Topic: Proposal: Types as function names
Author: John Bandela <jbandela@gmail.com>
Date: Tue, 5 Feb 2019 19:06:14 -0800 (PST)
Raw View
------=_Part_1535_1952112548.1549422374600
Content-Type: multipart/alternative;
boundary="----=_Part_1536_1291351511.1549422374600"
------=_Part_1536_1291351511.1549422374600
Content-Type: text/plain; charset="UTF-8"
Addition of a new call syntax <type>(args) is proposed (NB: the angle
brackets are part of
the actual syntax). After defining the semantics of this construct,
examples are provided how
this new call syntax can be used to address the following issues in C++:
* Universal function call syntax
* Extension methods
* Deducing this
* Extension points
* Overload sets
* Smart references/proxies
* Making composition easier to use vs. inheritance
* Runtime polymorphism without inheritance
See attachment for more details.
- John Bandela
--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/5715a1f4-fa9b-44d7-8a65-f40155a99e6e%40isocpp.org.
------=_Part_1536_1291351511.1549422374600
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr"><div>Addition of a new call syntax <type>(args) is p=
roposed (NB: the angle brackets are part of<br></div><div>the actual syntax=
). After defining the semantics of this construct, examples are provided ho=
w</div><div>this new call syntax can be used to address the following issue=
s in C++:</div><div><br></div><div>* Universal function call syntax</div><d=
iv>* Extension methods</div><div>* Deducing this</div><div>* Extension poin=
ts</div><div>* Overload sets</div><div>* Smart references/proxies</div><div=
>* Making composition easier to use vs. inheritance</div><div>* Runtime pol=
ymorphism without inheritance</div><div><br></div><div><br></div><div>See a=
ttachment for more details.</div><div><br></div><div>- John Bandela</div></=
div>
<p></p>
-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/5715a1f4-fa9b-44d7-8a65-f40155a99e6e%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/5715a1f4-fa9b-44d7-8a65-f40155a99e6e=
%40isocpp.org</a>.<br />
------=_Part_1536_1291351511.1549422374600--
------=_Part_1535_1952112548.1549422374600
Content-Type: application/pdf; name=tafn.pdf
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=tafn.pdf
X-Attachment-Id: c1535637-accd-4b10-a8e4-a339902457a7
Content-ID: <c1535637-accd-4b10-a8e4-a339902457a7>
JVBERi0xLjUKJdDUxdgKOTMgMCBvYmoKPDwKL0xlbmd0aCAxNDI3ICAgICAgCi9GaWx0ZXIgL0Zs
YXRlRGVjb2RlCj4+CnN0cmVhbQp42u1YSY/bNhS+51foKCNjRhS1BkWBrF2QtkA6RQ9JD7RFzxCj
xdAynvn3fZvXTIIkgIOi7cXi8sj3vf2ZUXAVRMEPj6KT7/PLR09ex1GgE2WSLA4uV4E2RuVZEWRp
rmKTBpdV8C68nBkd3q9nc/i4AT55Glr5rqZ2Ofqu5VlrGyD46/JnvlerMk3p3iiYx0YV2siNb16+
fcp0OgtKVWZxRmSqLIAWjhISUwaZTlVk4FgDx57N4iKsKj/6mQ6JZxSF3Wo2j8sytPxp3YYHS1vX
TDHct7O4DEd7J9DSA5Za+MVZpLJSHzP8brxfu+/fR2lk+6sBvvrToE2cKZPnx5f4gQGt+w50CBJ0
g6sYGd786/OnvD9eO5GkvapluOjtEoW+QQHcSLoNtIriAy2RvSKjorxghraH0ybJw7XtRxxlpCRc
IR64YJfjZGteJP3kqB+UUM3mSZmGz1aj65m2cu8jk7S+vTq5ZHCN5aN+OfAeM8qAxsvKsmuHsZ+W
YLLx4mP401IrHceM393ZZl2jpyVRxtLgAPSHvG59herDlWta2PCEOeKIXAAH7AI42ou43Wl5sAA9
56FwmAa+GQg7YV5VPQDR4SDrIDqJcIo/L5XOcsa/6uq6Q6ttWGXGgA8ME4WOSUJ03paHLx4/pjDY
hSQ456Fr6VhpcKe5zlVpJHbexzo6OaNPzuQGNoj4j9bfIhLXD2RtgHIQsTCTKAEspKJiGyUfQzTn
6+cc21+B6NXd6Nphx79xI1gRo6Iazsr3paum5c4e5CzfUEwJfM8qPi/r38TidWcr5j64M7P8veFM
A7x6t3K9a5dueEIBW4R33n0+9+wruP9ib3aGXXbNNsn6vZc7O3jKZmj6jv0dgp0XbgclQdpeu96P
FsCfVVtvUSsTu4JvHMNZUyLq6vum69fgnQ1j2niIj2mUzIEAIXvsMZ7W2XmcqDKCjBHnqigK0U83
QhbI4tCSRj6sYJCQTxNaYrSKc80J7cXUg0kJb30PUKAWbcjHcFyIJmERMjPlNqoIWDMg7TAJKR2D
3A3+qrWjnFz1To7atuKlxjV49YKMSDZDOslZaKnElOGPkviR5BaHpJaPVpdEl8qAxCSM1AldhPyl
zgGnQzf1S8djLGO4VfsGlE2seWPV9TyA1A1gcq3DP2dFTBUEr+rlAjpI1QRWqwnQCQVVFiCgIooL
rWMyUpIIoJNTCaJcGRGgsV6KmUf3jqGIYZOQhzcb/LWoior0nlM4APyFr/2Im/ezwoCeSKm+xd0a
Tcb2yLl/W1vMkxe8InbJw1p48IzKPHCG9G3nhPqkdUPQpkxVEqWMGpLBVW+bxgqWErCAl2rWaJxH
qBF0JBwSDrJ1FL6eFWm4pXGIogyveUatH1yBuoQS7XiGqkeZ2GwX6EgpkKAJernf9kK7woN2nHo3
