KNzgRJvl4I8Delstdf/mlHLAdWo/mSIL5S
MitPEmd5jikLzlv4gnMor3SXUhWjuQ/MCuUSE8eNGylOBiTeuhl2wANyKuxLb4VbzPNY4v6FsoXu
UM/Wz1LO1B32zY4d45y5mpBuRKKSGa2348evClXXw3PXkGSdvNVGgjoEwAUV6y1b1TiHoj7+H4vN
ifCWtIlknP3ie+QvlH4tYhmtsS7s11CHp3nvs6tRMR+uC82SGkW5CcykW7VjM99qXM10VwVmdxOt
f1ursarjaVkbdDoIXInZgGaT90PR6e1a2doPOFse/gJ1kQFKARaaad/xJfonYlCNHzskD7KU2jQZ
JIa3wKeZ6cEZxv2CuG6UrSM9etlwQP4QClHpsr8dMzYChVM8lvHpjQUxC6jvBDcYgxZdSLG+skhp
H5BDgF60KLhI4CyoU2CFFAUDIjtQn5hKQkn302uEnGCPRqKYzbUWuRlUs8wUHTNGIRcjkNZYK+EN
TjuJPrcdnG0hqukMMP7vd+B3cWxaD0icawrnVsmH1uHrGd/ur+ocotYvth/PnDcls2m8ETAGR103
9nE/vaP1bsv3CL85z5HBcUv9/ZiRr4tGdRkuO9BM7W3emIgzZQjgIkqs3/MBiRgHLWS5RNmKWOmR
32MSrXfXZzRRkHnOczhOY2U+cRAT3ALYbo0BPYrLqBiWLpvfyUr7aaWA3bWYwYCx+pSdHP3hV6fD
j2R9RFotij49xN4PaFA7M85jD4GEN1o9wc2qFjKcMi6UXRzJOkVcWUWIcDRP7xmiYtZbRzdqENth
zB9SfdpeB3vZ2r+q6cMbpUR3o11Lf/QeOlJ7L+wCo/cVw+LGI6rCNYrC1Ko/H73ANwzrqksCCaJl
zWIsaOPZn/F1XIaCIVvJmy0JKyUeR2Sr8bTZTa2tbG02ddZDt1g+uec0WOfjO9+wk3v/DNwYzw+B
469XEkIGMSEPh70YDwiIx0/dlzQZPHKR24afo8yRzTgvz/OE4Evn0cNjxXxSzbPG7SrJDKO82yF5
4TZ/tsfhZcP+Lh8z6vQcZj0cqBAdruleOhlv4FKVuSBMrhL5W5NNbi1YrfHG07kFMiUIsRE7gV5F
g+F4zH5pLStej9I3Q7QN6V+2b9RJndo20WycglURiMEBSA3F6q9+8wjZFU0hqN3jD3oXuVrLGsVo
mL44vBFfg7lnk51fmblHyQWxYeWEYSxWF9NFvbVUH/vD5y/U1Tqky4l7q75zqky0eEeCQLwGHCkc
R0qCOrG4iv3owXDDAMW9dZxARo0zTG8gcpuFv579P3oMJl1DoiqgGASOex5VZ5qF6PktkLJT2oD4
RDSq/9Q8oInm1bNNXXmr850fXsNvLgjLZJodkvPHsugQpUR03HP4FylsVQbE16wof8NosJK23MF+
p/bRGaOikj3/gzLUfhjAAnmFd394qKV9HEk6UJLUwQbcOaxxczKeBTvqDcocukQlmSqORWW4TQBY
DkWm1549511WHBtm7CXl8Pys8eqkazWsxBpyOrYPO2v3uF171kPwg24/RffP/jLfC7xZ2h1E0UM8
JwCG8KPKzSUyU4g8yJjORUBWy+kDboEITYWZgx/mepJsc4L6mFnVZsL44lWI8nOYlIKAukzp6iuP
S7nO/KWgZ7TkcvTbKawduSElPFgokEfn7hI0TyjMQjCYGCm6/E1rGWu4/zemdN0H3KGXb15oIaR+
OtBVyK5PKSgfc+1zv9zsMgUg227TPXQMshcGWAHTLJNwse2yHawzIar+xL7fTOq15BME99cgma96
ET5ytm155A15DcgvADRsma4yl/ktmJBp6PGJtVRZY/NNmyMqZFnstB7Qt6RiX1tR/C7n74ilX3RN
L1sO2nFcYMVlTL605SjLLqb0aD09CqxsU1Pi7QQNSdXEkVPG9JSWL8/HhY1M4qhjNT3fVsZVHS/9
bVO9Yh4nztZYMCu9PKXOM99KZQVN8V9B8U69f+/sHG7ff5DqKV8mNrobj9rZaHgpmTMnoW3ChYrq
cO0qA08KHrrhrIdABlePgG0mprfcK1V9zLRXXPyw9ysRBihYqbv3s7WA+16CnzB6nsFMDmcq8207
KRdApn1HzR3DR5MT0b0zztFAeiix2s8Hg6oDdvbbYEsy//JaVICA+W98ov6ycf/KGaDtkqxQ3si6
JS9JgXuOgoWnD8KCMTXS7V0E19NU8OjFKipNaogzw3aqHXen/aR6mvahVDY1WWNLa+SgyPGv/bQ2
pNHuqDqvb6Tir31vac79ZktDijJd0nI0Kbw92iPTOrtb7P1DfDm/HBNavtUxp6ddbw5oF2KItrOD
Iu8wL6vql0e5aLy+Az84mi6gSgPwXXuBhf32qHNqAHLhsN3eTvbULw2C3DDryeUb7b0uPE59wlpG
IikY5rNq7mt6dcPjLa/oSozWYnEoeVMbhPhqYAVa/iTjcVtXlQyyvdWehw4N5g01ePk5t9Wd3/i1
1sow+Bj6yIpv1+igkjK9PyVSUGyvohJFrBVnqHLYocz6RVi7uxk+E3EHl36gI1aQ7sHt4TXYYz5e
6SvUobr53C3DIcC3H3+uz9/sX2YfEWUnb7VbOUeltU0Sr+KzW0zZ6eBMO8gUd3GVoLaMyepp8Pmj
ax1xH9X3dYjaFQN1DzTleuViGC+TaY0NN1Rlbk7O2AHnL0DZ6jm2Hyr1SEEMDTPYjZe/L0qzHDVx
UlAaCeHwTXoYFoTJ92ITF4DrQKteBUR0lnIfnnQp25dAbj9R+GeRrZO1ZwTy0D+RNyP98ySSNXvt
KfOuDdpdqypoyeiqGFbF5caQuJMP169TTKAk9eq2mV4AEaGZ0wUczd/jtkeRyW9IwUR1L2lTpUO2
sp3JkduAG4/IaM/Pr0m6QFrJ5hgBjq42PIz2TYk/l4GkMN6jMf7XE+to3bA9+qAEG8Jwk7VXb2ML
8a/4VrgWWanJvRSq5l1PTZuiv9v2AuSKy0PuX2zDzg4mMcCUP1XqgB57eXpnGF649TTArinIukWo
+DPSuGI87oG5C1R8WcLjfeKeT8n0rpHA5izx6O1jtakokxxD4CUyyG0nUXLD2NHr5opvHzYhZ/Uk
QdkfEba57lbw7Gl0IgpbZeHwnMyRnCXEMm1zPeemJBgsT+Zx9CqVOYqqJyMSel644RqXQ0UKbj0q
6uk/8LS/I1a/WKfOmmljxAWXsMqUN19iakTV3BUOviSFnZPFnoVPSopG/rqVwlN4uBIjNWBxXjnG
dA1jlHS02+zdcbpXVf9ITTzSNrxHLIRdqUC4eiLbKSFBa3a7DsNthHGq/0VFU9R0tIoqy4/QYJW/
eV6kVnc/8I/1dbkKkrfvWMd7FWOkyNpZR6wPW8kCDkMUE7UAtVxji7ScEydhBVXmndN6W102KbRr
Ui+C2F/T2r2hiemHH1oMDHrlPoLhZezM+yVEA6+LNu2rYwCG4h7DPsd50BhLwtNw/vKKNPNooHH2
MFy1JgPMcrNk+eojLoRCi5vHsJhVHOBGeyXMbNqp24x5cvKrdACzoTmnNw2eUPjrJRubCEwhGqR3
eGFdajfa0WROwzuGavoufcMtesdhnEY29IiyP5bib8B16A8aEFktqE14hoMi9XjALg4xu7vTMHWn
7AswydZEZwikLxXsYxq81/WCaJCDOM4uLJg6GirqSglWuRaFEKaftZSq+s1tjK4+VUSXPR1dl7na
MEjKD/fdrr5QE/UllSsz9q+4qx7kEfnUmypakjqrOVV2ocDc5FUZ2jd+LJryUeNE+irxdVDePOM+
F/7/+98Hpq6oNLyRk9lt8Fzj1tdJfFe4i192SKgp3In0n55492LOycNIiSKp5wa4lAgWa0tJf/D4
MaH0oEGIisg7FzuipKjD4dhdZUNs7ObqIwdI9z9BsHs6FnOc8L5wSt3Jjyj991KMcJEbz1Y7wNuR
hieXrMhqBOcIZqTO8OSiXIFzR+dm3Z/rvybvfUKhdlnOwDFbaZCYJuLvMuhlS2B0Rn+6lA+rCVEK
OwWI0kZYsJHT/v7mzdz8Do5cwWIOzw2PDD6fTKcIXRrZOUN1E1w1rfhNw+39RQYaWOY5U8p2aWfI
4t2bth6/wi9W7Byxmei9jbQChcY5Ed30tcUyyEGvKGEhNXyWzfF+VTnM/CAPNuErFLLSiprHfL1a
n3lYhzYiUUWfd5tCmNWey6xgijevf5UnXr1WM2NMGUMYmkKR69nlM/NZG4ov31z8kEA2oxzrC0EG
OZreCN3dzevgwdD+IzJ5ZP/TpD/7qCdvDnfsbsI+F93J+7eca50Ojjva3KEZXeyh6WLHO2HIX5V9
NNHDAS9D8fPnr1v/twjHE8m8ZBuQlpC8IJCirnzHW+OVhLDrTxPXmRgBTQucgsAUqY+9ayvXglrz
NzeEF+q75E8NiaikcF0M2TxQS8MG/O84vbdYy5mpXV9ytw0EUApRGvKAG60CJwCprIvd4XmjSCwZ
lWwo7nXJHZU2j7qduO8M2BBCEK1pQSNfbhjudqIXs/Q83jrZ8ZM5txM+ipf1fumWl6r+WLAsrOIe
qM6FJUc3YN6iIweDv/hAdHcrDrqLrqaubX7APN0IGipFhxOoUFQt8p4QvGCuxyfUlJ/CqM28Rgva
KpczAHqszXmhTWNokjosWSOQhDamKDKFfPjtLi7E0TDJl5O1/ftWmvB4daR9zvFOrPxWlt6e1mj+
fO6wUDxBP58OeHgD5mbLyZ66rcRYVg80tHxvyFZSip8Qk5DdWJhwdSxgp06YrWK+FYNfUJ9Q1iE8
bt+c2iCqtAA4JXiMOMYleRdZNW4t4/rnM9abnK+XfJu9jifBVNIxkB1Imd20+QLRvFpPwI25Nn4P
G+YedMrpRFjILjXCLOt+N4blMAfgVvMIHMkRrV6US3ahweiLVIftELIFc/knPb/dJdTNB1gtv5Gk
ZNR0cqz16Q+hg90818whdwN9RXdYMB6/MC7FnhhLSK/blyTQRmDRFFCzepZbvEfp92Kd8nlgZRUJ
qMEui0VeXLTg+aeYlnzwah3Ipnx7fCh8WXH91fmIGzx4sfyT+K1X0NRiJ1JhNvmxJZPe7bNRYrHF
n2tXss54qJnbBSJyifd6CR2Y8rhorZM9HY+00td9sCmK07Pqif47HNFo0h7vYPolPey+U0ZV0V/T
3AfuScDkglXi8eDIOk+aulkYraskzhgEY997J61hME8YNoucKyomoowtRxgSe/RXCMfCe7PKs/SM
ly52OP6S0dJ1Yc1zS4GWyUVquUp6XHsb76LGTVciJu/aq2h4uJbWjacZMZDZ3QcofCz8+0RUTnJk
LehsD/kmlowkdL6n2V1r1zVLV3P5V2pcVS+idocxTOG8Gim3pSWZciBqtYgP7/oX+MDb+ouE9kMQ
XVy/KU2iRoCkwTCAj/qj2zPnCtlkohGwW2dtfYuI7TBUvzctHOAFHZILlL4/4rULY6NcfuNCNVHe
qy9SZHJA5RNYoCTpT45ftrHgOjedmmPDyKqO4hrfVcn00qUXOSTb6EYl9+HTR8/FtExz7opy8ILM
p4ONoY2SY3ltlnzsw19n4oLJZnssna3ZcI+QAtEjuriwTxcl0sPs8Xbvg/VCBCN7x09n4HjgsdKy
zna03XoSc/TZrrn4l3ysa2RBGt4O/q1SeapTfhuVC5JbAc20iSwG1/sCgGoYZfRWpWpDV2zRlV/t
jZj3cbeTzKvg8h5QVcFWMcDp/7UbGPBKxyslSJHJ6fkseZR2H2R+eb/2Jvdmzp/N0E9NwkZWZg/a
+UMKQZOoZFM3KmQisJ4GxGOBb+/AExNbYhXkDVrdmYP1sZCQI7HVx4xJdybFWbzK1CYGV8GOD4MY
ASPMD9PmvqR1QBwn1+/6o47uZWlU7zruOa8t/0fwSG+PgYZbnYQKLU1fCSdEqCBuelrtWN5ErJKW
eki8sSjg+RSifTI+J1NXj4AT5S2Eow/dNP2lko6yMVrvpEH0M2kLD5H9KtrrWgzjqkj9nfL6pCNx
0tJ7VpNVpnom2RPoN/3J9FddI80w4gxAMqS9lqpSHJgAb1UZjapFK2u1PANaIrcOHPz0t4pHf2ud
EdgJqjtKTNS3BBgeXU4Y+kcM3kPi8urnQGTh/ftulkubEiSQ1YBuKYTCXRvP6RNuefXVO0k23gy4
YhCjPpz9WMvPzQm5qgxsuZDtGtrjr+opWlXvIvTPe7BmE70cn6nfsLX6YKFCcMkY8d9BJQy6xxuZ
A4rEFnhe6xR/s1WOrzt4UzH5S+xDFass2qxh6ZRS8OGzkt5fOW0zu4880cJfiJjBtnPeSwk1HTQT
7bsPW+CHMdFaiJaRD9klN02hugxJVXZ7lv1pkYG41+KNwvkmDPCgXxUonDn0rtHwsTb70GQN+l6y
lYv6bJScufWcEyf3LVmIJX6E7CO1ZbLOtJj4VGEyVllZOIf27bfTowgS7rB4aytlauovbZfXHkv7
BcbG9cn9B0+KyPCpbBbzcyH6bp3hgUxvVYJMxkHh8OIQgXsh1frH+XT9xCIV34kRwAOH/L2WuPA2
0ZP1xnd1j8+K1oNW9lF7KUxksUxAzVyByjzI41euSIPWPCHssoTvkObF9Ux+jXta/WXRKSS7m8TQ
BmHYRArQSUcWCn/Wges1mW6w8pO9ZJrCJLC+2DWVeLY3umOgtpwH2vYymbHFFvEsy5LufWulxfW0
ZahPhKwOFnU6O2FqCVjn102GxkTNADu6qrKp3MldOHGIp9OatNh9qynhzJDuJNlJJ0VYYjUTCBhv
+wosz7pmuQYklTlGl3PKZ6f6ME5twecgOWPGlQi9c9LBA+eAVnIeWKKZKpCTKTd6NyMbnh6U5O5R
P+1zUrz9qjHQt8h4O5iFgBzaWgueMMWmKWhQU45W3qRFA8gKQiV7smEkvpCn1m4qBT1WLFYWiB7R
+wATwS4uhPOIeTHnxuD5nNBikXteR+0psQJkRm09uA0ltra/xCq41gKAQxpCKgam3Bnv0FeueWdR
U4Bgl8sk9AUM2edZP1KOBMvJPE7OkUSr1FfRK6er0wQaN6GsEeho99Szz+yA1F0/SaiQJXPrRFFo
niicUsvL9ZdN0iuOJtVOvhCHG+Ps0be+xIMFICTissXil0k46glDd+faoYeNau968AJUZR/wDUw7
XcxSxJTXxNZ60/HXVwMwBeqjCIEQShxvehYchZofoISHKR+u/bLXPC9/fPCb44RCaCEzbE2v8Wz6
VpkVxn1/bXrVoDolsaY7BGJ0JP7rIFMWWOUXXU1AHKl4vwselfwSjdpZNTeepXsXQ5cQTCIlTLKp
6mi7ciLlnWqDcTcmqIWFS6byWfHUgG1Th9eodBbPj1+guK1hZQjCKSN8YMjTjs/YfHFWCWhYx9XI
X5oTvd/accRL8JpMrldgMrmG88/rzo/HEByy3Rdz5RsUerbrp4/AAuIKv+d5hVuG4S/USft8jM/x
aCTKFASRP4+5Sn2cLHEjHtJBWIH1i4zn18v/xOfMaUBl/2ivP6Us/rsIxpsu1Ew5okyo1OfmxBbK
V7fcrZIm2xXABd0ycJN3DnkMrKQzJrSboIrRGrKl57oNzGA5vco4TaUjJ9xwc4aXfEAn8BU2eVRu
DWWDyms58axFcRJbRqCCImTm36QQ7VLSqekkfZAxFGMCazSZeqi1diVDcfyhJaLe2ddl8VLSxATA
4F9K0R6HEP27PosmLb3XAKH0k0LGdNZpnKqJEyl+MoNdr/S4suMJ08w97tc609qoKodK3F1TyXCo
oOhDWUnAq/Gq1r3sEEklCcXK4rvhK60RerpRnJ/EuIwv1+dnZzRvYDSfp8RlVc7653wtdcav90JK
FSHGaeXmRKYiET6Sd+jGoa5r+PmTPwYI8RzSYeT3fW9O85mdzHaAyx8RDAWWa4/O2LUA/JdX9BHK
2U5g0KTw+9w28VSFhWC20p50DQuF2q65jP4QxmzXKsNIZhIiW6nlhKUQ2vB5eqT0G2EuhN8EqfrC
wfAfVsCWDU0he9FNYrxtxqR+rROSg8RVv/Phl90G3AbPr4E2Smg797rPd9jCbIsElJHnWMX11wF4
BgBYhBcZYbOVc02cMshDhxAIr46PzFEb2UyoowKVenKeYvgqaa8XYDPSu/RaBAuZsiRFsrM0bQcn
GAbKDtJiW9F1RmsIR6nZcbQ+Fmy6yTSAz2TkYCXGZTkHWa+1g7S+w1sAAuU2UMZ98i/qaLQNJxDw
328M4iIwiejukJUFGr2nw+T8+6VWLy0RKWN5kgnzF4fzXSKAZYXot1OJiSInOKXsaZzFtwC1Z7LF
dmNQS5waukLL6GZHGsXCBWJ/zBIb96Q8l/KK209/gGQerfOQz2Di0VWPSIwRdyMhyO7XAXamCx3N
UR6JQnQffSm0mM+hXWRJP8Ua/CxVUvYHgPI15U21GepogSHIljthLRe/kaizK+eygHiAwmfG3TCG
COpxuqhAe+t5gzk4Me3NinCo6UxEZkF/O514fNo/AwAEBR9jFTCwQltmMycokU16UfORjWGRjrDJ
0AH+sWvIwlsfTkig1k6tADwMr2F8ZkrkheRfNn5U5k8VzA1FcQtvPi1B8aYpnIQ/hrSHcFWXtLhl
BXCLDWeCnf5b4HeRTCzKRIbMkSxe0+CbZCgGj93cu9ko6aLG3mzGZtq20lLBAbvDUN+5F74dw3qv
CeShzDyiiJ9ZbZJ4JbxgLmbf+d5I6Csuk2hKap98urmYLJZE7kz1pzEJqZbAM2RUQvRvX/BEnJsq
jXBt4QDABjBCVq9P2yOqkTsG7WSwzSOlvURRMupg9Q4EyK6y/EchJvKqg1vmUzD3zk405L9N7VTA
K0wmx1yYlHqlytBT7rnZ/7Z1rdAnMhCemvDIhW+O1xXw9fTUuqW6VOuXjZf5eO9BFNvq4U5Ijj23
iE0Af2CGzCkE6w/T0do2S8qd4cH4erIj+R7wrf6gkG8T5W/W2tpYRxr5B6EiuvF7/nErYmF0UFf7
zEWb7Sd7rpCaVm/fhV7XxPPZwkJtb9W2ox0AvQDajjxmLLbQNZISEPF+D7Fdu08xZ/pKOezIe+3r
wA14171ZOGKdUEsIoOKA9kRmQtv/da3m1nvTWbBbNJunlmbo912o/7jU1nUxx4oZTiqKEsefQjTg
egLPAcrIUBuUdv/78C7uqNz3KM2FaWQxlmB8GW7GjSuL21tWBjLu52l1IDoOsdf8K4oieUccSZyr
j5KYmOaN0wKpfLDY6jn9zPgQC2FCrdkzNMDEcJykCumKgSbkDT89fzVqrdFP6uG1U48QVHaNjdCU
tK10tvK11/0USIjua+omZGtuny/+Ym95ctbNdz6X7NuBA0tQZuMvUGdm7473BTH3Z96WrSx/ny5R
Ba1K5mEn7tf5x6LhiN/r1seSZE4lkXc+Z9YYipX3C+Euj7Shl5ecVaHfHsCsk3WVy958VsP1rO1h
qS13OiAuOU9iFD/xiHwM05hw1dVmwQm6V917eT7dtYXWpNj1EoOpOAnyL2MlZ/IjF5r2qMzW7DWn
F6PPvWPOIJ482ZHVUiwz+myELro6v66vdJC5aOcDXjwCmADpFYRhtH6aWXoUNhhzQ4+xfNUQ+A5U
Ft/CAeTc5vyq3SYtj9r45JWHxVPy9uFJCGLjq+jIORL2Fdl9SnQMLqXbwe5pMRAzLenwWap5kVtZ
dMHKq9eWrDHkp+2E7t5sgWhdQDws8WXWr5QB89sOrBL822wVk9Q3h7ltAtFCoyYGuHsUdOoHOUB7
s5ewy6vh8DcZiimyTlA9pMoauV+9lqOMvGaBQGxUXC+DXDyk5TTqjJcYDkfxwFSO6NU/x0hDZ0fY
SDvRG5aQpvLL4l47YtZ4XQwSXBQTNjFZYjYlUTpQpuyDHsIvfT+IVU6F2EpsDNxcNfxm5LrX4lge
hlA+SuakUqdbMkULaZ5AaGjj706I3ApSjvLfej4u1KZm+LD4uNzhgt8F7sFkWmcHm0PE9xwfM+ka
4M+J3DaZ6EnD6jYWnHaf+rFGY+LkFJG4itaThgi135g2fMBlgbwstRaa4heULM2FOlG0ptmQpTG/
wJI/TUHBzxRufM1Y5aLxFYX/FkuYIca5J/T5eAQifl56kzNAS5q6zhBzH7K+aLbl2RBbDcyksiX4
1poq8nI0mJDY5Ue3HbRc+m1oeYJj8xHxxxgryC10EIEOhMO3NEXCYhW7Ew/+ZFwog/5k6/oA4nVw
FpUylhg6cPhgF6CJvsGcK83pqy93tcsqgxyKsGHvt/Q8krmhsYldSnfyvGjRpU4l0sBPxr4YNFdr
6TFIe14EQ0TLYCk3BCoJL0Ozzg4iuX0FjSiB8IVseceCxAzYRYef00JGH58M+b1F2OOjZVhKTXII
JvvqrjUnw+jRY8JVmAxzEhqxgXQebQ0Z4/nRNFXxGd8hNwTEBa5huqrMfD9x+RjuAvBrW4i12s6s
DgpR4mB0iws3Y0D0Ylg6XGm4BHkGS7P/yh/zT468b0Ya1wdQK3Zid6vJjgIRKHFFDNcu/H8BSTG2
zhQPEwhGfKQ0qE3m1kNelMLfGVzBzSRKgoib4x7KSQmAlMUeZQtTnbpkNq0W+1cbdsU0LI8iuulA
j7SGBwiIe/AquuQDxrEMOawp4R3cYqWqE4HKI0BLCQlTweb3b27tSPqmvUfdgGqTbdP5is/j9i+7
Aa86ieTcdbwDFdOFmo7Y0SI1vO9Vubgl1hQj7x4Vn5Kbqot+ojLWlq/tMYJT0WCj5B3ZqRMOPB7G
h1C8+/iJFXZv6CCqnjEO2kCFXILA+eTmbEtLBlUyUOu8ZrjKG2PKcrxL01BHLCwoEknFfoQA7v8V
DqbORGtS5/QRLdmrw74K8yUF7yHKLckkiQq5Yps82MFFKD8u68EVNvjF+d7nkU0lvS3xNne0eScb
fR+7aA7zMif8kfEQCCH9Hn7K56xDJMVhY7uPvxAKK4KCFOT3SktkovA+2m0TUNng2hbphEw6VyeZ
exKL7HaS/sXAplMQKlVWuzUdwZJJSUnBbefudCoetCZG2DBkPoL3euLUFyrRaO61l6E+7x4Gk2ha
yXiL44UmefOG5yVC8ueo1TRHdAY1o/l3OJiRJbh2PdPBdJCPUXX6kfEl8w4rwwVnquyo3zYfOtKt
gf/wBqjQQ4EBHNkXp2HAZz/KxVh6Kj17bQMjBbqvhN1I3AKxSKNkzuYsRaJ4t6H6/RXL+HFr+ueG
e8U7QBBBwglqXv1MY6Sx/9vyj1QDr6G3JuXvOobl6knRcRQ8ioyk/KTUeozejk6Q91LRHAjIGog5
YBofGKWgDBV4IZ6iRXoB8YRZWaJsc56BJNVGXQ9UoXfFby6a4vQEdlQKylSpPCo/bheulCz+5tih
BRqBBBK+mg9ePNhQzSOoNrJnW7LDM9tNnQEvMVpzQkOwX46ClbtUOi9RwYYzx2H13Y1YDtOZUfOa
H6hzrVU1LDA49Yf5sdUZVH26WmOhYZ5/IVLQWuJ4toQaRchmBCb3ub5Jnio1l/LjRQtl0kvgcxrQ
iHUoam6LGeaciL5aFzVkTxYvAR8LrhReRDy8X/SA33Y20JaPeFmivFckghKPC3tEfjLvun4CcAad
rrRrkuhh2cHsy1KvL4XbJ5rnzi12V788Y9qpG6uEdGwpAC+wu+ZYX5a4a7KyWqzb1uJs9ZydOxBA
DLAUBASQjMTzNmBvYQ6c50MG6C7cku4GcWU6oQ63924WKx8pHAHk/TE3SY65WDjZLCopGBoSrs75
/UePogrnUGWdasqzCP/1EzJbh99O7HU/hSd+1HHCyDR6WaaZ3ntbZhS5kLx6VLfk7fSS9c0Hxr4U
uQ1NGWBu95RIxeuQAiU/Hv1SXEzaCzIw3snyhfE7HIBM4FgjYfXVVNLe+sc7WYdkBuI8iP2gPTGA
G0cLE2gRPDkLMtgu3yGCWn9f03f0oa61CGebPB6IZ6blbbLVFUXgVo0V9G74erfG3LVYMDSLRZJB
0iyNPyw4iJt0SO8gDfkh4JPaqfEeVcvRzmlQrI51YCCK+WlDZL+JdopQ5YnnaTrOiwmxfdLJQwv4
fUgeBvlk02EUXxvfNAwJy3sN89cDy7goQ/o7z9W4RAgzx5hv9LoAlSCO1zXyl0Yq5f8YdOWhlDHJ
7rsi/bnUpPpV7WA9B3bIaCkWrSXput+vLyOXc4kY1GxHYFfSjag19/wtwnR34oDi5bnRj0Dr60th
oYYD0VJmWRjpalPosVopPYxjHTOAMf8fjP+qudO1GET8pexLm4JGRCNOEfIXsIRay1lLMSMc4IK+
QN8eP0o6Szing7iQl9TXfjT7ujmN++A5NP8Z21tixv2l4Jx31fWOwizgs4AzLu/O9Jm2hAXmUwAy
KuAd+erEuHP7bCJW5vY44u7WDsl4PWQqqWmZMfTV5vJFP3s8Xdp5LM0UsdF25eYQAKLAAB828Rzn
o2UwgBTRSBcTR4oKXOKJVOPxpnUF80XfYZ2pWtfsSCvB2RYFe25kbPQtIFvQOytW9gxQ2PmnwJsL
F67ieAge2FGxtNB/bP2qsQ/RWt2xgxs/vbZwVEnwrkqppV8oBrEhR7cFuVpvONxxCAKEkJf6Yb4j
BlFJIJNt7ET1z7SYVPiuOy7PKFv8qnPqnASuqhmY102BkdSG+BO/EuokcF4/neMuv4QnlKG2vV/f
AA0n/DyD9sHOqRqwpX2cCzuJUJmeAsZF3udgHsDqHqxc/6UZ/mrt5L9qmYxRKcTx1oIFLZ25oJKu
d+yuCbbmaSvXOhu87AnKALCA0i+FzCXTYFRNRBGiUqU0n3Ib+iWR7Mmdn8oy8rE4moF9Qpu9/a51
rKaUR88Pp3j2Gm0B9IHoU8+ndQLAGinKDQYE8NSLake2qC0ekGIoIGy5ApaTYHAz8IYm5rS7n9rh
eXX9oFBpHKYz6eQY2HHfgP7qGV9nCSY2gA3CtuCGDk0KMCwaHdAbOh0b/U/MJWJ1yPZmN/mzgqVV
kvKrhajEKrQ1n91f8YfNscMCuYGzKFvoHgCETcDXbUwgo3707IrjdjvZpR0Vn5XEFlX0DX7m5/z4
XUM9Lhyv3Pe9IvLIyhC0fvQzDsVbs7Tt7NuN6vMmtPMihh3icpwsEsqh0pomxny1NoyDjKGeQJKc
W65rkaFluU0tfkqh2Ha7yeKZDFs0y2OQcSGy8qHiUKDSk/fPqEB7Kzm16wp7f0RZyfhTwvUo74Gw
EYesfDdtZakilaBiX5dLiTEW31gxcna5RvUlUCVxZWK+vhOlV1UrihMJ6cIH4hHbiHeMX1oJ6ZjC
85fMgoTI7YeuCNwcMGzIK03xkrqeQnFO07Gdqd3S4+4WyScM89Lxrvdiu4G426ToaiQKH45MJTk+
aqPx/npxH7TNpCrd8oi/SSWnz7EJf3mdrBDV8gbq8MqY7jMKhMTXQSRYJg37+e0FR8DKnsSzIArY
L88/TDSelfoN3rnjgeIyRObMpqMmhV6bfLZvsIxzJvx1PIL4oqbpa4e/ChU9j3H2Fzc3I8mOqodc
uqJ7fSEShz/tkw+rcSVKqIJTcWTZ0v/5OPUb02miyE1NT8RM2bXR/PU1l/edm/wIaC2ihNu8VhVO
0IFyRB7nmv5ThqQNPxhyR8kH8MPy9QBeAh1fVb3Ba1jlQaz5eTrAJ2EC5Rzmwsb+2FpiUeLTB5W1
FHyf8hlXGLAIPkIdlmhDAOS+TFjv2Sh4LB0VcvA4K28a/hHoRUVLG0bbeUgJKW73EO/VKXQTHNrf
MpdAamRwqPBFAgwyFns7GLS99GuRdBmPrnsM8zjBn4DzNlMVtDV9yA/CYWbg0SlrGGbBnTSv2LBI
eCEjBVWqaD0Io3rbHCBwhd3EAcNidanRskQKTUqtoCbFYxu3AW2PVGA/5nZFYRZ+2xxzu93Bah6I
GzvXw2+XYkOrIAPRLBbuwz5w4B7M8cxcIjKGJyNLsgZetAgUQHcOa1hGH7h+HpuCwtMm5T8+GcLo
bMSae/UXRKbLMCBtWGclZCLLQYV5gGVZUiLGIlFQ16oHlp+Gb3IAK/GIpTe2OGGZ5Z7jhPbi2jXv
wVY4HvZB3JMo5NF89dI/j9C/GW9zYEe4UT205Ss0C+/beIBdI5nKZaA1em2RE7Up/1kegJrMsXDb
cWF5pv9HhPM5pxlURcDxK20RJA0tiORHH9NqAfq89yb6+daiBvLRG/EfAH95bJ5rkpgkwVUKJYD+
yGz6bB9yVCUN9gJ0SX5nQ2NRkXO5hHaMfjep7tITnHJAAH+iOwzOGRCAsvOhgRrUTEcbJq7F2lrj
xUvyZMzDsXhXY7lf0WbpVunNJr4cd6vwV5ThtNAz1QVhesLxneHEjOJmnSRQ/RIKuf579YQVOyDs
cD1cSGl6PCoxzSZTz3jTcLwfOpPzzApZg200TRu5webz1sRFhaIPE/Onu8wAUx3VMaOkYA+l4cwW
raexM2PZ38C5riVOzWX0dEx+nTgaktFyyB9jbyexSMRO/GjZDrWMSRenvlymxSK7afqL3ypRs5YU
2RUC/fp7ihDw+iGZtIXdEn9zIQQ238uAwuQ5niHIzD5W4Sjt/7+Lb5Z1NiHK5RJqXmLsOYcZophZ
NALBbom0Ka8KCO+yE3K6vYs8fUD79NRvyCcmHRRL1hOEUzN+CMri7ViogBKJeomVHXmYmJ93bFh4
AWefxa2kd8n+vMxC6IFk64PUsM+Vjr2iDft90VzZ5FxjYigfrS7KT5kThiuXQw+/+mC0uEAGonra
GecUlofH3KDbfKi1dsQte0Dbp9HQumrHlmuMc/CYXOeAJynS4xjONzR0yjfIKrEsscGsPMWQ3RiU
Zq1i6+nROb5Fct5h44pTgvzMBERCueC4whHAQbTKmcnj3AtPUI2IfzSFAUhr33VW0CVJubZm5AO2
+ijSVI4zk0VkGJXELdN8nqTN98PsaMYDYUBXX1h3LubycKScmzU5jm4/1E/Zs79ZM9lfpffgbc4r
yyc891TyqWf321eghY8rU7J/8+SP6WNPhuvUdgy9CuVHzRlpFL+8k894zXkMSikSZewGSV9BHfVl
pOlHX20BOZYPdrH8yK90e4hVT/xIt6Rtu9G6/FPMHh0c7opkiga91Bw+UWgDgl+Gn5rgjIpnLcOA
2TWcX+Pmptzr0H1lNhIJOqldvSm428YXx3VDySB0ZjWFDZxPktITb5x7uxeOFqQBFl9ua0ZnF/WN
/HiIA4wErYZ17QyGMorSVLUKsAzGHQ8VLT+s65yvnfwlAy/rUFLRN03hX78pEbmY5LPFnl8mH825
cF5UN6MBJtvwQWVOKobyHeVMGXDgc+jc+idnDe9hnN0bJffGtisEE4QOXjVrlg3PK7UNZnvhewCq
8CH6lVyPopGTc0BX997ZkORK+l9ev34CsVL4eq+e0u7DDHmQ+c66s0ZMkuGwVaF636V/SOdstpxm
8/NNIjfKdVteP4RFfjiI197YGrI06lGTd8zQHCJPYHYyjGYKJhXw71GxqJztk56R2NwZ03kmH8cy
2QITBokClNyQ50hvIhkRpm0s/k7S2fg58oibyTpvBk5EkSlLayPxqRB1BX61XeKx5VqFIl5Aufwt
434cnfAnrAmKuVArgfScpyI+qWbKp3rUpgyka0WN+5cgvUcVsF0aaIL6Rj4IFvzMhpv7xLgW8ONf
tvuyTjt82QFp/ngI6v6PdUD1pgRuRRj5FF+B7jt2DMPhxTSgYmvg+n5UbfeF1HIGl+LK9Swlgg4y
VsFCt7kA3h8dr6k6fiO8jUnLeC22dgAYLDKhKD3C1KXDeB4tKPBVhIYniYxlDw4NPfdb7fEnOhBF
BscH2SA3Sam2yD4ekjrN/5uBOtOcpt159PNiSBYOwYC6Ez7xNP18HrBPLO+zyMTbjnutAcFQzHWB
D6Y5GYFuYf/NpKgjJRqF/cIcKGzb/JsyUFCW161nUED43LCgXK5XkDmeFAl/27e1+ffhiyeBJ53j
Mm+2jhhbCcF6gdWCssoXCQ3UtaVfy/s7Smye4NH3lAkJ50kY4ZEtYBlftR7aeCmMcoyV2K4jVb5l
UziEgWoCWhlqXPOZ2A5YIXCvDbftaraWnMdJvX93Q8kdBofd1mQRvFv5K9Uy1MeNP5na1uTsYV66
8MfeuN0bBW5J/MicPlrMJNiClFO2XjkmtnY4SwA+/TI3oz7kgRDcDKflydJY3kztglObLLlGfcx2
SVHF1NudfWRQVSeJOzefpeleCjILzrXVeQn/BfdoaqA2NSnhm2rOyqoeczW0LNS6c1ciQZitG8Fy
qSYXkDXado8stPMPtgPRt9CsKjrG3HQt5vfMRIOD0NDDxuqN9s3qSds0HHllpaLOYLJzMk31SD78
XQhHy87ANIABWPHZ4O2gC97yud52WiPnfsKIxzUkSy/ZoYscmkG2Ko6J/JastZSKjIVsmYeB2r9f
0PYFAoQAocaTX0JB0C+F3Nq+eOkDcDZq7E2WmahTr+bR3aUSo1nfsgQyHFL10/7sOr6ef4BAkPzM
Rnr8T19a2k/x3R9dMYnccPVOKYmTZysV6OmMuUOAC5Sha4Srmh8+snx6tzop1szh7gRELhTpitgt
Rn67x5HDCHn8gojmE3sqDe8BRADSnJYK0FwJp53QmtKQ7RpGOE09WpYTbfxB9UoZOHRMNemaegH6
WIXg1cfPhhSYskhFNw4jj0oY/vQK82uD5Yt4GUB4R56OwueSI/O/OTKCwibAQz1LOEK6Y+RX811S
LxFD65blHAc911P5+wrMWg9Cj3ydZtnQieFIw+FuzZFJBwBlgk9OHBY17fhGXPQjDKhV6iwLwzB5
KnZxiy3Bw7CIH/9hVCYfe2t4g9ozVTvwAwRSuvNkSloCPgq5GcxTKfLN+Z1DopTI+ip0iuDSHZF5
SLsnFZdjwoUgxb+VQfrGZ/YeRrflVMQHTv+gzmEo7nE/gihxsoPPgrLE3kFiBYcMwsuMXZALW3wI
03IZMPRrOhL/avj1I8qGjfsiklJDGEOybJ4urll1L5oPGMXiwNOBqmihhPOlQCCEbZO1LqUKFedp
atch0cr9WP+3fmFliBJeZAXxTEltn9hfzTLLzuSLE9tWRwoQ9cPI8L8h4yqPj75G7JZQEi9AG9Yl
zkvskeLta4rARarFSQHvCt0VP+5dJhXuxhm0QyRagD0GgyYgpKRxDHP9Lv9j29UW1mNrr/XQgM4m
tYIyDTiWRav3B+RHYw3UDbzKgHO1QnGF8z+JVpXAKxF9KgPq44d0dHe1bOxWy0yn6ALGQ+xq+e2f
xkjszfBFddgSAFf1PqKXbCIOSlkYfIyJgwwKOGo6hmSqZA4O56bjkDk/v+3yisbkTXUB/O1rTmsm
KVzeh8GffwdvfEfE+TmmdJYIdBsKn4Uc7MeNtJ7dlRZr/La4HjGwP2CEtIFGTCtPKmTAwl5XPAor
ZOI1doIJKccV5BG0Bw4s7RMc0uhRxhAfi7Ton2RkY4IT7ScVh8MEMGm+bmQhMa3Vxsuv8d+os1GV
tcx125a1uFjB4e3au4GzLPJppirBaQ+UzOV5J+lrXwnHoq4OJCNjbL5fdSOsQk1EngV6Atf4IQ4L
QWc7ChwkEv7HKGgnIipKDNxLFMZxkYci3Q3XkfEWsorqIklT9ajTOS7it7Z7NpThupHztYf+DStX
Dp+yHd0ro33/s6+wKoVnbsxZ6TbRo62EAS7dXicrdQ4tAO0D6P7PdkbglD3XGzc9r96k9nupuWGF
AUAUqVfuyxXIrs6FJ8ZvYrx4AdCJaf3N+JnFZmQQjw9pvEZK0CmP6amhritJnRIF5rwcMcUROUQk
UiMq+5RV85TcHJQ6jEOZxTnhauYth8V80sEeg7TaUQxeipHamUv0U+FAYHkWEZeCmQxBVOhQeeyP
RWaYvdvfQyLBZKPT3IsHWkaW7rmP7JcscZ2Mdc/sSantjqg5a1/e3QDlkJI1jExgtlzPM6dom7OF
OOBk75NneWS/oc80BJV23vZQHzUERRT2koNg7p3u5aLgIpyuYGHfjUXXqLo+OAodlcYVUW/2UfLt
H4MDIfWBw7a8WYDC64BS4644zh72bdtODOQtejfm0YFVc51Yf68tdFmiduhIKid0qBhUeSJTh3nw
jl9myETLBawjiSLuqvbXrBg71hjUoCxVljf5zDxRkRzVZij69mzHpsiBAzEJfEE1Ztmp96MkMtbz
rqpAdrsLoaBLs8J38x2jOMjoTH4D3ICC+HT1Q2tIwBeo15cTLHlINoM4NSBvmSqYocYKvyrONKDR
aE/ZfQlJ6MjRo15jp3ogPoxLd4J8dB6LtY8KGc13VDOxWwUNqDsaYflWrEMp38MumpmEH6xUvGaW
Sa6l1knsUh8DyUU3At9nz2YlnYhWmdCI1hd6PdjyFBxjcShkVfLXQ+Id81Jl/dHalkKxQxUS8rwo
xCFBMS8T/U/4n7ulYRfkJO1tGGg0lXSqwupbbCgIBgq7W1GcPL/P2Ct4q5Y0LsMy8negMagYiGqH
DOpDQc7cyrdg4JThC+he5oVY4ugmSKmcJSB5j2jNVqeNF5m2KuXLOatusg0mDeNkqPMW172ys/tL
2taw3cuhd40p5NP1J+IWJb/fy9rKMoSVEdMvrQzXMEtN7V/cqjoE2y0SQr4vsP45rllOxU/v6lPw
rjSWzAHAAxqDj95THTOovUx2Se9YeB+hjEZvoP2vTlr0bWrZFLfLMCYKsJ5fn5nFWAofLHl1o5AW
1cuxZpogAVOgvl86Dp+n04Enp8hVs10Fzi4iRafmSe5HtEJ6yNElJHG0CZHeT9EMU9Gp8KCcm5/Y
AmVQAV/yDK/g2WnpXRiI3IaI/iREezJzNlPanoceZOf0CVHr1ZNZNeZJdYC/EQltZTJKuBnn6+D6
phd8bH/U7fE5PVpG6zNifBWMBUN75oEbd58pvHGvpf9t8jTHDqFOofRUpoFIbnq5IHhOqwlaP39N
0JfVQ61+xNIhNOhDEQ8T8Mee3ODCv6frbgN7XEJhawXchUBFBVWWTfsQv2Ji/EHsKWPAegwXroNE
xDDC1jVtK4aapMgzLnrZnhWKr4aYLW3+AoYbTGPbKFf0uqUk8SAvWwGndLjQRHhwb37hGElQJA9q
5kCeSm/XNAPZgkTCvjMgi+pB4ki5JSssg1NHJp7mrI1ahqWjE8jZ117Uv2idlugbEHK9IRdSDGRW
PTG8rua3FsThi8+gVW1z1F3fs1zb2iF3gbtxymtmJBhxYWjxBAvW1M0aItn9C3pAnWhnKY8hmaHz
iIULJczFlXIdKVCYEFqNniuqYqZvg8laqlZYhyym5A6+gx1OUL6+VvHp4SL3jFw3MeRZvoEUt7QR
QXjWB741Oiod1DqqSmsKB7++jBNjdf6Tay5bAEMtKx3KsdiUkT4ZgUD7M+ZTnwO9DOFoC9eLeWS7
zVyKlEFf7bocsKPYCNnDZ6q90KyxD5SneV3v2XuVVuvnd80yVp6W5S3BzSjFMt15qLVxxLSBpDlA
7UrLhYNm3dxYCtBMH7DSqkT+fVUOtDavmRBfA7OC8Sj6kUQWtzOUuTsv5gsv8iMz9xgveu/h5Ff9
E9yyaC0LClJmWH82JCrCBm53o4p8RQ1DHTIcXYCJdX5CKHhWwh3oiXw6jaUpmat3+pmxH2FvP4Fh
21SN5Epy1O+a5AM0gq2s8KZFfoPziXO4/YlVrMEo3FWUziqin4nmB5CEoOZkJ0VUwYNT6Nbqk3nu
AkqUuB6/wxSPOn0B7YJiRYRKt/L+wef+pZqO7O9jvCUbarZ7pbiN/eTaMGo/Gnro7jHtmN2SD85y
kJa88G957FzuwK8BpQafQmcsJSMMXU1BCaWgS7MD46xk9+knSueEjL/o68KgM3wOEyoVuWpS9fTE
XoWKHUGz3yv7zmykdeV3aesRUpkRYInLUYIwsYFvtYew1IP3il1tKfxT3+G6esype7fOC8zAZr9R
uqiXRSs+tqIofeS75iGHh3FRk5yZLjLoET+wo9EtqYoxeYtnal7HNi9VOX9cDM4wBcN7eKZUH171
pk412D4x1VSPyGvzL3w2x0sYmJi8VgcEgO9C0aDXtjdjPiZQv+/b6zsjCKgQm4BTelLbZ2mEA8Hy
x6beduWdO/dewh7UH9Q+mHJKRXoW8AvX2EB1Mw0UuzscBu9l1DRV/ngK6zjkp1L+mk0qIPbRe8lS
/lfNJeag91o6x+NfQRRK8l78FKefWYMMGgU1AeYDQzuvxGkNidjxQ4BMSctPEJhnSPB9c7vjY1IP
OxlgVhhPsCfoAJU+KRwmagWp71apVEgbQu38NBh65EKnFbH7Uw/fqbRjtO0Rhoe7z6BFFOGC6Bix
lxP7zFSCUj2q5pNlsz4Adk5jEmQ87gF1OUpw7NvpwDPmTxsaHhKnIcUZv423romKIGNvBYGLC5Iu
0eTox9o9xO0xyYjHecRmr7SrHMNSVNJtEIQ3UKMiNhkNQlkYYscx4KJIaqU8cqY1HBMmmE05XGBZ
rnE6IlVbsFtfhdlvqogQl0uEKxpLT2iWBpbbaTF+HElAHQZh4U7WvWY36b9Ic2beFXcaN5/4P3Y2
T1h6k20ApF7HnOO8tLF1FLuCJb9+Y+5ZhouZLkihbLdhRzt1pHMP0q5WC6TFPO743WnfD239rMjo
Ley3gHZTZDW5O5z4baG8t24yTuYAyD4xoRSSSpmkP/C4QIZCe8HQwdZS1zlnWULXbJcHT7ZlLSAn
JQ6mNZhWFZTuRpNgXZ9mr5ujiuXO7MiIN+dAgEoJnCUkG1oofMvth7BusnE5yj6CtWLFefI0hC3m
L91a+X0wv8ovOZRWoCRztImryqAl3X3zNlBJRFVVAqNWg78kKPSWQvhvQVrhe0XaC11pYQDTScKh
AhpRncBC/Z6Cckt0pxox+KL69q74BMrij+coNb5keMei9vYynSAdGS7A/9fi+lW4DzhZNOQdwMPD
Hqpusg5r9zoUchTaPdz8FCLLudzs/kYkZaQqJ8foxqbE/rXAg4tb+e3EkAprAkV7n7DJh2e8sTcr
cKEftjBeSPSxRh/XuL6SOdF2eDFp/xYTf2FNaS1JnFKwa7sPuyd6/wvp/qqE5fELxjMZL5/xn+63
S+4fdBM4/ycEnGbJI5HXD5qE5nsaPTrAnDC2kmybnQyzkLHI4/aJ8XZx7b+xejCg6Loc+xGxNgzG
GbfWFBNIZ6zcDW0iW13tFX3HCckyn7eWW0il3JVQ4uov0zaql0aYFS4U1nvZPb2qmKmuoAbidegd
uwNgCX6p2l/jdkI3ZgJ80K7yasVQ2zAU8bF7Z3lfIGlHcIiUFERgAHpnKNcgwOAOLsHuz2kjVyrI
LGkt8Imc3i3jye9OQWVmtRpWNL/pu+ryPJwr9FK1ckVe1QZk+59piIfo1Md03xv7PmRY+AV9G7m1
UkoQocUFQNnv4WcmefseK/ZM3/yJh0V0mQzeyDBQWhGpls2ErUlLrVFXENOoz04JcvB71kOGgHxq
HCn6hyGYHqZKIPuiDxmUwMZt801YnNlpETX3drGZxpKZ3/XvtdaSzjvbtLyIMDUIGyvoaihpfaqB
F9WVsq1YhVjiNs7oyR7cXEleoH4Mkn6mgQdwWeyW9+R/F42J4o9vBwHFVsyrdFI9NOibtxW8FJ1R
cJOWvePPZWY0Q3JfoUeueRTzEF9o/gqqrQwHPKHuRTZVBIMW8WGei6Poxn9KV299JHr9ovSbTH+C
xKuveWufjVCgqOobnv0bJKk6fgJ+sly27VtFvN6Nr1yPdyNL8Na2/NRFJees6C1ulbgTXtTv38y1
iOlaMQhL+Unqa5vtigI2pgziZSTeLhWaN4KeBVU9AyDRbIHbz5Whdvf9XyLVghzOBjuZq4/2DcAL
6ks42cKKzymP36HM7P8/sHlhH9U7Eg3T+vVSwv51fw3P240ruUB6RMgkQU0lGCv73Bgyshw3fYip
GtXYPBzQiXZyi/IMyyASYgczmFNW/UyaxVCo98DQdn9hpQqUqYF7n5xOl0XWU9Ol5LHvhNF2JbKY
+w2nI/lBwXn7QVOX9oAQFPsAAdwt3inFJ4vugw4DS6QWJKRqcU3IOOuhn3Cjbpcr1TeSld/c2wt8
LwPzBlYxVQIjvrEMYTbkl+ZqnB+GaTej/g404YIDbIi02iguYweYKI2CXlm2beAHJb0qljKQ3aBP
DrYfvu0hRlWUv257rjabh/LXNIrDgmphwHDjVYx8JbK1SLG/y6qr5bJLmcaVWai00IZGlagkxdvN
JUiCLxX4ULT8VZA3efy/OuvRioKXDHWpKgC2vMwLQAtHwZR+882I9eXAZvvsO7qbwjf0dS9FtX6E
pL5MSkffcpjQnsjelAce7Pedg0/82dGngn7jjryBUXVYmGx8yagtoXByR+kmxt/GmK3Zcfb2X1Zp
tlnyKrVqttAZj22bxAhSd0fV2PSSMKou2eGAn8T5GdlHcHm0iymCHlGyX2Kgny/z0TwMQR/6WZT4
IsToLDfcrzudoYcjMSvNOauVnQC+hZGM9ZJdiUbLeyPywwBRA5bM4R2P0aHKXksLnQYz92PRSF/z
fbEKJ7ANnrqQRU2jmYaGDwu088X53TYZPGMOfM/0XwR8JC+BW80zkgtPM5cGIUAwc4XjVgpXz0f7
Yvj8CcSGcUy5sra7fMHId9FaA8Q05noSWzbBT7kIU0yGYlrd0JC6qkZLzzDkanZaHZPlRQQWS++/
YrF3jpnTCXv7nla2ibKXVgcZvtdpoNDqfENQjuyYPe7ou0TvEtrYWgOvGI9+1urWcYvHUFBFUTKp
ASRtY1CelQSDmCfcwE+92gg4B1j/YMyWUgGU/64xcHgVMi34Zm0wZHosAZdrQKNYYCdzBUni0/Ui
LnD0XyU1LfCcqgBX440SXqT4H5Q/tVDTicMrqqXgnLhggvNq/HQalS25EQsBzLiVhHI4z1pFQGld
xgmKBDOPK7nZa8tFR665JBArchJ8TSIB5doL8vAVDXIPqc2xkNvkuW3JI6S0zoWyN0ELcurCeQGd
cGCE0v7pVM7Iz3IZNUrlPimJfGRhlrOI5PNZf1009GlW+okNXrhSLV8D/Z1q6XDivVcwjpHzLE7v
nkRoXvPR8PARjS+1ofNtWUiq2QQEP6EyCoa2eGDeawwJYBD1m60twFy780KE+f2wKAXJe2z1qCP7
UE/EmPbiOlj8X2DJsQu7IrRpitSBS5UajZJcDp7WkfXOaitxxoJYMFpvtLj4Idp5f1WDELAaYrS7
egvT7lCKM9ylUk7oS5t6WpZu2COykCu8l7fCPtNU7XhDP05CL0rGRH3LZsmt03P6YMN8l6yHTrc+
yCci1sLbAw2gLjKvxVHHpiq2smeATRxKwA8NBVH0FtuEJN1r/4hAg+mvgbadAfIwDOwgWyJshRRl
uNOjRaJ0ICZPqOy1RZmXc5sXY4+ob7AVncuhb8QPsHsr4piYZrw2IPrnzdSTTLyKYUPlXBV9nCWm
YNCMk66jWqeX7lOJW8WEDyQgqRPL8BR/vkm8KVNqyMMVETY/7+4nT5+PC/4QlKdXu9IKPazUEZHX
YR+6FMtx/Vs7QZqjtc4tayURpjQJeHIQPQIn/7jyLxyDBAnlWRY1ALJ2JhWgJVCiPgY6dSg0nwYc
LGygBHYCY4H1pBGh8tarUxyye8Rg5FrEjffQVBlfDj4RbmOUIzQh+tYYV3KCD5c2Kve/ixCjB1Tv
ozwB6buDYRR59QqrRBYsbh46T35eV7vskzgK51EWl+MpX/5O6oMlmVcAyLruZBqXg0Aznmn69aS+
fgNKk/CU+XxTQo9OBvDvYO80LhWMfxVCxi0tEtvcYPdXpQXXrwa26Tf6SjhnvgLLDRG5iCzzEnm/
VOldAmbc6wUWhR3kUHOEmoUbuQQVx+/NDbQCvbw3S5GsEpQH2lbYrK4gdXvLWdY1m1ODt0PkwQwI
uAbPhfn4KdzPaKkgoJ83TvbYEBdJE6d8KuOsu1lDscW9DKdn84z8i1MVYc39sfgDoDNvCswDPftr
4IcXDgvCZzLMnsvLRLesqS79dBnuWWAKz/yih8d/dKNEiSZ3SyC+NrGGPNIzcVpKL3L6kY/GArNP
nyKUMLN4swORQ6Uwn6k6rEaZeRJUWIs3Klu132UvPnb8Rgen13QpwslGkl5e4wLc9bHEwjAO455Y
+QrvBa2rLSwsIlmpUGpyKyll8KxJhDMuwCrmfS/G74ifrvL98Z2tdv7piNwc3CJoYTHvWvZgTfeh
DOdI7VWdXCinHdsmKWdi4uHjUmLN+Rk++cozUBP9u9uyJ9pW5ppwLPirtTqW3cYkSeKpR9J3UT39
AHvBgEe3LjhQk/oSC9p/trcylue1lEODDOlEJpWW7N68WgG93nOqYzDJhtW9dwKMMrepL3UFL/W+
+1nWapcjmQg1plT0ad4D7yXzIQg0CZjYa/oXjUUvhIjfpy3+cF+ubBtSwCzDlu1CWKm0hUBvungi
xDsTQuWQ/5Csgokg2UsNhvDuY9ZXcHo3TxD6ZKOta6RLa73//PJR80JVUlSNwiCP7VAcaYaEdpjs
J+dB60pfV8RsVJKgAkoSJc418GwYdkfIbSNbidF4dChVlzaR7Y4KK01NCTcWs6rWzN4aZoEJS4ft
psD42wTxTn6Tv1AOybVUmoSWnBTz90ki1AtY04fS3SVANQ2M7eTanrji7vUWeMzMBzBGBBGBFNrz
E4aH6Z37fEuREXeXsISVjorzzDucu/4xbnYlGRuPjMygi36pFkbwHuHnJ4jQNAF+c0uK4D9FJe/B
hHSgJlfmzGrE88hwJC0zvX8EICBTrfE7UJ9JSnYSd8J2nka72FQEKEceBBoDcd2gfjaBuuCCJBWm
hzJk1QjsU9GjIHXI9K+ibWQwBaErgi7RIB3WS9tLY3Aq5EOYvqLf9nbPHpZs9PW/O8sUJ2VUa2zl
CqYMp9MTaKN3QUqQWn25EfVS0HxK16CjLayNLm1fOR4lkawgszd+ax8yHaRPfETHpxzTpWO0RI+c
WbnJkndo5YtrrVmTwYc3YZfn9guN16OBU2gdZ6SrI52JLOwYwQM8MrGka5Zp83OyyCwIM0QpOqLo
vKxQGvXptJeHNmDfG0p7SLPLN4zo6V0berphR0gI91XgwrQtdiemKc8rpaPzYHhghufY33FsgzP5
gd2KwdUfnjPmd2CYgcTFpoEeJ91y/lv52LY5XEKs/RJedRSxUUtAQue6NMkDDHoJzr7gmSBt+LSF
kfWou/dxzqm8gnpGf5wSfDvSl4qKaGSqPm0fEztQCvZzimZDMP5pJq5X0IIPSfyDSok4+QsHsW68
sMVg3kItBTk826BD8+W/eXLP/mp/zbW+mIl3GJSM76GHsVvxdSYfu9CCvitz2H81tyVrQQNftqJR
5VMs9vnYCE1FdWkyODZQ4414ayekTaSvzDSuXSMyJpCSoTLix7AvQaoHQVWc5mCFgqtQoXlptRyS
dqOzaG95SsTkuU3cLL8nn8ISrzKyr9L/NO/v4Bqelxq0ovaPa0+e8WGXYF8Ua/Zrgd+2AyBxr6hP
sBYlo47zORJtyzgmzlS5MK6flGuXqvzuJ8mVq7B2A0GgKtdqy9ldCvJez/+fGNlWG7iqgQiuBy4d
Wz5N623XmKPQzNAkb9PVNvb6q6fXjybtNekukTnSbzx4G+oVyAmtk+dMQsXRrx3tUnXfqOkyOvBz
lkws3FEWR+0O2itC+m9f5R995zdvuqVAt6FxEgQiHNULZJB3VMErcrnzgYS+2ZbZMj8MPaCGgRFQ
hJ/HZxdI5S+FzmiGc5tgm+zvytqK9baZnfEhYmQkdLhxi1sZOi65wP/SqWF3nv8ZSd4cZ6nqPLkV
stlXN6i02b3FDGTyfghU6WSVgBCi82eF0Ip3+ooUGALfX4licXxgPBf/Y3BnDB86xhrfxth2mxnV
jCr2dTQ990z8pyyxNPy/nz/wmZ7yvwYv5vHlD4+uE5lRMkL+zFpHPNKJAp3wyMq26PbllLxT53e5
zW+2hKZk0/iqwDviBoRQa+VyKNArr3YG3VW6GTG5p+KTN7n+QavdjVDqd8YIR/xhhrscvWd0gKZp
m5np4KJn3hg1QeSLZvml62qWzL11EQNX/NP29jSPcY+kbhxfACHD8NxmgGTHAoKeB6mQ8BhdvmCI
vNDepQmzbULGFyNxU9WQRG4lP69w7xYStn5j00xg82BnmyYt9piCxs9qX5pMXBRbquSrpe7aApGv
9g2K+LHy6t+Ubp98xv21ws1jYDssN9i//oxPlQbGDhKecFlZpjkKAMb6Da0Tf0hREx6KQFj6PzYg
WVqLITl/s2UStoYrV8olcP9xAX+1pE0riy2p4NPMt+TAYoSLwE4mK9BSFyYpTUiqJK9eVCja7GYh
Wi7axTzmsh9tZTx0lYP6YWxYCA/vMmCZny+kusEhWgDM+hsrgisIdruXZorce7BNxgBPsYX2aSNH
V31x/U1hvJZp0fz2FDwM4eIHUYmuPz7AFGUHWtcc3MG4kcE+gufFWYzvDkRlClzJBjpMqt9RMqJF
3c6CW1tGLhJ1tsYLeGOvdYOVqQ9tkqy0ppHxrnXsJNAmpnns5uByCGYLLj21ADfoLGyyw+95DZxL
lgOPN1bzU4A4rB3ZppOKAcbIdF36kGBH+kA/RWrjcz29sbJ7YAgIj+yMIL1PkiONwoVP5eCtAnGT
OaPdQ1VdVGEOvEAQkNQCe2oT3l0fKT55NjrRZUQdCgeGZNFFLYkBJm5Vj1fgXQhzWN43/qo0Wg+D
IxtW3VQqp2YR5Stm7RN+0os7cn/AZYRMom8W/HR3mBDZy0/WqYdeYphZgKvN0Cal/+N7tKIf3zd9
tZ0QzCVUZUZkUnsInYkQyjx6Qyuu/wcK0Dub8xEKWCoSaQDYMvGdnTFRX01G1NiXm3CZwDaj7HDy
biZwr+ClNdz5CWJVmRCoi99WjAepumv047KGpJCkTX8wu8t6QjJ8bJOsU1IG7Oxo4qC1WdOzXDUu
iX4YQOwZUMuzORyIlMBQ5khcNrF9JANc8d4CV51sCXjhh7VkGR8GAl+bEYR4DX0dc+XcHzVOOCSR
nGk7WydSMSJ4wcVZt1zSbmlSE25mkxxv2vc3TT/a3kFj1mJS84XS+CFBUru/Scg4Lqx4HVhf6m6G
gb69MO9uQpn/QZNLAgZtUyt81ktXL0FpWeYWuhpKZA4V04MkOhnVNZ6zi4ix8wlzdWN9JNDWWYIU
16QD3yqXpIiA/bHcgDSZxjcrO0P8T6FvfRkwskk36tyHNZWHJyMkgK5nRXJXHWlF3uS1VBsfmAcA
nLaqtB1LD6Zg/wPg/UMchu/xywC4lLuTx2lY75mzeaNekSiyYUckehVtF6Q8TLbptTe8oISbmvPG
idUFw11PL5pJHhvhYBK4YL2dz9AxJ9SYlg+xHi008HnMDuc6haHYnAmyXygTVLt+tJIVzc6xLBwi
TjsaiZHzkwzLgWLNWpsEsoecdxjMOzVLNQplbmRzdHJlYW0KZW5kb2JqCjM4NSAwIG9iago8PAov
TGVuZ3RoMSA3MjEKL0xlbmd0aDIgMTA2MDIKL0xlbmd0aDMgMAovTGVuZ3RoIDExMTc5ICAgICAK
L0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjabXhjcGbd1m3sjtFBd57Ytm3bzhPbttGx
bTsd27Zt2+gkt897vnO+urdu7T8TY9Yac6xRtWtvEgJRWxsnZXc7IAMNAy09J0BJVFGGgY2RHUBP
ywRHQiLkADRwMre1ETZwAnIC1IDGACWgHYCBEcBIT88ARwIQsrVzdzA3NXMCkBtR/FMEqFoZGJtb
mzsAVG2tbF3MjcwA3C4uLvwujs60Ds68tH+HlIBAgJMZEGBibgUECMnJa0jIigHIxWRVAGJAG6CD
gRVA3tnQytwIIG1uBLRxBFIATGwdAFb/TgBGtjbG5v/i5Ej7DwEbF6CD019iJg621gAZEWUBUTlZ
ZYCIEJ2yEMDAxhggLf533MbJkfMvGmjkYP2v7agBTv+NrAz+Gxn+N/pv18Ht3xEtHAMDwNjcyAlg
CDQ1t4Gj+5duEjYmtgDWf5eNne3+0/pLyPEvPwD5Xw0pAMZAk79oZysrWQNrIIBcyNbaztkJ6ACQ
sTUGOtgAFG2tDWz+gzKwNrdy///i/gch4WTwVwcBG9O/ytH/u2TuKGruBjSWN3f6K7WJgdVfif6p
qwH/fS8yQGNzZ+t/zwP/6vH3Ro1tbazc/+fIv2v8cyCdhJSKmIY61X8N8E9bxMbI1tjcxhSg5PRX
SwMH4/8W/mnLG5j/2z3/IfMfNwEY/jeXMXByMHcDaNHT/sse9P96/hPp/C9KUNDWzZOGgY0ZQMPE
wA5gYGJmA3Awc3j/X3SNnB0cgDZO/wj+d5f/5P8YCQh0AxrBrS7ZGnEFWaQ0hZT5iBTMlENSzUzp
q1AtMYAuT3Zda6GYD5gZ6x1c4twp4+S6IvyY9jfk2bnYlrj7TWgQA0Q4Gp+IIgjTWcJ5KSIqN/Wp
3nxTyHutC9O9glDFtjaShbgOv3VKW1sNkKecYM7IPquWtC/hQRFjiNIvbeuFRN6KXZl/sBGj0CFD
Tdf8RADuUVUhz5gF518Z8r3sroKF5gbuIFyTYOuZ5Zf52x2EahZumOcCMKtoreyFcV7sUCvIF26e
IPNa4JPkujhecKf220HbtHVVtTSL/6QMNzX5BLF4FkpTsJU78dW7tjvF0RTs6ZqOo0FAutMlTNGK
olhhM2adtF1BNMePQ6r7QQxOQT3wFDc2F1CQ3Q29xBb73sHXsepAMSrdp0fsZjkym50+iv1EqbSa
NEafp4KSGzlfqEky2Su+2mC/SBzPnzWbNssXNtbvOmYuWC+kzdbnFCzIUu3HBY6L1tTpNWGxEY7X
5aHxf8joj/Yefob6icTWLEwPdpHBbHbcvMCU65upn7cEDisD0j6mB8wYPoPiQMb8CUKBIRO91MEj
w68VKl6HdJCK0dbtprTVmnILVd8LK1uPi16e0UNCKrHZ9OhnlVAdo5NpNHKW72ZqBYuiBOe35HIM
l89RpStrhyDcHMSDX2o68Cz1T1yJKXEQpsH89AQmxPgKndxqaz5oZCKHfl7TXzCCLALTMIBadwBy
vGsfaQULcc4hguCgmKGMJlPIy7Opcy2UGTI/O5ynftmJhWhRss82hYgnRPGUpALqnQYpl+R8AhFg
2OAOj1xFS2TSpA60s7UGL3dClOU7e9ngAYDteDgp6fxzuXKrbGQjOc1GDe/G9tTBO+9MKzxVicYu
r7zW3OVVUnE4FzzKTIgy8wcHm5URE4hyFmzblOxdzf5y02YAc4BEF1qsTIxzl57AZhR71TcgPXXZ
QGAhnvB7f8RIPa3jL8/FoNg5UQPa9oBmsFqoiUiKiP0YCNc984FVDcjUuZxCf3mG1ERXl2W53wao
76oIEjlgNg9YpMpkR20XsNM4g3s5pDU2lvrc0C9Fesw/I8rtnDIVv+V/zGVJ6bswRg16D1x+evtx
tzae8IH99nFlc7eljhVnKg9X1QvDdTMiPEI7xc8ZbrZT2DQ0E+f+naN4Hk2kiuVN0PQEqsQSBC/M
r9o4Ovkyj01o7TMt3pDs3/Vzh/sbSs19KV9V6VRTOP8GPy6AFK+C5TAzDlOQqIfzWvP7AjuiVAdo
9DFDyt2+SG8Js2RXzyzHPm6XzVWTEP97Kl+h4HHyLrLwDNUWVG+PsNPre4/IY3B6KGcjVbGrFHyk
DP3W2ErvFSXblICRu/9YvXiAt76XVxPVrDXqsHGimO+22VxcfawZrlPNqDvtH6qHSR9qzt1jLnHU
dj7U/JsJYdzWTUYsekKzbwc6CgfP3rbKG62s42+DR42lqJ38v4/ptA7HxQ+5pZo3AuGGkQ/toFah
QIXU1nyUrJ2laDQ+k5xzQJ9Y3iV20LuFzZebKGs54jsPdfR9Su8dWjxEHziZ+uyBLG0acl/2vZbD
P26d1o+BcvRp1CApmx4s1Ou/u9iR+yMk37jCxKSEHOD48g9QRuHAP1x8+gASSSesgVxJzFdyNC+B
q7qCWjKdT/hGd47Q6ppiUou930KFQQeheD6cqlxx1YUKm0bFiIBGD2fQL3DSiSOmmkd6ZfwpKm5E
jLv71yvjMPjLIrY+PTh5QzFU9qshRC97R62xUkW0pz8cLewmOIdB4iUikuujqsqMCfG1tjeIWWBw
LO1vLqzs2KgcplmwKDYDz7plwHbupZk8tkoAeGsHDOrwvVhGwdKSpdjmJJoNuyTNSynAAC7IqxCI
HWFT99w5Szeyduv1K5cvgyuIb+8GcBJPrI4KsbI/yYG9z2wlHURLMPD4CpJA/W/tFCjWSTNItah0
1fRSQd8ln9XCbLnVOHiTMrCTf70ikeW/VgE4QnNqoF5WwmsMxJvgJxx847Y33pUiiUV7SOR0CI2J
E6ofPuyRHR7yklJB0SorflB2qdj1+rsj4snk1EnhYC7MH/T1XdQ+8mvd2zUqh90cQ6GhTLJARXT6
UgswKog+xelLV9mrDwZhU+1BWJ8z3gxoETgYhP55rRSH6XClWCvKou/RE83ZqkhpeUAa/8YZ6LbR
+kqLX/VeA2SjzR6lE/91Octd473E2iHK6p5PB+oXM7UeV1y04tpXr12FC9EOyoyD/6QW+1WmlkLx
J01M1rvudtHlU91tPRd2ruA83DB/BuMigh4/Iujrlvm3hi+vinqGfG0+6+MY1SwnV6bFIQ1xQ2nP
ohBOSA1SAWvLZCGGkpajVVRpXoQmq8LV0zzdvitFkWK4h5OhHLYbseYGgpUBd2OkQyWLCAHuYU6V
wmdYlvIyI9kARQy8BfZASuOgwDR9G0qJpij+nimNpk0vBk6zAaYf7IchenFbzvEDnbaP3eryWp8p
VzyCF1qns+esS8fZDFo5C++f00Q68Bvr+Ol8DCtOnvaVX/fszC1YWYkyQaJmr7cC2/1plRh0eZQW
f86yFcsKYN/UBpsh5n2wF/MX09llZ19NlYNlDw6VPH6Xn5BafGc0le3qibMsoCntxq/WppP7oCpX
2rMvgKz8DKL/Tai3et/ex6I7YkJpLvEsP3MzKIBYrwkNBiPzk0yzSynvbBTMraVa2KK9WQGSR1Av
S59T9wiNh78w1P/j1JOON08Z56L1VxJHW+h1I3oOSlWIsv9eGKnMlpH/uU/kICqVhg1NwJfAyOw6
X7lHMQ63L3f7xcjiE5csZe/TSJGRvO1x+S4VI4ZTbtGC25GRHtZmMNbhQjutdLKIs0bmfg3BRd0r
Q6se3IVdQ0ZY5FoyTfwlIgWEXbmxkqZBPZlxTOeODe8ZN22eQ3k72zFitEfo7TwmOuXqaTUnM0R6
oraGcExLj394Xe6Fmongd/SQH2e5Qyn3evnccGucn04U++/BipXm7Y3c+mVtFjqVG6t78JdsOYEs
cq7HKQVkZoojRQ936nxGBHEA6HbfXYqLASR8zAUBa0BNdhcIsxIw2I6VJ7GuKerHGlMNF8ULlQk+
PLjyZDAj4SMHoItK7E0R68JIa7teWqk4WHN5LCNKdVeUnln0tm4AfDMtj3lvkBvFXya9bjTk0/5T
AlZueRiUOYiV90Xe/ce2vwlNZG4rOg+KgG+uhoYK/Tc7qLbdUhOUQc+OvYJrSHhsjBDjJh7/urmP
k+PIwu0Volhkf1eyN7La/WeE82oVinLP/S9YsFOwvJHayUWKpJw5mwnbaLLZJtqHjnd4QzpCnCyc
206ZH1U7D5newNEN2/D2Lm4pzbvAEcBwK9ouEifTZJrm5DdNCbs+ii8kzYIv5AZ7yu9eIiuw7AfS
/BBlGL1I9nFEPRSLyyvd6GIy+oxIuc/djCdQVX4p7FC/3NzCo4wVkxqoChUTZR473fvIvDxNV4bL
K+ipWpbEnNNWh7dYctFf0pkLLYYb8peeCRqnOye+cC/pu8qwqDMCdQzubmqAkj9tDAOE+DKzuLNN
3vMSsV42DjVU3wgWXMiWQ3Y3Ehexou/m6QW+8oXlXxwKNad+qwT6Jykx12+oo5paxCLOFEpf61cV
5f1KPfU8gpELCduAE+RT/tqHpoP8LJI4l3MNStIv2L/FXBXC0FIiMymzcgCAuhaE0CSsZxxGz0m8
GwsPTxRWRo/VnTdnnvq8sdbSQoiHzL0nK3QusHPT16rIKh7RQSig+QkhYkbfN6kKwD3mrW3TETGL
UMDe3VpGqqb9tlCboC5h+gnmuzT/4b9Qpk0yDvm0wnVoEx1QAh4bKL9f+sBm0mn5Rg4d3n+ZIks7
ZrJK2NCKwBgfIh10/ZnjfUxE/stKJQsypebw2icNSUsKbUQknRbNZ03QKDqIBC1XJBMlQDGfRYS7
GzXbKC6cVVe6C1TrHvXsovGBsC0XEVC+Xp4ZIbsODd25QgcDjTpUhvYi94tSe6PAZTpccrEn0rDL
4U+veaPJ2l78hj5VoL0SAhTlfRHKnmZPnafk6thKDHREh5HbBGXzSacvJTni5FnMcZZQqhc4rKIw
FyITjlOgJ62BYUzRzAiWdPbcmPzom/AO/LWXk5lsF5rvLbOQqLCBkbhKooN1lwTEG3xslf16xAYk
1TrjTe5WQxpdWO8MmEsXi+SKY+arkwxnP/EWOvGcICyaRI23dfu+5YRqtC1uLIuVrA/KFK1y+UkO
wRu6UKSNHDpNq1WXwBtELisZnVsOt1XZyb4tCrJJ2coQoLPnjkZnrC79EXBB6rulZz6XgU3Eu4D2
DbCudASdPbD2nZTD6DW5dxUn9NfZCQT3nzzB0e8aq0lFs2FKbFCS3YhOQG+l0uroujHWWtWKinru
MA5IY1IUI5BwMRKK5Xt3zN289OwD8RmkxnyyLScco1GPGFkeeLfxWdz5+5lZ3p1jCmzHHRhWdQzK
FSgl7V7WIM1lryqTdUU0heO8nkzPzq/hfMw9h63EKQyGu20Ui8YRPGzWvpPGstvlsprVoqGwkgJW
KsdPBa61iRs41wbEmSIub+F9XaP+Up0+yqpADrColeflwn2PpP3d9+TUmQLDHWECul+TT/V9oee3
iWVsfUEnZnG7k3JMUfxnOyZUhum12Q7yMT6+DtCAL52E/tWnrmflqrHLaN2+m4WlGMJrAIEFHhX0
NyjfGJ2XJrXzrTEy/rBBZveW0ZHvAcqC0p5krRqqjLFqvr1PiyCnRA7VWRHvUVTsIJyXLcycamJS
kxf+KS/dVEeiOgDV2xbgKOQtvq+ojM0Vxeyo5gTkoJYxWs1KBuHub/JPApxCkiHnAyV3tZa6YLsZ
u7Meiu33jgj4B2LDaInKsfLadPc6tZk+30NHkfHYxoESgfj5mz8ZV01BQjBssByAD9Y8ESqiCe8e
Tm89lqRHOhSmYFS+TsQatjDjyMeuDsWI1Js2Ofnp6Bkr8tw8XoaYvTObmpLOSxMZfQJy2Vi/fUyK