PFjXTWFUkm4dx0qOIz273RjcZaol1db+ZhsZELCca0x4bXGR8/IFby2m8eACuayS3NR2ozpKJw92
AvqE5t08hZ7yuXSMdK/tK+k6KDGirIfOIJD3Pv6JtBcJ8/gf14Zk/542ZM/gwM7xg3b+ScJ3FN85
iN1zmfELmpoHBTEPCvJm+xeHLqXMAn5AmeU0aRTgs58hm/mvdU3p/13Tl3RNZ+z6l269VyAXT4zN
rp27472F5VcAdHn6W7t3v/N2y9tHlK3tm661lV9KVaI/p9Vx9Vr3DtD7YTw+I45BlYTt8A091kqW
IPCAWfBzjmBfFke109g1UN6wxEjFa+z6ycKDmA/0i6YMdBZD71vKm1Ndb3O1G8Tr9v/mDb8kkEGP
mNK7wc7CXpLa5qA3sPRIQM8Xh/VwOI633fsETip6iuAGutrGo+T7D1oXnUbKxIn0Lod6GU57iwza
4ywN5hk0cWkpzcURzavLR38DduEGhgplbmRzdHJlYW0KZW5kb2JqCjEwNiAwIG9iago8PAovTGVu
Z3RoIDEyNTEgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjaxVhLj9s2EL7v
r9CpkIuYKz4lIdsFUqQJWvRQpL5ti0C26Y0KW9rKctJFkP/eGQ1li7L8iHebXkyKpGbmmxc/OQru
gyh4exW58cfJ1fUbEQWcs1RrEUwWAZeSxSYJjI6ZkDqYzIO78LX9I5KqyOu8LNajPye/XL/hJkhZ
aoTBlyKWJglIBEk7ATJhiYLtFQj41dajsZRxmM1QBs3r7J4m09FYJKGlh7kd8bBRZ+funTWN67ra
zOr21GyZVVkrzMAbOvrdOhmvlrWtCtj9ONoJrsuDJhjUAbDA/B4IYViScgJRo7DHh52xMswac1RY
f3ALtpjTpFzQ6HZU+JDhm3FoK3peAMzSzbPCifPtBkycoV1XEYvAMKYU/HAZVBA+f+XdW4ikjLox
CcY8ZqmUFELnvEaYiz6EXndekIYZkBTR+UVZvnSqJYSWGYk/Kan2Vkg170gCp3HIJifp+no01kKj
RJrkaxoRdTO6gOAcAsI8Iy9APjYCgqcBf5PWl+GfZtUz4weJffwlZEd1hhNAvhgCKDRkpyE1v1Ul
JJgUYbluCieR4SxbLvMCMzxR4foREq4YSQ7i/zlQw2kn/WUaQEtgMU8o+18VTfp/Aost1UxnmlE5
LTbFbFeSRbZypZevaWVDpsGsLUY0sScCzeyUKNWICVd2hQa4XlG503DY6XxBmLyQ9stZqwhGSYBu
ei6/HXAKh1wzrZA0hYYW+0JWWeMVtIZ3+1i0xcrDvFjXNpuz0VgpHv5c0Go2n+en7JZQ/0L17K7Z
nuXY/LLqfs0YtowTOFQMwpTwhebD/U8LaOKRywD79wYak4ZQLW2TDK75Qavbh6BTpnTa1sCgxfWL
4zZzzSKTtCLYpdUIbVAxLWK/H7ZV+bpzkfh9RxtqME2/aRR5K+/2Gkjkd5yPZT73RAZ31Acra9+3
lYJ+QPxNr+lLOHzyEj+0wk3fAYucbnZ6xotroCG5yeODfWp7jp7WmNuLKRi7dU/aDWzfPtlVKmZR
rPoNfNtOj1xePeec1hyMnTIPxuns/NZuL6d/2Vn92Xn0dG3A5US34Fk1Ac19aqsDVTHmgMtwP32/
DFYMWekSefgEO6brwroSkiFJPBS5w3WF5fRsvKdX4N+S8QzWYuuKyQfbMsDlsvy0LSGxK6uWEVXu
ZHPV4DVTs2MA9mJ7AyBuj/bU7Ylye6THrqKTvMo958CmRFg3XAQIVkNpYLdDguBp/UinDnIun3IJ
AwN+ifmUC2gOukakGnkSDjstIlWOauE6Ui1cIfqBK2gXjrPKZrWlXSeEvmUQCN7mCAQ32xcWZzAr
xRVQRO3bfQ6zAuip6bENAXRHpvEes9JdZqW3zEp5zCrGPKvcESKcGvgufGTRdJi9aMdE9RC/1B6h
JXfFHXc5Jeu8mNkz2KeQwImU81HZsrj3LR06QIMSuB6iuC1SAiZbNNpHIxHNviEmZZonPS621Vse
UBwnwOD00+mXkArTfJB9Hb89/y9qcdFH51AHzDYUj0Pq/Q/FLXc5/5K9C+flZrq0vTs1bELaeHV8
+xXS6PO0qPviPl/OvTVs8GHmma8elnYFPX6f3/T85DMA59wv5wPzr+gBgOj17x/qCv323BH4gYbv
mvC+/Cqju3CPWC3+Q7O7Vm+D43+nQXuR+G+EwoaRkLXCe+OnydW/Y4DcyAplbmRzdHJlYW0KZW5k
b2JqCjExMyAwIG9iago8PAovTGVuZ3RoIDE1MjYgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUK
Pj4Kc3RyZWFtCnja7Rhdb9w27L2/wk+DDrhTrQ9/tUWBbGuKDsUwdAfsId2DYusSr459tX1tg2H/
faQon+3LNWuyFsXQvVgWRVKk+CFSYXARhMHzB6Efv18/eHiqZJDxLJZxsN4EQimexGkQRwmXKgrW
RXDGfmmb7WKlJGs6W8BPqlhhX4dK12VfNjVCNOuu6wWg9ObD4vf1Tw9PRTxly0MJO4aBGHdQKU81
rF7BDi9tD1yyjDXni5VM2B829wCa28VKhyEz9Uew+gVMr7eEuwRkkQByQYubxsGbkWGKDHEyMDS5
VwR5mYth0TM4Qe4OY71IJRvW96I5ZNQ6CHmWHuopY55mgvS8sLVtyxwJo/2m+A+bPgKxpWDrS7sQ
zIONH8urbWWvbL0A0XszkjWbOd7IUpMeCMyHVRQ4Q4EJNW+utrBVVXaXYFYUXxzKLjTPlLdRieej
FNM4aPYeZTH4ue4eIfXeqwIhuUiSYCUSoFbkQ4LPcc5WERj0xVSvsr6gHQzt0Hl75iX6Wu7XBksp
ryECN007pwS1tmTnGfHMTbxAPASdudbwESpoQbw55NVzjJFw4syrY/qZXd/MNHx4KqMJEXiBiDAG
HPaTTdMsm3N04Kevwyik3+8Wq0iCUQEi/ry/dBGPwd9WQvAs8hHc2n7X1jP5Qg7yhTxWxM2xnkFe
3dBBxTyGPb0OWh1YlD12TrTSCQ8TPRfgr4OzmWeHI+cp7+IvVUV2NzkYHlKCYCX8TNyk+4ifAIvK
7n0jJd9IP7dv9BbENr29zT+0gGy4P9sn990/gqwtBi799dbW5ur2fdFY+31PKMuZi6f3PoBMc6GT
ufXvGBx7KZY+IP7jgSK/ZKCouwRKPY2T2/LoEFGzqOi+1bBYf9VwgLvC+f7au33/v9sD9/vfD+Vt
F8Nxxweyb/5KWN5bgIRHSn+V6BNZypNIf57b6NsIwn/u3JSUHGpq6grGiEv2nYnSigkaevNmQRHk
ptvW5rawdW5p3iDZO4fREkQucUyYnNAnd6BXnl4d0rv+hofisMdRAqyVZKTNjL8KkX+K/BPiD90T
5J2V1oL9evri55NnhEWNIizmDVBu+47AV8a1GzQZm0WY7KiPhr++oREoMcn0raE2C1YuPbLr/VZ7
+ZMD+SW4uJDeGjNDoKQqYSfIEIDlMUvB/ygmDGN3DBOskmG2aUtLGiau4VSu8XPTvDJd5/f5rewv
nfCwDOcI2gxHOXTGN0RPIdJif/SVJTtW7vRSJlZYx2s0p8pYhfW8a1+bN7stYWzbxkmbW1t0hEaH
l1F9n4Jqde0Mp5xturLr/d1A6+9BZFo9+fGl32mApYMFgFtR0EPHsR4ZWm0uIeCcEu54sJkgUs1c
phPQyprcQw5Qph2tGiox7f1iggVdej9ngKwdX3+Hdda0OSoH3TynSJ497YTBSkY8zXywv3IuYFz7