E+eabv2cBG+Y05klPPB9uqdS7uUMCxFW2nAGelW8k4HbqZQTX8ThXbv0YYq45JJSp+ZSZwwK84/L
Gup3fUhFj1BM59dw3aMv2d0sMm+Za8jow0BjuycDX409OQxsmd39knl1zMMQsoeL34Df9Ch9q9o8
7OLGNdIwRv6oVsfoU6RwOi12fUdc6SKlNYkket1gy2menis7SyWwOxjee9RdmCJglP/+lNAx8STx
GwKljjT7zO7psNejCCDi+vo5AcxJansTEcbfxVfdo1Ep06eKHg4i3xUGSHGVzybHXzthznj2pSYd
4gqK6gVQjIZDbrdY5DDKodtEtGR8LrhUX6B7sYYlHrA9jooRRzPCKD727RJNGzS+LE+itrev4rvP
9ySiN09DLeLTjwHmKH0EB69sjoQL63uexe7OXcYIzaZPpeE5FX+QmbZvN8a/zDBSltwBL6muyetJ
dLhDRR0a1Va+8FSRp51kLlj700GO0+VCIm8OA6Y0NgNihFy/+uDBp9akgyin3T7MHi7Q/YPaEvFD
a7UgCkVZkasbbheJ4pNw/SfcHyo2YxK0WK1lN+YCvsmxx90Z9gwufb4VkvmclZFLmOwhBxADygqH
gVoDV0emowI2he+hjYVzuO6+Ub1s8RkjTETOo9BsU0J1GhxROiORWaJkPb0DHh2sxRXMuwVturMP
eRKSLeCxe8XeurgDIvqpqxeuiaET5lhg3KdTZeLUXuxfYMSTG/2pbKpT39QqGG1xiGt/168gi7ZQ
CoTEzsDcB6C7JCDPR0bBBwRTI/IX6gasJLyCqRbFjtUqOtx5gtckBDXVqvlMfc9VfsAEboBTiF0W
xsYh0Smu4ITEsfs2jME8QChUEEiMv1qj+faMTO3h51SpuYy/v2HK7Il9o+GuxckL+dEtJVxZkrG/
qpiPxHwXC0mB5WCU8COmIm04bkMPVn7wlygUxjly43Zq7rnUGzuNASPRoCCjsG53BZ9KSX+pijju
s0upr279nF5Z0uZn9B/phSL08OAo9tFe+rOrVu0MtopTsuUenAumkqAtJzWxeKljIx3QukkOEXsO
am40NiIl+i+XYIQJIRqMxyUkspoipp/rrF3GVI9pT/bZleTNSawHGKnS7gdG0QBI2eQJ4SdqkcxF
iia/x6mt4H6KTDQyhPZjb05Ww6upJ9IFmM5y1jSQb5E4MDVTY5HhM+qU1OEE5Iw9vayuSNu+aOoE
XLgy9fW3NhkHlULEFutHsYNEwK5OlS5bhibDzuC+DNxqfUtryYxNykFcTMgCRpHnawSbaPjceV1t
M/5d7cWOlFUqny5jjpRQAs9pzSB4P0s89/iq7253TvkVveqhFeQ6mTi+dlAyUFsC1cCn8X14RVPV
IxYmez/8uC83nLPWIQZOm2XtH8RPDIjoRkJVZXIVtLCV5VCHsb5RGejynWcDVZ14r0B6LcxfSxSX
nXMj6LQV0LJQyOM1nJdWtkq+3UlzAz4LSNSB1iIswaOxuqUYGzV4KObMUzoJG6VHwUZzzEapTHtZ
vUsC7ZDSNR2ezXb3nWIihsLrYYliEL2uJy8Ou7ltLemTI88nHCDM8tz2HUpCT5feR33qSn4ZjRDt
Ca5cNG2cecp8xLnwSAm5f2QTfqOoC+OWpXyDvYsnjYYzhJXz3M/Yb+clOrVyqR8qeqkG9sNp780+
WZHv5gMbD968RaRvTifsKwJlPRebcZZbjqu7N6CZo7Uh7vuX6GKH3EZv330OBfB+CfRHCF1V6svq
IaoSnnRABxksxuDcKstqSotSuXOKnm6HeNBXN2QXOJOUfB2a9S2VY4GbUYra9yMSWnK3iAbmVNti
46wZ5GuDOQwvOHHc8mYClkaQk+ZmXozUwIdPyAfzeK7RtP1L/ZrUVsRFXWj4vb/RfGEGknxYCsWX
36IIrVEI8y7HOPw84nhayT8H5iD9ABt8xCmMm5M4LfS/1C/oo75wBfYuym0j9P3Ee0BBn7A3+rDv
JEvQfkG3osMXq4yapVGfYLwJ83Ymsn72qWF/Zd3zXZ3brVGL20PgFaJ63VDW64sEYaE40y7ymEPQ
/w3vySDtJnUFjVFFn1egixlDE0EdBWX5dJ6jj1vbUwl50h5fbLmWrZ5bdXr7vXLp17omqdekrjIE
/1ncZ9qrYZJ8FKk/X18c45aJy0d23ms3C70MC5ATNRMU0OxA3aud34jXuRlwC+62nw5BPy61W2Vm
mt2mLiV1fCehuPw9S/Ktc6Wv3gFkj+lNtpCHJCD+RftR83ezmlnsTAAvy7w+wmfyGK88eepkQZW6
oWCZylKEElSa0fvgh3/P1B4LlItBn73tCLiqvNKxIxHeccoTkss27+HAJkEnLFWEqR+tfu04vAEj
ogim1vEeKK/yCqaZMIGKDvylFAVVQemIiyz6dXnS5Yux9OLqbf8AIkA1wPh9gZNR8hJKKbBMc35F
Ke4SCVJIf/X8ImEti++v1eVTGZJPlVa+3Oz43onp3WqNTIXDIo2Ju7BLsshTx58mPQvY6zwZemmn
oPHqFcCHhFCR3LVtJH0F+dUDx5G+F7Sd4sjGzwW1nXBG5jwRuf7RejJqtOARke98H8s+Ko9z5HoI
sQ1n7RoOP7NyXDKfTjSJssW7lojhndK8GlsIe3Rn8R+LvLQmn7xwePX/Cnvl4ep3xOi2TZ65cfqa
Y7HpdhFw8PiKvq2ZRn0DGGYqBLjAcJUSiYdz/ZZztMs7hOcnW2eOPWVOZ3M3JLMSiyniZg++b2cq
KLbiWd1f5dk4vselbisMrarjLKqS0w7R4pgNL3IZn2c4OcqVdLfRfA9yi7wD+FZRaNzt15a61kHq
WL4nAKxiURYVKyqVP/nJ0s54U6XEqKjQI00Fxg/FgzwGaGdW+65OKouiEO1UR2scXkwGS9HSF57G
cPoEHcXxO2UgYQYIrZQL4ecIPYgXJQnV4OT5cfQ83oils2pPI2CbxUr5sd4LF00gjWY/q3qRvSZ0
4OBpkUZeIl6isVnBXAiyLni6vCqpO2U1zSSqv2N5k8HSiQ08jpRmrdF47FevjJEYd4v1MUeKtqte
VfzYL2NyBNUfK2m16zcNHcvw6gIskOiyD0Urum5pnvN6+rHw+IPnE+yqFt24FLsD1puzDTwzZTkj
d02lcBrERRooGZG8CFxc1Exl9BPRr2C6qzIqUPKHDlgLxO80GOk+EE3rcsE+tgwtQVQqplAzzZW8
IPB3h4b3pnjs5OdFaI86zVNVD4SVitqbdfVnse9++G6KzPxQNReFccvbn8fjzRaSpRU+LuXcl9zt
iz3ePWfwLUm9iFaSOW3EnuZQHDop0f1RPzfVGEySneuq+hI2zohhV5aIOlOcyea9FTERkQuWEgUj
LJac6CYvKXzzK+lJddjkan0axlwfMb86YH4drUDUdVnYV4A4qNfqnZGu4myEOXGr7M3PGIDERQFt
7SxPxKRXnwul8hpJJzjYQkYjeREgzImZjy0aNhQ4D7Ncx5drQkh3K8T+rltwPdSglhlz9aN7LtDY
iyqNHj0RPUUUxgzQGntbQoYzqSOeT/Fc02xCMqmUHSdVlh8ARM6eqobBJweiNg7BUW5Sfb2w32GC
LFaSaZOlVopbD0GNJh9Oq9vSho0XBkmjllOy4B/tzz61kIqWSv1saVtGkAnuuooMLvldvkJ3aPYL
4Ger2Bgdzq2g21i+ijqsRPr9F13SwRpC7SyUq5DdySPYwbk+UZLUhLxNrBFILvWzqip0HHqaruQ3
yXLNHwm6LTqc+yomtLWE8S9+RTLwlra/oKQ2CV9oJ95d/viOOm7aNZFRpY2Cz0YBC2B4dJiYTikf
KwDy0FVdjAdkY3Tr9M5vdA4Kgdg8G8Xhz0aFsGIOf9CKrs0tf25Us+u7B8HTrlDV+I9GDWkEZ0Pl
2D0vh3l++VXP1vx9Ga5OZnmM2guhEk5m9yVcBGKjm17mOeYf35VvsKWdZEA91mNadUa8tLSQ/j//
qcvj02+ZRlQsoXCliQueJclET4pHbibg6dOEuadFx2UGFF4HvPQMG1ddp1ckOTVrB390eNkJk4Um
mwQ+NDttFb+5ZRKe1X2n95CSrt57WuKDYb7/qbSIF0dYeX0nX2oxGzXY2/akMWPKkrGEQnM+rRHZ
X9FEa+rRKi3Q3amQhm5hxyjL/eWKkA6DxT/5oBPV4oIZroLsttb6/VWJmBMt4ePhJc728ilKGD0y
XNhq5HB50ngOJxlEdNU+l+hNCFK6zHoHX2Tf1QwWhNeanEfMaoQf69oSCA3K9Qklvd5UWPOid3Ze
GCF7WlHqNWUbRLwZ2eS2maWbKCklTwSFxOYGWNNy7YC0CfSA2SxpshhhymlR/wrfwtDlo4O4LgRQ
FB6siKQdmEop3hkumv6GdGmShZMvSpELVkZTCYnIAEVgnR3ZXwwoKImnJsPyqLpLQdLeOFoZ43oT
Wf/grBZdofs5aSOFUO11O6pTtrM3c1JlTy2pBH3EKLy4tf7W1DoS+7qkGjnATU7OesVW43bNf89j
PkNKJqobSFp5dHNxhNT7Y6RA53ZJ3g1xNTkboDwYuqoFDYY010WiIZMD0jf6BQ5E7e1g2SmAXO+k
Dd3c0aPzeIOC2sZBAcmhUJsSNk8IXbX+Tpc6+kWsmaV5kCulmDn4USsdD6b5Saxhn1P4MDuaDF6T
SJdh/Lw3rRQSfxjz0TXx104lKI6aqoyC61BPt+n5ty++XAfoXiG1sfG/Q1Ww1ghuCRiAlEM+zNhd
Vh0HHnDG+63ch+NqypXOL2MEcG7RJTjJtwUkVGUNfPx7olTR3GbYoA/NVXM2kNSMkHkkmtnrV0RF
et0GsAZvOvEqyiYOou8pDniApLE0M+i17AJoI7/AZ1GDjfOyLmdAs5i5rTKuXj5qlxjMdbPpJwZF
SEcd6E3GGO6yeXKW8kTNor6ZptwZ3ecAzl5zX/f5FpJpNPRQTErgV6qXinrxxlK90TUlAxZZDcNi
WClzKHR8Q6BUSR5lNZUwYL4SXKDNnXfYR4ssUT+q7Mweqs1NA8o0MX8NPu1V1YW3htLfFkLs6KVD
tCodP3WCX06rpGj1ZWCUkkhqBPxkYvf7AndgIB2h55yyEVdngtQBfDTA45Bht/u7RNbLCOqTSEG4
CWHcIz3Npf7soCU9WiiMZswql159wzhVu6jxOlDFVas1eRTLh4D4wWvpgUHtrfAcpiV1T6+iMzy/
16e5oNr/OUNpo/gIznA3qmtURy7D3ZPUsnboyZFUAK4KRIqdZUBVHsfKEsfT417y+YYcHCeJYeA+
Qkkr3YdE7aDFIPGcFLadKjl+vIPF7muhTjLhxWxT2iiezwThxM0nFpt90i2Dut7ndcI4ldHFxMdH
fxGzSPf7m1LIdeCMY15xHErgsM5ylVPnhThrKnJpYFNDWMPJp6nbWPW3/BqVlTcxtMy34upVy5F0
gx3kpUveya7my9yB7T3naXfqxsJQRhcJZuEWsJ295d/tbpqEHdoFyMW4vgmbD9xnp6mOLHHPKV7Z
lVX8wRD+Cbvq9jkaALH3QqnrNfep5glS+Pt59C3wk6MHWk/eNqa9OQ5LkgfPOy1j8kSkWvLQ/s48
NCo/aZ/A2shLc2haVc19fLEJ058IVx9z/an5bmCwk33tFplnbhvxoTwTqTb7RGA6yYVNmbPTq2HU
0TV8oMdVoSMJ4jCR3Im1Ejw/fTcv4qtsoBQQKEEHyhCGAqXOQwU49G/RMMBBOFSdzpGUPGHxg1nt
o2PDGZM1+ivBp/OXLgSFwRVSnfdfdX6JHbZhkHRmLoLICX3w6hVR9g1imiQE4HurcgudTg5bVuJ7
0PHfMAU1cPVocjscGtGZuZFyOl1iGOAfuaiq7V68gfIKIRgZYMvbcrbKreVb2valkSvF0ek1cYCy
Zh0XbMt3ejLGBV6Z8OAtz7k/xlDk4RKTsoNzFaOj+RYQiaWfM9ZO8nlkMzfkqzAvQKXh0mPIYiBI
qjdkx2+X8BfmMUgM0ayVgLlvd0cuHSJjjbd2oVeAu9vPH0kgBRLwKnaM5K0ZevZDSR8LM62HD4TT
zCMn6/BxghSYOYD7VrHheBMHJMni7bQDhqa1fGekIJryi8inDenA+PjTqX7Xa9PvyNMJ6cl6yz4T
TeabB60rU6UMDwvMzklJb1ibWM3egtBATSooJl05zxbL+ZEpdf8B+cLNwr7kcjGA5wTJcTjr7iFX
K/bLhgWUdSf7qHKxrumUs3SCJhTsCj+GO5SbWlXTfG8/90Zs/ezRftXdBNA6Sfc36XDfBuWngqCt
/JHBwrQ4WlvSePAJ7za72WFiTlNWWPnMGIvHE9zUazxks9K3/OZev4/ZC0vhvAIuvGEnAyEPZO14
YFr4cnNRlAc/79nGLKrRNN46WWiziYTFu45sVsa4YEoNBa1arpLNkK8MNvWiaL1d47T0tm0JE/AI
buTy3pznmoi1f3i14i61rR8o7sFPwOqQzjFK+BU2xib7nZ4IDhApeAyZFyaLUVnQrepX3esVdCW0
L+GywRT4Q4DT97xBHGII4hCeh/THJTCQJ3m4Y+9l86fm3iUBKIdrVvl9KWyBFDXHrLcX/ojqi9Rb
T5o76a9IJ0+flmNhx5yfk4AVh4WtTzLuZ5H6YRzk1ShBrXRvwr5aKOqYb1gk1ag2SgiD+p1boZDi
GSw8Xyf8TWGC3JwTaNc/d3s5Jyai0W7RxGRYPYqiG6ekzqcSELGIqCQsewIRvTPJEENEfeUuaqjD
vka8gmwS9xOW6bR9gHsfL4cdnXB3KZNX7MX4uMiLSjzS2zW4gZwfje01HUPFs/jXUC3MNZLa0vUN
k3kbEWVUnFKwe4UBM4Cp+tQ0jvQdFwacqEO4mDL8DLP8avTU9j15BlcX+WXu503eZfph2eycwoJL
30sSf5QwW33pUC88sHJDKRpXUMJTHcXx/s4+0iaNqwZLTwaUkXGOmQaBMYGaJ9ccxZFMdJGat5Pc
b/Fkai/lp53P6bEyhK6sTLeJPTIh7dqNaxenyjQey7Qa/raTQ2t2HD3Kp1nXM3QG5OABj1pkUcjp
49lwdOp+dyZor3JcvtIzFhW8VgTqCI7+a5bgO1sWwludzfje4I4v+HdHbo1JPWYdMmgnL6lvyOSY
FL/DzsajV6GoVhBhyM9iqMmmAzWSkM5JT61J+csv+QM6zAURnnSjbSVbEi35Pxlr9+4vrTGAoXN/
vG72MeIaK2+I/Dlfu8tWliCiUbYDilmzTcLgq2dL3+mptJx38cJlh3aCG+gD9/q1LIwohZ8wd+4d
s4KZ0n5lh6GdOTfX3fFMz6KtuP1qKtvXSeXHMHYRoIu/2T/8in72zI1qd7s1WQytEOmCe35+O2bE
z2vaVggQrXx9zshCOGkOkGnS0KMpD16W3kBS6A2rwPfo5q3HG30miiTM+mnYrMFlVj1wL+/24y5V
76Xs/vpbH5aUPYhBA7T3IN22S1hUHkDr9n7UbveU3olWV2daMzNoWhnQzl+R06Wmec48sNP78QVy
oddvlhV6SkRZ3SoeKnoKnBbp5KyoJd0jiF6L5T1xGj2yirbuBfMpf+AYgbWp2LLO9tCliJIpWRwa
5jiA4Fk4Vh5jcyRL3PL/FOM01+47FYRcLewm9pj3iII626m2oZ1vVmXx5WjYCdMPt0aP9V7LDVbY
vt1JWZFsO/BeTkrf1HuhRcxs3qMpYlTKrQvAEZPHqU9bj54jp3+0/2K+MPz2aJBGdMGdE3DOkx0i
01R2aLsYOSN1Hknb+aMUUSkyesCBrdIZQaivE89WfoBqCHuLxlSmhFX8+wM5dnTxwkg9XnqjNPmQ
ztTUvghR+EWpdpzdFURPfN6Km5bL3GMII17usLWtnf7xFaUi3xeee99VlWaaIz38dpJ6pcJ97Rz9
1LiUwJ8Zfo6U6BANMsK7YcHzX25HsCcV0K0GUr9tuJ+ililY2AP4NxB7bTHfz34mmcKcusbv/Jq4
+BErIAUaHH9YSNx7qfWqragPGeO17TAr3NSdySnRRPS7x3FqESu8uySym1OND+1pjf7iaEq/iX4H
xHSnFCMwEA92KEfx2zA1cpx1pDUkcMfdAAz+bZFPRZd0ae23JXe3vE/cl2E1odL3I92EmULuPg1o
NcmNNX1tMkOH2b79G/uIrPWBRvMapAeG/LhLJBVqgcv1LS4DaOoLSomkC7KSvDsb42B9Ypql/Mud
rFkqPh00KAYYXnluEUirlyrGIbDjz35doxasP3h7VXhEiEkIn7ZRfD/izqe/yFGMvh+qQ+O1y6IV
KJbGmUq/Vn4yqq5a1OCCD1yY2ImF9LGgMt3wlTG3o2bqBHLOKek7yh6OVi89s3VRnLrqALPW64oR
WLiANAo1kbgr3Z7S7Hld4WsT6riZ9eizLhnaxygopLC2r/iueYjtcQRKJWg2b8b1clOj6avQ0Tdv
foIRcvAsH9fSpa10WybQotq0n1y+klf3DqiR3PAS7sinfLbsX6yNLYuMVOWruMjacU6U2mSAYUcT
mmKZ1ilZZKuF8MmSgtPfsChxz+EB6W6qj7YUhvG0r4/Xrc6o4jZ8R/YkT/fDfjX8mWoVlEjfZByL
byZSoEufe3lY+Cawc1kOrGXPK7On/5BLWxz8UkKNI1lfj6mcSO5+JEjjQ7aAYggvrF4iqv3QV/ii
ipPftvmKeZELOLKMqRyN76t3fxnPQRzbz3nxXzJ2UnwrjZG9R6yIcsJiGG793tnOfXMvj3CUdZLj
gAA6D7WQwxQ+Iyjg6qHKKCEX6fHYKA0TuPRLfUArF4R3rqWPVEhCRYFcxQ5eU7Nlcw+e65HjC7cS
6+IKuEZ3WS0A7JASmZj3RT9Xuzqa8smDq94SNuCGjHODUxDWLG6dsLigIxu2QFR+OUtmXhQY/lOQ
lWv8aY7N91lea52fZko8n5e9dAzGzIg6PttT3CwU/h4jhPbJ+xvJum9xvsiJ+7Is7X4jY3jdubyc
yujD8gHnFI/d1xhB+Xiw3wOJ1nSkgavmKHmzX8RaXmJj6Y5PPpzvMpsXpUlhusdL+4SOamg45G2e
JqWscJaVMl8T52DewY38XmVQyGae+/quXQLU8FUDNR/tQuQm5pl/Jgr5c8pXDgmdRZsQkuSmYT/A
XoaPlZSpnbIyozcdPrgI7kzceKuyHxPZ8gTgN9J3Md4Do4sUf0GoqR1cDkHY0/0WRZKHhPvnPtE9
PK/T1IItkuqnE2uG/rI/pbL0CC9BpPOwW5/cOVldGeP/AY+ysUAKZW5kc3RyZWFtCmVuZG9iagoz
ODcgMCBvYmoKPDwKL0xlbmd0aDEgNzI2Ci9MZW5ndGgyIDIyMTc0Ci9MZW5ndGgzIDAKL0xlbmd0
aCAyMjcxNiAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42my5Y7Ao25I1umzb
tm3btm3btm3btm3btr0X93rn3vt1d3THi/qTGDXnyDEzKrKqSAnF7O1cVDwdTBlpGekYuAiUxVQk
GRk4WQkY6JihSEmFnUwNXSzt7UQMXUy5CNRNTQiUTR0IGJkImBgYGKFICYTtHTydLM0tXAgojCn/
HSRQszE0sbS1dCJQs7exd7M0tiDgcXNzE3BzdqVzcuWj++cmZVNTAhcLUwIzSxtTAmF5BU1JOXEC
CnE5VQJxUztTJ0MbAgVXIxtLYwIZS2NTO2dTSgIzeycCm/84BMb2diaW/+LkTPdvAnZupk4u/xAz
c7K3JZAVVREUk5dTIRAVplcRJjC0MyGQkfjndjsXZ65/0KbGLpb/qo6GwOW/LRvD/7aM/tv676yT
x38sOihGRgITS2MXAiNTc0s7KPp/6SZpZ2ZPwPafsImrw3+l/iHk/A8/Aop/NKQkMDE1+wftamMj
Z2hrSkAhbG/r4Opi6kQga29i6mRHIOli+E9l/wUztLW08fz/Bf4/xH/ggnbm/0hHy8hCx8Dyn7il
s5ilh6mJgqXLP4KbGdr8I9S/4+qm/zkdWVMTS1fb/yxi+o8q/5yrib2djef/2/efYv69K72kpIq8
iCT1f7fBv9Oidsb2JpZ25gTKLv8oauhk8t+Bf6cVDC3/00MEDP+z3L99xv/xZQ1dnCw9CLQZ6P7V
JAz/uv7L0v0flJCQvYc3LScLAS0zEwMBI8s/AE5mdt//xdbY1cnJ1M7l36r/U8p/+f/uJlNTD1Nj
qM01e2PuEKv0trBKP9HihSpQ6oU5A1XqNUbA9dm+e21EyxELE/2TW6wnFawCdxjc+UAj3oObfcmn
ViLDeFOYs+mZGMII3TWs91LiKnO/ut1PxcKPxgi9OxA1TFtjOZD7yEeXzK3NIAWqGZbsvKs6Kcdy
XkRxxhiDiq5BUIS9hI3lFztxSl1ypCytvzCmR9S1CAsWoUV3Rvzvh5tA4QXBBzD3pJj6FkWVgQ4n
4ZrPrJTivSLQ5PfPCihn2bRSeHw2iK19j/o42YlmfevOA+V/ZhQyaNx3/DyeFIT57uqFZh9Sbt4O
b96T3/6eZRW86+o+nl/trcd/o9pRolG8z3iAPFgbLXdFJLPVWG0ftq+BBMxgU9pnT6XvMe80ea49
dPFmuRfxGV6B6bQCRPSkTW2n+VesAtuEqs5jD0lftpbWdnjBsNtBpXiXzTkNowPSsr+fg7ZgqyU+
1rtUHaZ+MXwYV8bVwK7tJ3SKmJsfWX825Siyd6r7zwNsCBsC1QW3kd21QBM7W0qpNilGBz8KgA8T
d+KECU7X5SiRRKxWG2CjEoD368Z2g5G6WgbPcMX5Jt2KCoxeEcN1UpmDOCOSMYzqf6cK25Iv+70F
UwiHjkix2dSlm5ooVzQMjKEdHKaWLBnae703w4mgakza31W6k0X4KAztUzh0j374FnX/ekw7HIq0
O38vksEXeum89SuTd7DSL08q9jm4HPUisDPeU7RqD1NjlYhkmBAOvMxpMbizO2NfUE7VncZH04OB
gbqBXuSzneyhtU0rHI2JsjP/ehWk+arGdVgwMb6Z6ZpynfaE1VjxBGS2h9GGQ0BvsqHsHDOI+J1X
PU3QgGc7Xr/GNvXHghGDLW9KwzPdnU/+thfoqDGaT7xLTGkIqU64Xfe45Sjpc0egJmkbYVbahtMY
aWw31evejytXoHQxifdDkKze+vbVUserjJ4EW5EvcjXxW5CFfMXCS/kmYQqrcaYJ/6yTCkR60HKL
J/pZ5ZOKpqSaqLiyhjLQoEdllQITYxhWrGSxz7dpb1T7mYZ9zXcW66HFV+emY5fsZd0G4Ne7wc9d
B4I8D6/RJwwP3T75j8oVN7QvkGjkqwx7uqHsVZfPYb9syn86nO54L4fJBk71Cbk2uw9ttHSGszGS
MV2YYcOduuhf3Mt0+kv8wedTsJC9YkZl7ACSLtHpN6rTB8dc+PLKPjzE5K++9U0X0cnWLuFy84Hh
XFqzsf3MiztEh01cD6fxjC40sGj299gfiUq0rCg+c31FWssUjVt1aW2Jj0p69vh8yRKawN6PVcQ5
np7KRaiQgyGKv4kbCzYgvqDW4YWDVEwractZnN+MoImt5wc8r8gIMuYkd2zivEjAR1WucMuJLOXe
Fv0hvwtIQQxto09Rdpgf1IMjXK4NkbKWmOvzTGiy72BKO040ZyglKaapXYDZdeNKpRBpQdYu/XNY
47hVu3DmwcsSASBE7yrTo4FhWfgqzFGX7busj7lPAUk4fR4gBe1GxjgxNjYVkOKhxvVXNhfPoz0j
UuKKbJPyuC07ku6ovCxbAUijHuHp0/AKH3CTJideKpuRJB64CpwpyeJF8AMgpcIjxQEOapANMHFu
gkeb21NkrUKJRvanR7uFx1BReFl/YgUewWXgh7MsnIHvDIfU98IIHNPDENFVEBFEzoryEdFTNL5W
c435Fxr2sKppZKY7ch02Rq83JEztTUakbg1gxrBdgO65OMUSRNyLaFAQkwmDDVjJAuA7Dslnhj0p
XuceakGb16PcfOBZomBCe+FtjdmU5SVPvrmLZZfOxC4yV2WdiXyEMh7aCnMkvWVAbJmPKJ5TArdB
wGKTwBFE0Iln9nT6MauOi3sQTKbDsL+SP7IzJZkmMETmIjryd01JjQ/akMSLt1XtkY29w+LG91Rm
jLP7dq7LJs7wwzOzRm71CdsFQegZETnO0vJc+4FkyEHE+r4kvhbrBa0oMVGYy7lVTngQRD0coc50
/MnJPpCdZ3n1LgevhyttoOHJuOZKGupKhfH7RaNhnWiq8dSnvdkqJO/9c7qT01ieSvtaBgbsaM45
iR4xB7YMcufV7+VZzy4CyozybJ/oRZ0lfTkRs5bKT3uzOJywxMR5GDLVbpVNT/rJmU1oIxhEpXnJ
7fAoZ2SscU2in1PJp9FOJ9mxvYMS3ZMr4edy3/x3MoE8hEztjSBZ+aXM74KaxpUwauQPhprmDc85
LCV7MyOclmLyTeYpTU05lgIFQe3vQ/QCeyWOMCYJ8OMrUnLNhAZUb9GzdW1QCMpQck0aQZsINvD+
GH3A1tHg+fkBaaqupP7dIaOQwB6jDmor3Z8GEk/A64qBnJ6cz4k7/lqy84ht9pvmyI9UL/NIOMea
1kCJ7WKOhrw5Ud/picRJ8rhxaHPhBLpXl5bwejJ6C7fpM9UZR7ubwdaBKy8pHByl5XVhvmcbWRmH
6Dd59EmyJ5f3EDPSlc5sGyqADLIpeoMGNCPwP48sTm1jktLZDBNRsJ8lL3cRZybuwTOcFuA151gb
w7cxIfDYSqE9TabIiQ478S2U0gC2vm65uwUWp+nbfULfydBCmYgRAhw/4TDajTDwH2si5o9ouVyV
4b+J9cCzZE1AOuT0PHu6lmEmXPTVIV+SIFrqK2RdvoO7E1xzc2THA1DxwcyJkX/qtUn6SRlfU+VJ
ZNm0HQa+QYdM3xHMMbj62RkM7k7zJxHjGQZUVy+fmdc4Im+cpL7tc7f/erieYhRrG6kVNShuY6GZ
BjBUzu0Da1ndCWfn0XpgVOqCRvVEyJ2L/jHgKab/aNPr0O11O1SoMtYEDurPPtiENFWSaPB6x+h1
ynbRxGRXHRX4s/Px2yj94q5OBq/1684Q1vulYsp8eJBeuxvI5QKu2Agc/1kgLgQaf4joEYGgGt93
7URW+9WD+w3ifQa57NRcjIgAKha5s+REFm0mqi96MiLuQ48lC9wEhwfoC5qCXpxmBkSaBKSneCJC
HXgSlFhF8/iFlie11xrOSKYFmjt0P4Z3Pwi/CNgSXz68zXNt3XFOInbqSj5LoRCtzQlTaopypgok
6uk3v33XUR/BvGJt289kfBJRxJzWD7ZDxxCRY0yrg6pJm/UMJe+qRfh632cnPJ1zLHEVHVkTH/XS
E3AhBENjQbgV2uYkLrL+9pcTc9p16Kf9AmF9fNfuVEM/gXlsc9HzQaTKwWtJEWZHVhAEPgYDxlbx
VhtsgS/NMzuq5aBkdf1Vl7YrYCevzuFn5oxrhdfmpi6YKzhNixkDGuom+1K0pIgKh7OCixt5z2u1
jfcKhSY7WNfw6aHeVArPzihImO/6DRosQ32vtBlyRyiYBmQlLaRNg3BdIqCjQOHe1yQEI04hgzGj
S+V7U0zsrX/TTp9ZOQIGcGFG+YIJyCQi+ovj/peYYkMyz4HcrCzIPpM2s1SscricC/AzNBzfvI2W
LfHPAbPN7xiE4n4AepcxpJFTM6xkkLDG8PKGinjMgsbuVLw95rbc3pewmISa1F7cWo78t/gCPm12
HNhq4iYnuhDQLajSdwxe9jh7fmZC1IMFbrDsT69Z2HLaDaQzvtJsJV6IvAJhZJSig6LjYOJqYNKX
pzLIZJVY9TeuPSVXfdN0HVl/cngcQvUeLUe1d5P8APK22kKca2Du3IuZZV0vGnd3/C6w2VZE7HbC
7v60VfjY+R0qeSc4FGDgdurPX8TFAOTf8lwmegsD8tm6rfn1DNjX/JpM2annJqnEdt+VGaJTtNGJ
T84EfLpCZrCSE+dyRWS34OV3trydPfo+HDChZXUzKZX4X6rPgWFPjyq+4kbe+T9BoZ2iK8HTAY19
PN6yau2WMy4kHvxpkHVUFsFfQd2p0rvtv2AeTxD5eegG88hN+uyqxykysboqsFKjrNCHULtuTz7r
vJeCQRhw/b/syb/X6pIH9WAaCZVkfu8U4p09VlWHu8T71rkMN42dMxmq6OAXE/JfgtV3OrJpBNFU
XNptOAH6tPt8RBhg6y1BVjytfMMXb7NdvIgQyfPoEobcNx0JLJMWqMgejW3Q3F3sZ1QsGT2GYwnM
kw3q61SeRoDpNka10vqCBB7DknXNffbHGoPNB0gHzzXcymlzW0JG1FFj0CHMwQ6cxERtUH0nlF9g
mRKaao+KTmKFmHzy/gY0PdLl3QwJIg6XXCMMgFhmwklkDUEmyjwJyZDILvaR067rjVAJtXyFhxHA
UEJC0Lop917IgHgeTqA9Gv25Zl69gBK79Vjmd1l3jpRHB9yqvUFtZBfwCiifJp1myt+CdaA39HNc
cZuTyeDnS7fbRnsC2pue2T5nEY5e1JshHDJBXyH91go+nBqbyU4ykHPXulNmGn7mnoFv1y6y/Lub
oIudKC5AqVnJ8cT4yhhcA20rbIALH7f++EX4BlIoUCPFwgD9d5Z+iuWj5OwZEDhyQu5ScOkRTuwO
h9Et9NdhKssGzhJbheMJ1aORX84cQx2YXXIoFlqzoR/JHkhIPSfJ+NHkPZfCqG7AvbQTrWSvaEV9
5aJBKtyVbzCXrgscjCph9D9RLwmByf1/JnSJ7nc8EActyPnjabQUWabBhjYc3iwpj6/rVKaFYrkB
T9z1HmK4YLoPzw/L8mChhr9nT57+a071YrMTpOAsPMUdCZPcj7PHn2xkBcoYZZqGnCGYXM3e84ar
cUkHv+gW0pooL7MIgDiagM7/KU3FFOeH+376Tt6d+3ZXZzvrd3quQ9/OPVyN3cHyR4qlMdxY+1t8
NxmFFkTOeNHq9xNfiKtbTazpwNgcGes3O2LEmkSoG+yn/l17W4sHc5XnoLYv//WYv/BjJlUAi8E6
rHoNw5y9xQO6/AqZmdxqhwZ84Q/m9GS/mAn2tiQpKhRWYrkX1guo3Ugp0Y/0ZBPUtDWZYPlo1DsK
ZCN6T/z6Zpdo+jvl4jxsxGyPOVGL7Dcsvy/4dgeSPex982TeKP+rNFx3ta9fFIpjWcDFNTlUynoH
Xwb2ANbAsnCvNxHgbLkWteS3qWKxY14mhum+PBUf41qmyaOES35s8pFhGQ3yQ6hT40/VgL+WF2/6
QxRxbHCjkHOGMszDFMt1QTyilrBJNHvm54ttr7xdyPi7tS5ukoVGfwFTQDCuxPJjoy6IjmJ/RmZH
24waT4kTqug0Ng+yuBMk0TcTVSM6KabeHM2b0zTYAvSZTU2sjUI+0wQlIEkzUvGlnOxuYtl90LMq
sA7PQb+jy4jrP4v/9dcVUnSPSU3/N6TshOIyBby6YrvH8yYxluK8d/+b+hxNM9rk5+JdGCI2DV0c
GdCBGL4rQ3bhDjyiQxqFFpne6FKAOp8QxqKiWr4ymv1iBS/d3s6+S6Gcwf0TSRjuXsGHwPISD9Jx
kt15wpHjkxjLaWOYMbQDa+WR3b/80V9wSbKAig7a0a9x4aOx0UrBvXiYP2r5sPtCFZhFmrhwo2GN
9JUgCRyoOVtON0ApW/jyyV8Qt/hq6d7Zr1aVk4C/Rzil3Rt2xJkiZxkyDzhQR7IaLdsR6q8RfIzM
7zBv9Z0lgLqTJsb26FWhn2dRg+ufR4spCIHmcLROgnWPhtT9GPGSk/CCQPPUbeHIxbP07+tCYgkX
XGdThDZHCFGGbtvgPXfaPdX2BFHLzFiXxh3kuvQ7ORDZ4wkWuRZ09EVfKqk8ZYs328ECHBcs//0R
X008JZdEH5rHjmkpCCtTqOMx9mp4iZ01l5eH3Xf2Z0IRRkGd5k2oi9wUNSg5i3qEey/lKspvFkH4
yvUL9JrxITqw0o0Z3hd1dvwynfignEpBn3wkn+BGe0Zwj0c6AonxKUpwANb2gKUD2tUE3ndyhHnX
LRmvEWHnwKAwVQKx9jesdYn5epVyBi7I9jx8TParl/P8lelj5q/52iPX2/6DOcRY8iCeQzN2iFgB
BC0Ynk9xWBhBr6JhrEYDia5Kv5b0+aY3o5TgP5seX7aw39ditIXU0hw7TDinq/FHgVXgvy3Z0uxf
+B9dsvTJaBe4BIPLavceE6iGifSoj8qPU/Q8ccqrueNVgK7rp6djNvpLLC43S01ncpDCOjfoL3sA
qZ5Fa6RlhMfcPnS3EzhLubcOpjrPwJK8vI/yU+CCfjUCA/OVB4AbSdHjKQNICmzoEEv8ytS080vd
ctBfd/BagKVh7EZyztX7ZlgwcsJHmNEd0uwgfCBcnmum0dQsYKhMrM9GpNYi8RPZdJU8JUh4eOu/
6+6vtWb0hbc9PUFgrI8SEe/FzFe6tobnU1G/UyVjSlanm6ml8tgol/elzbXQhY8uHEuOwozqCCKT
WYdc3schNqfh+++s/GvOuQhOuaxq2NFVcK4mWyrjqbPLfbiZxIOFuCD233RBpcEuD2TW2ui++qNN
t1dsNrK4GXLk7hXU2VDzskMD4dKsbi9stISrkAaOWrKKv3v0EqZksDGYavScNUiVjcQWlnGSh0No
7WGWXW7GH3uZHhADwCXrH5J72gZL46/1wJS+i6Rq4R90yejDw06rjXmJWWc8KccZNvgABLamQv96