kw43YKpZARuVNcg0dFAAO3evP7bHB573+LG2JjKxlPRDMQC4aqn5kTyC9o8mR6dFICUsy5RObk2K
puztznbDgYALtmVnvUeUGz/WM/sk6Ah0Ufv3KVg7eJ8CCL5PSXzd+bD0xl94T4f/2g6EdPDAANTH
pwNl26Gc8Nf1cVfGyz3xXuCDyJUQtIv16tBxAXs6LoDAcRGEKpDEawlKmRa2rIbFwra+noGoa3aV
J98/6eBkSCvApAZPNwVGZhSOZ1t23c7jOjf3OeUwwcswhkTjDTPKkcRTOWBWomESyCaXpvcQP/at
Nb1fpZIKgMAJXLa3bUdz40f7dmcqNEqasfOd5wChO6Ql5FeCr3uU8ngcCqi0w1gNeRyjKrdLCo3R
1MO71ZgFJsGKLtN29ISA873AHs/H5JgjFd5I5buyshfWHbbW7AfMMwXRQBxfoh91NLEfDObgR/et
GsJ5Ddn17S7vb6tk5rUA9c5DzRLFtI3b1e0+g8DukC+oEpoVCWXd36i8oR6CJgXLo09nfsaKZnde
2cP65F/VVXCX6/jLlVXy08oqdaSsAtBUttgvPb6174kzruIoALfnGUhF/f6M4tn6wd8DzqzzCmVu
ZHN0cmVhbQplbmRvYmoKMTIxIDAgb2JqCjw8Ci9MZW5ndGggMTA2NCAgICAgIAovRmlsdGVyIC9G
bGF0ZURlY29kZQo+PgpzdHJlYW0KeNrtWEtv4zYQvudXKJdCBiKaL9FSU+SwQBOgKHoofNvtQZEZ
R60tuhLdwCj2v3eoodRI9Xptx8EmhS8WSZEz882Ln0WDeUCDuwvaPkmsAkqYgB9KgwpW+yu/3l18
mF6Mb3kcpCRVXAXTh4AJQSYqCVQ8IVzEwXQWfAyL0o5+m/7UiQ4+RjGPwwdjPtGYmvvfdW6/u8It
e2j1x2dmfb/QA8EhSGR/e1GwnRIp8XQjqrcCosa3gj63Hl4qFkSMkTT2xlfarquyp4YSwEyJEiis
kdxbaST3/CIUUQ4CypR8aPa1WwgiOSF0IvsGfPZoRNJqUCnq7K0gGvZMJ+3LGY9Hjd/udKmrIsdJ
sVwt9FKXNrOFGaI82H8DjVaD9Mz2YzRwjGQkkZ1jfjg2cjFkG2ul2M1Kl9lyt17n6U7v9Gb/7ItS
SZiceKhqnxSfHp7d/xX4PlKbHZHZezgFMosLkrKd3l5mRenc3TlqK2rsN5j+Bq2j/WAa4uPm7fu6
S7YBd1ZcH1u7MSeCytapbeliwGqcDJrIICqRl9CD3nbcq7cJDMdsJyzF4X6Jt+TR+JapQSuakFQI
3PKLGfEkfBpFQkhoetm8KLWbiNA+ZhZHtVlq0y4XNT6fqsIW5RwP2kf/tnbdpRnlZhSB5Jmfrmu/
WYRZ3rRUPJjN65e0cYeE913WindjEH+q1u1LoLbVOre7ItEve8is62NbU+RF9WJ6qAFY1Vj1WwV+
vj7xPQqQt96h/mXlOwx2m9NerNnaml2u4YqwmHeXKlh68zpMCzFGNye43Y6/2aAlMNmhPeGlxnfw
taNZWcS5JClVL0mqrNz4wgemc+LKf4ek7fCO06NwLyuqN8DtEkFUol6hAHawugO4W8SkIjIe0LC9
ORzdm761O0gXnG/HczxP2UXg2OXl5f5cRw2b+dXbBjdA1iNnjFBXSDRgzQcDyQLghCSOk2C6dIXd
0KyUA5vSFY4aOgbPmf5EhSxHLCysXmxwcW6QdMEQSrh53jeszIupYfu6WlVFrWdkFCnBw58dbZuE
5o/uZMMCnYRWeY5bZvpqFEmagMK+KflCZxXmH0mT9Bke9wGEp5woKhBQyzFVyyBVyPGxyiroeVZX
Nc6zqnk/CR1EY3FsHvCl/nOdLXAI10OD0FQ2K3MNqKRMvePgtXNSVduBDn/Uq1qaSuOfJCjUZGh+
AqGXPh7/KgOjQN8I3NLIZg5Z2Y40Dmqdm3KG4051YyAPP2xw/TFzMv7yXPnZYbNy1x2ihNl9EwIs
+GafO7ZZNasuLm7tya15JEMUKoEE5ogiR0uBvCManRcPm+F/gKIcMP2O339/5u9n/v7N+PsV2vF/
pvFpQiaxfE0Wc1oarxiJWXqm8Wcaf6bxp/8U+864/KC1fIH3ppB7AloGT0mSJL4p9Q7+OL34B/87
PCQKZW5kc3RyZWFtCmVuZG9iagoxMjUgMCBvYmoKPDwKL0xlbmd0aCAxNzIzICAgICAgCi9GaWx0
ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42u1Y62/bNhD/nr9CnwoZiBm+9EqzAu2wFhsGDGhd
7EM7BIotJ1pl05PouEbR/313PEqWtKRtvAJ7oF9E6kjei8fj8ceD64AHL064b5/NTs6eyyjIWBbL
OJgtA6E1kzIL4ihhUkXBbBG8CS+Wxjx5yyNuTie/zX464QzWcBYr+Ggd1MBsSHn54gSWCZrsZQEB
WIjHnoNK2/lxRhwGFOBw9lyJnmaxZEkMQkils7PJNJJRWBd2W68b+tFyIHFk2jRRYFocTIVgWeRN
+4grzp6LuO8DxiUw4IEIhII1MchOmNJJMFvBkl9Le2O2djLVMgvtTdlQb1G+5UoVdbGeyCS0ZW5L
sz6FsUiH26ao/bQdjppttaDftfGMriZTGCjoJ7+qfM8aaBUP52YN7PViIkIvoNrTDBjB/1v8FLVF
e8CFWRr1TEjiNIhFxFQmyYZVsZrI1AlNYdVkqlQaLrfrOSrd4C+JRnLuiNS3+XVzSsO71g1I3yE3
U9f7cn3tZ97kliYaHLvFTwHa15XJFzRQF42ptgfmu7KqnPqjDXDac8W08juAnlg7JirMsZGt+6wl
YxRKTbzUTqRCrdZtr6CVB/MUmkdEP6rczhGpeL+pynnp/I4j5WpTFSvcDDC28PyXpiYLRupHmWA6
9c4H5qXX0uLq/Ya2gVEsKtmLRR5MZcTSLKZwfbXdwGTQxtSWXJ0iEyDsiV40FAAQ5SmcqIyWlc0l
mXkJFl6Wa1xwix/jFs1dvB15LlFUwjKlhgezXC6pc/HUSZ7l1y6FLIp5Zfeb4uJpfd04CmYFxhg2
fqk/zruiqqbg0VWxYIODzRnnlGg4E4q0HFBISz7SsnfsbQG7l9viU/lCC5Zq1SacC++fB0uOII+K
lgtavs5Xn5abMJ50cjvvnR6tQMIipR+kwcBy2BvaD7djx2oxFZlikdTDfWhsvZ3bT+miYhaLTpdx
IN8ail2n33ljF+fnwLG4RCs/fDw2pKde6EDVNrANHN96VzbF1wrJ+FtI/s9DcplXzSgmH65sG5NS
sUx8C5l/U8iU66pcPzwfBG+cQlDANRaqi3rEABKDm+kWOgYDysu/GJymEBlJa/CVMdWoAPe3653x
enlL7vnO1Q9Tz2to5mEluP+w9HDDn6JzwdNPzs9v82pbPP58RdPTxXRlCZVsl01h7yjPsbjNevWV
ygKVJCyF1pVXT7G0SsJ5lTcNddtaNOnXok5EQ/yHTyDPGwKeJTwaMjebos6tqdvC5TP6yRQeDmrI
IqfSNcFi0dXNeb3wiuZQAFOnvt662hLK8NYI44fWvu3q1sTVrUdG9LhSVRGM8dhXqv+9BHP80c40
Ezr5e5dBP5pvD1H84WilZMxEJP/R4vUr5NzZ0Wl/6N6Hx4VPZyKRLOZyvLlwNwM/zH7l8tJe3Jsa
exluhunt6CAbPUPax9CXuxTzztfYzHwL+eQTUiVkMSl7UsXRCQYG4+5kt/nzYRajfGxnjx51MWV7
Sumsux1jUmpAGd21Y1jq+NMpeAZ5PR1uKkFSn80ZnXNHD2SqGOFqgGvhYuZItvdEfkwB7aN88IL4
6GOdHD6EufxNLCHVO7Jsr2K4mNLU59ANIhw5QUB3Xtx9TOEXf1PPzapDIp7lcyS+2+HXX2upDr83
qw2wvSqrciIQrhDhnhb8XK5Ke5DYyvAiXq9LL6TJK1rwfJLFocepPHO6NGHs1d4BGzZ//0WgHpZy
sRQe1LspHeSWZsC99GCak4qkZScR/+ZOos542OwJ/gGJ7p9gMAL34PeA6cEqz3PvhTTFcludQigr
joBQ7WflbecKXAkL3k1bRMxVdq36GppUsDiOSH2HKoLDEc6B0sf7G5wNLrc4tqeRsmm2RcMQU0zC
1w1tnOwVE9IVEw31vP7zHLQlyo5gPNdfGGodhImdm/wARHpWprcM4cH74D0RZyzxW5GTWIctRjwi
T6QYVK2NSEUbwT4fVq2NONLq6GZhtRRxDZnWgYae7ArC+ys/FcNjI4kHWlnWoeA5Fbn3lH896+AY
MsFH1kH1d7/kzh/w3Ekiv7mdYHv6xaIlPBNjOL4DRi648MwUf2whxiMNBecBUIaoiHka/ujPVb5Y
lB7CVhkC3TgTh6KweG/rnGYZ2qzfi7klAu3Epo18JJWeI4KqLTqtxwZreBOQln6rSh+RmodmSS2h
slq02Cto5M/feK5o5/JDaCMDh+/CKJxgg8X1rqF/D68Dw4VHdGmBA9e7F0PTl3IXzIttqqN7MXY1
xNiVL+q1UxKEUz2v3REcQp4uhhQc96nWTPuEHQ2m/DA7+RMofUu/CmVuZHN0cmVhbQplbmRvYmoK
MTMyIDAgb2JqCjw8Ci9MZW5ndGggMTcxNCAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeNrNWN1v2zYQf89foadWKWKGH6IkplmHDWs6DHsqDOyhLQLFomO1tuRKVNKg6/++I4+S
JddxU6fD9mKdKd7xvu9H0eA6oMGrI+qfv06PTi8EDxRRMY+D6TxgQpAkToNYJoQLGUzz4E348pPR
ZVNU5fFEpCJcabOogORh3hy/m/5xesHigQhKVBqBeBowJ06oIBaKCCqC6Qqk/bKsymtgF2loFhqJ
Jlt5almUukGymuPzdpEZTx1zFfqNWe2JvCrK65N+Q9ptmGUlEjpriuWd58pzJEp9i4S3Bvhyf66p
/F5rXMAIpenAHOcdnhARJWiPsWferZ0ITY4nUcTDKRrGwrKYecosivKYhdf4r2i6VbSNhU1RdlvB
iiT0tDeThW0D3EXp+Y3d4g6Fnc3J13zeesvXqWJ9DOess5kVY22DUCm+bRuTEDLubXOukOEq+9B7
VoZNW3sKAniHVF6VTw2Ss6p8S4UsZv7/bWEWSM1b07MO/e68loQXx2kUVrV9H4f6U7Zag75LfYIL
LrZVu8ytG/GsOCwMBmnbCCpIJHyArjA0lkH0ARHhHE8S4FTrN4N/0GIRLjJ73E3vUYHpcHrB5bBc
aEpobLPdFYqpLhtTe+9ulYWk4NZ+58D6n+3mIwppBvGIYAdhIqihQMcrr1/ZWqUDiRMmUxLJFIiE
KCFQsg2zjbFGsb7St/SWHOpxo8zdpdMnbz4frEvESBoJUIURJX3fAF+0M7NPDxGTGORtu+/5wWp4
gSM1shaCukcJHhMmeafEea/FiddCxnicO91pMVoBLYCtKMeGwtKLt1TSx8mYSC7DAuSwY0dOXuCz
MfnZGWr5+RHpQ2LFxr6qNVRo+c2Q9d5yivQeswY7bV0AISkSQpOtaHzBVwxUi7vD48GrhzmLjoXe
5zn01k9eLthBSSzQK07uaOV1zye3Q4n2bB9KzjeVM/CCi3vvha02MAFj6FbJ/nUMU9V3mZntcEjq
G9dzXR+PoB8a277LHP/COGl8Xyr9/nVduZ5V5Br3ZLie63nWLvv+1rUo7H2r9VKv4AxgNJmBGU8O
zaehYdwXtAbxmdnbinzj6Krv0NMlwBXWN5K7tXbjbt+5mJueY/ri4DJSEWGABUaZfGjLcakzfYJp
a75d97uLeLALfnW28sw7s7jBl+fn/tCDey89qJP0EWgI6DqqHN8/oh39Y6uoAKMNYUzEApGmhIOu
DgBMXa1EkUSEVLUWVuS4ki2bCqkrBFP4B1DTvF0i7YCCJeqsvNZOEtTWzBaLF+tK0BI3hb7tjlro
2gtzwK8xOvO7LLD1T4/CtgGmSGLCU4Xqw/mzHlOM4UfHFsfgATFmq9a6zkxV/30PRve8nEEuJsmY
t8CGYLEQg8TR9Q3CJtajOWax19MG19a1nulcI4CFNx/bogaTPzhgytkGljPZNzggwYdttnTQHJgs
UN2F5UQcEehmqFhT2X7bt69l4XHp176h4x57Q84xZFAZVW36Hr1ZbsviY6sHL2wwz87mxdLo2i2/
eTeY6N9dH1xxomjfo77ZIiBGvG8RT6xK3agXaTe1YoVHj1bwaDbME2wSXtbps8a08/mz073tMSUp
7Yvzy2Ccje6LE5GkRDBof1ySVPn295vO2xkGCSabG1U7i/arUFNOZOLvHn9qzC9B4Xro7lj4x2Bh
WbJCaP8eck3jbYMCcPdMGT7yzGSXSK70yta/L/S6E5d5zs3lkXaNAkcx3eQZslT41J/wAlY1/sVN
kXVn78pkriA+zN9KnDJpdznxV5F5W84eN4THA3i2zJpmbw9mkDt9mKur9+BHP1l8Ao7m2uZ2A8ox
qwpVVh+fhqOVDZzCEOyCVIfh1iF09FNh3V4ti9nDLT3bYaMc2uhnsFW96wi48uRgwA0jSUEF0Hvn
40NcuneG7nZ0B6sj1SPpGIWPVmy8JgzKWHI19ghc6Jud+Pp+Vz34RBR07wmHe5tBC49T9i+4mz/A
3eBAi0CU2JlbOzzWrR1sr1JEwBj/f2eXkER9Z3I9Lrv2ZNZjHc5iDsCf/2cJxqkinMmtK/Tz/WjP
jiJYZAlM3zjGSQTXT2lHG1dq89kr7VbcN1pL+G+0lPZTCtdxgtmPWSrM76wsi/poAq5fFzrHTRFy
mmJlAbSTW+GSPVGNTsyLt1QIGPIIQnHxIyBFux7pGj8X0vB3iwN2zVkmFWHMI1l/S164u/Gtvzz7
j3y5fxYG17svlWJwvYZbNX7brZps+aPm8vd+GbvW5tImw4/9MHY4OhgwjDGdACNTGKhCkVSmyBeP
OF5Oj/4BXRjR9wplbmRzdHJlYW0KZW5kb2JqCjEzOCAwIG9iago8PAovTGVuZ3RoIDE4MTMgICAg
ICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnja1Vjdb9s2EH/PX6GnTsZiWiT12QUF
um7tMAwbsBnoQzcEjEXbWm3Jkyin6bD/fXc8SraUxG2S7mEvFnnkHX883qcDb+UF3puzwH2/nZ/N
XovIy1gWi9ibLz0ehkyIzIujhAkZefPce+c3pi7K1eSP+Y9nAeOBF7Agg58w82qQM6T8+ubMezeN
ROTnyqhLYnLHgahvnJQAecIQuSVJGVBAyuy1DI6ABd6Uc5ZFDpLR291GGT2QP7pLyFkaSlixHBeP
PTkCRXRCzM1Ol2p7+tiEBUnYcfymN8sXjz16moWMh8nw6su60GU+QPA5ortX0YsN3uLUDZKUhVHc
3eD3IAq+hO5Ua6pTp4qAZYIfnconFvHFSptLNKZzmldXf+qFeYGwULnPnhG5gTEy/f00ZcdDZdfa
tHV5CraMWczFsbIakz9/vqzqa1XnF/b9LdXhYw/wo7t9CKVYP/Km1tbkEPI/tMRBTMzdUuyWiG3k
S6RQp9y7d7D+EexdegRwD5kC4Fjij7vHgEJ65kcKSyWL0966ZjP3fDbGPDul6anjHECzylbN5aIq