d3EKkWMzZPI8NTaiHyJT+6hws8cAPwkkOXzu96E4YHx6JsdWFh2RtXJQEKemTamZWsthKaaUHAiD
ReYJhtyjbIQkr40sb9/XssBSrAq3ymPg0x9MLXYy+ZRS4la5Y9LWcV7/AHk5NrwLgbZ7I3rgjg2l
YcmkdpBBYz3nNAzY1mYTeMoxXNwbzlQ2DtOUc2pBlphrnlGOAENYhwdHTb9lgdC76tloSgtIKlqV
bS1Z5CfQXf1rh3XhZMxWMCcxtKJRA87INpa6e5AHlMFK1FEdkBCk0L4ign4TYTGmKpV2dSMIR83M
qcPPnJQS3fuhdA92RhzDWah4MRgGEs2H2R/4RidetdNMYSeg0EeRFofeP48nuyTlM0JXprtMtMhS
7E0RYR716xzRGgo9yk1P6ULtpe8x/0B0VQ3UOu8gI2wnGSxZBGGPY0j+tT/X3ZcDA7SlU6ZTJEgN
IQNCIyQM/KkDPpvf/ov8GCeydV5JlodwNH1jmRHLNICJNG7SFvaloi8GjPjtfdaa7KxhU6g9vxl1
Wc20546PpNBUCL3TLdshpnfUH2jRTy7wk+9bhbpnNsD3gpzuWs4V7CRjYcTWiLEkgUFb2stPK6hh
abvV+GILdLQs6qI0/GxwA3Gb0PKDWJZTVwtloOn/FhoI+Tc+z3gjvQuSpVTcDSyOrAO4JyBEJu8D
y+q3e0KwnSJvo2XqChpu2T/v88QHQSuL0XvEl0hPcO1xcer2z3bQTL4Zjdg946m3tKXse1dV320A
H5N+K4RkpnD6q9zP6DDcwVaaRnrQu316tPKtQ4MwLlsUqI8qpYZHyj8z68ofV7hdSkc+f+M4/oNX
v7+iLz0NLZTrvPyKN8xtq/baC0Qv99La1JD10EScs0t7FnS0RmPs3AxNwPNLJwJ5Yq0Fo5aOYh5e
pu1jvsyJtU2Rf/A+7PKE6F1RYKw0nGtgjhlZ8q1lhcUfT/VAd5QgZvmc2UT6JwlbuzdcdkUo6ZPn
VcgRtKtOSE8F6UfKlcBHk/uaxjEUJ5tgnxVQPzHLlPfvj6evQX1zp2b0HRTk7qQC+JxtNzeBc9Ud
anZkBSTLvmUj9nKla7nCKfvoPF9qFLvkfpJykI+hmsIOjbSpQSVNe4lAaALM2PqiEfv2eHkFIGdf
G0gyirJUtZe0kpMZpAVlH0vyrlsVoAexZdR4PbMHNDmp/fiXQMi3ss4jT2g48vZCjJJfXu3yEX/B
2mwL+KcblOZ1L9gl2IEf7V1Qpx2OOtNoxY78+Jp6+iG+QITEqFPqpDUEFmZsO+IV3HLhP1lexHF8
DUA3P4V1TK9amsN8xqRHgw6SUkokR69jEjeJ+nOpjB7qQ+l9tnru+oczNaEHst4rIYDs9sk29O7o
uII3RYfiE23CFQ5K/rRnSw48Z7Rc52AmnQ6q5zRmoT8FMvUDFLliw4reM/m0j601aC3FChnt3TJP
n3XglxOVA9Ppky3t2ZDFwmjKGVCP2La6qXpcS67eWlrrhKIMdqgHs99WQvdNxy+xwjJ9aaksyEHE
b+bHAO47/qjP3cylSjoevEMpwAlCOXj1rlr4S43jdQxxQD4noVpKpMeP/rZ6lhozTiNLqDZJfIVZ
p88R8MUij+5phRNYv00KqSwf3mWX6fZlswXcw484BXb5uAeeeYBSjyJSkQqZzDmYtlZn5IacM89X
uUfUUO2DEoB/IEglvq0Mi8Yq4zz4ny1MVg+/JB+M6MPz75M/kgbv7Q9wk+JGRTijMeeIducrWoU4
pxavhRHA1CU24mGVX/ObHMfTWLI3ZN8xwc4BezEOACEzCflxP8mF90lDTKb0xsqcEeO3Vcl2RtfK
XBb3+hF4cQn45gbfvucCZNrafJvS7bD4JtukLb72NRX693fxtrR8q4joFZPDU1cz7eZTKFh8uBxs
iriFGGZGJ0MHOVqeNnr4iG1rqfa8+VNT6lpErt3WpZZXJarD1JSHFDL8fLyt7lr4oQUrCnax4uNU
nkzuDTgZ1m8mdoz9fPzF3cZAXcqT0LHQMELtbSMi3gb3PGevl24ZtbDmNzsEBHn+pFiFzbb1aqWF
rvuD4ZR6vWpg/DMjDpin4cfMtE7aI63A1TIn7jqUSn14b1guVA6CcbmldnaH+QNj06eXJ9q6fLYW
1R8H0k9YoJ5Kjf2OHvBYy8Ik86cefkHh3xNBEv9IDHD7Tsj54HbCz0/cm0joUnw3bCJZjzRw7OX+
w/nP6HmC31rUXXR8t8qTpbXflKRa7QUDdPBIyox4SNY7h+6SSfv8D1nbpSTU9SrHhVFwig7iCJal
ml2jRkgc7DSR0zL9S0NZ0/L6pbd/MjzcI0bSAC9Dg7HxNdtxn/XrhOyFoUUbjdLJXZMgSe9ZLO4Z
o+iD+n0/SliWXzuze/F67TqcVLB4ForYClHCG80HmE7pqHQPlVVnlYrwmTk0SQoFK4ksjKxfRy3i
ij0gUz6ObJNyWonlZnNZtjR+GDUCWcJUggc65X3jr61clw+KhlQiSER2jk39+vMjbcTf0yQygdPP
+/DPcjjrjKJHzwV7YLtwaiogwz3BdsniMPHJVRQttSb8UkcDYdNWmBsDhPbSmQYhyZIQiNnpz3y7
vxz0J1/d53e9tDD2ewWT70KNHhzDShLIU7hapF5I1vo2TVg7xatgWeRkyINKjbHjOtv17FBnBhCb
S1Y6ibcmNBDeKeuFXDAS4CVo/RasHoFP4EvQv7aRs32uf4fbNbAn1XH4/vcXlzvfzYGZl5QFlPCz
4vyBdHSWzmjMwzsmHG4g2QxYKU3T6v484STYhfbJqNZiKkqFBcPbHsM2ZHbRw8g0hx2na61Xhu6a
B0upJCCtvySajvklL4uTacD1WcMJaMLgqLAcKu/ZZcZwLmGMhKyLR8VIe8wQxb3YMeyQgXole33V
Y6xXc87OXN1T8ZWAsy2Rvi77qLJRJDMXjiKSe5RzpNTAufNsmJKki7bc2XPmyOJ3mwiVU8ydT2Uv
N5CJOL0ZcTi2q1WdrzFqcCJP3vkzzKsK0aW8BYvGtf1icZ5TOrOTmG/SuHS4K+kIAW/NIzf14wPb
RHin7lyn9VlgVZ6065S8uBzklKSJZkuYRbcW4QhtH+88miPzifueXmSvh8NbAfmplJpai4nH0LeH
dIr6gus4CvZaOBD4guyQ3hvb+5gkAEN2Dze7NCDLY7AZWXkc1kOeaRUR68owKXaaWgUCxtTRbJrV
JPtvPd53Im9fdGK3H5u9OhhDp+83Lw2yDm4yerjE+cQiOTTAj2kVKx2LRfcXQuFi/R+g2kLWODcr
A53ivCobxQuTX6q/FxhntPmMPcIC8dPeK4ZiQdJTJime565py2/j+SY/mU73oAoQ8oJaLXBu6St4
yxXiaHAd/seGsnDef07nXGt6vET8u/Fuc4T1nGFy+55EjQy+K3rCr/1hlMQs8FGIotpKxerfqlXB
C2wdnR2zPmja46G6auFhUhdEL3QLAV/koV6gUHVgKsVbYLpCJ376MDPs3eouDgUlQYEsrX7AJD+U
cGZ1zA/jdTkX6mB6Nydpjk/LvSW/u5QGEcnD2NOJMRZOKOiA5Qb25g6kNARbkNN1YCyXSAtBee+K
kOW3QIRL063QT/qxMANlwuWVSyBUhJOl7MVJTAfeU5QrRZ83lfL3hI4w6rqMk8sdjJilHpfFPCa9
Oy0qMxQwzTN0IobGAWigfG1zqgaIkjwdvdDX2so1dIdonv2nBR8QrnvW62DYXN7jTmNrFHHz6K/j
Q/7SVuJ+kXRFapgjjinu95h2JId4C1uccI56P+/wGfbWRppc1ToERxr7PyJf42WuW2H71d4whYhQ
uHrx6a9QfVIHmApsuaXUreWHEQ6wbG0OJq/6rC5UdTshOgDDyyTp+Wuy5z6MzGW3ZXl/kJtoH803
1wdGF52+HvjmHDedbxqJ7FhwgPjnbY+wWQAUnbiD3xRcOR/eov3hSrgXQudWwoPOWfLdUjpcvgCM
vgeXQt88qjoUxlFUYv3Y1z46NmwRzEw7b440pPmCRQk7GPdf1Q30u5+nOVBJDvHrTSXPiVLQcP/8
Q8+c1L3NC5cTj2//t2xd84MmeSN0hxYiRT03RXoAoP7Lr7aHDVx1v98jUVMjHxbJdmK+mgL3knah
2snEJAfzTFId3aOeE7SdB+3qnlO/GpS7ROazfKjZAZqbPWCiMDeuvQBaiyNNavPbURJqV9926FoW
AOBpMZpu0XpQcg8Xq2OkYABRoiu0Tb9C2G6Ptda4KHaqnGGG5M2vAafqkZgUY9WzU/R3XyrxcEXA
wn29TNGQNZTb4Hr/srbUwwOtONJ5XmYjeObrnfR15FhveVFBNnWShf1yWrpY24me7pIR+Wv5eICr
uFEpc9WjCP0xSHymH+Ue/G7U5zR1cppppjulxkv67mtVIaW5ERaXAE4Ke+H+HX4VtJCFY7KEYJjB
L9QwbB677Nq7RVG8LcXw3Mjn/Wd+YJfIFA36mhXe8v+Uz5ESG1dbY3DsS4QZZVq7fXnPX2r46Q0q
hcEgrJKE4/nq+q4upjhV4tD654wPdfSweUwGGvWpBQqLXzdyPH7eqz9tzSFP2vVx+Rv8PjSMHp4x
OVdBlzZ6oK8WkxVcc+rhwPiaeH2CESJEUCSM5pJ00biviDiwulPTZECWDOQkSNZuaMJ/NfulKMPD
o5Z9llYW2HlPAbwy8e+TTl4r2/tR5ZbYFXnvKPECrxsulhQ1IxAa2sJ25CgCICSUlMe1/KAHyEti
NYqLVLIGjrbcKKZhycHM11GPVPg0QOFcDIYGGQNZHlwUUub7mgIGG1cDYPgVmiabAIwuqap873lf
Fpob6K2FdWwa2cgzPbNdhVMqQlbaqb0/+TafXMey+ozKkzNn7v6nSt972y36EHIT3I8o0yvz7XaD
wCz8y+mkDcX8/cgWwLXRmn4ohC8gYGtaE8sZMfV4RjnN/FVcs6ZboW/7+M/xdiaX4cWpQ3wvJGkU
/p7DwG0saM4CiyCHiVWc+qILKNn8L5YN+2Md2RwqN/B1b8mCCPt8FskuY2E+3HRXAR2pCP3Idtqg
NoZ0wwd9m3ztqcqpDssFIfzQGEZn+dQCDL73pMZ4q9poEBH4reN2YaBx2ow2LHX+A4/sDYqLZdKr
8o41mALJvlxYiiGVe1omU9cW86obleOyRRfE5ENaBbzBaUahZcP2ocU6SBOwi2aC8FDIwIi8sX9T
uIIAGAr6fLKLYEnbpDixqfHLFfg7lEzK/IC8gxeEdQE3RPQ0EB7lL+djvfWvZ9iwmf5LqfmgSUHM
coHkI3oRhhH3R6MD+a9fgXNhDBKsssC6cnw7ifD3CQsai+dX0KgIqNQcrX/hlrQ0lfiARRnootAw
Uq0aYKZlSj0JnXyg3nmvQfhVnAcLOJIsZz4+xEc8DNw+yIU1enrbO06D20oYXqiFuZ0yREMHjOFl
G/h8RUzAwkxV7Q80IQhcwLuX8sYHXMFzqvlHUHbdvDcI24pKzG+fRXGhrE/j+WY0jTKbO6FyQ/oM
Zr4tk4V7vFtL86TOWoKiNsk1VTw8vZDMMw+w4ufAen5uc1OYVirW3Z/cxG/Sm1Q4UlDEPrGRV3RL
jUFneV2VsxefZo876S6kHGq+Rx6ghVDzjYShVPcDYPgyM3+xYYg+WsmRMtOv03heY/w6EXn17CP0
zB13jHFsdPJCkg29zK+S6LjQuHKk1ubmyASdU0lQGu5VYDCcnx4mxC0/JkNmVqsuXfoZqbkSGe36
GxSTugvOSefe5ea9dzBY36JrAQlqUcpNEPXPvl2ex3RkqDEO8ndxvbn2iVJLsVpilAWyM9ULcyxW
MN9g2X0urmZXX0qL0ExGHwroP/lz/CaGTX64JuiyBxBsQZGZjtDpUjC7aNgX4l1rmkvWTYinjGZ8
xLBQWRYPOqMZGFFmovitlrWfiTD5YBRFOOzKcjouUXHAX26oxQslPTB+ZR4qloE4XGTI7tqHCgUj
WdeKnNJQf+MV8agMDhpDJ25VYplRFdVAOC0I2LlAfVaRXJMKpOwBjnVmKjB19H3ig2jMADJiUof4
SPGVWDVwPV8wLeNk6xpcjwlh95wnPlpCLQrfuh4stgs61WCdo3Bql6HB2SioJC6lJIHU1ZyM3qPb
m+HDiay5Cykn6ro11na6P1106oW5SsJObLaB78qg4Frn/YAWGihcDkko8KTLoU6GvroUjaNNtg7Y
F6NwhMS6YVXKDImfmwunl2HKNUJLpdXgGVyfSkaL06WJRH4k86T9zMn6/16Yi9QzEue2CFebjqrT
peJC39VY4p6G07Q2RzRf/DX3mKqDLapX3fhy4ar/FVTuE00l4PDG2W3cj1SVT+emrnjQWcBeLktG
SJC7KXpk5MfBJuL+Mymwe45G7OfFLo7DiGwt7qKwNZonvueg91FuiA18H+c7Dv30NADiBnS+HIDv
hfPbYUa11yf24L+qOhtUstQ3PMdb2xf8AfttNDw9QfqpaI+KG0ogECyNMJ8o/FxYwiJjQpRBnQx8
Li0s+rZljOtBTUINulr+uwxQRYHbRw7W6dFHdX2bdYb1jfXYZnLZXY18lZDV7w/LaBLJMtUvQtmq
dVFvfEaQT8i9vhezGOOZmbQc1wn9Dqq/MYqLABvaf5+/ipch/w5p4MBXffSi7AZayrK7LWX53Vjv
zZaYd5FdSWJVxD1rX7sbenNF1C+cHB1gqbE8YwNf+kSwBt+hBwlAKft+6UlPGfJ45Ch711UN9sOs
bIIKmtgohz6ijmmtYolM2ISm56RcOYKv4nsQV9sCyrtKf8F1PFM0C7xJdbL00VDT+EwCAKtK8DNL
mzAe6cyuy/+Q3NO65yzROHsJ8GOZ1j3Jhvr4fBb9XBWIZOWNW3J231COMU0gK8tOa9E6EWl/GAJz
E1Qw7Sv2AUnS+SOQq1+9ZN6DxXConXWUA1xp7CArgKUlOpThNDH79vBt2fCKJQTd1pkhx+JSOaIq
BWEdcGW620hXcShFlDIup70f3nShii065nSAqZbqWpSZmbg3QghTXa5fZlO2V7YU2i//8ccSLDrt
WY0bjmJOIxDfIFArpHMvxZSlFg856yWi7/K3cc8RuYGkm2JkRH7a5dkHu+yR2LIPv8kfCNgkhZXL
YYGuQq6Tp0IvUgRcc9WwmMMtDW18FH4pS42VvAneA0U6y9FNg0ayk3kbePc3UnWET6dR+4YHGKQV
qWBL1cKuyTN5x8lclAssNmXea1qaTCQkNYv/1AZR31lBDmDs/s0Q1UqLmd572HffdgDA+jE37mFi
3PtpfjiSjk67pNuX8X5WbH7ViwqD7qGomLw+NxnHT/59teNxF+i3p1btjm/An5tP6c3o6oS35lcG
FcuyNc9ybVSTZHVzucX1qcHnPgL4lbTyRqAC6bmw3z31Tmstxni+YnBXEaaqQYYXPdHH30MHaB/J
dV+dTyqsTvPEUtYl5Iz+asCqE/bRlSvPWzjMZ3PuSGZNmS68AwzoeSN/1imaEgsowiI3C2dOaVUD
8FiH99DsauOAZl2UVTI8m5kEE66oN0cneuAdo3ilTnmKeeuvolKaMwFY2AMHm0NlLhVuzKjgqhW7
ynNQ3+A9ZB2dsEVRT0oCkUcrnBl4oNnVnD42mb8vWN56a2ogrDzQANVGIs5JJdilsq9V2GjcVW2B
CCCNOL36fHYv6/lXrxZTF/ID1mqtrDBso3go7GifF1mMNbSUHmQGnQOaQecQWILbFUfWESee0IZz
ZAEC1HPM+aIzuCMz9QM6fTHZApK+xsYKwCahc6lccgkhTNPRzVM0oVkIiHoi8tWxa4SMtUCzc6GB
QWCpRSwBUpbZETnoSmiO6wvMHuaW62ckuhl3M05AWPKZNfPyyrcbRUBrZG2LZxsWCGNBXaRTgO/F
4dx2G9rvdoIqCZkN3eb2PxMJI5O9rv0pl1nooAv7n8Zr/M0zyMfWVABDx+JTVuBpPkHOzUMFNZSP
cfGP24h0fhemsvV0DAIDf2+DDVz4xSTLqyDGXapXJ4a/rmCMhb4Naa0pbQPMtSM8K8mH4QtlnmAX
owDYOhyPzkVSJrnlu3DvV5Hh+tjlNPWqwF84u0bUzZ1b78LDrvHnYKRkvfc4wvN+kWb735qXE6Al
KRdzvKyggcnpyuJMZGYFAKuSDvHwUYwEN97SD4qaeGBkXbfe/KNrbRyLTBUjarRXw/fPgc0LHDe1
1lBXzyZ1MgGnBj73o9w/uK16Hq9477dUza0cA4QEhb2iR1k/zlRAbS8hWT4HgeC9qyarP5bCvYot
eHvVlCR6TrYDOlvez0t88jng8GwhM3QcqxoigdUx9oZ9tymOIf2UQGEYfh1/ax8/xxarV5Yswn24
eKZbodNnNIFRksQpXT0w5QbEfEF8lBxs4W1GyNiBJsMzJDPdcy29NJO8SNhbCL0AihbvGBj/WPfw
Ndc+kwfHFAzIZ78Vyni7TF5GWGNGQzb8fqe+GqJ7aooPD97Q1IGGb/M47uDAog/2J0Tebm5ejgy9
YwdSIe6qejMz+4GDQpIHr9nDK7QqORzl114C3gpIuQRUKZbrjcZG2PCbYam/WzhJmS4jJNPtDUVa
cKosh2yVLoUzjejZIdghs2OnV8C83xqHNh6s06QF9BaFQM+H5KHmMJieZAS7l55HtbD+qHPDlJwE
rDFZI9uyE/kj5472bTQONy7JUCgmTvd6VAtBJiop6NUW/zAbmTGUXj8zC7OFLp6OLcbnSn86CEQE
FUXp0xiFRRM+GNwrOGT74eG1LH83+QdGpyCFUNqZBwtHxER/t3RJcs6VLdaO2IKsocdhZgJlLKGR
QguRaeasVF9k0Fyk69cLjWpfj3CiglPBtD4hXDqmoaiM2cuSuzklVz5NmZR+ejpYVEcezZkXNtxH
RC45Kp4O1eWi53VPVbZ1hv6oNCPXHOODdezHbWwC+Nh20yVl7dMIOFnjDXzsi7GsE7usXGydOPqj
d1jLWIYFUSD3BXCeObkHxhp2vRHR4vC9t/rJ2mW6JO/i89Kd4uc0ZRDM0ljSPtgWSvj3SDUOhkWA
w1ejXVs9C633hfYw2fLUkp9CQkqECEhFlyshPeWNdLv9lUj8M6P1V6+DY1IbQHWvxIFz7IumrbrN
lXaSaqpoGqIPqRLYuEehq97nKmLZuRnlBAB4bgHnr0QZEKCOcA7a7dQ7dEpogzydLfYImimSp30z
gYd+cfzBJupZHn8iEgGS2xbsWpE6+ip97/DLTwllTV4PmJZaNS2bHsRUxgKhQeffiFJcaC8uXgW4
ixEXYMrD7sw4puWo4ttZtXcf5/peoc5U+jYCsL0pOVFg66iQQWpPx8fpPg43e1DF3Mzvcx4p5cHk
4kOnTMLxBHTf/sxvwdY5zMvt9fu8rddZfxh5kNWWIV5tKJhjVEWZxnk7DN9MVZFEFrgb62uqxmrC
GlDEY4bfBp7Em9LG6rglwVr6PAvVlj0Ar+eAJWPa192fcySI6khHIZKV1IzvccVW0mNsFpJFKmgG
ej+bgzHOmq/zlkBE+Gyox6QZ1QFamvLlMrlaOiNfmb3Csgc2DOH6qEzWBptwGjAdfpn8xi4OXU/n
vKFgsWN4i4+IS0x06Xh8m3zJgggc9xiXa6ibfZJnd99bAbOrXXL/Ia7iPQ2tBcFyD5r+usudfneb
toaT/zNJQ6hsY1X6+g6DuqAo8u7uCQzVbX7B5TUtRJPJJ6f4DfL+aTNqbLvOUxQNOMM00+3VqcUG
6fi6w+Yeph+QT41hIxzUOnDhpD505g83dC6Ew26BoT+oaRyW39kqSaaCdRufzAVftOG2C03p9bMT
zCc5ITXtq9lYGyOVvAEaGmvGo14leeW9oGtg/Jjlth0BfFH0JroHsQAZOvc9da/HdwoHcSG6e2qJ
i+dwljssMDoblZT5Vbaxg8G8BF6eWZP5aohSe42AYHlG9OzgWzdD9kRBXVFCMmPOOvyW/8ihHM9Y
SwJ1PviSEn26dJE9Oltp4steJk8NqUm5y+OG2aGniXnvcZTBVG8q5v7rw8S5lfRF9Ji0lmf+chWf
KafyxWi5RcuFUMZiZlSuz8krEe1G05e4zccqnRC9h1s9MAeoLQ8nD6tYHwgqWTF6OWuxZm56pt3M
L5jWg8ahVZFAHWvQ5oRmtZCaJRBM9xPn2pGs/jNJCvcoBiFV4PER735uJi0S1WYCcyA7TEV4CAQs
rVf5AySvfkG78M6iawB+lnUssw4Jrfo3Sobb0XT9RZYdPUcQGfMsOABFdnWTbHLoNtCLopMz18Po
HtpCC4upt+Ned/fGFZ6GWFf8RfMpc7uj7MTCIILf1Wtb3QY+PtSqTdbw3jrkzpSQMhUN4dOMD98l
n8rRQWMro82wQzlEsyZ9g9SgvEFgJ/5ql0OIyA38/Z3bI0LA5m6EtNv+hjR9LfBaavyjiOpTeTM6
p/zWlMyRs92rJP4UrjZr6805baoG7jEJtSfeTiKcmtAYTLY0J0QDiCbsVI6DEbkUo/TFmfQeqDDy
z4d18rVWqdvAHdvyKtYH76pLl2DSj0/vDK9jK64EOrDfmkZZyBV5noNDVxuFhI3lvKcsgchlxyKz
4zBfuGGfKyH1FcIqXDx/M6bZCoqFW7gynkLHWPdFUT2ZPqT01OvXxUu4axVKnwuqefbUQMOygmNs
NCY+CDtgGqTMWSRFxGv2AyaXSRSa6eFaODV2nmMFwAAfCOTGqBHi2FIECCnCgMa9FoGDCttfMI27
nCKvmIy7jLIbOC1xCuef0kxikBOnNy74zp9vXkTDMzV2qpc5LQMKQ++ZPYf4wS19RQgwpsAwHD4+
ykAO/tGpWE6IrCwfpljPIFBxh2KHtiXnGS+7ffY7jvgH1EDluSLmPxP4JlgZ1Hd883enqdPyJl9F
jZ9Z+GVyiv62T5urgg4NKkHmKSi5SOgQ0A54PM70F4hiHyfc4AR/AZvBk39aRRE8lmAj+2V9F7BR
F8o0nWIdkdM701attgx1NUZjasfX3QIySFvo4+W2MgVGcmcJ7YbWJFOPfYTYAUkWjUZYe+8pCBXm
2muYG0mZic7dUluDllb8zLVu+GHzWO2haAaJsAAGN1QFC88qVCYzxncKwZ4kOe5xSvBvpkvfqHLU
RsnguWCvBXXb1uAH4hIIUxyvgL7T1JhGx4TK9WXPS0F2jvMWweluQHyGuMNeWmxTuT3Ms4gHeg21
d/q5dfETNtK8XI8bwMBNYKXvvbH11Fot5GzKQ+3+RNMBF5BlQ7+IQsRcnGcJ7S22iBtQpS/v7bVP
vmKVJC5JXpYE3hoUD9FcnrFKHSbfQY6nfyqt7wq3eY7sZYyq1ltE9sCtjAwggfPAsOZTcQAOZ/LC
dDjlW9DgesMUph7nj/1NIVFCvR2xL4FWkWrgwGVjM3iOiC8vkPDZe5Gb0lb1TKj25jqcpWZU90YR
1SOyN1gphog4f3qgdBdaZCoK55oYGHUQ2fuEisjzHo4Lt62brVbXCAjLXCzk81XnW4h3biAP3wFd
Wml10N+Yhh5A1ecRf9DMw98KXnJqIKJV0DsS4tphQl1+zMwM3ejx1Pujbch9ldIFeAMhC/zb/3aB
WAHpex2FbxJ/6CFowb86oVf/lzk1C9Ef3eq+H/jqzLCrdwqt4qKOgO5GGZgF5/LKq2Qg1Lok8mkG
zeJBuPyU0skpxmDe7kMWrt7hL102tZiWSvPl8Hx9/6JEApxxrqf+kttW2hXp0sm40g0q76w+RVVo
TTJNLHqfHGouIlPsRxmtbGl9Kuqp1znUZCFL7HhH5d4MsluKy113QnHHUuFetT7w2YK8YyLZuIov
9nPvDm4Z7oUCWgJ4Rpp6rF5PYTkayFky43cqAxz/zt50s7/ylrmC25R60ghP23VgKd1OJ14kLFyq
/TSQyqxQKAZE2/kYZ5yRDAl7s+QXSp2sT1Y9eKSincjmCYZng5LUYESuuMIUMAe9eBW97BJadsRa
MrvquH0tqnhOiRuIRjokHI7ek1ItNm7kabA27EqfMFRx/rtTZy31XAPv88Qe6xuKcahcHqfLJ4Jg
IkYA20N1x+5BCKwtWoPdcEHi8HjcA7DUs7G9BIXkdXQqj+mcOy4njDmEEncFaMKAMw4JyHi4iAbd
FZ9LhyCUsl9vmsH8V/sJum2VqXGf4CdIARs5vUc+j03lxencAHOSB6RgwpWcvN/mdnj6crRf7Mzp
NA9geic1niDv3oRSlBGp3axGYM0EWD4UfXJeojMM/7T4yJiD4kBiOs5o5TPtwtSKoSutul8/ZOoE
3pP8XwtcCr4rioIoia9kFWrrMN4w3QBM8E23CD3DogFqTUkt/S1VhPPztVbhxinjmul5Muc/mJAK
iEN1WZu3jxTlRmxqeIWho5iOquz4sNI/FKIGu0nR6Q/caUlfZqGGNR5+uYczvlmuly/1amb9YFD6
0CFLgcmQ1oHWj2eHp1hwhRrKn2UCLnX94dE/nt+7cCTIvmsBK9GMyj3yu8BlUJvgnM5MTbeni051
ze0i4ZMDj/FZO04gBk3BMAgUB5o7/Tkgz4rnyD3KOpBzrlcn3Gf0+G9soAFxe69eQIR/VzbNmt4Z
arOl6/C2s4cJCFn52aFZwwgCfLY8kCOe+4vwc+bRXHH6zbh/G3szNpanth4xr1O/UEBA2skT1x8q
K1cCj0JsN79A1XWldvx4Odb3K5utsH2IIjWucIFMphQkJ2x933oqvfzjA6dE4DK05U9PlGNn/xaS
KjSt4R2D7be7+kW24gdNL2uwrSDU1Lum2BVSyNPC5YPJv6pVGz8+bX0CqLyYW+pMgWXWYvnb082O
wiRk0zHaB6EdlXiqjjlMzDcgO6/bgp/0XtkeOpxZ2lnMuPs2MtIKKmYfHWhIX5ealUo8vt55LVjm
VhaOYLUAiCHg4M0guAGt/Z8ngho8YcD+PsP7naogtf4068yfjC6Cnl+aSQ3VkO3TlHxZrZVPh6xt
d4gudL1A2b1Zk6KH3KQKyy3SkFBFUTGU+mAJK5a5e9g8/jiPh2gHK1lhqG18zzAYqb12J45+VgoJ
ZbAtWAbrziOgsjqYI9omtgi8G/WszXqsZe/Da9E12YgKh85k/S6fb0KNbyej719926jHmIGfY5Se
OJCILuGa7Ta6OEhGLXAvZSO7Gaa/Pg5vbkDHydIdW4odCHFqHeR+RT17fleFrOg1xAFUAQwdo/bm
hwNmd1Tg+kw16X15p5DGwj3g3YkAjZm0Ao7u1WuQe2FJA87KsAF+ivPMoZ6u0jYWyeQGjVyltfI6
sYRSLqGbNuRoTcj2htVFL9O3/osev6y0Xik/0u/gpOci6mNCNNVhw2ngbBsbeUDUeORm6j0IxN4r
s9OTEuIeGSnqWQsASiEtV9spPM1kT0lJjaP5MbQddmPZJzj9WB/ILyKPlU/WZaAKab9eDZ+hpBwr
wZ7Nbm8kUoWGdfIE2ADvzPeJFGkyrbaF2EhlwkDUlbNPD6VWOrHnOUMwpqVHQeYTMF7zzOGqCMll
1/Q22d28wTyArLyeLv/7J61UmlkP1DjbdJkNSvlYrGIvrWude/er3+En3t/qpfozobdnnGionia0
BCuVweEYXIj6eKNYg2AZGNrDYUIrD4tRK8hx+fNUsCqrzBKnl50vl3FABITGl5Uviduu0j+lh9zt
nyWkWUync4JI6Z2BrbP6VdMahDGfgLkSquF8U+7UYYpG38xMcZguySWNzm5SiK3yD/I7oeLbnaBv
RiSiZh1qntfzZTLr8ErUnPGoAzUoGvs1ulILI8gHjUJAzsJheJ7X+1eny9Wr0s41j3+2/dOXFHas
QofvZcI6psf3n5TrfJRCgODSm+eagSKMiQh12AgJAKXjQNlc7qfoM/4IbHRvifu1B3AC5NBt/DzL
rbQ/TTV6zlLFXLCAa9TtDMmVcbh180GoZILCyouQj79MaeWrm9G4ANieF0wEW4+py8CAK3ucx1LN
634HY0efgvGhY+OdQIkd8egeEL4hV6lYN3SSqzX47luOFEsebKrOLaOBIuVJNriKp8FCjSmQ9NEf
c3L3t6l8QuPL4OxwCKCw6xv1L8x3y0D6Hswz9QZWJ95RgegdAz36PgN17EKjNFTsr5VL4oEOjH17
y9aW+wIHbcYAtDQz8fuTIiQZ+RSMJP7t2zzIuqlQrMLycsU8Fh5Ym5tNVnHWAuHDqLk5JgRhfomy
3TsQzqtUcbORQXn/6CDzivDA71uv3xhmCffrxNXSl1FSW1D5kHjYoUNecYwFuU0lp8OT92PqCwm0
XeWwhkQnWfg5qpOvr2tO5v1opVGqjqRtBtQZp83Rx8twvmG2oZQ1qX54QFJ45odsbCOexKUyHMFj
vihuzuk3qun6Myi9TXb5oo8cpixQLWFhEBff4ZeqJEDDF1OaoM4wIiBsu2TFxQraKViF2FBS1Omc
6ZUVhJaeg5SxSY1XV8XW/3xcKcep40L84ssagUKxTJm2+AyzNVpMAr1E6lLVtt8IcI5mzruUtHe2
hch++VB0fe4wT6ZxpjzC6tUBK8SW3Cvs7kXQmfTx8hJIE9sZQG7jwLsYnxRSEbJVF9smVfVHEI7k
gGS6WewErifS/JkQMJM4OCCHoTLsmyiXGvuJvre7N8HYJ/gS36d8W5r3hReXvsnZ5A896PXXOfdh
UX1KzIyz/aBLiPVsmdDViUfek6n9EztFcKC03o2M8x7PuD5XHFHvA2YISDylBeS3j2HdT0/zMlyf
eS1VLIrq6APjCqWiTwh1zRMtdAbY9T1lzA9jxIevirAOHN+BvzVcfG0aBoSF/JL+jyONZazeZPl+
RGmhEbN2MbsO1Tey6gdu3Ae0P7Ifr03bsl4edjGfezTOQ9IqFHxvRinlVQGD/pvCX8DuOJ0BGJSE
oHzZKJuHYoqqT0p4RsKTrL4usheTncB5OVD1rpeTRhOBzYztm33Qci80TCZ/jR8g7zbkYvwnUlhb
8ileQtCt/y8NGPLnXQpncLQ/KrUszfdS0YyM/j8tqkNCK7DyL3Pv2k5zoMs/k26uK7R4l073HTzN
11iT4W7j+sd1FXGqnlaOl9WXc+3OLI4rUvRD1px+VrjSKh+OuJlJUbqShbYnTZQs43LfE8nX3Fmb
JgZjdb1N99ZtrxFbwK1LboNVdqOrVaGyE/GK6RySRGvEKmS5lEK2t5AypFjKjh5kXQGdfba08hA9
zyIQMH1v8iuIHqbjgqFHRO2bFwqOOanKh7rsPZPZdYtLiXeW7dzYySW1/AZRKkiM0AvXIHmZOCmm
ouLRHrRCAwMjClCNoX1VGDNccV7wS0FvS3EWcT+Qx0w7Qe/GyFfibH3ZCZ0kFwBL2tjdKjcmm2Jo
8EPH3sMSlh/2h+6q7gDGXcWhWfr4eYMJowILC8n6k+r+MDU54CnwKCT2nbPUwRyhtHJuQi8qf2cZ
Sr14KKsDeuTabrW8TIBV33Yu5mfcszJ2tQF+PJNvmPwezq1Nud78Ul6FAF3aifypZ0UBNz5EIKWB
k3jP3b9mQcjXoxTr43RQftVe2IuujI8FgAJnMQlWM8sU7Q+NF7xooiSBgfN9CStjq1oY2TR9OF7N
DVpJtaOx8W8MOUl0rVp7KrF/PQeBsF5wkeQVVeaOM+i9sKxADbOVBVMT9p7WEcu3Gif2J1N5Ld/H
7T8z+GQ+h4oQPveWZJnfmqB2FVibNaP70VXL3a6OrUt0a67/95o5n0SPn/D3RR34CiSa4EDOD6WW
YYEcIgJbrXJIAlz23yy3nO4O42WmxjslsR2wkl6rTm7np5LEA/WxLCge+pS8pAPyElIOX/ksyxHE
I+Zug4wSj5PUV0mFBFhnRrFcEXrIeZ+xHZfY0GgWWobl6vOjIgUKvFySwplug1go8dgvC4JFhNNw
NI8wc6EP5R7tc8wY0L1f1CmqlVgw/NgrfKwJC1DkfBIVgg7mdmMA4AZhwwtW2tFYKv48X+ZXCkRx
kQ5xXsZICQ8PXqAGlukdHz4K9htm+RcMPs5kfe6LxIzm448J4Tzl6GlIPt1DjjYPyK8M562CeF0v
848Uo9arQU1XwzV3f0zFexCQsPBUwSvOldWRrTm9S9GwQPZGlP8fJWudCSIF2Te8EZDekoB+ip8h
nvf8zrIdEK8SiWd0XC/Q7wWk+ZoSIEhOKRUnwwJve2g6AzZeHmnewkyHiWPe58Fdy236+8bZ6vVV
mcI2XWKNL7rBQLbNWlQoc/qxkdcK+cAxgZswIU9UAJcfc+fAppnmimwlNpTVISg6mfxYgQZ5wKMN
N9Tr0MMgWUtUfkBLtTh7MYTi4Tl9l6ZmUePvzQwoy6k3MDA8ccPUf5RLcXD7XJTIRa2K/ryF5zM7
5TexzKpdM7/PFbWo9QIpHTWHrAi6+xnGZeSeJzj99cU6wgcLI9xi8I46E259H/OXss2hI4gI0vtO
yJg+7Bz4h5zNdlx5xi0Sx15Q0ODHQ1zk8wToSI1kxb572qqmwR5r6ctMnwyHvMomUmqSVFE6t2+n
q/cjtADIvlh2oktGVc0NnCYOXrb+efh/ulo6rZBoHWvurUGZygjsgRAcdH3GGMTf96lIg8mYSLuY
9FvnwxnNKRCYN/pOJXXPzJ2Z+eD13PZ/Bl/rqeQYU5srvQxaFmxmpUdcJjQA5f51b4RJRRlUT58n
3fCmab6HJ7w3TPtRlMXQZRY8hY+KFEtu62XdEkSX3LPufkZXdnDIgQKl4ubcuwN3pG5u+mgX0ORp
dq+kt6Y275FU0Lz9us4/v/d4tvD7GS9/g6DlDd+2NgWpISshhqT0lpdIG+6h6ffdeYj71FCj1sQJ
s8dr+8npkMukLe+lGjq0LDyMKjb2kdbEnA+xZW0tRMPlBiDSbEoJlvHoq8SKfXtPHSKW1rQexqEB
rLtXGUP3So/+3rSxCtMIBM9FzphWsuc1X1YeG8lVQXCZ/xPhfWWo3MvRnzFYSuEeRvhFlCCaZsk9
xEszTp5E50BBUgf0NGIOSiCK0odN3m3lesFkt8Oijwj3rcxMilWKF/Ws9JAdF/UtACey6dtyIKkg
3GOk3OxFvPTHKrz+Vp9e3Ikmv2+pyHukF+vww40wxmvWHfBHwq3HmrvuGjdztpbdTU4ogQDUpIdw
DMCaF7zjDkrrm/Oi2hPTtWrQxnuukgu1icHKnhUBIoGY4B15JxkMcU8qG63+lAZZaAVGtFqfDzMI
CPquqDaTAeSz/P74IinfJzsa01dUFsZg+Fa/RSOdf1llULNJdrpoZO4Cyct6SavjvnFQ+E/GD500
BiCcBFZe2YTHtEU7FnruCWIhEpQtRA1ZHNwZvlntNPMyTQkwBP3tzzJc0xH9ZTq4DyVAgYoi3pOy
y3xyNQM0/UD1n0Kxkl37Cm27Z1VpbkcSMRum1curwutZF2sKkEaQmGt1DURp04F5d0qAWyai2H/V
WW+BxM+gZVS3SXtYDsuZMWdjCXKqI/ZWVH+xXrNuyJ+S6IXwriVj/7quk+r4L3CBJE0fiQ9naTbQ
TaSZc7OR1QeJjIAhzg1wMYyWl+ZoUKGqj+no/BK5Hm0awB0FwtJanFo2XeYVTLg/OJVtu5dRTHiu
nBAcOR2HGETdBmYcZhxfm5h+WN1HGGgZblqqDrsLQs+RPMrncLueoVcLEKMmiVHKA9aeFjqfSHvv
Brw/vNWG3Acm5pyvSzVYBAzaumwEgxwsFqA7T3v4uikXLdwApcdKNjGIobK3WEXu4o68fQuvdvzl
OoF47aay4jYEsYCnv+YivbeO78uKkfZtCgIJcWzDvXUEcPXwqNk0nliRzDUQfsTihcXCQqJB5+JP
9pyo9im50VqueYpXRyEI3ZadIchzf6XP2dG4l636M8VyCiLAYug5lwFnD1Qr6YLXz5x8CvN3FwGy
1PSv0bxajv2Fz7/ssGtQp8WyMOCCepOL4sg/AI/xIXHi+WWaSdMS2vnZ2irFkagVd2ikX/LMMNsh
mX/68VXeMjfo6VWd5L+w5sdfIXfw7Uqro1nScmNivh5H+003H7SUWczDgnKW8xLlVlR3Jth+9vam
bmkN1n9LI8MHPxNFrnPP91wJkVwbNvE5BxDCyxS+5JjNLvbZItabbD+gqOJMwRlAYwGZp5N6eYiE
EwcAzXsSGXvHX9KMdMTY0iEUEHCFygTRaKRoG5UgCZ/RJ93A00HuM3c70KdRrqmtiFz8di4PSz1x
Vjqw6ujmU2o/w/FzORXZFGSTEg9fLENBFNcmerAn+A/CgxxoIFpstRlwzHYpVamLrJWdoFzlxtje
0wQsmSakVNEbXs1SR0lgZm+cKe0Nq9hEL1EeJAHiU1cjlpU7uGR4YNb9A9qu4dCzMOtr3ARUeWSN
u0c0R9E/sslelDTA54mzL3ymKiNn51pZJVIqsYVc1kBEZpvuwoJPBCqazChfDH+6IUhovkQ0FfMV
WYTloqEFF8cJplV8iC+WeUTYy3sXIa2Q2KOB39TQ/Nfmws58BbutK5XbKQLQVfExf5AtcF37zt4M
sV+k8xikxT7x/ztdo19UB7fen91eXVYKhDJb6EEmYpPc52m02rX60SC5Uiou6QoJmM3CBQSHLKW1
zuQH6yEmHlDOMmFei4klcpsV6jzKI83DMLkDhokXKYettqXUE8YiYVWwVGV/3ztYv8Xy2LspsyeK
jcU9jyyDAutO9U56UmBVbw4QebZI+p9wscmmvArM4kdAW3lIrlL5iVs0WFf6mNWvUS7YoaQHWWPN
P1ez/LAJA3vmpoQ7ejB/WwTQiqzSPNL3eSah+ZFJfguX9zBUDyL5AkmBjTZYDXYI//+mS5GfTfER
2K9F0oal/6k240zbomdXZtXyIbwQ0T4wXCQf/WRolJwcOJh9TjLNywHxaNPjWnxPtpRH/3qGRD6L
2uxyoUnztgmRC6fe/j+AJlGXvD30zvdtwcWE2wrzGuQYHfF3SprPPDPcKApE/4QHL4VIVzXDgXAI
O3XBobCxibw0SwpE1yxFU57nm2VAZybbR1euXIKMIOWwsY/hFaGCodih3zOMkfUF1UF07K74CZiz
/Wde7fXm6D/LTNpwtyFSWJ8ESQMsF4nRArJiMniUF8Q9ofYI+Jny/liua7zI/wmFsqyIOTltBQ2U
LhhNxS1FrxW3fBjZC6+KWGduRL9BFEqlemvI8IHlPTJ7Q3nAtClC/qrcVu21CcYi4muC7bUXllPr
OiWvEoQaG3D2SJI1fnuFu7unKSM4WjA+acvRKiFyyRux9ie0IlBkf5/8JL3FnkNwwo0r4krghVbX
tg9p8b5RDDJyuLR3E/d+m2eyTZiuP1xDa6574BE1AlGaOJkOJnCCQMpQ9IDO9Nyh/WYNnC3AK4Pp
HOvjCifV6pjLlOmV+yXLuTX+qkFZpGwL4VkskwqWxgYkC0hhKD9lLUIFTzRz4luYH3tB6mHJIrvt
fH+cOX7Mwpbt+1BsdyW2UAH7sA90B92QDV78+dp1QbQtQAlwqzvkGlyg8/DQNKN96IY3X/ead5n+
LoLg3fTy8gP1BjqGVS/lmzAr5hcrvIm98oZnmqFkxhBCqHPBaNxx2Db4z66+n/Ykmaeemq/Y98Lk
67X8KFt1y49VZ9Z5vl9RtVLvDbxa3X+1nuXL63gKrYVdAnzA7oBisBEy/79ut2njVaTY/gtn/DNR
GB7MQPI2BiWaPCffozfmZSqqFIMwMEuPUS1TJKyvAjf4oft3fs3HywmLz0JHcnltsVaIOg+uDujk
lLoA2e0XzPiizBaRl9hfTZsjZzVE21l4Te9AxcsMOcff9wK1ZXy3hpRzTAd0tBL/mTdI1JQ95UbL
ToOL6kiSr0xThD4X7eOP2CHdchUF4pw6zzZSXo3OtJsRUDIGjwWHkSMb0AjJAYnB932t3iNQDf30
CepwCmioG3sDWMPxknCNJ6rMyVoEhYXsagKpZT/TV85GUF+Pc8Wvz0uKL2v5fCszvlQ4dFHMx3TZ
tgm6ILaf83VSXThbImVQBX6drfWOgQLzs9PKL+Io7LuNHTv9ghSu7RdOq8ZH2iAMHBhvTKIqzWbs
Nxm3Kg5xVIrPyIKN3+LYL5w83wJ8dKibCgrnAuckvS0l/TlhnybwWqcQI6S/yXeM3J4vrUKWxcom
jcil4nVk6WqXAE03Uv17b/52q6pq2VfA/vRw3iv94i+OIXR1sdHg0rRfwrPufkhhb4IibNdVzKrD
p1/HWOTyC2vBYC05XnzMtFmdjfrOCvhk4tVaEp/K2SPiw7fcsprs7w3KPqG4xYLzu3llClVj4gA5
upDcwmDDsWciUnTU0KnJcGzWqMV76mH1Wa2v75eC7Mf5RFt2pAYREpgEdlKVmwQrHEQK+MWheDaF
4ffOYnPVWJiCEkdDsS/QPX0HmYgKuowq7MAmNg6nb0Ui2siFhnxJCSBTqO6nNxaHKrtK4IVkkg5X
s9gahFbCJL7xEyG/iKxwtVoOFKYFr0d98otTm+aCf4Q7VGpWDrRnz8AdfuXTxBMM4B5ilXgWp0ge
ZTfKV9gyYawgz+d9q1ASre94Dqku5XBVeKZT5hCtLd/IVD34QyhZZxXAsTX5hJFlqtRHcZxrOH0A
RA1br5xNq2NQryRgEGav3fPmcoCrozy3KorC/962MKShk4lSRepPRgJAc3yoQuT35PWLdnfDaw8O
f/puBAQsLtrfUJQgY9kM5fRoyXb/N9Bxaxzo+86kSVaOyethRXiPFlJNjtzqFfdED6tXhZ3bunBW
gmIOBHIIlLSzVctwtFq5CXgZA/yVPOVK00BuMnydW+HNHmaTjPOlHva/HvJKbqMAbqP12BjH1jEJ
IyIrR67HBn1ZacfTzLjDsWv5WHQrw4C5MO1PijfJqiq2yQQlZ9bz9fkXK1Po4/rRi/CeFBHLJSii
Czs+1vRQNsQfHmKPXHsPWI0sAmoqsOjCk3LOFRhN2K+OAPuWhBsjT6OPBYYIfkCc6TbnfrsDqvnJ
kIz0J3Jeq7AAhSSgKc2Pey293cn1pQBF83TuvrwYZZNu9qc9NMBiIkjXe7Ao3AeFHf2AHpATGIjW
ZgJZLdyCFcLhvtrl3jXB/4IfZ1r8Hsse4zAccDJfxKetJ4OJwAg8LKFhHQDOllcOD8TCA/MdFuEj
r8gKWiBDtTw6JqQ28n26twjVpjMMq0F/mQoffX6c+eJCL7yxFMT8GnJBGazN15ZxDdOt6MnPOfJO
1xyWn8x+HrX461MEPWNjVUbf0UBhkJrQelilSbFeFbqJzWiMceqv9gv0bG0WaCbDi+ehqwbtrSQy
hdHZkqo4ILhkbnucdLSfSfcB9cz+5bzkQC3vZRSqdlRq8O8fpt703JTx5NB7S+ibCKHrJdL95h1E
NJ+GSjG7OToD4ZV0327ImNQoU8jcPUIvYykgeSRuE+SAuJeV3C+tCYeipFpJFzM57CX2BEukpRQw
Y0Lp469yVdnDUNMMjgFw2pglmFLilYgTLP7/PSjSDIHW4Zreg3PKJsinluS8uBAEjARIRe6MkVv1
Vzt8lpk+KkB+Dmu9TFPib69R1FBJnm3c42OHbM/iLhQUozni8LdrdYmoI24cqdlbQWkfXmbRkP65
/Q0stofagsv0HOnhaXNO386JJvWpuv+v+j5qFJzhWzGGLXj2IFOlyiIgFor/VY8FfF/rh9egMyxC
g9qPr69V66T+XApZtXfebaREd8Wzuzbgw0G775YFQyKbrOQzX589xXRInM83dAYluouvfJrxlHT6
eGXWwlb1d/Fmm9uzV1XPJpTjhovkDmyCn9XJFnAMuUOjkaxIQtGmfPZWLZJMg7VGTmCAN9EvA+mf
caBtdNvAJMt6XJu3XtM+v29X+7ZHcruRnvEpl2ntUZWaUIalG+uqbR52ZOaKbuf7mem5+7JGCEC2
F/HM9juEwSI6H1MIOzg0W+WRTfx8qLovubVzWKVnYTgdPVOx9wNLH+dzIRa2w3nWEMY9H85c1o6p
ZnSoYrGlwu+IzFvpRwi5VHTXOrb3MMoWLdLwhYbgefKsCDmH20NlB6ECp8jlAP6kBSqDPPJH9N7f
tvG/1BXTkJSTqyK3Ss9jn1YslQ4/pqrijq8xaRDUQCO8ep9XHIQXJzUTMZImRaWCb2k4U6ZmhNBV
vrYV2twrPTmIeIrGjO/6oBhcH43A+yN2Wg+P1YhYqxTXT3WBc4wmiIDGY0fpWTkiyPOR2jZdFO97
WJFW2RaeIG2sqSu9gLm0FyLzN6tvlT3EviKx5SS3i7BnEKU1yY2aDddT3LTu5/FSWiO1MkdTkeFo
ClUbW6T9LaQ6i4tsGRsTAN8AlbaCjKqwvAz2xOcg4HHJZRPxWc8/oHhRVIfnPbr2/BsaXKMSOKj7
JS04K69TID3jAQyMxsKH6RHd79FJdyGKI9CnF/cu01sFv81rkejPt0rTPQtIqkmqWHfbvWP3DS2e
hr2V5XIOObwfV6JxjsqrDOVOftQvH7o1EjNk/Upv7dKpFVFXWxgAqHQPxzY3rlVoD2CjmBFhpH/x
wAB6s+h3vueZWwwSOyQ2zEc3+6OgtswN047yQ0CMg/fGq5tAY2xeRXT704Sp/2BJyRO7TDhcghef
yo16FRNMzsyr4K7FWypTX4E/tHjFV9sCYDeOUQNXclW2W4fRvbTeEtJmgyXeGsaShiqcYXm2hxyc
7COXf4YiRBx3PCklKTiy2hZSa1n031MaGdkBcjtaB20lg0WYQW2y7HRJftQv8yKkCUXgAtRbvQfp
6lJ4QCUNDK3qgcdkt1/s8ncYzRjetCHKus2AJNqtriivp6DDDjKqWHGUrQDGrEXa2qUTlVUhfUDN
PhJ0WXpBU6ob5j3S82ku/625hnlqGGvSQjpbCvfgCXE+u0BBlhxQyAfx4BzFygX2glqnNjvrPwW0
taGRdwW2ZuV2IGehPb09ICGLSM6nWKqHptD+VvKkZm93HFAi3DBBIqLIbyOxKG65+LtloePOVS3Z
EGZVFcNydnayFu2NoungEzEOq/GqSjTMLGIv9JLYzElSIltP8mRxRB0SBIh3xEpyOTdDtQ9F1wi0
Mkn+Jv9njOapiw0r33QGmZw6u3VYwE1FokCq6luf6VS7l/Tqn46xqIuSCEan4KCqSzyyaVxh1OKr
tpSvXGlag3q6HVeBFIpwS/RfcIvEDpXSNjK3th34nX1XwbFyGJjqhbkU7R/WUKu0V5Q/L667Qye5
4w0mS2k/BKesYqr6wZ0dbkqnNX5b4W3ViK5cQFBWPZO9cN+PeTX6Z2JTicO+I/S3Gn8BhiHpO/ru
dRxfcDY9fhEVWKd2Qum3QQoKZW5kc3RyZWFtCmVuZG9iagozNDcgMCBvYmoKPDwKL1R5cGUgL09i
alN0bQovTiAxMDAKL0ZpcnN0IDkzMwovTGVuZ3RoIDUzNzcgICAgICAKL0ZpbHRlciAvRmxhdGVE
ZWNvZGUKPj4Kc3RyZWFtCnja7VttcxPHsv7uX7Ef45uyd+d9pip1qgAH8CUEggmBUHwQtjA6sSXH
kvNyfv3tp2e1Hu22VjiQcz6cmwqj2Xntfp6e7p6VbExTNVWKlW0qY00V8ZEqFejTNVUwjj5VFajL
OFMFF+jTVqpR6HCVcgo9nirO7Rnq1kphTKy0D+hKldENFZ5WjJZmeVVZ6y1VdGWj1VSxldNc8ZWz
NlIlVs5jDMnhkg57JujKu4amB1v5qBVVfBVUoL1CJPkSlieBg6VZUVchkVC0YRU1RIi+ilFjTKxS
4yCYrpIxes/Qfil4iBlIL017RChoCJmIFgudFWq+oeVI1SYQJIoGqiYSdEZTG42jjTVBpxTJQhIo
ZUzYI5mUIjVpD6p4Q4KrSLVAUkdaRSVDfVQhkNBHC2gVITFqmoYYWk5pY0wFmDUeSXalrU17JLvS
TgNRVAg/i8E+AGeqBEuyY3AkaTUGR4JNY3CiLgJEmQbyeFQCplBFRbdHbYYWrGgooUTLQUZjWB6M
ccSeSYZqAZslGmebhgBOBIvVtIVJtJwlKalGuls2B4KL0Ehxz6QE44HoNEs5QxrYRsGOiAvb0B4u
JPTSHr5pAtVoD4+VLaD3llS1De3hvUMv7eEj7WGbCPtNzZ5tYMmGRltFewRH+lpFe4RgaAZ0JTOh
GWTDKsLmraI9IqzFkoGr6Bv00h4xEjMWVpAag17aIxHyexaMJQuZgWbyRLUlrVSKCW2aQCYDoJqh
mqHSkgZkZUSLJVx14xPaiJWGNqYajlBDSFjiiw5TtHvffLNXH1VvAVFTvajq129+rug8OBUOm+iq
+c3Fxbu9f/xj2zgS7tB7sznu4WK+qr75pqofknpkrTzhIRkZ6d7WA2y2rTsYK+o0vX5+vTg9ma6q
t1X9/OhhVb+c/rGqeOW3LqVDOs2hOYxtGZ0/NG1JzoJadHQYw/WyPdcDraDbMWQkh74t85iNXqsP
3cZqn1PmdXKZdylLS+1dC+nlCNgAeUgGco/RUt1zr6feQH6UdeGR5MQOE51Zlr7yPCNZRaPalfK8
cs+MCuPX7pBHckmex9GCZZMnYdIGFLme20vQWpV5aUvbhK4eDuF/Nke0QKOVxDDtcyzEK0fnMXSK
D3GC3aFZU1f0ZnVynct3e2+D1oeaPp1R6ENJT558wH/xP0LAKE1oWxO6krwu8A8wt9xL8ZDQzvXc
+zllu6a63aUsMz9ti03tYSX3ocBm9GyoJsKAyRtHBN8Ad0DeEgcg4hhEKj0dEkdrUET1aOJB0Vqc
CB+xFNfJHVKv19guRDIR2sLySGxNwVR1cuSS3D9sTvX1ye0las7C8vPSlnRYbwNr1kiEcC54hdze
4pLbk4FT4pZksHI7txifx1jH2luuM39lb0Yt17mEzVN0+oR/OCuUYblomCcHVkhHkq3hU9wAplyP
SpFGZT14dko8Bqc0tGUeU/YiwSvX+pyyXZHLvEdZlntTbKa6TxEtTWIXGOFeg0ZpA68A3PNIyvYg
oW7YfDR7Q82IsCs1tyvnFdpdtMG+jp143iWP5DKlW0laeZrYyV9qlNtL1HIvfKtty7Klxb1oL5HJ
7drBzlrmWMISyXZlFTv+KO0Ef0Z3K3iyvG5kpFAD2zIcpLhMDscply4otnlEilxPTvXqMUbop9gT
0eE0bZnHlL2GT3mu597PKds1ucy7lKUz6bbFsw+inI4Sfj4TFrcC2ATlajEBxZg0IpP2QDTi1Mdk
wW1EPKNkHoc/D4oOPqfBs0Nmgh5AR8vRFGwQcIR5U0rmU/eQy2y9JQq5nttLvOjahHZeGvzGdV1j
HbqLgXdeIbe3iHA7RYkO68xTO7cYn8dQ8o3S4Yxk5speIJZrXBZ+KClYUC6dBWKGUsFcK1tzPbIu
lG+TdpTHYi8u85iyl2568KFcz72fU7Zrcpl3KUunOELkFgNKQ1QtkYgc7BO0QlSi+wZCDEbDI9CN
A3t4th2PHMb7nIDZ9RCCDtMdB0au0z0C8Co4HY5idOfN29KF0HFYY7PiEh5JbeCQ67m9RCz3Ylkb
2Rsq+AO6bxlf9LVIoI2Mdz03s8MzupG5ny7iOMsGOVzm6rYv45PrXCLqNLhis8/87FLhusiF3Ora
f7ctxeDbZxL4ULWlOFQH1470HPS5xBFMbYk3IDiGvi3zCFYViem6LITMu4WEY+wduxNyKkjGFYci
HkkOGskCTAj5DCi0TC330vXZR7gnuvhzXqTzVcBz7HOcH7Cg5JdxOlk8WoDEYzPzCnabYt7KwOQ4
dQradkpuLQvI4A2sUK7RNwxRLnXIsSj35Pmo5fZoIEVwTVuzqr9vCeFwxxZU2VqQDRuc0bJ0jiM/
l5Y8PEUrtllI7Zn5NuKy/RoeGdoy6sRHluMkz82jcz3q2KuHYLoxefVc5jEbvSxbudrnlHmdXOZd
ypKv9usWixtXIG0R8YLLl1E++Zw/Bbwe4zHGcT6u+HoZ2O9rjvUKltiuw2v6ct8Cc94hj+NSNbSA
2WjyTejBkOu5vQQs97Y02rIG6sreglBOpPNzJqg0g9YwcuqeyUocTrle9kKRXMsl7fr/V8//4JUX
Bh2rv1ZqDtG5DIZNuSjzNaxtyam759QrRE4SOfgZvkYq014cTDvSGBwgSxeNvAL58sgXKs8uK19q
eOW8QltPCiO1Xu+Rx3GZPBx62eLoeqpb6Ut9cntesezFulaFdodc0zEUvS0eaEuumx0oy1V5zu06
3G88O4f8zgr1d/ym8OWfV9OK3xceTZen17Or1eI6vz/8fnJJPY8fvrn/009fP3j6QjXUfjE5X1Y2
D7h/f/FH9fbANtWBdhyUEwLEu7363vJ0Ol8RRDTyweTq8XR2/pEeo9mrsQv6DhQ6j1eTi9npvfn5
xbSi5U9W08tXNG2vft3OsUbREh8n13gj+VX97HJ6PtnP2z+c0STjERBerN977tLm0fNvfzz6mbQ5
ebNNHZ2qg+TxXl/BkblbdUi3O6hzoOxaIdtsVej9zcXFdFUvryZn00293F30enJ0cvL0h6/vT68n
J5P58ulivji4v7g4k1VUpKKmLNI3vko6FhraUGrIj4WGYQthulG3Cjpeo1NwUp/Wp4uLxbw+q6f1
h/pjPasv6sv6qr6ul/Wqvqlv5mfT6+Xp4npa/1b/Xv+5CUO4Cwyvjt68ufd6E4YXi8vJXMbBbYMh
qA0YdCpg0Fr/BRju1ffrB/VR/W39sH5UP66P6+/qp/X39bP6ef2iPqlf1j/WP9Wv6zcE2OTyigCZ
zM/qyfJ0NlvNLs6mVF1Nr2fLX+r39fvJ6S/Li8nyY/3+enI6vZh+WOXaNXbm6i/TVddM9dyxJuJ0
cXk5YTpY1Hr6683kop7+cXoxuSSGPixuruvz+vx6OqEtibCPf159nM6Jt3/WvxB3F9Plkgic1/Ob
y/ck6Ox8Xi/qxXxKnF5Nrqdz3plreV/SZrY4q68ubpb1r/WvN4vV9Oz9Ra7wWK7lsTCK5fRyliVd
Tn+jjZezP+qs76pefbyeTuvV74uh4fxR/1n/q/7X9HqxaUHpLhZ0/8Hxi0cPvj55eP+1apLb4iJ0
qA4MvjgK2lTJbLi8TR+Bx09wea70ENZuWs4R2cxxZyf5QG0ySKTN6P/fpmvycMp+4XN2y82vLbhr
SDfB/B3o9bEL6i7Y/fDq1b3vX2fs6NqzDTvTYkfRgY6d+3dg97Q9Z/mUbUOwhK+z+T6KrTHDjqfL
1YyMdLsdD0BuzXQT4zsFsJcvj09ev8gYW7sNY0p7W4zxPbj6mzF+8G+z0E3g7hQhnz1+/uYhgHvx
tPFbjVNRLmPwTW+gGJms3Z7LhHR34ExTAtcC02EynxEIAKIAoFN/eDTvFBhP7j3/+cnTrH3cqn1j
Wu2dw5cfRUT0MW2mPp+tPRQlxTZ1upOrPv75yeOjx1mntE0nlTx0wu8NGvwkJPydOt2j8H7chfWT
1tm83zgOdBBaX3Pe5ULzlvvSveTs6NZtCN453sk7P/vf+49+OGa4tkc2FWNrAtY6OgD674WrnxM9
EbKiV7d50QrJz52zm/kZUoec5GT02RVteKNPSHbA0B0yHuAyyHzKiEEp0G3QoIc8cyQp+vxUKN4p
1Bw/+fHRm9fZYIKOWwwmWIQa/J7IBjKY9HcazBEZxaS7TXxgBq4JiaGidwoNx8cvnx3hZLw83n4y
kl0fjEZ9jh8proWjRwMXhO/Zh6w9yO0dioy3MNR1DM03qrV13AiXqSjEjG/np4uz2fycZJ59+DAl
Ez6dLqu3xqwvBF2+fmv8tFJxSSkMVTwM3c2Fj0E+nq3w7fnIMoPFdVhojRunk25S2ez5ALSXq1iv
LwjrqwIf1HzI28NceTd0MVXwtz6minrtZqoYsp+hdGnTx2xcttbepkquPHO3pzaTlWnKDv6fRZpz
1Tn2m+Kcdrc4/MivvMndXv/efRJpyo+4lkqr1hdWOuQgVJkGzrAyboPcsPZflUm72CXD/Yu8Zv/b
Yza7WWaUruUCqbdOlKKBwK4rY0jB7zqM9Oilk/y38fpu6H/o5N+8X/EjGtVefX+ynPKP9fov2ja8
Ff+IFke3fji7Xq7gJyqM+m5SPPw0O1t9XPIPe0XnN7Z5/71Yf3c/2N2Vu+tQbJ/uvv3w1t0TIOi+
AAhIhQCqECB7ue6QVPgN8J1FGl5m+yINGDFpq0j2S4g0vPv1RfJ3QCl+CZGGt6q+SLEvki1FcqXh
uC8h0fCm05MoNgOJSt5ceZLUl5BoeE/pSzQ07rCNNpu+CG2Du0BfpKG78Rsi6VuRfPNFUBpkm32R
/KglKQjYiaS/iEiDvLAvUrzDefNfQqSR9/x9lz2QzW2XzfRlc/ruso29fO97hcEZNGZDuJJL9SnC
PZ+cT5eUQS9ukJHv0fM1JzCxPS9PZmeUIOXYRNcU/lBNkz+Ny58p/zhe5wjybmQHt20Ho/IP6fGn
APxpdPuZf2zf/np/bG2l1ouldi2VhDnPblYXlCwtWxSr9sQCxGptbHnB2E2cUdJTrePjvWodltaq
pJaW59fT36oeynmq6aY2I1Ntu+73+MuBVpaNddZe7F5l/cY67czNwa4brMc2bcpNS5datSctY7N+
yNgcqN5mar2ZiSObKV9sJgltOpDNJsjrmbyMETA2Hcam2T5Tx0IAI0CsO4i1H1mmZEqSRnfgaz2y
TIm9jsIyHawqisvkmQKQqgNSjVmr0iUhpXvphGP2zcbJOHC9zTrs1Zh9l9grAfsOej9mr+Ui0lnr
RJEX4YkbUONtBnmNr44Wpwcnq8n1ar/Kb1Srrx5/WCxWc7rMHKp94jn2WzW1ZtSqr05n1PC8iRGN
ZqPxEf23j78n5LaLJXkguozNzw8PaFnVmOym6u9ml7NVT5Le6Hd9octu2lh7YRNDAuVNuD3fWWm1
Q97dSh3NPv5AT+yhLq3E1RqFLtvXpificJKkVDkCeikn7mjQ5cUui64gdjl0RbHLoyuJXYG68qHo
adeTdThvl4IRKytx04QuLXWBPBkVsKe1SBFmaS0SqwBz9lsj+sV9Yd4O/RRY0iJLCixpkSUFlrTI
kgJLWmRJgaX16et1AWajxhWErMN5uxQES0ZkSYMlUXUNlozIkgZLRmRJgyUj0q4Bc3bUI/qlfWHe
Dv00WDIiSxosGZElDZaMyJIGS1ZkSYMlKx4GDZhzMrNdQcg6nLdDQQOWRP0MWLIiSwYsWZElA5as
yJIBS1a0CAOYbRjXb2ifNG2XeiDJiiQZkGRFkgxIciJJBiQ5kSQDkpx4FixQjjvUc/vDaTvUs+DI
iRxZcOREjiyHS1E9C468qJ4FR15WDyh7M64fZB3O26UgSPKyFiDJi5ZmQZIXLc2CJC8avANJoj2Q
EGpX/IOkg2k7tAtYVwQ7okfEOqFHYhz+tpF0hrtVYuSDt1W7Al/YH84a1wueWolRD45aiUEPzkuJ
MQ9+VokhD25WiREPXlbtCHh6kLDoXfkKPLQSox0ctBJDGjRuJI3hX5UYP+BelRg+4F2VHbdEPUhU
zK48BZ5ZiZEHjllZSWO4KyWGBzhWJUYH+FUlBge4VWXHI7gZBACzKz+BS1ZWQh96NRL4cFNKjBjw
qEoMGHCoSowX8KfKjRuiGSQmdldeAl+sxFADV6zEiAAHpcSAAE+qnEQLHKly0kmGH1VuPGLbQUJi
d+UjkL6RIHagxUm0ONDixDmgRYxzDrSIYc4BWT+eaQ0CtdsVqB308hIrDqyIAc6BFTG+ObAihjcH
VsTohm3UuONwA712BTAPUrxEigcpXiLFg5QgkeJBSpBI8SAlSObuAWwYzzz8IPHwu/IOD7iCxIoH
K0FixYOVILHiwUqQWMFiStI4ANkwnjH6QcZBs8b1CqAlSLQE0BIlWgJoiaKQoCVKtATQEiV7D0A2
2lHFIOVg1g7FgGSUaAmgJUq0BNASJVowRUl6RdASJYOPQDamcb0GqVTclUrhlZpKEi0RtCSJlgha
kig+aEkSLRG0JMkwItLsZtxzxEEqFXelUhEpeiOKjwy9kcQHX+L7t4RrkPieL+EWJL7oS7gENeO5
bxykUmlXKpVwgRLT8IT7k5gJJlyfxGQk4fojxsMEWpRkGAnIqvGUIw1SqbQrlUqgRTgUGu9SteDq
Nb9L1SFKPZgTxDmgRfBDmu//Ou7Qq5dK8awxvTTfzXUU9QItghPTfCHU0Uo9oEXwQ5qvdFrwQ5qv
dDqOpVJZysGsccUAZJCA5NdvUaKF375FiRZ++ZbE1UCL4Ic0X+l00qN66f3hpB1qgZUkscJv3ZLE
Cr90SxIr/M4tSazwK7cUhB4oHNS4Wm5/MGlcLX7bliRS+GVbkkjBbdA0EimGv/iQSMGFzjSSuYOt
MM6WafYHk8bVAllBIgtcBYkrUBUkqsBUkJgCUUJ2Zfibq8aOatTjCXPGFDL8vVfjhM0YcS90MOCS
eA4dUeggbIzwFZQBNkaNhSzTP1CYM65QxJqt3FeTc/6+b+2z83ODb/VS2QJgbTmHdk3lM7/00KOC
IrS2YwcCcjuymPWbd27g5KWUDDbkSsEYH1M0QDntioYEXQYmsd5vPWYg0HJ6ip+Q/g/AWXv3to2t
bLOF0AibLfyWfbOJb/CbTTCIQQZZbl2M3CYiQLE9eQgW19udgFlf+Jc37zuZ+HvRJLTzdy9CO/vC
LSJDlP7oodhlP46KEnYBMENpPaQdfmnQX7E/hUX4P1yLbH8KZW5kc3RyZWFtCmVuZG9iago0NDIg
MCBvYmoKPDwKL0F1dGhvcigpL1RpdGxlKCkvU3ViamVjdCgpL0NyZWF0b3IoTGFUZVggd2l0aCBo
eXBlcnJlZiBwYWNrYWdlKS9Qcm9kdWNlcihwZGZUZVgtMS40MC4xNykvS2V5d29yZHMoKQovQ3Jl
YXRpb25EYXRlIChEOjIwMTgwNDE5MjIwMDU0WikKL01vZERhdGUgKEQ6MjAxODA0MTkyMjAwNTRa
KQovVHJhcHBlZCAvRmFsc2UKL1BURVguRnVsbGJhbm5lciAoVGhpcyBpcyBwZGZUZVgsIFZlcnNp
b24gMy4xNDE1OTI2NS0yLjYtMS40MC4xNyAoVGVYIExpdmUgMjAxNi9EZWJpYW4pIGtwYXRoc2Vh
IHZlcnNpb24gNi4yLjIpCj4+CmVuZG9iago0MzAgMCBvYmoKPDwKL1R5cGUgL09ialN0bQovTiAx
MgovRmlyc3QgOTQKL0xlbmd0aCAzODQgICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0
cmVhbQp42qWUSUvEQBCF7/kVdXQOJl1LdzoggujNFZeTeIgaJDCLmMzBf29nfCOYYC4eho8uquq9
l07GpCJHpkzsNFFIWBKVVIa6kUlM9OTTzzRQ0DKxpNKFxEjRDf0VxaCZmaMq7TBjqrxmR0dZcd6+
dvSoFSedW9JKQAUN9GAY+JQVF+2q7dPkwdnm5fCurz/6BR0su369XT03H/kh5yy6eMqOj3/JlFgT
wWpHcw5kUMYyo9U2VhMei5lTLDPQgwEswTgrJjLW8jbVQhBGEEYQFhBe2Ga1vB9rxXKixcjByMHI
wRGEF3GzWjH+1pJ8cl8miCGIIYgheKQCKxJmpNJil6S65qVvN+vcT1UQQCYXsZ8Jw/z2+eeYT29b
kFphWWFZYVlhWf3cG/y3SQ3/MKdIqHFW/I8lZ02XeoevOA3vi/ef7w0Vp3VfLzdvWXFTvzUdafzu
Ka63/bJdD5XKfVeu6lU6Dn8Bu+PQf7l5bYqHrtk3p7H3Zn2yc0A+7tW+ADkjIdQKZW5kc3RyZWFt
CmVuZG9iago0NDMgMCBvYmoKPDwKL1R5cGUgL1hSZWYKL0luZGV4IFswIDQ0NF0KL1NpemUgNDQ0
Ci9XIFsxIDMgMV0KL1Jvb3QgNDQxIDAgUgovSW5mbyA0NDIgMCBSCi9JRCBbPEIxNTAxOUY2OUMz
MDM0M0YyMkY5QUVEQjU0REQxODcyPiA8QjE1MDE5RjY5QzMwMzQzRjIyRjlBRURCNTRERDE4NzI+
XQovTGVuZ3RoIDEwMDEgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjaHdU5
j1xVEIbhc7q9jvd9N8bGxhs2eDfG+76P92XssccmISUgQDKIEAkJiYQ/AAgJqRHiH1RIRkRE5ojI
ISIp5qnkVZ263bf73O+9dVprLQetDVpvO8811dHpeuK4qsMAjut9pBrCDDihd0w1E2ZNIy/ofWg5
G+boXdQ7ajkXxvSu6x2xnAfz9W7rHbZcAAv17ugdslwEi/Ue6h20XAJL9R7pHbBcBsv1Huvtt1wB
K/Um9PZZroLVei/0PrBcA2v1Xuq9b7kO1sMG2AhvwduwGbbAO7AVtsF22AE7YTe8B3ug7lzbOtBb
W1SPvf7BPr+7HXbBu3qbVJtU+1VboH68ru6CvXr1G/X8KoCDvc1+XXc+4uoOqECfwrHeFv9bVyvV
k3DKR2ofp+EMnIVzcB4uwEW4BJfhClyFa3AdbsBNGIdbcBvuwF24B/fhATyER/AYJuDJNKJSnext
/Wf1d5/Bc5iCF/DS51wNGwzGBk+Dp8HOYGdwMjgZTAwmBv+Cf8G6YF1wLbgWDAuGBa+CV8GmYFNw
KDgUzAnmBF+CL8GX4EvwJSQYcgvSBGnCww7SBGlCoMGcYE4wJ+Qbog36BH1iL3AoSBN8jv29nf7F
M8ja0XT6+2oZNAtahPctvIhBkPDqhvTDyx4ngAdxCigQFAgKBAWCAkGBoEBQICgQFAgKBAWCAkGB
oEBQICgQFAgKBAWCAkGBoEBQICgQFAgKRCnA2JgE6Yf0Q/oh/ZB+1s6ln9JP6af0U/pZs0n6WRNJ
+jnW2zev6ms2nfN7uzBeSx5kTR8eZM0cHmRNGh5kzRceZE0VHmTNEh5kTRAeJA+SB8mD5EHyIHmQ
PEgeJA+SB8mD5EHyIHmQPEgeJA+SB8mD5EHyIHmQPEgDL70zaUSm9FP6Kf2Ufko/pZ/ST+mn9FPm
KdU81duDz+tpUCApkBTI82bEZtgJ9V+kn9JPcefl3j7+ob57zUe2Qu38hmob1FUK5Hhvn/5eS4Ik
GVLcea+3Lz6pC9xIHqT087kbVMjTQ+Hr3fWRqT789jdn2MRGGMIMmAkbYBbMhjkwF8ZgHsyHBbAQ
FvX23eu63+LeRl9WtaS3P/6pamlvf/1d1bLe/rtZ1fLep2ZVtaL3X/+samXvb65VtaoPDk9UtboP
TnxV1Zo++P5NVWv7cOxxVev68NCrqtbDHqjZXmftSaghfRrOwFk4B5VMnb914F6Cy3AFrkLlUUdv
RXETxuEW1PlbB+5duAf34QHUqVvHbJ2rdZA+gacwCc+g4pmCOlcdpKPWhz9N2taowwBkNJLRSEYj
8YzEMxLPSDwj8Yzm9eGPW6Zv8PP19j8wVEvWCmVuZHN0cmVhbQplbmRvYmoKc3RhcnR4cmVmCjIz
OTY5MwolJUVPRgo=
------=_Part_2690_404871368.1524175519166--