G4PYKqvkL4iXxwLsQowB2wM/H3sn5Tb4bbXX/w1wCIBC3KPoMVopBmiJdSoilmbOeH7ZT6Twdb2o
tpgNpjKVflHCbLfREIhhHvoYG5udWrh0Ye0oBZwZiXjVNga4PypTVCVJ2MFH+FVRonDTINfsNY+P
r8ECvETgcY9LyYAYpgkLIVTMtyDz7VqXej8RCUCDG8axf20nOE78fMJ90K4MS0dQ9FkCvdaOtmzL
BSFCdrNWhuhFQ98FbFabjc5patZ11a7WtPvldz+dE/lwbOyr2gbYMfYkTiE9ROCYMYHXTaNL5DMF
HADH3EymYRwAtEbXe6vmMMocJBzZ5GO3qEVdNc2BimrXDZuAl0j/ZUmbis0GVF6DvkF21REd17Ku
tvRKLMtuwYwli7jT8XoiUt+YXfN8NvurbT/sQGoFGuU+WxXGrrZXrKhmV5tqNRMBT2dBPOPJDAx8
2hQfNdieBFiALgwTf77WtSbKNfKqBichvg3SNsVVreqbexUIXhJFToHusUBI7p45pymeSqOidF/z
VUOjCjV+7ci97vAZk9S/XhcLXF/TMtp3semk9pYE42u8uTXXYQXl4IYRBGA5gvvq6685P23jYRKz
CBxmwMfuVYbMmNvzA13LWuEe1arr8xP4eJKxACq8IwmILjmNTgQZS2R8zFWQAdfVZArfvF3o/MSx
IuYgYHCsjYL2vU4eLblkMhpc+eit0K4MhAIcwauptsE3Q6pypKqE14uKhQErTLLUf+ve7061ioTF
YUSnKBccZBj5Rq2acxyiU6IjIdHqvGo3OU1L9DVD4ytQSopRQYZg305I0TStRl/IAv/1JIXwV9OC
/qAwmuIBUUC+oWllcRC/a0232+iyQWj2FuMr8AjTgr3BzqLAIIt+3JCboV/gV5HzWS++cTtBk6ZY
qA3t6F2EPaV6T1gmJeWBXuCplBkJJoO+jrZG0t/4cgeXMc3jaz3XG4yycd1CHfSpWq8vaNFkH93P
TJ2s/2dXM/+yLc0nW4OY8aivZC5Q8bY8mrva3zyt8Leewp9W+BuGqAY126g8j+8vz48r91EAnAYs
ClLnPoL2vbVhL8Wwh+7ZxQZwYvBbCD4lTQ6xBzdRAXM7MB/Ll0e+toeeAOMS6nff6RY4XcUJ6rS6
HVCoaeHjhuX8IdziSdzyFjdj7O625+LOkEKZyFrXvn/J0xUpRlsRAxx46i4jTmWS+SrPC0wdGM8z
Yd8DcrPNTbTBlhC0FWtMl2ZgimnGjdZu7yFm2mm1HK0DCw2KjlO9twnEiXRpuuoqvnR8gxAKdZ52
KQ+MChhACoDGEhlNAQdQ79JgU1GqeN/uznHE+3yFqzmuQiFcVk7AWuHqHkW6LaY63mqz94m6QYYx
S8QQZdvYCpm6GldDzK70qihn7h+SsTMJLsAARl1YrspDantwlzVKbV2b9XPlmsNS65zKxwgKgBsa
bKta04hMwC52PYigMuPB//Cc/seMlHUqnnG4qhzk2z7DQbqi1UEo6yLesaMM+sjAdZDR/R3kBiwf
iO+pf7RWDdStNmq6q6tVrbZbdVVsCoO7bu54UzRleWTLIXyg9BYyJCOZWweRGdXuVNJk0GNsC9O1
odK5E3ydSeGwyDXVSwVy6rohsvUEO3Bdo6MX7ksdCY76+g3GC1VaV6AzHNHesvfHcUjhMoWQ0lVw
Thc9Ov1hoXdmBMl0d93VGtSndzU5KTSGTb+nOoQF3KkaU2DFusKCNJKH5uxwJUC+Pqil7IrmW0GQ
Q56WIuybCWQQ8MLlqlUrTbOqNQ1oliYOr3B4x2BFr0yBCqTBVpXFrrVVkp0r+hx6eJxhsGTDVNAH
kkCCv0gvzZiMXYWfDLZ+Pz/7F2Evot4KZW5kc3RyZWFtCmVuZG9iagoxNDQgMCBvYmoKPDwKL0xl
bmd0aCAxODgyICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42tVYS2/jNhC+
768wegjkNuZKpJ5JGqAt2gK9FOga2MO2MGibtlXIkiHJSYNg/3tnOCNZ0tpO4u2lF/MlDueb+WY4
tDtaj9zRr+9cbn+cvnv/ixeOEpGEMhxNVyNPuF4Ma+7IG3lKCd8bhUEkpApG0+3okzPdmPFEycgp
8uwJe6FTb9J8TZNPY1zZ02Ax9hydU39ZUPuY1hvqadq82ueLOi34s1xvWXxasXDeuNBZxis1K1DS
F2tTdyRGB4l/TX9DOLKDJgrjUegHQsaEZjeeoKQ0R71rgxKjwPnTDdzHTboYy9jZ0NQBWOQ7Wz22
WO1KXtTUmVtZhgZ6nhn62AKAmSW36YpbsA7vtFihLVDsA55qyqzQS7Pk+bL7nW+BwnAI1I2HSKFV
kh1Xm+0u07UBcJ4YT3zfbXyZOLuyYEtU9kyYWhld70tef0Sdin3Ga+CKAmceabg1tZ6AiHWpt1um
AnyU269hH4oGSDnN7wH3jlQeqis9oSLW1qqmlLMqmsNIsvJb1TynEijo/S9KdhjsjiYyEHECgyVI
+v1hrCQbFPbHyqlMXdG+IfO7VIHJIIpEAAFgNfq4QQR+GFgqWmVwoKlZm9yUwBg7QMegdy2tcaLa
L9C1G97Cp4NnOqfz0UpKEcSDs+tS59WqKLfn1QZuCBUH/b0YLngqkgdby1cLo8gPfMtTQzFAa0Da
E9EThIHVj8JHVyjV85w0p1Zza132gBIPVMb5hrPAwDCOnY/jWGLI4JKB1IARiP2NPqhGMxhG2FZE
VLNIV0+8smkE/KMXNXV3Grg4OYkhUCJUbB8DYV9dwzbXo0CLIUuVekc9xKXi0IYcDDO9RcUo1Jca
UXiB85GSGqxDKqxoQyekdGbFSzQOAHqiT3WT9nCbXtOuJgNEHcKGSNiTUHxPhBG7Y0HWV47RVZo9
Ub9NSzhAh5ErFFtUWQZDc2AwDL7UA2f3FdL+DHeDUMjE6ytFOGcAcVY8kLQZAzrNZD8KgWVJX5I4
aQSZiEiyPz/YPBtzno27mRuzOVD0gI0mW09AHz1xGqAMXFBH9Q9cFcV5MDIMhQr9/i6ghEq8rnYR
+Q+1sJfdGTsrlJ70BbY5Am+vBzE36zTHLub767kw+bIdWTtOvASu9dCDjieSIKBsecJbdwDy/vkz
7r59OeV+2OqyplxbmpUpTb4wNix8vhVgAeID8/I/qTmWi12RxP1c7EdKJM3t8HGT4vUq4X54oquJ
BtaA2GkCQMJ1sYQrT/k5eN7QhKZvKtISuxipCZUBCZUB+F3Kwn767jvqzDl8sd8kuIQj5HxkQPRA
Zo77KIqdKXVdlJP7xjPnLYFB4QWyL+S6CQrPH0SFH4JfY9nep3SZx1xZQa1V0Bhs9US9x7GtojhH
QVPzJ2xC06mz4sZ+2G29TB/UG80LjylVbTFESWmrCF1yWUA3PHS2ZosLc6oSSosHUCfREA8EnysZ
dqdstH7PssoWNW0yBv9xMlaqScaxTcZAhGv6oOWOariDs49lWnPx0UBUqgcRhgzRFigtsOpoWeOr
WLiR7GZDlqHXVMC8A2CwR/jgQuGpUQnFeX/mj1+hTlduP+S8CGigKOSwcK52GtSz8ri8H7AxkEK5
SBO7ZbnfzmcdWIEMnGdWRwHn4IrEn4TU6c2QOl5HNNwPIvZVP5m8f09Sf2DQ2LdXHXawwN5QtzS2
JKP1DauC6jXLrKNgcbtdhmmDvi9e3kfDtK5MthI9A11oeMTIua6qy/2iPmd1FYoQJLHVLdbbS70+
YWE9MzeV/Tkl2D2sxN2l58PLqRVSP+2Mfa+dOzYC6reMm95fjDvxhedHfdyLDMvPc5aH90Qsm9Pn