.


Author: Bengt Gustafsson <bengt.gustafsson@beamways.com>
Date: Thu, 19 Apr 2018 16:09:06 -0700 (PDT)
Raw View
------=_Part_5872_194888890.1524179347200
Content-Type: multipart/alternative;
 boundary="----=_Part_5873_1872344613.1524179347201"

------=_Part_5873_1872344613.1524179347201
Content-Type: text/plain; charset="UTF-8"

It is unclear to me what happens if a path_view is constructed from a
wstring or wchar_t* in Windows unicode build. I can see two possibilirtes:
One is that the incoming string is converted to UTF-8 and copied to an
internal buffer and the other is that the path_view has a flag which
indicates whether it actually points at narrow or wide characters, and then
the c_str struct "does the right thing" for the platform. Your text seems
to stress that it is _always_ UTF-8 which seems to indicate the first
possibility... but I hope you are intending that this should be implemented
with a flag as otherwise ALL usage in Windows unicode builds would do
conversions and if you use a L"filename" literal two conversions, forth and
back to utf-8.

I have two specific concerns about the owned UTF-8 buffer alternative: 1)
It is hard to know how many bytes to allocate for a UTF-16 source string.
2) it seems that if the source owns its buffer any slices will have to make
deep copies of the buffer as it is unrealistic to think that programmers
would understand that the first path_view has to outlive the lifetime of
the last remaining slice made from it, not only the original std::wstring
or std::path you  have stored.

Den fredag 20 april 2018 kl. 00:05:19 UTC+2 skrev Niall Douglas:
>
> Beginning to get towards the end of the papers I intend to propose at
> Rapperswil, thank god.
>
> This proposes a std::filesystem::path_view. It has an orthogonal design
> and intent to std::filesystem::path, and thus will be controversial.
>
To me it seems to play quite nicely with path! and having both an object
and a view to it is getting quite prevalent now.


>
> Also I may have gone into too much detail about my best understanding of
> the history of how std::filesystem::path came to have its present design.
> That recounted history may also be inaccurate, or it may offend some people.
>
> Feedback is welcome.
>
> Niall
>
>

--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/1b10793b-ae4f-4e58-aba2-a6588d761d16%40isocpp.org.

------=_Part_5873_1872344613.1524179347201
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">It is unclear to me what happens if a path_view is constru=
cted from a wstring or wchar_t* in Windows unicode build. I can see two pos=
sibilirtes: One is that the incoming string is converted to UTF-8 and copie=
d to an internal buffer and the other is that the path_view has a flag whic=
h indicates whether it actually points at narrow or wide characters, and th=
en the c_str struct &quot;does the right thing&quot; for the platform. Your=
 text seems to stress that it is _always_ UTF-8 which seems to indicate the=
 first possibility... but I hope you are intending that this should be impl=
emented with a flag as otherwise ALL usage in Windows unicode builds would =
do conversions and if you use a L&quot;filename&quot; literal two conversio=
ns, forth and back to utf-8.<div><br></div><div>I have two specific concern=
s about the owned UTF-8 buffer alternative: 1) It is hard to know how many =
bytes to allocate for a UTF-16 source string. 2) it seems that if the sourc=
e owns its buffer any slices will have to make deep copies of the buffer as=
 it is unrealistic to think that programmers would understand that the firs=
t path_view has to outlive the lifetime of the last remaining slice made fr=
om it, not only the original std::wstring or std::path you=C2=A0 have store=
d.<br><br>Den fredag 20 april 2018 kl. 00:05:19 UTC+2 skrev Niall Douglas:<=
blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;bord=
er-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr">Beginning to g=
et towards the end of the papers I intend to propose at Rapperswil, thank g=
od.<div><br></div><div>This proposes a std::filesystem::path_view. It has a=
n orthogonal design and intent to std::filesystem::path, and thus will be c=
ontroversial.</div></div></blockquote><div>To me it seems to play quite nic=
ely with path! and having both an object and a view to it is getting quite =
prevalent now.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" styl=
e=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left:=
 1ex;"><div dir=3D"ltr"><div><br></div><div>Also I may have gone into too m=
uch detail about my best understanding of the history of how std::filesyste=
m::path came to have its present design. That recounted history may also be=
 inaccurate, or it may offend some people.</div><div><br></div><div>Feedbac=
k is welcome.</div><div><br></div><div>Niall</div><div><br></div></div></bl=
ockquote></div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/1b10793b-ae4f-4e58-aba2-a6588d761d16%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/1b10793b-ae4f-4e58-aba2-a6588d761d16=
%40isocpp.org</a>.<br />

------=_Part_5873_1872344613.1524179347201--

------=_Part_5872_194888890.1524179347200--

.


Author: Nicol Bolas <jmckesson@gmail.com>
Date: Thu, 19 Apr 2018 17:37:55 -0700 (PDT)
Raw View
------=_Part_6107_128907756.1524184675654
Content-Type: multipart/alternative;
 boundary="----=_Part_6108_945652021.1524184675654"

------=_Part_6108_945652021.1524184675654
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

First, I would say that the proposed interface is not well explained by the=
=20
proposal. The key aspect of this design is that is that `path_view`=20
*pretends* that it stores a UTF-8 encoded string (its iterators return=20
`char`), but it *actually* stores a pointer+size of the type you=20
specifically provide.

That's never stated directly; it's something you kind of have to infer from=
=20
things you talk about. But it is the foundation of your design, so it needs=
=20
to be something you come out and say.

----

Enter thus the proposed std::filesystem::path_view, which is to=20
> std::filesystem::path as
> std::string_view is to std::string. It provides most of the same member=
=20
> functions as
> std::filesystem::path, operating by constant reference upon some characte=
r=20
> source which is in
> the format of the local platform=E2=80=99s file system path.
>

This statement is of... dubious accuracy, relative to the actual design.=20
`basic_string` and `basic_string_view` are very tightly related, where=20
functions and typedefs that exist in one do identical things in the other.

By contrast, there are *numerous* points of divergence between `path` and=
=20
`path_view`. Indeed, not 3 paragraphs after the above statement, we get our=
=20
first substantial point of divergence: "One thing which is perhaps=20
surprising is that the value type is always a char, not a=20
std::filesystem::path::value_type."

Even if you agree with the design rationale for this choice, that doesn't=
=20
change the fact that, by making this choice, you have something with is no=
=20
longer like "std::string_view is to std::string". It is a distinct type=20
that, while having similarities with `path` ultimately has its own distinct=
=20
behavior.

And therefore, it should not have a name that suggests that it is merely a=
=20
"view" into a `path` when it is rather more complex than that.

At the very least, there's no point in providing `value_type` and its ilk.=
=20
It is always the same type on every implementation (`path::value_type`=20
exists because its implementation defined), so there's no much point in it.=
=20
And the iterators don't return `value_type`s; they're return `path_view`s.=
=20
So there's not much point in providing it. After all, all of the `path`=20
interfaces that interact with `value_type` don't exist in `path_view`.

----

4.2 Why interpret chars as UTF-8 when std::filesystem::path interprets=20
> chars as =E2=80=98the native narrow encoding=E2=80=99 ?
>

P0482, which I believe was forwarded to CWG at the previous meeting, allows=
=20
us to distinguish between narrow characters and genuine UTF-8. So there's=
=20
no reason to assume narrow strings are UTF-8. Indeed, putting such=20
assumptions into the standard library encourages laziness by programmers.=
=20
It encourages them to skip the `u8` prefix, thinking it optional when it is=
=20
actually really important.

At the very least, its `value_type` (if you keep that around) should be=20
`char8_t`, not `char`.

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/29b1d493-fffc-4982-b4db-81571b58569c%40isocpp.or=
g.

------=_Part_6108_945652021.1524184675654
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">First, I would say that the proposed interface is not well=
 explained by the proposal. The key aspect of this design is that is that `=
path_view` <i>pretends</i> that it stores a UTF-8 encoded string (its itera=
tors return `char`), but it <i>actually</i> stores a pointer+size of the ty=
pe you specifically provide.<br><br>That&#39;s never stated directly; it&#3=
9;s something you kind of have to infer from things you talk about. But it =
is the foundation of your design, so it needs to be something you come out =
and say.<br><br>----<br><br><blockquote class=3D"gmail_quote" style=3D"marg=
in: 0px 0px 0px 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-l=
eft: 1ex;">Enter thus the proposed std::filesystem::path_view, which is to =
std::filesystem::path as<br>std::string_view is to std::string. It provides=
 most of the same member functions as<br>std::filesystem::path, operating b=
y constant reference upon some character source which is in<br>the format o=
f the local platform=E2=80=99s file system path.<br></blockquote><br>This s=
tatement is of... dubious accuracy, relative to the actual design. `basic_s=
tring` and `basic_string_view` are very tightly related, where functions an=
d typedefs that exist in one do identical things in the other.<br><br>By co=
ntrast, there are <i>numerous</i> points of divergence between `path` and `=
path_view`. Indeed, not 3 paragraphs after the above statement, we get our =
first substantial point of divergence: &quot;One thing which is perhaps sur=
prising is that the value type is always a char, not a std::filesystem::pat=
h::value_type.&quot;<br><br>Even if you agree with the design rationale for=
 this choice, that doesn&#39;t change the fact that, by making this choice,=
 you have something with is no longer like &quot;std::string_view is to std=
::string&quot;. It is a distinct type that, while having similarities with =
`path` ultimately has its own distinct behavior.<br><br>And therefore, it s=
hould not have a name that suggests that it is merely a &quot;view&quot; in=
to a `path` when it is rather more complex than that.<br><br>At the very le=
ast, there&#39;s no point in providing `value_type` and its ilk. It is alwa=
ys the same type on every implementation (`path::value_type` exists because=
 its implementation defined), so there&#39;s no much point in it. And the i=
terators don&#39;t return `value_type`s; they&#39;re return `path_view`s. S=
o there&#39;s not much point in providing it. After all, all of the `path` =
interfaces that interact with `value_type` don&#39;t exist in `path_view`.<=
br><br>----<br><br><blockquote class=3D"gmail_quote" style=3D"margin: 0px 0=
px 0px 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;=
">4.2 Why interpret chars as UTF-8 when std::filesystem::path interprets ch=
ars as =E2=80=98the native narrow encoding=E2=80=99 ?<br></blockquote><div>=
<br>P0482, which I believe was forwarded to CWG at the previous meeting, al=
lows us to distinguish between narrow characters and genuine UTF-8. So ther=
e&#39;s no reason to assume narrow strings are UTF-8. Indeed, putting such =
assumptions into the standard library encourages laziness by programmers. I=
t encourages them to skip the `u8` prefix, thinking it optional when it is =
actually really important.<br><br>At the very least, its `value_type` (if y=
ou keep that around) should be `char8_t`, not `char`.<br><br></div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/29b1d493-fffc-4982-b4db-81571b58569c%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/29b1d493-fffc-4982-b4db-81571b58569c=
%40isocpp.org</a>.<br />

------=_Part_6108_945652021.1524184675654--

------=_Part_6107_128907756.1524184675654--

.


Author: Niall Douglas <nialldouglas14@gmail.com>
Date: Fri, 20 Apr 2018 01:19:29 -0700 (PDT)
Raw View
------=_Part_4898_385180528.1524212369817
Content-Type: multipart/alternative;
 boundary="----=_Part_4899_61584372.1524212369817"

------=_Part_4899_61584372.1524212369817
Content-Type: text/plain; charset="UTF-8"

On Friday, April 20, 2018 at 12:09:07 AM UTC+1, Bengt Gustafsson wrote:
>
> It is unclear to me what happens if a path_view is constructed from a
> wstring or wchar_t* in Windows unicode build. I can see two possibilirtes:
> One is that the incoming string is converted to UTF-8 and copied to an
> internal buffer and the other is that the path_view has a flag which
> indicates whether it actually points at narrow or wide characters, and then
> the c_str struct "does the right thing" for the platform. Your text seems
> to stress that it is _always_ UTF-8 which seems to indicate the first
> possibility... but I hope you are intending that this should be implemented
> with a flag as otherwise ALL usage in Windows unicode builds would do
> conversions and if you use a L"filename" literal two conversions, forth and
> back to utf-8.
>

Oh ok. I am surprised that you read it this way. I thought it very clear
that we always pass through unchanged inputs of the native encoding, so on
Windows, wchar_t input never causes reencoding.

Thanks for this feedback though. I'll need to do a round of removing
ambiguity.


>
> I have two specific concerns about the owned UTF-8 buffer alternative: 1)
> It is hard to know how many bytes to allocate for a UTF-16 source string.
>

As the paper explains, we throw 64Kb at the problem, but only on Windows.
64Kb is the maximum a path can ever be on Windows.


> 2) it seems that if the source owns its buffer any slices will have to
> make deep copies of the buffer as it is unrealistic to think that
> programmers would understand that the first path_view has to outlive the
> lifetime of the last remaining slice made from it, not only the original
> std::wstring or std::path you  have stored.
>

Path views are no different to string views. They don't own their storage,
so you need to keep that around.

Niall

--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/7af7669c-65fa-4a1b-b41e-97e3cf87be74%40isocpp.org.