cCcsZn3WP9NVKCHfyMFNOP2WlfVQNTdB/TgWejOg7OgTUXDWUwZk3H5NdHd02e3nGZRmr4Z6czm/
SM7/il/tDsozU72+vvh8eDip4HINPkCGufjwvg9fdXjP6kJwgpxerAI8FcDxUdLPcW+3w/cUVzzZ
Y1NVL29uQNw8M7N0Navv0mrWqTrT/KFY2MWHu4M/rV2nAPD+/v4/iqlVCU/e5ZtvA471pVlkaJZz
Joli4QctmbDG+5qw8BpBek+v81PHcjI7HOsRKzrmPJYK76b3tg5FU19d8RPB9UXoDtJuZTlORLu6
aklX40nPlyL0YHH4FilNvS/zF6/WNmIOAC2Qzm3/qhx+JH9fW7JihQfVHRgIxVqcgLp9Cx2n+eev
pWn4X9D0Ja6EEkrU9n6+s8UJ+/YcR6ZXHZ9Td9LEJShulbA6Wd16MwfdHop0OTT48+v9NbHV7LAU
GrrQnvQ9qXhV3za0/pJsn88svbTtdagHjk3z+piu6ZhVJrngLS67wblWbm/mYE33VO3xBs2Cs5r9
faFm8qhmw0P7RLu5OUq/N1DsCArnvn0XHFUB5sXdUA8bEpb06SHij22sixm8BdJ83b7mby99TCWJ
UFHURGXzivrG/eZcKE9411sg/d1Rs5Xa/xsrBKlhADlOiZiFxr0NP0/f/Qt+m15VCmVuZHN0cmVh
bQplbmRvYmoKMTUwIDAgb2JqCjw8Ci9MZW5ndGggMTg1NCAgICAgIAovRmlsdGVyIC9GbGF0ZURl
Y29kZQo+PgpzdHJlYW0KeNrVWFtv2zYUfs+vEPoQKEDMSKKujWugHdahe1nRGhiGdjAUiba12qIn
UU6Cov995/BQiuQkbu0EGPqQWOLl8Dv3j3KsheVYv5045vfN9OTirRdYCUtCL7Smc8vlnEVhbIVB
xDweWNPc+mRXYs7GSs5qVRXlYvLZCRz4cy/P/p7+fuIwHlsOCzn+S6wKJA9HPvwGh3C3d0iSMB5F
gEBLv7g4GwVeYL/wXpBAA24H2cjsGrkuSwKD7BvuuHjrhn0VmOOBAMdy77TxIsb9yJquYc+78mzk
B5Gd5nmhCmnelKTfuayuzzyYrXLQlcZEWher27PYs89hIHHsNOttTBe1EbiqjZBarrYoRJglS/NQ
1HVjHuWcfpcSF153IEAfMFuShLsquAHjiUcq5MVnh3NRifLMi21VpAqkcu7TSZxzey3WOHV1NoL/
oqLZeVNq4DWtQQi9Tb5dr9NK0Ry4HMVnZqZQtVjNGaD0A/uNyNKmNjPGFAj7IcM7nPncGL61VADG
FfRQpmtRb9JM5GjZGCykcCIES9ECeYXm2RayMQNqmar2yQi580aAZ5CASgBC1zbi0s1mVYhWhLwT
8Ji5g8RlfmzMPTBGYIxBz2mZ00MpteVCLR0HrjVQvb6mGXQGxIQOK3yvlaxEro0a66jUAk1Unpu9
c1p7jd4052eyWZlTxY0SgOAR6wdRwgKvtf5S4/A9W4msXBb/YiRy3yXAMLxOvxA0eIYsoAdxk643
K0EvubhqFotu0aaSiOpGG1bPy26ubjJ03NIcsYQJsyitW6PHu3DDiAWRsflKmpO8BPasVvjgdq7G
QQonPV2Cp3N63qQVxJQSlZlDA+LO1oA4VsNySY+5qAvjBB5pJ+DoHM5BBzj9fW5reFwhtnq8pAnM
hlape04IAhZCgRo4wTFWB5mApRKUwPCamtkqLSEvdIInGMQ4V4m1VMbCDlk/sW9uafJ6WWT4bix+
XaDJcF0mtQzCq9MbBu+XBxhsywOF064aPmdh6JIaha47WqTUIrK0V1dwNjJ5wLVGuqAAeFOcELre
JfKmMmMZ+JhRNeder5o71sgLWJyYgv+LXG9gg2fLumix7tT/ByLLh94Rc07g/yjxSDek+ge/VP9c
rBlpTVrAS1EusYBUhUop812qSvgL/s6NDGOIhKwII5lGCAOAkAqQa+MDhm1fRneqdpCxJp5YFqI7
sIWI1eWRJIeqyeIoJt2WKZVLHSQelTruhZDb2icNiAc739Jgr9XRah0VUVunKrMK9rSBoQfQU7VO
mMD+s1BL2pv2VlBm4ugtypNNu7Hs6u09D0UBSzyT+2mj5BoiKjNYITyGWDGsdHxDAyplOSp0jXLt
NRpb21BHoGjXttiw2RE2GKUA7fVM4wiVFiXt9LH9YKD+IzBNFTOExwHszPfhn8uJ8AxGiPA4fUqy
qy2wqyQhZYFUNZnax3x4CAWEt3RJXgEa9VVbcuSFzA28IScCNUiFGS01oF2E6CSI07C0wQiAtj5p
Hna3fwAKJF8eq79jEIaEUAnwF5a8PUr7Lov9TunxsScHwGJbIep2I5Bw7D02Yk7ktzte68CZpovz
o8+Hlsb9gxF0mD8C0zj6cO4CE/cOOnxgdcYYUfPp0RCgkoDjo2QYoodDeVWr/OVL2HS1ErNiPlPj
op5RXs8gpWdFuZWZntyOKTVM1gzOfQZ/eow7nT9zka1Qlx/XA+9OuGubrsbo2+4yxQ5I0z0piqLO
p+C4yWRytM8eumnNq8Iwze64HxFtasqPGCqKGVD1vqGeI+mxl+w71YNu5Lm9U10K+fFdrFAZ1Z5C
l52e0opapyblx+lplysKZXw93vY+c/1waPtKqKYqv9siuky/w65B09XtWcLrXKchNmNoxOOpFq8V
BvW7TwLWyNSwQdH/RlMunAM0cniLv/w+8Xt/hqRvdbuW1QZINHR6HnOguWopGyS1sa8ZW6U5l2Zs
D34ZcINeK+YJlMgYrkjUif/CGz6RlViTFXhIbLrpIi9ou5Z+gztGCjx2AbeNtaFbiaFbMYQ73M99
zTNhNKXBjaZVnQrZrCUXgBjbNEnAW+ND/Js7IQvCoL1Jf9Fssd7Hb+piUaYQOKJmT+nbwFSQOf8P
fds9vm1+0BkzhX1HV/rQA7v7Pxl3uNe+qRU6EOvhDk18312UJ0+ldUbioUy2C9Cv345mlsM2H/4E
cfoww/rYJevxbTuOWeJGT/PJZlCfupvGMV95H7yctB973+GNbS2gz1DpwrGmrDciK+YFfo/Z9yX4
8R5yDE5sNBwsNwT4OrsDpmvqocxn/xXoUL/MpXymHDkyMK7S6ukAenZuauya+47Hy0tf/1la5jOA
gSyf/PLKlDdaOVDvfhyPu3LTJjuSTQSs8Ws9BiPEhbayyO+xIEAzOX9GeaDV+SFCilLtyphMiHvd
q8nA17agvqzGOzacGBqrmvn8cscTQ9oUwn0AqAcauuNjyWDHr9OT/wAz23W9CmVuZHN0cmVhbQpl
bmRvYmoKMiAwIG9iago8PAovVHlwZSAvT2JqU3RtCi9OIDEwMAovRmlyc3QgODE0Ci9MZW5ndGgg
MTU5OSAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNrNWMtu20YU3esr7jIp
Wmrej8AI0MR1USBBA8eLtkkWjsw4Rm3JsOTE+fucq1pDUUPSY9oBuvBwODpzH+eeeZiSBFnSkhxJ
5yiSjJ6kIKU1SU3KGZKGtLIkPWkLVCCjFClJxuoJejZYws9OOqApAK0iBQOjgmJUxIaE0qRhSQW8
w76GaR1gWXgyEk8dJ0aRtPCMmdLixcCXx3yDmIIyZBGUEI4sohKYbOFI4cV6PBGDDaSM50AQjvAT
hyC9wzvC80gK2akYA7mIyBCbF0gLwXmEogDySNNIRR55GmPIB9JOcEZ46jDh0IPQBFc6aEvBkREC
z4gnkooIHQlSBDPSIXcDohBftHhGR5qMNnCLRzATCZRRTDWmGQ8OBDMqLZOFjo3EuTvB7MGCi9zB
ZB/AGwaCBl9wHRAv2DVRqYkU8BkdrCIPKwIYRzksaAQFZBVwEnOtcrAhmUrJI/hJWx5hUuEQarCI