------=_Part_4899_61584372.1524212369817
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">On Friday, April 20, 2018 at 12:09:07 AM UTC+1, Bengt Gust=
afsson wrote:<blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-le=
ft: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr">=
It is unclear to me what happens if a path_view is constructed from a wstri=
ng or wchar_t* in Windows unicode build. I can see two possibilirtes: One i=
s that the incoming string is converted to UTF-8 and copied to an internal =
buffer and the other is that the path_view has a flag which indicates wheth=
er it actually points at narrow or wide characters, and then the c_str stru=
ct &quot;does the right thing&quot; for the platform. Your text seems to st=
ress that it is _always_ UTF-8 which seems to indicate the first possibilit=
y... but I hope you are intending that this should be implemented with a fl=
ag as otherwise ALL usage in Windows unicode builds would do conversions an=
d if you use a L&quot;filename&quot; literal two conversions, forth and bac=
k to utf-8.</div></blockquote><div><br></div><div>Oh ok. I am surprised tha=
t you read it this way. I thought it very clear that we always pass through=
 unchanged inputs of the native encoding, so on Windows, wchar_t input neve=
r causes reencoding.</div><div><br></div><div>Thanks for this feedback thou=
gh. I&#39;ll need to do a round of removing ambiguity.</div><div>=C2=A0</di=
v><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;b=
order-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><div><br></=
div><div>I have two specific concerns about the owned UTF-8 buffer alternat=
ive: 1) It is hard to know how many bytes to allocate for a UTF-16 source s=
tring.</div></div></blockquote><div><br></div><div>As the paper explains, w=
e throw 64Kb at the problem, but only on Windows. 64Kb is the maximum a pat=
h can ever be on Windows.</div><div>=C2=A0</div><blockquote class=3D"gmail_=
quote" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;pa=
dding-left: 1ex;"><div dir=3D"ltr"><div> 2) it seems that if the source own=
s its buffer any slices will have to make deep copies of the buffer as it i=
s unrealistic to think that programmers would understand that the first pat=
h_view has to outlive the lifetime of the last remaining slice made from it=
, not only the original std::wstring or std::path you=C2=A0 have stored.<br=
></div></div></blockquote><div><br></div><div>Path views are no different t=
o string views. They don&#39;t own their storage, so you need to keep that =
around.</div><div><br></div><div>Niall</div><div><br></div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/7af7669c-65fa-4a1b-b41e-97e3cf87be74%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/7af7669c-65fa-4a1b-b41e-97e3cf87be74=
%40isocpp.org</a>.<br />

------=_Part_4899_61584372.1524212369817--

------=_Part_4898_385180528.1524212369817--

.


Author: Niall Douglas <nialldouglas14@gmail.com>
Date: Fri, 20 Apr 2018 01:42:02 -0700 (PDT)
Raw View
------=_Part_7545_184065310.1524213723086
Content-Type: multipart/alternative;
 boundary="----=_Part_7546_1997620787.1524213723087"

------=_Part_7546_1997620787.1524213723087
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

On Friday, April 20, 2018 at 1:37:55 AM UTC+1, Nicol Bolas wrote:
>
> First, I would say that the proposed interface is not well explained by=
=20
> the proposal. The key aspect of this design is that is that `path_view`=
=20
> *pretends* that it stores a UTF-8 encoded string (its iterators return=20
> `char`), but it *actually* stores a pointer+size of the type you=20
> specifically provide.
>
> That's never stated directly; it's something you kind of have to infer=20
> from things you talk about. But it is the foundation of your design, so i=
t=20
> needs to be something you come out and say.
>

Oh ok. Thanks.
=20

>
> Enter thus the proposed std::filesystem::path_view, which is to=20
>> std::filesystem::path as
>> std::string_view is to std::string. It provides most of the same member=
=20
>> functions as
>> std::filesystem::path, operating by constant reference upon some=20
>> character source which is in
>> the format of the local platform=E2=80=99s file system path.
>>
>
> This statement is of... dubious accuracy, relative to the actual design.=
=20
> `basic_string` and `basic_string_view` are very tightly related, where=20
> functions and typedefs that exist in one do identical things in the other=
..
>
> By contrast, there are *numerous* points of divergence between `path` and=
=20
> `path_view`. Indeed, not 3 paragraphs after the above statement, we get o=
ur=20
> first substantial point of divergence: "One thing which is perhaps=20
> surprising is that the value type is always a char, not a=20
> std::filesystem::path::value_type."
>
> Even if you agree with the design rationale for this choice, that doesn't=
=20
> change the fact that, by making this choice, you have something with is n=
o=20
> longer like "std::string_view is to std::string". It is a distinct type=
=20
> that, while having similarities with `path` ultimately has its own distin=
ct=20
> behavior.
>

Ok.
=20

>
> And therefore, it should not have a name that suggests that it is merely =
a=20
> "view" into a `path` when it is rather more complex than that.
>

It would depend on how tightly one understands "view". I'd call it any=20
const reference to contiguous data not owned by the object. And that it is.=
=20
It is the c_str child class and the comparison functions which do any=20
just-in-time reencoding.
=20

>
> At the very least, there's no point in providing `value_type` and its ilk=
..=20
> It is always the same type on every implementation (`path::value_type`=20
> exists because its implementation defined), so there's no much point in i=
t.=20
> And the iterators don't return `value_type`s; they're return `path_view`s=
..=20
> So there's not much point in providing it. After all, all of the `path`=
=20
> interfaces that interact with `value_type` don't exist in `path_view`.
>

Very good point. I hadn't thought of that.
=20

>
> 4.2 Why interpret chars as UTF-8 when std::filesystem::path interprets=20
>> chars as =E2=80=98the native narrow encoding=E2=80=99 ?
>>
>
> P0482, which I believe was forwarded to CWG at the previous meeting,=20
> allows us to distinguish between narrow characters and genuine UTF-8. So=
=20
> there's no reason to assume narrow strings are UTF-8. Indeed, putting suc=
h=20
> assumptions into the standard library encourages laziness by programmers.=
=20
> It encourages them to skip the `u8` prefix, thinking it optional when it =
is=20
> actually really important.
>
> At the very least, its `value_type` (if you keep that around) should be=
=20
> `char8_t`, not `char`.
>
> We must be very careful here.

Filesystem paths, despite what a lot of people think, are treated by almost=
=20
all filesystems as a bunch of bits. As in, comparisons are done via=20
memcmp(), and you can send the almost unfiltered binary output from a=20
random number generator as a filename and it'll work perfectly. Layers=20
above the filesystem *might* do "case insensitive" fallback comparisons=20
where "case insensitive" may be not, partially, or wholly Unicode aware,=20
and they usually do these if and only if memcmp() failed to find anything.=
=20
It is also the case that apart from MacOS, every major platform lets you=20
say "only ever use memcmp()" which is an obvious big performance gain. The=
=20
low level file i/o library I am proposing lets you use memcmp() compared=20
paths on Windows using a "\\!\" path prefix for example, and it's a big=20
gain (about 40% faster file opens!).

So paths, therefore, are simultaneously a bunch of bytes, but also may get=
=20
some ICU applied to them depending on system configuration, *maybe*.  Hence=
=20
the u8 prefix is inappropriate, but only *sometimes*, for filesystem paths.=
=20
I agree all of this is unfortunate, but that's the current standard=20
practice right now, and as I mentioned on all but MacOS we have memcmp()=20
path comparisons at the kernel level.=20

Me personally I think it best balanced to use char here, as it's a pure=20
sitting-on-the-fence declaration. Filesystem paths are not std::byte, and=
=20
not char8_t. They are something in between, and probably best pushed onto=
=20
the programmer to decide. Which is kinda what char* means in C++.

Niall

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/957af749-9ae3-494d-8d50-cd415c77916b%40isocpp.or=
g.

------=_Part_7546_1997620787.1524213723087
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">On Friday, April 20, 2018 at 1:37:55 AM UTC+1, Nicol Bolas=
 wrote:<blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.=
8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr">First,=
 I would say that the proposed interface is not well explained by the propo=
sal. The key aspect of this design is that is that `path_view` <i>pretends<=
/i> that it stores a UTF-8 encoded string (its iterators return `char`), bu=
t it <i>actually</i> stores a pointer+size of the type you specifically pro=
vide.<br><br>That&#39;s never stated directly; it&#39;s something you kind =
of have to infer from things you talk about. But it is the foundation of yo=
ur design, so it needs to be something you come out and say.<br></div></blo=
ckquote><div><br></div><div>Oh ok. Thanks.</div><div>=C2=A0</div><blockquot=
e class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;border-left: =
1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><br><blockquote class=
=3D"gmail_quote" style=3D"margin:0px 0px 0px 0.8ex;border-left:1px solid rg=
b(204,204,204);padding-left:1ex">Enter thus the proposed std::filesystem::p=
ath_view, which is to std::filesystem::path as<br>std::string_view is to st=
d::string. It provides most of the same member functions as<br>std::filesys=
tem::path, operating by constant reference upon some character source which=
 is in<br>the format of the local platform=E2=80=99s file system path.<br><=
/blockquote><br>This statement is of... dubious accuracy, relative to the a=
ctual design. `basic_string` and `basic_string_view` are very tightly relat=
ed, where functions and typedefs that exist in one do identical things in t=
he other.<br><br>By contrast, there are <i>numerous</i> points of divergenc=
e between `path` and `path_view`. Indeed, not 3 paragraphs after the above =
statement, we get our first substantial point of divergence: &quot;One thin=
g which is perhaps surprising is that the value type is always a char, not =
a std::filesystem::path::value_<wbr>type.&quot;<br><br>Even if you agree wi=
th the design rationale for this choice, that doesn&#39;t change the fact t=
hat, by making this choice, you have something with is no longer like &quot=
;std::string_view is to std::string&quot;. It is a distinct type that, whil=
e having similarities with `path` ultimately has its own distinct behavior.=
<br></div></blockquote><div><br></div><div>Ok.</div><div>=C2=A0</div><block=
quote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;border-le=
ft: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><br>And therefore, =
it should not have a name that suggests that it is merely a &quot;view&quot=
; into a `path` when it is rather more complex than that.<br></div></blockq=
uote><div><br></div><div>It would depend on how tightly one understands &qu=
ot;view&quot;. I&#39;d call it any const reference to contiguous data not o=
wned by the object. And that it is. It is the c_str child class and the com=
parison functions which do any just-in-time reencoding.</div><div>=C2=A0</d=
iv><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;=
border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><br>At the=
 very least, there&#39;s no point in providing `value_type` and its ilk. It=
 is always the same type on every implementation (`path::value_type` exists=
 because its implementation defined), so there&#39;s no much point in it. A=
nd the iterators don&#39;t return `value_type`s; they&#39;re return `path_v=
iew`s. So there&#39;s not much point in providing it. After all, all of the=
 `path` interfaces that interact with `value_type` don&#39;t exist in `path=
_view`.<br></div></blockquote><div><br></div><div>Very good point. I hadn&#=
39;t thought of that.</div><div>=C2=A0</div><blockquote class=3D"gmail_quot=
e" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;paddin=
g-left: 1ex;"><div dir=3D"ltr"><br><blockquote class=3D"gmail_quote" style=
=3D"margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding=
-left:1ex">4.2 Why interpret chars as UTF-8 when std::filesystem::path inte=
rprets chars as =E2=80=98the native narrow encoding=E2=80=99 ?<br></blockqu=
ote><div><br>P0482, which I believe was forwarded to CWG at the previous me=
eting, allows us to distinguish between narrow characters and genuine UTF-8=
.. So there&#39;s no reason to assume narrow strings are UTF-8. Indeed, putt=
ing such assumptions into the standard library encourages laziness by progr=
ammers. It encourages them to skip the `u8` prefix, thinking it optional wh=
en it is actually really important.<br><br>At the very least, its `value_ty=
pe` (if you keep that around) should be `char8_t`, not `char`.<br><br></div=
></div></blockquote><div>We must be very careful here.</div><div><br></div>=
<div>Filesystem paths, despite what a lot of people think, are treated by a=
lmost all filesystems as a bunch of bits. As in, comparisons are done via m=
emcmp(), and you can send the almost unfiltered binary output from a random=
 number generator as a filename and it&#39;ll work perfectly. Layers above =
the filesystem <i>might</i>=C2=A0do &quot;case insensitive&quot; fallback c=
omparisons where &quot;case insensitive&quot; may be not, partially, or who=
lly Unicode aware, and they usually do these if and only if memcmp() failed=
 to find anything. It is also the case that apart from MacOS, every major p=
latform lets you say &quot;only ever use memcmp()&quot; which is an obvious=
 big performance gain. The low level file i/o library I am proposing lets y=
ou use memcmp() compared paths on Windows using a &quot;\\!\&quot; path pre=
fix for example, and it&#39;s a big gain (about 40% faster file opens!).</d=
iv><div><br></div><div>So paths, therefore, are simultaneously a bunch of b=
ytes, but also may get some ICU applied to them depending on system configu=
ration, <i>maybe</i>.=C2=A0 Hence the u8 prefix is inappropriate, but only =
<i>sometimes</i>, for filesystem paths. I agree all of this is unfortunate,=
 but that&#39;s the current standard practice right now, and as I mentioned=
 on all but MacOS we have memcmp() path comparisons at the kernel level.=C2=
=A0</div><div><br></div><div>Me personally I think it best balanced to use =
char here, as it&#39;s a pure sitting-on-the-fence declaration. Filesystem =
paths are not std::byte, and not char8_t. They are something in between, an=
d probably best pushed onto the programmer to decide. Which is kinda what c=
har* means in C++.<br></div><div><br></div><div>Niall</div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/957af749-9ae3-494d-8d50-cd415c77916b%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/957af749-9ae3-494d-8d50-cd415c77916b=
%40isocpp.org</a>.<br />

------=_Part_7546_1997620787.1524213723087--

------=_Part_7545_184065310.1524213723086--

.


Author: Niall Douglas <nialldouglas14@gmail.com>
Date: Fri, 20 Apr 2018 01:45:23 -0700 (PDT)
Raw View
------=_Part_7552_702227757.1524213923883
Content-Type: multipart/alternative;
 boundary="----=_Part_7553_659153541.1524213923884"

------=_Part_7553_659153541.1524213923884
Content-Type: text/plain; charset="UTF-8"


>
> Me personally I think it best balanced to use char here, as it's a pure
> sitting-on-the-fence declaration. Filesystem paths are not std::byte, and
> not char8_t. They are something in between, and probably best pushed onto
> the programmer to decide. Which is kinda what char* means in C++.
>

And just to be clear here, there is no way of telling the kernel that "this
path is in UTF-8 encoding" any more than  "this path is in UTF-16 encoding".

Filesystem paths are bunches of bytes with system configuration determined
meaning if and only if memcmp() fails.

Niall

--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/e192f299-11d8-4206-9884-e6f949f48aea%40isocpp.org.

------=_Part_7553_659153541.1524213923884
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr"><blockquote class=3D"gmail_quote" style=3D"margin: 0;margi=
n-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"l=
tr"><div>Me personally I think it best balanced to use char here, as it&#39=
;s a pure sitting-on-the-fence declaration. Filesystem paths are not std::b=
yte, and not char8_t. They are something in between, and probably best push=
ed onto the programmer to decide. Which is kinda what char* means in C++.<b=
r></div></div></blockquote><div><br></div><div>And just to be clear here, t=
here is no way of telling the kernel that &quot;this path is in UTF-8 encod=
ing&quot; any more than=C2=A0 &quot;this path is in UTF-16 encoding&quot;.<=
/div><div><br></div><div>Filesystem paths are bunches of bytes with system =
configuration determined meaning if and only if memcmp() fails.</div><div><=
br></div><div>Niall</div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/e192f299-11d8-4206-9884-e6f949f48aea%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/e192f299-11d8-4206-9884-e6f949f48aea=
%40isocpp.org</a>.<br />

------=_Part_7553_659153541.1524213923884--

------=_Part_7552_702227757.1524213923883--

.


Author: Nicol Bolas <jmckesson@gmail.com>
Date: Fri, 20 Apr 2018 09:26:40 -0700 (PDT)
Raw View
------=_Part_9690_764571620.1524241600474
Content-Type: multipart/alternative;
 boundary="----=_Part_9691_1260742667.1524241600474"

------=_Part_9691_1260742667.1524241600474
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

On Friday, April 20, 2018 at 4:42:03 AM UTC-4, Niall Douglas wrote:
>
> On Friday, April 20, 2018 at 1:37:55 AM UTC+1, Nicol Bolas wrote:
>
>> 4.2 Why interpret chars as UTF-8 when std::filesystem::path interprets=
=20
>>> chars as =E2=80=98the native narrow encoding=E2=80=99 ?
>>>
>>
>> P0482, which I believe was forwarded to CWG at the previous meeting,=20
>> allows us to distinguish between narrow characters and genuine UTF-8. So=
=20
>> there's no reason to assume narrow strings are UTF-8. Indeed, putting su=
ch=20
>> assumptions into the standard library encourages laziness by programmers=
..=20
>> It encourages them to skip the `u8` prefix, thinking it optional when it=
 is=20
>> actually really important.
>>
>> At the very least, its `value_type` (if you keep that around) should be=
=20
>> `char8_t`, not `char`.
>>
>> We must be very careful here.
>
> Filesystem paths, despite what a lot of people think, are treated by=20
> almost all filesystems as a bunch of bits. As in, comparisons are done vi=
a=20
> memcmp(), and you can send the almost unfiltered binary output from a=20
> random number generator as a filename and it'll work perfectly. Layers=20
> above the filesystem *might* do "case insensitive" fallback comparisons=
=20
> where "case insensitive" may be not, partially, or wholly Unicode aware,=
=20
> and they usually do these if and only if memcmp() failed to find anything=
..=20
> It is also the case that apart from MacOS, every major platform lets you=
=20
> say "only ever use memcmp()" which is an obvious big performance gain. Th=
e=20
> low level file i/o library I am proposing lets you use memcmp() compared=
=20
> paths on Windows using a "\\!\" path prefix for example, and it's a big=
=20
> gain (about 40% faster file opens!).
>
> So paths, therefore, are simultaneously a bunch of bytes, but also may ge=
t=20
> some ICU applied to them depending on system configuration, *maybe*. =20
> Hence the u8 prefix is inappropriate, but only *sometimes*, for=20
> filesystem paths. I agree all of this is unfortunate, but that's the=20
> current standard practice right now, and as I mentioned on all but MacOS =
we=20
> have memcmp() path comparisons at the kernel level.=20
>
> Me personally I think it best balanced to use char here, as it's a pure=
=20
> sitting-on-the-fence declaration.
>

That's precisely why I *don't* think it's a good solution. Because you're=
=20
not treating `char` as "a pure sitting-on-the-fence declaration". You're=20
treating `char` as UTF-8. You're *explicitly* doing this, because on Win32,=
=20
you will generate a native-encoded path by converting from UTF-8 to UTF-16.=
=20
There is no fence-sitting happening; you've pick a side.

So if you are going to pick a side, best to be explicit about it.

Filesystem paths are not std::byte, and not char8_t. They are something in=
=20
> between, and probably best pushed onto the programmer to decide. Which is=
=20
> kinda what char* means in C++.
>
> Niall
>

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/d0b66bfa-9e71-4fe7-a9a6-0758fa1636a7%40isocpp.or=
g.

------=_Part_9691_1260742667.1524241600474
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">On Friday, April 20, 2018 at 4:42:03 AM UTC-4, Niall Dougl=
as wrote:<blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: =
0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr">On F=
riday, April 20, 2018 at 1:37:55 AM UTC+1, Nicol Bolas wrote:<br><blockquot=
e class=3D"gmail_quote" style=3D"margin:0;margin-left:0.8ex;border-left:1px=
 #ccc solid;padding-left:1ex"><div dir=3D"ltr"><blockquote class=3D"gmail_q=
uote" style=3D"margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,2=
04);padding-left:1ex">4.2 Why interpret chars as UTF-8 when std::filesystem=
::path interprets chars as =E2=80=98the native narrow encoding=E2=80=99 ?<b=
r></blockquote><div><br>P0482, which I believe was forwarded to CWG at the =
previous meeting, allows us to distinguish between narrow characters and ge=
nuine UTF-8. So there&#39;s no reason to assume narrow strings are UTF-8. I=
ndeed, putting such assumptions into the standard library encourages lazine=
ss by programmers. It encourages them to skip the `u8` prefix, thinking it =
optional when it is actually really important.<br><br>At the very least, it=
s `value_type` (if you keep that around) should be `char8_t`, not `char`.<b=
r><br></div></div></blockquote><div>We must be very careful here.</div><div=
><br></div><div>Filesystem paths, despite what a lot of people think, are t=
reated by almost all filesystems as a bunch of bits. As in, comparisons are=
 done via memcmp(), and you can send the almost unfiltered binary output fr=
om a random number generator as a filename and it&#39;ll work perfectly. La=
yers above the filesystem <i>might</i>=C2=A0do &quot;case insensitive&quot;=
 fallback comparisons where &quot;case insensitive&quot; may be not, partia=
lly, or wholly Unicode aware, and they usually do these if and only if memc=
mp() failed to find anything. It is also the case that apart from MacOS, ev=
ery major platform lets you say &quot;only ever use memcmp()&quot; which is=
 an obvious big performance gain. The low level file i/o library I am propo=
sing lets you use memcmp() compared paths on Windows using a &quot;\\!\&quo=
t; path prefix for example, and it&#39;s a big gain (about 40% faster file =
opens!).</div><div><br></div><div>So paths, therefore, are simultaneously a=
 bunch of bytes, but also may get some ICU applied to them depending on sys=
tem configuration, <i>maybe</i>.=C2=A0 Hence the u8 prefix is inappropriate=
, but only <i>sometimes</i>, for filesystem paths. I agree all of this is u=
nfortunate, but that&#39;s the current standard practice right now, and as =
I mentioned on all but MacOS we have memcmp() path comparisons at the kerne=
l level.=C2=A0</div><div><br></div><div>Me personally I think it best balan=
ced to use char here, as it&#39;s a pure sitting-on-the-fence declaration.<=
/div></div></blockquote><div><br>That&#39;s precisely why I <i>don&#39;t</i=
> think it&#39;s a good solution. Because you&#39;re not treating `char` as=
 &quot;a pure sitting-on-the-fence declaration&quot;. You&#39;re treating `=
char` as UTF-8. You&#39;re <i>explicitly</i> doing this, because on Win32, =
you will generate a native-encoded path by converting from UTF-8 to UTF-16.=
 There is no fence-sitting happening; you&#39;ve pick a side.<br><br>So if =
you are going to pick a side, best to be explicit about it.<br><br></div><b=
lockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;borde=
r-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><div> Filesyste=
m paths are not std::byte, and not char8_t. They are something in between, =
and probably best pushed onto the programmer to decide. Which is kinda what=
 char* means in C++.<br></div><div><br></div><div>Niall</div></div></blockq=
uote></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/d0b66bfa-9e71-4fe7-a9a6-0758fa1636a7%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/d0b66bfa-9e71-4fe7-a9a6-0758fa1636a7=
%40isocpp.org</a>.<br />

------=_Part_9691_1260742667.1524241600474--

------=_Part_9690_764571620.1524241600474--

.


Author: Bengt Gustafsson <bengt.gustafsson@beamways.com>
Date: Fri, 20 Apr 2018 13:42:37 -0700 (PDT)
Raw View
------=_Part_10718_1644666982.1524256957343
Content-Type: multipart/alternative;
 boundary="----=_Part_10719_1455752860.1524256957343"

------=_Part_10719_1455752860.1524256957343
Content-Type: text/plain; charset="UTF-8"


>
>
> Oh ok. I am surprised that you read it this way. I thought it very clear
> that we always pass through unchanged inputs of the native encoding, so on
> Windows, wchar_t input never causes reencoding.
>
> Thanks for this feedback though. I'll need to do a round of removing
> ambiguity.
>

So you are using a flag or something to remember what type the pointer
actually points to for this path_view instance (or a type erased helper
object or something like that). I understand the part about the c_str
buffer being used in case conversion is required. I am not convinced that
allocating 64k on the stack will be appreciated by the committee but that
could be seen as a QoI issue. I assume that the c_str type also has some
magic to make sure it does not do any copying if the referred original
data's type matches, allocating the buffer with alloca() if not, rather
than using a member array which always uses up the maximum stack space. QoI
again...

Is there a point in making the c_str buffer a template so that it can be
used for other character sets than the "native" one? There are cases where
you for instance send filenames over network links or store them as bytes
in a file being written. But maybe that's too narrow usage to motivate the
complication. There is also the issue of character set in addition to just
character type in this case, which should be handled by a future codecvt
replacement. An intermediate solution could be to provide utf8_str and
utf16_str in addition to c_str which do the same thing but convert the
characters if needed compared to what the view actually points at. One of
these would be the same as c_str depending on platform, but this would
provide an easier portable way to get at the individual characters in a
random accessible way.

What don't understand really is how you can iterate over UTF-8 characters
if you have UTF-16 in the underlying implementation but if the iterator has
some internal state I guess you can, as long as you don't provide random
access. I think the fact that the iterator must keep a few bytes worth of
preprocessed utf-8 data worth mentioning.

This being a read only view it can't handle some common path manipulation
scenarios in a portable way, such as combining parts of paths to form a
full path, or replacing the extension of a file name. An operator/() which
takes paths and path_views as lhs and rhs and returns a path seems like a
logical addition to the current operator/(path, path). Not providing this
would make some patterns cumbersome to code as you would first have to call
the path() method doing one copy and then operator/ doing another.
Investigating if path should have a constructor from path_view and similar
is also of interest, and here the semantics should be the same as between
string/string_view if possible.

Thinking about how to get the utf8 string out of there and into storage
that is not local on the stack it seems natural to do:

    path_view pv;
    char* buffer = new char[???];
    *std::copy(pv.begin(), pv.end(), buffer) = 0;

So maybe a method to get the max length for this particular view would be
of interest?

Also, it seems neat to have wbegin() and wend() which provide iterators
over UTF-16 strings converting from utf8 if this is what was referred,
improving symmetry.

At this point the similarity with an iterator based codecvt becomes a
little too obvious... is there a concrete proposal for what is to replace
the deprecated std::codecvt?

And then the question about the #ifdef _WIN32. What is the point of not
providing this functionality on linux? Maybe it would not be widely used,
but it doesn't seem to hurt keeping it in and it improves portability for
software initially written using wstring on Windows and then ported to
Linux. I suspect this has to do with the fact that wchar_t is 32 bits on
Linux so the wide char encoding would be different than on Windows anyway.
Is there a discussion on this topic?

--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/5716dadb-9a39-4a3c-94fd-c58ee9ed3f72%40isocpp.org.

------=_Part_10719_1455752860.1524256957343
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr"><blockquote class=3D"gmail_quote" style=3D"margin: 0;margi=
n-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"l=
tr"><div><br></div><div>Oh ok. I am surprised that you read it this way. I =
thought it very clear that we always pass through unchanged inputs of the n=
ative encoding, so on Windows, wchar_t input never causes reencoding.</div>=
<div><br></div><div>Thanks for this feedback though. I&#39;ll need to do a =
round of removing ambiguity.</div></div></blockquote><div><br></div><div>So=
 you are using a flag or something to remember what type the pointer actual=
ly points to for this path_view instance (or a type erased helper object or=
 something like that). I understand the part about the c_str buffer being u=
sed in case conversion is required. I am not convinced that allocating 64k =
on the stack will be appreciated by the committee but that could be seen as=
 a QoI issue. I assume that the c_str type also has some magic to make sure=
 it does not do any copying if the referred original data&#39;s type matche=
s, allocating the buffer with alloca() if not, rather than using a member a=
rray which always uses up the maximum stack space. QoI again...</div><div><=
br></div><div>Is there a point in making the c_str buffer a template so tha=
t it can be used for other character sets than the &quot;native&quot; one? =
There are cases where you for instance send filenames over network links or=
 store them as bytes in a file being written. But maybe that&#39;s too narr=
ow usage to motivate the complication. There is also the issue of character=
 set in addition to just character type in this case, which should be handl=
ed by a future codecvt replacement. An intermediate solution could be to pr=
ovide utf8_str and utf16_str in addition to c_str which do the same thing b=
ut convert the characters if needed compared to what the view actually poin=
ts at. One of these would be the same as c_str depending on platform, but t=
his would provide an easier portable way to get at the individual character=
s in a random accessible way.</div><div><br></div><div>What don&#39;t under=
stand really is how you can iterate over UTF-8 characters if you have UTF-1=
6 in the underlying implementation but if the iterator has some internal st=
ate I guess you can, as long as you don&#39;t provide random access. I thin=
k the fact that the iterator must keep a few bytes worth of preprocessed ut=
f-8 data worth mentioning.</div><div><br></div><div>This being a read only =
view it can&#39;t handle some common path manipulation scenarios in a porta=
ble way, such as combining parts of paths to form a full path, or replacing=
 the extension of a file name. An operator/() which takes paths and path_vi=
ews as lhs and rhs and returns a path seems like a logical addition to the =
current operator/(path, path). Not providing this would make some patterns =
cumbersome to code as you would first have to call the path() method doing =
one copy and then operator/ doing another. Investigating if path should hav=
e a constructor from path_view and similar is also of interest, and here th=
e semantics should be the same as between string/string_view if possible.</=
div><div><br></div><div>Thinking about how to get the utf8 string out of th=
ere and into storage that is not local on the stack it seems natural to do:=
</div><div><br></div><div>=C2=A0 =C2=A0 path_view pv;</div><div>=C2=A0 =C2=
=A0 char* buffer =3D new char[???];</div><div>=C2=A0 =C2=A0 *std::copy(pv.b=
egin(), pv.end(), buffer) =3D 0;</div><div><br></div><div>So maybe a method=
 to get the max length for this particular view would be of interest?</div>=
<div><br></div><div>Also, it seems neat to have wbegin() and wend() which p=
rovide iterators over UTF-16 strings converting from utf8 if this is what w=
as referred, improving symmetry.</div><div><br></div><div>At this point the=
 similarity with an iterator based codecvt becomes a little too obvious... =
is there a concrete proposal for what is to replace the deprecated std::cod=
ecvt?</div><div><br></div><div>And then the question about the #ifdef _WIN3=
2. What is the point of not providing this functionality on linux? Maybe it=
 would not be widely used, but it doesn&#39;t seem to hurt keeping it in an=
d it improves portability for software initially written using wstring on W=
indows and then ported to Linux. I suspect this has to do with the fact tha=
t wchar_t is 32 bits on Linux so the wide char encoding would be different =
than on Windows anyway. Is there a discussion on this topic?</div><div><br>=
</div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/5716dadb-9a39-4a3c-94fd-c58ee9ed3f72%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/5716dadb-9a39-4a3c-94fd-c58ee9ed3f72=
%40isocpp.org</a>.<br />

------=_Part_10719_1455752860.1524256957343--

------=_Part_10718_1644666982.1524256957343--

.


Author: Niall Douglas <nialldouglas14@gmail.com>
Date: Fri, 20 Apr 2018 14:53:03 -0700 (PDT)
Raw View
------=_Part_11201_233716445.1524261183906
Content-Type: multipart/alternative;
 boundary="----=_Part_11202_701894070.1524261183907"

------=_Part_11202_701894070.1524261183907
Content-Type: text/plain; charset="UTF-8"


>
> That's precisely why I *don't* think it's a good solution. Because you're
> not treating `char` as "a pure sitting-on-the-fence declaration". You're
> treating `char` as UTF-8.
>

If and only if the native encoding is not char.


> You're *explicitly* doing this, because on Win32, you will generate a
> native-encoded path by converting from UTF-8 to UTF-16. There is no
> fence-sitting happening; you've pick a side.
>

I suppose one could match std::filesystem::path, and treat char input as
ANSI?

Would you prefer that instead?


>
> So if you are going to pick a side, best to be explicit about it.
>
> Sure, it looks like I'll need to simplify the paper's argument a bit.
Thanks for the feedback.

Niall

--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/af5962d8-0e52-4f55-becb-69f7539d0d14%40isocpp.org.

------=_Part_11202_701894070.1524261183907
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr"><blockquote class=3D"gmail_quote" style=3D"margin: 0;margi=
n-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"l=
tr"><div>That&#39;s precisely why I <i>don&#39;t</i> think it&#39;s a good =
solution. Because you&#39;re not treating `char` as &quot;a pure sitting-on=
-the-fence declaration&quot;. You&#39;re treating `char` as UTF-8.</div></d=
iv></blockquote><div><br></div><div>If and only if the native encoding is n=
ot char.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"m=
argin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"=
><div dir=3D"ltr"><div> You&#39;re <i>explicitly</i> doing this, because on=
 Win32, you will generate a native-encoded path by converting from UTF-8 to=
 UTF-16. There is no fence-sitting happening; you&#39;ve pick a side.<br></=
div></div></blockquote><div><br></div><div>I suppose one could match std::f=
ilesystem::path, and treat char input as ANSI?</div><div><br></div><div>Wou=
ld you prefer that instead?</div><div>=C2=A0</div><blockquote class=3D"gmai=
l_quote" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;=
padding-left: 1ex;"><div dir=3D"ltr"><div><br>So if you are going to pick a=
 side, best to be explicit about it.<br></div><br></div></blockquote><div>S=
ure, it looks like I&#39;ll need to simplify the paper&#39;s argument a bit=
.. Thanks for the feedback.</div><div><br></div><div>Niall</div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/af5962d8-0e52-4f55-becb-69f7539d0d14%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/af5962d8-0e52-4f55-becb-69f7539d0d14=
%40isocpp.org</a>.<br />

------=_Part_11202_701894070.1524261183907--

------=_Part_11201_233716445.1524261183906--

.


Author: Niall Douglas <nialldouglas14@gmail.com>
Date: Fri, 20 Apr 2018 15:19:51 -0700 (PDT)
Raw View
------=_Part_11649_1650253710.1524262791501
Content-Type: multipart/alternative;
 boundary="----=_Part_11650_1659466677.1524262791501"

------=_Part_11650_1659466677.1524262791501
Content-Type: text/plain; charset="UTF-8"

On Friday, April 20, 2018 at 9:42:37 PM UTC+1, Bengt Gustafsson wrote:
>
>
>> Oh ok. I am surprised that you read it this way. I thought it very clear
>> that we always pass through unchanged inputs of the native encoding, so on
>> Windows, wchar_t input never causes reencoding.
>>
>> Thanks for this feedback though. I'll need to do a round of removing
>> ambiguity.
>>
>
> So you are using a flag or something to remember what type the pointer
> actually points to for this path_view instance (or a type erased helper
> object or something like that).
>

The current implementation is lazy, and stores both a string_view and a
wstring_view. Whichever is not null is the original source. You can see it
at https://github.com/ned14/afio/blob/master/include/afio/v2.0/path_view.hpp#L149.