CQPcibCrIBLL5rjeDuYkXFvP9rgygcNG8W1E/UCNjZaxsBtj5KqTE2BURzyZLo0iaQ2zGJDgWcKQ
W0fHQmSW8DM5A1MSsnGGPWouJbxJ1M5ZzkBzUT3Pgh2PEcTsgkS8sOAChGFhLoJPqR06nBJ8e2Ex
Apl5uR5x6EQWoSdkBNVBfF4FHolQB+oMXUIeQU729mj6lqa/L44WNN2nJ8t6tjpbzH+q5FN6/nzy
5L32Dn/+vRDiiJtv3FxyU3Oz5Oa9MIKfx9nIJ26uuZlzM+Nmxc0ZN4v0wwY/T2YuGhdP+6NUPVG+
4mafm0Nung2Y0LmJ1ym4JtYvKbLd+Adsm9z2fsrrU7IzT70ubobyt7mDN9xcJROXqbdMnk+2KZ+l
xM5T00R1ug1dJgHMU7DrmTcDIbqHh9gAztrO62RoA10l6FgJjkrSPzzJk3sL40ERhzziw16JtyVS
Z/QusjqcJAvLtsGyInxMftaor+m1zqCSm5+5UdleNM9Y1gltuKkGGIo5Q2+Tli7bNb3qSPI00+Xu
3jngXHbsbL+2HTcrdTZYuEE3Hbvfn2m7a5bXLJm8GEjyRYpjjf83le44GTrJjoiXbdOXHbl8TL3z
9oL4tm3oVfrtoo0ax4x/TGZ2pL+T7nlb7fWdJ2KbqNmO46Gs4mNmdd5R781vi7Q5bEYu2lmu5/2S
Mml2ytP02qR9kV77tTB0Tego5h99Nbho7zOrAtdpU2mdWE1KORn5yKytzVmKYm1rNZRd6Dl9muNm
2V5L+Ta+frlpS3Denrlojz3LFnHZJaLx1Hs8nI45vwevibFnNz3vuErMO/aMLxlh+UXjuOhka+R0
Onx1boi5SgzM7pKCFo+e6Ph7Sa7xe1M0lKp89FR/9FVYq/9RdcZloB89g9/SfnDctyM/G7rY4Z/m
5OJzs3cNJWF6/mv8nJi6TgX/nIwvM23Ps7jG0zCuHLanHM15PE/Rfm2TepJS7D318i31XZQk6JCm
B2erD+x6b28yPfp2WdP0zfFpPZm+XMxX9Xy1pKgZOJke1svF9dWsXvLXn/XI6/rk7PjF4obeCQw4
/kAV1YcJDFxhJknx38xb41s+//r7H5JaVfxhxAtbCUfz6/PzD71QvYY653HvCWVYbyvpCrHGV9oX
QY3TlRNlZjVCsNqWYaWtvI1FWOVjFaJpYw9QLuIaHyhB0d3WVjqK/ravLIG72z7G47qP6dM3V4vZ
23pF71D7/QOaHtU3K0qWO0UhhdtVBX/hGycL/opYqosd7KbYspJBl4Ft0DCsysAqot7R3ZdrLZBm
6CBe89fUuHlRJKV4UBlktjj5y+jIMkhVXoY2drM+Y8WfK8vAwldCFYKtCdgiVRnYeFe5UstGGCym
MqxyAv+A6D4xbJWzSA1ja65kXvM4tuZKlNV8S/Pbct7OrKXtJv/RadosTaVHp2nKpd3G3grQ+8oa
WQi2WAddau0CG6wDr3wZWDmFfxILsUZC2aVgpSsrYlHNu8u8o/+25tM2OVYMWmVi0GKsGHT5NWQH
e8c+1wXWcGDcvfeMklU2msyQk+nKyDQyI9Pfg0zfsVi0xQkbCsESNzURy8AyiMr6+LB9rKdAY6k3
JqPeqLHUG11OfRvbHMFGxTKwFboKyvax2bsR/EghW5GzGUazGe9m8zuIbNhoCmVuZHN0cmVhbQpl
bmRvYmoKMTU3IDAgb2JqCjw8Ci9MZW5ndGggMTU2NSAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29k
ZQo+PgpzdHJlYW0KeNrNWFuPm0YUft9fQVUpwpKZhRkYYNe1lEpJpD6m7lNaWSyM16TAIMDeWlH+
e89cwMCS3TUbpX0xw5nLuX3znYNt496wjQ9XdvtEtm3YyHXhxyFGBdKh5OOHq183V9fviW2EKKSY
Gpud4RCCfBoY1PMRJp6xSYxP5o5Xi782v3VHX7/HXn+Ph2jowIxc/Kft2Wr1CwwYafdAZ3dQdGj4
U2qxjULcrX6zsDzsmccb9aybw24HpjhfxBGGRRxEAmxYjoNCT7t1RKsd52thsFh5K1faj9bcRdW6
5xTYYCNKlB/SqYEEnIJtzsBwFRWtwHJgHXWGar6Kqev3Du35B+7JqNqGI9PiOga14UF8Y5PDns1+
gQPzUC8sQqiZFnXDokS98J163kV1Wiwc8168+ma5sLBv8uyUi1Fg8qrcp3Wu9xTtQXtWpU1UxEwJ
yqhpWFXUSz3fqGcc6Q138izWaWSJ9LNvukCUFzrIhRRI25UyYtaHsjWlURKBNTkAw8HYo/CR/50W
90oa6Y1R3KTqENdsIj35kDZ7Pa1magbON2qsYkLAnSrKGXhUIxV0gvtBNyzsoSCkKi/v/olZqTUF
QrsIcOCaBS8sNpxTnsshXxAMlsMPqzIeJfV0doNxhFwfUY+oCP3Owcg0Z5BeTKlwCFPfjLOo1pKC
sUQPRQZCkwvne2ubfcUXIH+QwRMSaX5vhfDi8aqjeIXwSM+EQESutytnuVih016pZCPbwWN3iOCF
QLmzOxQyY2hhuSQE7Aq8wP6aZwcdQ3iLEl42MorwAgCQYRtyjVaCA4rAmKGSuklubnZpxuoTXIZ8
Iup9OwkNkA3JHxyhMgzam9bCgjUCiA8SiJVGolggLwQEIq2n8Y7h6epsApNJ8O2jDtRMSbB68LNc
Q0aJNWhZFIu5vYKyzEBwzoC6OF2EZ5KvYD4fhYQo6CuoPcG/klJJy7/5aSt3fNHqPar0SLVS/UAi
aNKSDD4mZZ4mI/KUhM5LVkXCP6fHxS9Q8glw1EwdmC7bSgGgYVXFq23ME6brCIs7xn6ZHvu/cuNc
5KYKy8i71rnJWje0LV0OYzALT+J0TaXp7skeQtne6yGU9rnKMUWO150nSO7h5ViWQVMcspWxO9uj
a7gfIBcce1zDwVYStO0ADZWtA4my1ZkIlD7n+lpl6a2gIolQrp6CJcVTlkgxiLJMr4AyChWU6Q1d
Ip+8v9ONyO03ahUediIkxNCr0bYTYZWgM9cWZAhsFMoCDK8Zb9RAEVnYlirg6ApKc5lFDRMlwXPN
P2pd5ENIlzwGtpUV1/1BHWVLJXvo2DPUTQgIRbOYg88xxOSkRPesEOUfIsEmCZoE0LoFjiboveZj
VQ8DXQ8F22pWrmU8FdVWPG9X623nUup3W8lga8vLvsCsG/Qu+0Dy8VGeRrz8c1rE2SFhU2Sw6oN2
/dqL21FIdYibJ28PRdTpbs+ZRmZTh6VP/D524NfbAbUcevF5dXGu8uFn1bNqJePhdvmXuWRk+QRh
TIfc3VKS/KoaGPF6eJWHuyyNXx7Qm9meTbUbZ88m6qRu6WXJFFNquIceMRNX/PvGYVelrEguPlTf
/Oc+likGzvPaGK7Od3TZNm7yG7d90V1QvLygQ1HtyPxmy1pf0g5NNFjm7WxoUCDY0Bvc8/8BMugP
Q4b7GBlYp+xH4eP1rfDnF4BMjS+Cmvpf6Vtwm8TO19tX9IITGHw77G6ESHQ3srWRb7IPUQPodGX/
IfPDD0XDqjKq5NeqED3smW4jo/ap/koZwut5w7/Vtsp/Y2ROa20EGN1eFvEPDT806qUEIHWmpiOr
RklE3/lOQZckm8+nbobrI9s/34zX/KnZfYicSlZE+fNqux1vZXY20f1ytn4fecS9yAIHBW5nAUJI
o7C6r+dbgRGx3flx+EVdNhwGcP7kR24R3WVsm+62zeonKUnS+rP+U2R7XElRWm9rULsaoWsp3qc+
iW8uoaWExdFpO6YmcyXitl5DGNfr2eFzoBu0aXBx/NxR/Byge8fFz8QPwqRYYQu3eZsWRx7LyeOq