> I understand the part about the c_str buffer being used in case conversion
> is required. I am not convinced that allocating 64k on the stack will be
> appreciated by the committee but that could be seen as a QoI issue.
>

I say meh on Windows. And it's only so large on Windows.


> I assume that the c_str type also has some magic to make sure it does not
> do any copying if the referred original data's type matches, allocating the
> buffer with alloca() if not, rather than using a member array which always
> uses up the maximum stack space. QoI again...
>

We cannot use alloca here. We cannot predict the size of the output you
see. So we allocate on the stack the maximum path size possible. As I
mention in the paper, if the compiler deduces it will never be used, the
stack allocation is completely removed.


>
> Is there a point in making the c_str buffer a template so that it can be
> used for other character sets than the "native" one?
>

No. Path views as proposed are unsuitable for anything other than calling a
syscall.


> There is also the issue of character set in addition to just character
> type in this case, which should be handled by a future codecvt replacement.
>

Unnecessary for path views.


> An intermediate solution could be to provide utf8_str and utf16_str in
> addition to c_str which do the same thing but convert the characters if
> needed compared to what the view actually points at. One of these would be
> the same as c_str depending on platform, but this would provide an easier
> portable way to get at the individual characters in a random accessible way.
>

Ah, but we don't want people to get at the individual characters via a path
view. Path components, yes. Characters, no.

This probably sounds excessively limiting, but as the paper points out,
there is no need to permute whole paths anymore in the low level file i/o
library. Just leafnames. And those are likely a char buffer on the stack
which you sprintf() into or something.


>
> What don't understand really is how you can iterate over UTF-8 characters
> if you have UTF-16 in the underlying implementation but if the iterator has
> some internal state I guess you can, as long as you don't provide random
> access. I think the fact that the iterator must keep a few bytes worth of
> preprocessed utf-8 data worth mentioning.
>

The iterators don't need to understand UTF because all they search for is
the path system separator character as defined by std::filesystem.

They do not care what is in between the separators. They blindly accept
whatever bytes there is.


>
> This being a read only view it can't handle some common path manipulation
> scenarios in a portable way, such as combining parts of paths to form a
> full path, or replacing the extension of a file name.
>

If you want to modify a path, convert the view to a path beforehand using
..path() so you can manipulate its underlying string.


> An operator/() which takes paths and path_views as lhs and rhs and returns
> a path seems like a logical addition to the current operator/(path, path).
> Not providing this would make some patterns cumbersome to code as you would
> first have to call the path() method doing one copy and then operator/
> doing another.
>

I would imagine that, if approved, std::filesystem::path would gain
understanding of path views.


> Investigating if path should have a constructor from path_view and similar
> is also of interest, and here the semantics should be the same as between
> string/string_view if possible.
>

I think this very likely.


>
> Thinking about how to get the utf8 string out of there and into storage
> that is not local on the stack it seems natural to do:
>
>     path_view pv;
>     char* buffer = new char[???];
>     *std::copy(pv.begin(), pv.end(), buffer) = 0;
>

Path view iterators, same as path iterators, iterate path components. Not
characters. So iterators return path views which are slices of the
original, same as path.
See http://en.cppreference.com/w/cpp/filesystem/path/begin.

Thus std::copy would need to copy into an array of path_views, not char[].
Same as for path.


>
> So maybe a method to get the max length for this particular view would be
> of interest?
>

As with path, the size of a view is the number of path components, not the
size of the underlying string.

I do have an extension, native_size(), which returns whatever the
underlying string view returns for its size.


>
> Also, it seems neat to have wbegin() and wend() which provide iterators
> over UTF-16 strings converting from utf8 if this is what was referred,
> improving symmetry.
>

As mentioned before, path view iterators return new path views.


>
> And then the question about the #ifdef _WIN32. What is the point of not
> providing this functionality on linux?
>

A far more efficient implementation primarily as we can hard assume
characters will be the sole backing storage. Eliminates the runtime
dispatch.


> Maybe it would not be widely used, but it doesn't seem to hurt keeping it
> in and it improves portability for software initially written using wstring
> on Windows and then ported to Linux. I suspect this has to do with the fact
> that wchar_t is 32 bits on Linux so the wide char encoding would be
> different than on Windows anyway. Is there a discussion on this topic?
>
>
I don't personally see any gain. Less is more. We want to encourage people
to not cause unnecessary string reencodings with path views. They're the
same as copying memory. And if they really want to, they can use a
std::filesystem::path, and construct a path view from the reencoded path.

Thanks for your feedback!

Niall

--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/a7e5ca2f-c206-493f-ab43-eb7e7ed022b0%40isocpp.org.

------=_Part_11650_1659466677.1524262791501
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">On Friday, April 20, 2018 at 9:42:37 PM UTC+1, Bengt Gusta=
fsson wrote:<blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-lef=
t: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><=
blockquote class=3D"gmail_quote" style=3D"margin:0;margin-left:0.8ex;border=
-left:1px #ccc solid;padding-left:1ex"><div dir=3D"ltr"><div><br></div><div=
>Oh ok. I am surprised that you read it this way. I thought it very clear t=
hat we always pass through unchanged inputs of the native encoding, so on W=
indows, wchar_t input never causes reencoding.</div><div><br></div><div>Tha=
nks for this feedback though. I&#39;ll need to do a round of removing ambig=
uity.</div></div></blockquote><div><br></div><div>So you are using a flag o=
r something to remember what type the pointer actually points to for this p=
ath_view instance (or a type erased helper object or something like that).<=
/div></div></blockquote><div><br></div><div>The current implementation is l=
azy, and stores both a string_view and a wstring_view. Whichever is not nul=
l is the original source. You can see it at=C2=A0https://github.com/ned14/a=
fio/blob/master/include/afio/v2.0/path_view.hpp#L149.</div><div>=C2=A0</div=
><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;bo=
rder-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><div> I unde=
rstand the part about the c_str buffer being used in case conversion is req=
uired. I am not convinced that allocating 64k on the stack will be apprecia=
ted by the committee but that could be seen as a QoI issue.</div></div></bl=
ockquote><div><br></div><div>I say meh on Windows. And it&#39;s only so lar=
ge on Windows.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" styl=
e=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left:=
 1ex;"><div dir=3D"ltr"><div> I assume that the c_str type also has some ma=
gic to make sure it does not do any copying if the referred original data&#=
39;s type matches, allocating the buffer with alloca() if not, rather than =
using a member array which always uses up the maximum stack space. QoI agai=
n...</div></div></blockquote><div><br></div><div>We cannot use alloca here.=
 We cannot predict the size of the output you see. So we allocate on the st=
ack the maximum path size possible. As I mention in the paper, if the compi=
ler deduces it will never be used, the stack allocation is completely remov=
ed.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"margin=
: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div=
 dir=3D"ltr"><div><br></div><div>Is there a point in making the c_str buffe=
r a template so that it can be used for other character sets than the &quot=
;native&quot; one?</div></div></blockquote><div><br></div><div>No. Path vie=
ws as proposed are unsuitable for anything other than calling a syscall.</d=
iv><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"margin: 0;ma=
rgin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=
=3D"ltr"><div>There is also the issue of character set in addition to just =
character type in this case, which should be handled by a future codecvt re=
placement. </div></div></blockquote><div><br></div><div>Unnecessary for pat=
h views.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"m=
argin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"=
><div dir=3D"ltr"><div>An intermediate solution could be to provide utf8_st=
r and utf16_str in addition to c_str which do the same thing but convert th=
e characters if needed compared to what the view actually points at. One of=
 these would be the same as c_str depending on platform, but this would pro=
vide an easier portable way to get at the individual characters in a random=
 accessible way.</div></div></blockquote><div><br></div><div>Ah, but we don=
&#39;t want people to get at the individual characters via a path view. Pat=
h components, yes. Characters, no.</div><div><br></div><div>This probably s=
ounds excessively limiting, but as the paper points out, there is no need t=
o permute whole paths anymore in the low level file i/o library. Just leafn=
ames. And those are likely a char buffer on the stack which you sprintf() i=
nto or something.</div><div>=C2=A0<br></div><blockquote class=3D"gmail_quot=
e" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;paddin=
g-left: 1ex;"><div dir=3D"ltr"><div><br></div><div>What don&#39;t understan=
d really is how you can iterate over UTF-8 characters if you have UTF-16 in=
 the underlying implementation but if the iterator has some internal state =
I guess you can, as long as you don&#39;t provide random access. I think th=
e fact that the iterator must keep a few bytes worth of preprocessed utf-8 =
data worth mentioning.</div></div></blockquote><div><br></div><div>The iter=
ators don&#39;t need to understand UTF because all they search for is the p=
ath system separator character as defined by std::filesystem.</div><div><br=
></div><div>They do not care what is in between the separators. They blindl=
y accept whatever bytes there is.</div><div>=C2=A0</div><blockquote class=
=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #cc=
c solid;padding-left: 1ex;"><div dir=3D"ltr"><div><br></div><div>This being=
 a read only view it can&#39;t handle some common path manipulation scenari=
os in a portable way, such as combining parts of paths to form a full path,=
 or replacing the extension of a file name.</div></div></blockquote><div><b=
r></div><div>If you want to modify a path, convert the view to a path befor=
ehand using .path() so you can manipulate its underlying string.</div><div>=
=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-lef=
t: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><=
div> An operator/() which takes paths and path_views as lhs and rhs and ret=
urns a path seems like a logical addition to the current operator/(path, pa=
th). Not providing this would make some patterns cumbersome to code as you =
would first have to call the path() method doing one copy and then operator=
/ doing another.</div></div></blockquote><div><br></div><div>I would imagin=
e that, if approved, std::filesystem::path would gain understanding of path=
 views.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"ma=
rgin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;">=
<div dir=3D"ltr"><div> Investigating if path should have a constructor from=
 path_view and similar is also of interest, and here the semantics should b=
e the same as between string/string_view if possible.</div></div></blockquo=
te><div><br></div><div>I think this very likely.</div><div>=C2=A0</div><blo=
ckquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;border-=
left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><div><br></div><d=
iv>Thinking about how to get the utf8 string out of there and into storage =
that is not local on the stack it seems natural to do:</div><div><br></div>=
<div>=C2=A0 =C2=A0 path_view pv;</div><div>=C2=A0 =C2=A0 char* buffer =3D n=
ew char[???];</div><div>=C2=A0 =C2=A0 *std::copy(pv.begin(), pv.end(), buff=
er) =3D 0;</div></div></blockquote><div><br></div><div>Path view iterators,=
 same as path iterators, iterate path components. Not characters. So iterat=
ors return path views which are slices of the original, same as path. See=
=C2=A0http://en.cppreference.com/w/cpp/filesystem/path/begin.</div><div><br=
></div><div>Thus std::copy would need to copy into an array of path_views, =
not char[]. Same as for path.</div><div>=C2=A0</div><blockquote class=3D"gm=
ail_quote" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc soli=
d;padding-left: 1ex;"><div dir=3D"ltr"><div><br></div><div>So maybe a metho=
d to get the max length for this particular view would be of interest?</div=
></div></blockquote><div><br></div><div>As with path, the size of a view is=
 the number of path components, not the size of the underlying string.</div=
><div><br></div><div>I do have an extension, native_size(), which returns w=
hatever the underlying string view returns for its size.</div><div>=C2=A0</=
div><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex=
;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><div><br>=
</div><div>Also, it seems neat to have wbegin() and wend() which provide it=
erators over UTF-16 strings converting from utf8 if this is what was referr=
ed, improving symmetry.</div></div></blockquote><div><br></div><div>As ment=
ioned before, path view iterators return new path views.</div><div>=C2=A0</=
div><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex=
;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><div><br>=
</div><div>And then the question about the #ifdef _WIN32. What is the point=
 of not providing this functionality on linux?</div></div></blockquote><div=
><br></div><div>A far more efficient implementation primarily as we can har=
d assume characters will be the sole backing storage. Eliminates the runtim=
e dispatch.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=
=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: =
1ex;"><div dir=3D"ltr"><div> Maybe it would not be widely used, but it does=
n&#39;t seem to hurt keeping it in and it improves portability for software=
 initially written using wstring on Windows and then ported to Linux. I sus=
pect this has to do with the fact that wchar_t is 32 bits on Linux so the w=
ide char encoding would be different than on Windows anyway. Is there a dis=
cussion on this topic?</div><div><br></div></div></blockquote><div><br></di=
v><div>I don&#39;t personally see any gain. Less is more. We want to encour=
age people to not cause unnecessary string reencodings with path views. The=
y&#39;re the same as copying memory. And if they really want to, they can u=
se a std::filesystem::path, and construct a path view from the reencoded pa=
th.</div><div><br></div><div>Thanks for your feedback!</div><div><br></div>=
<div>Niall</div></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/a7e5ca2f-c206-493f-ab43-eb7e7ed022b0%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/a7e5ca2f-c206-493f-ab43-eb7e7ed022b0=
%40isocpp.org</a>.<br />

------=_Part_11650_1659466677.1524262791501--

------=_Part_11649_1650253710.1524262791501--

.


Author: Bengt Gustafsson <bengt.gustafsson@beamways.com>
Date: Fri, 20 Apr 2018 15:50:29 -0700 (PDT)
Raw View
------=_Part_11656_924498819.1524264629856
Content-Type: multipart/alternative;
 boundary="----=_Part_11657_1153670760.1524264629857"

------=_Part_11657_1153670760.1524264629857
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

Ok, I'm not too familiar with path iterators, sorry for the confusion.=20
Anyhow, does this mean that the only way to get the actual characters out=
=20
is using either path() and from the returned path object get a string (two=
=20
deep copies later) or using c_str buffer, always getting a "platform"=20
friendly string, i.e. non-portable code? While it is of course important to=
=20
be able to efficiently get the "platform" friendly string I think it is=20
also important to be able to get the character sequence out the other end,=
=20
i.e. to be able to work with the characters of the view you received in a=
=20
portable way.



Den l=C3=B6rdag 21 april 2018 kl. 00:19:51 UTC+2 skrev Niall Douglas:
>
> On Friday, April 20, 2018 at 9:42:37 PM UTC+1, Bengt Gustafsson wrote:
>>
>>
>>> Oh ok. I am surprised that you read it this way. I thought it very clea=
r=20
>>> that we always pass through unchanged inputs of the native encoding, so=
 on=20
>>> Windows, wchar_t input never causes reencoding.
>>>
>>> Thanks for this feedback though. I'll need to do a round of removing=20
>>> ambiguity.
>>>
>>
>> So you are using a flag or something to remember what type the pointer=
=20
>> actually points to for this path_view instance (or a type erased helper=
=20
>> object or something like that).
>>
>
> The current implementation is lazy, and stores both a string_view and a=
=20
> wstring_view. Whichever is not null is the original source. You can see i=
t=20
> at=20
> https://github.com/ned14/afio/blob/master/include/afio/v2.0/path_view.hpp=
#L149
> .
> =20
>
>> I understand the part about the c_str buffer being used in case=20
>> conversion is required. I am not convinced that allocating 64k on the st=
ack=20
>> will be appreciated by the committee but that could be seen as a QoI iss=
ue.
>>
>
> I say meh on Windows. And it's only so large on Windows.
> =20
>
>> I assume that the c_str type also has some magic to make sure it does no=
t=20
>> do any copying if the referred original data's type matches, allocating =
the=20
>> buffer with alloca() if not, rather than using a member array which alwa=
ys=20
>> uses up the maximum stack space. QoI again...
>>
>
> We cannot use alloca here. We cannot predict the size of the output you=
=20
> see. So we allocate on the stack the maximum path size possible. As I=20
> mention in the paper, if the compiler deduces it will never be used, the=
=20
> stack allocation is completely removed.
> =20
>
>>
>> Is there a point in making the c_str buffer a template so that it can be=
=20
>> used for other character sets than the "native" one?
>>
>
> No. Path views as proposed are unsuitable for anything other than calling=
=20
> a syscall.
> =20
>
>> There is also the issue of character set in addition to just character=
=20
>> type in this case, which should be handled by a future codecvt replaceme=
nt.=20
>>
>
> Unnecessary for path views.
> =20
>
>> An intermediate solution could be to provide utf8_str and utf16_str in=
=20
>> addition to c_str which do the same thing but convert the characters if=
=20
>> needed compared to what the view actually points at. One of these would =
be=20
>> the same as c_str depending on platform, but this would provide an easie=
r=20
>> portable way to get at the individual characters in a random accessible =
way.
>>
>
> Ah, but we don't want people to get at the individual characters via a=20
> path view. Path components, yes. Characters, no.
>
> This probably sounds excessively limiting, but as the paper points out,=
=20
> there is no need to permute whole paths anymore in the low level file i/o=
=20
> library. Just leafnames. And those are likely a char buffer on the stack=
=20
> which you sprintf() into or something.
> =20
>
>>
>> What don't understand really is how you can iterate over UTF-8 character=
s=20
>> if you have UTF-16 in the underlying implementation but if the iterator =
has=20
>> some internal state I guess you can, as long as you don't provide random=
=20
>> access. I think the fact that the iterator must keep a few bytes worth o=
f=20
>> preprocessed utf-8 data worth mentioning.
>>
>
> The iterators don't need to understand UTF because all they search for is=
=20
> the path system separator character as defined by std::filesystem.
>
> They do not care what is in between the separators. They blindly accept=
=20
> whatever bytes there is.
> =20
>
>>
>> This being a read only view it can't handle some common path manipulatio=
n=20
>> scenarios in a portable way, such as combining parts of paths to form a=
=20
>> full path, or replacing the extension of a file name.
>>
>
> If you want to modify a path, convert the view to a path beforehand using=
=20
> .path() so you can manipulate its underlying string.
> =20
>
>> An operator/() which takes paths and path_views as lhs and rhs and=20
>> returns a path seems like a logical addition to the current operator/(pa=
th,=20
>> path). Not providing this would make some patterns cumbersome to code as=
=20
>> you would first have to call the path() method doing one copy and then=
=20
>> operator/ doing another.
>>
>
> I would imagine that, if approved, std::filesystem::path would gain=20
> understanding of path views.
> =20
>
>> Investigating if path should have a constructor from path_view and=20
>> similar is also of interest, and here the semantics should be the same a=
s=20
>> between string/string_view if possible.
>>
>
> I think this very likely.
> =20
>
>>
>> Thinking about how to get the utf8 string out of there and into storage=
=20
>> that is not local on the stack it seems natural to do:
>>
>>     path_view pv;
>>     char* buffer =3D new char[???];
>>     *std::copy(pv.begin(), pv.end(), buffer) =3D 0;
>>
>
> Path view iterators, same as path iterators, iterate path components. Not=
=20
> characters. So iterators return path views which are slices of the=20
> original, same as path. See=20
> http://en.cppreference.com/w/cpp/filesystem/path/begin.
>
> Thus std::copy would need to copy into an array of path_views, not char[]=
..=20
> Same as for path.
> =20
>
>>
>> So maybe a method to get the max length for this particular view would b=
e=20
>> of interest?
>>
>
> As with path, the size of a view is the number of path components, not th=
e=20
> size of the underlying string.
>
> I do have an extension, native_size(), which returns whatever the=20
> underlying string view returns for its size.
> =20
>
>>
>> Also, it seems neat to have wbegin() and wend() which provide iterators=
=20
>> over UTF-16 strings converting from utf8 if this is what was referred,=
=20
>> improving symmetry.
>>
>
> As mentioned before, path view iterators return new path views.
> =20
>
>>
>> And then the question about the #ifdef _WIN32. What is the point of not=
=20
>> providing this functionality on linux?
>>
>
> A far more efficient implementation primarily as we can hard assume=20
> characters will be the sole backing storage. Eliminates the runtime=20
> dispatch.
> =20
>
>> Maybe it would not be widely used, but it doesn't seem to hurt keeping i=
t=20
>> in and it improves portability for software initially written using wstr=
ing=20
>> on Windows and then ported to Linux. I suspect this has to do with the f=
act=20
>> that wchar_t is 32 bits on Linux so the wide char encoding would be=20
>> different than on Windows anyway. Is there a discussion on this topic?
>>
>>
> I don't personally see any gain. Less is more. We want to encourage peopl=
e=20
> to not cause unnecessary string reencodings with path views. They're the=
=20
> same as copying memory. And if they really want to, they can use a=20
> std::filesystem::path, and construct a path view from the reencoded path.
>
> Thanks for your feedback!
>
> Niall
>

--=20
You received this message because you are subscribed to the Google Groups "=
ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp=
..org/d/msgid/std-proposals/c15d040b-bf2a-4e94-811f-72be4b24d42d%40isocpp.or=
g.

------=_Part_11657_1153670760.1524264629857
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

<div dir=3D"ltr">Ok, I&#39;m not too familiar with path iterators, sorry fo=
r the confusion. Anyhow, does this mean that the only way to get the actual=
 characters out is using either path() and from the returned path object ge=
t a string (two deep copies later) or using c_str buffer, always getting a =
&quot;platform&quot; friendly string, i.e. non-portable code? While it is o=
f course important to be able to efficiently get the &quot;platform&quot; f=
riendly string I think it is also important to be able to get the character=
 sequence out the other end, i.e. to be able to work with the characters of=
 the view you received in a portable way.<div><br></div><div><br><br>Den l=
=C3=B6rdag 21 april 2018 kl. 00:19:51 UTC+2 skrev Niall Douglas:<blockquote=
 class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.8ex;border-left: 1=
px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr">On Friday, April 20, 201=
8 at 9:42:37 PM UTC+1, Bengt Gustafsson wrote:<blockquote class=3D"gmail_qu=
ote" style=3D"margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding=
-left:1ex"><div dir=3D"ltr"><blockquote class=3D"gmail_quote" style=3D"marg=
in:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div di=
r=3D"ltr"><div><br></div><div>Oh ok. I am surprised that you read it this w=
ay. I thought it very clear that we always pass through unchanged inputs of=
 the native encoding, so on Windows, wchar_t input never causes reencoding.=
</div><div><br></div><div>Thanks for this feedback though. I&#39;ll need to=
 do a round of removing ambiguity.</div></div></blockquote><div><br></div><=
div>So you are using a flag or something to remember what type the pointer =
actually points to for this path_view instance (or a type erased helper obj=
ect or something like that).</div></div></blockquote><div><br></div><div>Th=
e current implementation is lazy, and stores both a string_view and a wstri=
ng_view. Whichever is not null is the original source. You can see it at=C2=
=A0<a href=3D"https://github.com/ned14/afio/blob/master/include/afio/v2.0/p=
ath_view.hpp#L149" target=3D"_blank" rel=3D"nofollow" onmousedown=3D"this.h=
ref=3D&#39;https://www.google.com/url?q\x3dhttps%3A%2F%2Fgithub.com%2Fned14=
%2Fafio%2Fblob%2Fmaster%2Finclude%2Fafio%2Fv2.0%2Fpath_view.hpp%23L149\x26s=
a\x3dD\x26sntz\x3d1\x26usg\x3dAFQjCNGYCvNAKIKuiYri1_vWoF_1UhUYBA&#39;;retur=
n true;" onclick=3D"this.href=3D&#39;https://www.google.com/url?q\x3dhttps%=
3A%2F%2Fgithub.com%2Fned14%2Fafio%2Fblob%2Fmaster%2Finclude%2Fafio%2Fv2.0%2=
Fpath_view.hpp%23L149\x26sa\x3dD\x26sntz\x3d1\x26usg\x3dAFQjCNGYCvNAKIKuiYr=
i1_vWoF_1UhUYBA&#39;;return true;">https://github.com/ned14/<wbr>afio/blob/=
master/include/afio/<wbr>v2.0/path_view.hpp#L149</a>.</div><div>=C2=A0</div=
><blockquote class=3D"gmail_quote" style=3D"margin:0;margin-left:0.8ex;bord=
er-left:1px #ccc solid;padding-left:1ex"><div dir=3D"ltr"><div> I understan=
d the part about the c_str buffer being used in case conversion is required=
.. I am not convinced that allocating 64k on the stack will be appreciated b=
y the committee but that could be seen as a QoI issue.</div></div></blockqu=
ote><div><br></div><div>I say meh on Windows. And it&#39;s only so large on=
 Windows.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"=
margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><di=
v dir=3D"ltr"><div> I assume that the c_str type also has some magic to mak=
e sure it does not do any copying if the referred original data&#39;s type =
matches, allocating the buffer with alloca() if not, rather than using a me=
mber array which always uses up the maximum stack space. QoI again...</div>=
</div></blockquote><div><br></div><div>We cannot use alloca here. We cannot=
 predict the size of the output you see. So we allocate on the stack the ma=
ximum path size possible. As I mention in the paper, if the compiler deduce=
s it will never be used, the stack allocation is completely removed.</div><=
div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"margin:0;margin-=
left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir=3D"ltr"><d=
iv><br></div><div>Is there a point in making the c_str buffer a template so=
 that it can be used for other character sets than the &quot;native&quot; o=
ne?</div></div></blockquote><div><br></div><div>No. Path views as proposed =
are unsuitable for anything other than calling a syscall.</div><div>=C2=A0<=
/div><blockquote class=3D"gmail_quote" style=3D"margin:0;margin-left:0.8ex;=
border-left:1px #ccc solid;padding-left:1ex"><div dir=3D"ltr"><div>There is=
 also the issue of character set in addition to just character type in this=
 case, which should be handled by a future codecvt replacement. </div></div=
></blockquote><div><br></div><div>Unnecessary for path views.</div><div>=C2=
=A0</div><blockquote class=3D"gmail_quote" style=3D"margin:0;margin-left:0.=
8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir=3D"ltr"><div>An i=
ntermediate solution could be to provide utf8_str and utf16_str in addition=
 to c_str which do the same thing but convert the characters if needed comp=
ared to what the view actually points at. One of these would be the same as=
 c_str depending on platform, but this would provide an easier portable way=
 to get at the individual characters in a random accessible way.</div></div=
></blockquote><div><br></div><div>Ah, but we don&#39;t want people to get a=
t the individual characters via a path view. Path components, yes. Characte=
rs, no.</div><div><br></div><div>This probably sounds excessively limiting,=
 but as the paper points out, there is no need to permute whole paths anymo=
re in the low level file i/o library. Just leafnames. And those are likely =
a char buffer on the stack which you sprintf() into or something.</div><div=
>=C2=A0<br></div><blockquote class=3D"gmail_quote" style=3D"margin:0;margin=
-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir=3D"ltr"><=
div><br></div><div>What don&#39;t understand really is how you can iterate =
over UTF-8 characters if you have UTF-16 in the underlying implementation b=
ut if the iterator has some internal state I guess you can, as long as you =
don&#39;t provide random access. I think the fact that the iterator must ke=
ep a few bytes worth of preprocessed utf-8 data worth mentioning.</div></di=
v></blockquote><div><br></div><div>The iterators don&#39;t need to understa=
nd UTF because all they search for is the path system separator character a=
s defined by std::filesystem.</div><div><br></div><div>They do not care wha=
t is in between the separators. They blindly accept whatever bytes there is=
..</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"margin:0=
;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir=3D=
"ltr"><div><br></div><div>This being a read only view it can&#39;t handle s=
ome common path manipulation scenarios in a portable way, such as combining=
 parts of paths to form a full path, or replacing the extension of a file n=
ame.</div></div></blockquote><div><br></div><div>If you want to modify a pa=
th, convert the view to a path beforehand using .path() so you can manipula=
te its underlying string.</div><div>=C2=A0</div><blockquote class=3D"gmail_=
quote" style=3D"margin:0;margin-left:0.8ex;border-left:1px #ccc solid;paddi=
ng-left:1ex"><div dir=3D"ltr"><div> An operator/() which takes paths and pa=
th_views as lhs and rhs and returns a path seems like a logical addition to=
 the current operator/(path, path). Not providing this would make some patt=
erns cumbersome to code as you would first have to call the path() method d=
oing one copy and then operator/ doing another.</div></div></blockquote><di=
v><br></div><div>I would imagine that, if approved, std::filesystem::path w=
ould gain understanding of path views.</div><div>=C2=A0</div><blockquote cl=
ass=3D"gmail_quote" style=3D"margin:0;margin-left:0.8ex;border-left:1px #cc=
c solid;padding-left:1ex"><div dir=3D"ltr"><div> Investigating if path shou=
ld have a constructor from path_view and similar is also of interest, and h=
ere the semantics should be the same as between string/string_view if possi=
ble.</div></div></blockquote><div><br></div><div>I think this very likely.<=
/div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"margin:0;m=
argin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir=3D"l=
tr"><div><br></div><div>Thinking about how to get the utf8 string out of th=
ere and into storage that is not local on the stack it seems natural to do:=
</div><div><br></div><div>=C2=A0 =C2=A0 path_view pv;</div><div>=C2=A0 =C2=
=A0 char* buffer =3D new char[???];</div><div>=C2=A0 =C2=A0 *std::copy(pv.b=
egin(), pv.end(), buffer) =3D 0;</div></div></blockquote><div><br></div><di=
v>Path view iterators, same as path iterators, iterate path components. Not=
 characters. So iterators return path views which are slices of the origina=
l, same as path. See=C2=A0<a href=3D"http://en.cppreference.com/w/cpp/files=
ystem/path/begin" target=3D"_blank" rel=3D"nofollow" onmousedown=3D"this.hr=
ef=3D&#39;http://www.google.com/url?q\x3dhttp%3A%2F%2Fen.cppreference.com%2=
Fw%2Fcpp%2Ffilesystem%2Fpath%2Fbegin\x26sa\x3dD\x26sntz\x3d1\x26usg\x3dAFQj=
CNEeOz1CqdLNpf3sfcX_ysDWtUx3bQ&#39;;return true;" onclick=3D"this.href=3D&#=
39;http://www.google.com/url?q\x3dhttp%3A%2F%2Fen.cppreference.com%2Fw%2Fcp=
p%2Ffilesystem%2Fpath%2Fbegin\x26sa\x3dD\x26sntz\x3d1\x26usg\x3dAFQjCNEeOz1=
CqdLNpf3sfcX_ysDWtUx3bQ&#39;;return true;">http://en.cppreference.<wbr>com/=
w/cpp/filesystem/path/<wbr>begin</a>.</div><div><br></div><div>Thus std::co=
py would need to copy into an array of path_views, not char[]. Same as for =
path.</div><div>=C2=A0</div><blockquote class=3D"gmail_quote" style=3D"marg=
in:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div di=
r=3D"ltr"><div><br></div><div>So maybe a method to get the max length for t=
his particular view would be of interest?</div></div></blockquote><div><br>=
</div><div>As with path, the size of a view is the number of path component=
s, not the size of the underlying string.</div><div><br></div><div>I do hav=
e an extension, native_size(), which returns whatever the underlying string=
 view returns for its size.</div><div>=C2=A0</div><blockquote class=3D"gmai=
l_quote" style=3D"margin:0;margin-left:0.8ex;border-left:1px #ccc solid;pad=
ding-left:1ex"><div dir=3D"ltr"><div><br></div><div>Also, it seems neat to =
have wbegin() and wend() which provide iterators over UTF-16 strings conver=
ting from utf8 if this is what was referred, improving symmetry.</div></div=
></blockquote><div><br></div><div>As mentioned before, path view iterators =
return new path views.</div><div>=C2=A0</div><blockquote class=3D"gmail_quo=
te" style=3D"margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-=
left:1ex"><div dir=3D"ltr"><div><br></div><div>And then the question about =
the #ifdef _WIN32. What is the point of not providing this functionality on=
 linux?</div></div></blockquote><div><br></div><div>A far more efficient im=
plementation primarily as we can hard assume characters will be the sole ba=
cking storage. Eliminates the runtime dispatch.</div><div>=C2=A0</div><bloc=
kquote class=3D"gmail_quote" style=3D"margin:0;margin-left:0.8ex;border-lef=
t:1px #ccc solid;padding-left:1ex"><div dir=3D"ltr"><div> Maybe it would no=
t be widely used, but it doesn&#39;t seem to hurt keeping it in and it impr=
oves portability for software initially written using wstring on Windows an=
d then ported to Linux. I suspect this has to do with the fact that wchar_t=
 is 32 bits on Linux so the wide char encoding would be different than on W=
indows anyway. Is there a discussion on this topic?</div><div><br></div></d=
iv></blockquote><div><br></div><div>I don&#39;t personally see any gain. Le=
ss is more. We want to encourage people to not cause unnecessary string ree=
ncodings with path views. They&#39;re the same as copying memory. And if th=
ey really want to, they can use a std::filesystem::path, and construct a pa=
th view from the reencoded path.</div><div><br></div><div>Thanks for your f=
eedback!</div><div><br></div><div>Niall</div></div></blockquote></div></div=
>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals&quot; group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/c15d040b-bf2a-4e94-811f-72be4b24d42d%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/c15d040b-bf2a-4e94-811f-72be4b24d42d=
%40isocpp.org</a>.<br />

------=_Part_11657_1153670760.1524264629857--

------=_Part_11656_924498819.1524264629856--

.


Author: Thiago Macieira <thiago@macieira.org>
Date: Sat, 21 Apr 2018 09:42:05 -0700
Raw View
On Friday, 20 April 2018 13:42:37 PDT Bengt Gustafsson wrote:
> And then the question about the #ifdef _WIN32. What is the point of not
> providing this functionality on linux? Maybe it would not be widely used,
> but it doesn't seem to hurt keeping it in and it improves portability for
> software initially written using wstring on Windows and then ported to
> Linux. I suspect this has to do with the fact that wchar_t is 32 bits on
> Linux so the wide char encoding would be different than on Windows anyway.
> Is there a discussion on this topic?

It would still be Unicode, though UTF-32.

The problem is that the conversion is not guaranteed to be lossless. File
names on Unix systems can be arbitrary encoding, practically binary so long as
neither slashes and nulls are used. So certain file names cannot be converted
to UTF-32 or UTF-16.

This is common when you decompress a very old .zip file.

--
Thiago Macieira - thiago (AT) macieira.info - thiago (AT) kde.org
   Software Architect - Intel Open Source Technology Center



--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/3164167.AAVJkxrA9R%40tjmaciei-mobl1.

.