B0eJieSQ56c3y5Edw//cKEWBDwQJ311BoDQ69mDHu83VvyY19fEKZW5kc3RyZWFtCmVuZG9iagox
NjIgMCBvYmoKPDwKL0xlbmd0aCAxMDk3ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0
cmVhbQp42t1XXW+rNhi+769gNxmZGhdjMNBmkTppqzTtaorOLroqouCkaAQi22lPdnT++/xFglOW
JiQ7F7sJwdjv+z7v52PPWTie83DlmedP06ubX/zQSUCCfexM5w5ECEQ4dnAYAR+FzjR3Ht17umAA
gOvhKPRDl/H89pZQWtNZVudkMJkMn6a/CnkjCEESmjNq8coDnud4IAjED0QOFWrtld8fhAXIa1mw
JycnWck3K6LFGbv3jA4giAMkvqgTf3qh11d5KEDDRlC65vUhtb4HEh+21ELtoPF9xou6mqaL6+Vm
lpUpYxNplHTjYCAcqbel4nV36Ity4ki4PUSB7YI9h+v9JLu7kIc/hIkBDP0GZpaWpbbgR/14HDxJ
cAqJNihIhOYQS/VYG2StCIOcR3V0uebpc2mH1nz60hfcCIYAJ9BAxNpoSviaVodAIgww3ILcRVAF
TgVgXtO3lOZjGUW12sRvVxkkk+93OpJBBLwI2a7+ek7MfAQELiVnzYpqcRAOBCjewvnUBKyncpXo
W2n9KlLmTZMnWy/1CnASABhEtmOLuWXNMWJNomV1xTj5vKKH4OAIJEnYhvOdyomCzVi6JLPXsUGj
cxxpdUqttaLUuq91ke/lvGsy6NPkqI5gAkqtQmx7+OzegDv9uj8sdKm13KIroHeeWZ2Gv9D67fgk
VwFhGxHM5Uw1y509/XMtQsAXOi3nn9pM6KGGcKEeTkpGju/hJrOsThnu2vvFkij83yWRM4oRwDG2
q+Sr8acwC8OOAAsL/b1eHoI4Mafvh8h381x29BGKkbusqzQvMvkSuM9FletlMaTVk3wuGLc3661c
ytmsxIvvEga0YjFv7biITiaMUYp/I/x7JrYj5LJ06MfuRr4E7pv8T/SHF/XhdehHzQp/KcwhTolZ
q4RtYlvebJHbpSXyFDCBRLGIGJaNECc6kNaKDiTssBZpa29udJvTo1n/5+mCndz4Dycr43Sd8Q+r
ezvbFoTPViklFe/fZYzEs+3IXooyP98MRTQM01Ds9cP62VpRCX5quoshDRYo+fkHHbqWz96HQBTh
K8l4TcfqxMQMOAlPnOqPsKtCV+vnUlTb0RBve2vv8sicFqTK+5KXj6g79sVlbstbxrtcNXRDenfS
ui8dw9w1Y+ri7FLawNwRSTmXTXM0UQHsz+ZDHyAvOI/Nt1PtP53C3zyYqiK+RSyvT+C36lBRdYot
Lp8Ux5EMXfgtklFocJPmUiS2m2EkFCsrrJUdMq8L18D4ykgd2w0LsOJv0r78XCjfTi2Exp7H4ql/
D+0qoHf086i0t7rxv9f2CSVUrctyxQ9e5QyjNx4xTaHrSnmI1N2dw2laghpO8wdprnCG2KyZWSmL
v8w/xbsOAPPej1rTGDqH7LtRbN0lK9AaFpP9C0Fv2NiG/UB4g83YOi8o463isRNhC9xitRBjEEfi
koYSEIeRVgGhdfTn6dU/At7QyQplbmRzdHJlYW0KZW5kb2JqCjE2NyAwIG9iago8PAovTGVuZ3Ro
IDE0MjEgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnja7Vjdb9s2EH/PX6Gn
QC4iRiT1QaVehg5Yuw3Yy+BhD+0QsJJiC5ElQ6KbFUX/9x15lCw5apqo2boCQ1GLPJL3+ePxLr6z
dnzn1Ylvvz+sTs5fstBJSBKxyFldO5RzEkfCicKYMB46q8x57VZ1lj9beCEL3XRTlBkOv8NPRZbr
XF2Zhcs3fugv/lz9cuITYOuTiMNPEDgNyBtTfnt1ApztZqsOEIABfa6J5y9pNNDLdzwak4Qz1Oin
esGEe6t/8ncLFrt5c7bwOOducY1fXNPjAMey0r8KV1WNK6C5JWxyHKwbWWU72eS4/WzAwe7YSD15
N+CP3EBmUyi7KQUSbMjstCxucL+xbOTxzjJ+x9dGCzXlbFwx3u4dZhhRkoR3g3awacwNSd/jx7uc
Yn1ho+n7GDafUI7RHFEgmucvuT8wi0WUhDQBrVCbfVnuVDMK95EjeEQiyroDUyCgIBQEwj/aAzVM
KAkEwGI7hEVsYCEOsBgGsH7b5s27AUFtFtSVx0jYQQRjty4qzU7ljaYyt8nVvqnyzKKtRarE6bau
ZEYWXhCE7h8LwVEAc1MAn9mwby1FbfCogaKOHh3YFVAnjBMSshjNGuBKIuJAkFY5K1Kcvy0qkDsz
VD7hoRijUOXbXSlVfl+8AkpEwLt4LedKDyHP0I6Ler/LK7m9X25M/LiX+yJVRV2t5PpyrgJeEhAa
xOPb06pmn6rPwrVXAy7YFSCnej5bC8vPY5wk9BFR0N4IniQKTxCEs9nyYxLy4NEa9CdWsyXTkETJ
4wA4Aj4hBLPpi2bdzgdhly8RhZFF1R6zw6c0YRGhYZ8ylx0Il4dLYRL56vQUVdTPWafq6WmvuYSp
TvYmEXnWIaPr4M02jMJi1Ls3y9NSu/jh7tX6D+zR02etyi4uruvmVjbZcmVoSut/Nlow8dBrnXlg
r/7o/x9mxylkhMMjNPIO1Bz32DP2QK/sbBWO3nl8kB7+sD6tM7H08Gw6GCn28UsNtJcgL9t78cJ8
krDevPmRtXH6nHMfwtp5jdXa54uemBOm6+JB0eN4gpNIRBPenFby40Sp5E086quushnWxn1pktki
tlX7Nz7ng7o1nq5b7wrQJaetU58/EboflwHXTS7V1US5a3xn946r5MmCmhxS6WD1octfy3at1L/R
nx2Zj5z/udZPV/1iXB1zJuAaCKyOV7aUpm733Wp871ON3I2m+G5bQCVlmwGqizUclHlrj+RNUzc4
3DV1leNQbfB2UPetaQZySIe5qe+Z+7NdkVkGpXihc6plbztSu44NKe0unenUSCLYUR/DaQTvP0eT
Ur0XZK+NHonbo6xrYQPfGgEDE4MFS1wMvSaZhhS+h/R1/CZZ6ZwxeBuSsXST+NsNyMuuIH0t9bW+
nOrJB2YEPCQxzEaMiqpVubQ61df36NF7wQ9IGNrAYgd7Vy5LSHCoPet9M9ly3xZliSmuhfiofmbi
UDc3BDlzNqrCkLXHQiIS+/78Km+Kag2HBbZfIsA+z/ReQFML6OfeQ7cIn9xug5u7lapIZVm+R9JW
7s51lzYN8GM0sMgnMUvQD4g04V7L1Pw9ApyJLS6S03pv4g5DJW/6hbjvMcUIkcBn38DlbcArhlt/
H4Rrbsn2ADMgHUyFiTYAfcGFOXXcuRrdA0FiqMyN7tf7KlW1jRD4YGePc9tvB13rrLRM7cVDW17a
Hr60HfXvrT48ASJ4ROkBEAa+9U5fSFlOuDumBFDaN262DceLHrj5X3K7W+jUcDG/lg8CEojkW22p
V1+3lb5t5O6qi9+HL2io7r72+w5Bn9QEsCHY0HWjt3QELSiWu+oXwzYuyp6qCvgfN3NwszwO1eUT
ISn6tpD02L8m/aeA1O8d528GTyN0HvDcCIEHKBsd+HF18jdEcPIVCmVuZHN0cmVhbQplbmRvYmoK
MTcyIDAgb2JqCjw8Ci9MZW5ndGggMTI3NSAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeNrlWFtv2zYUfs+v0F4CuYgoUaQoyckMdMPSZS8FWr+1g6FYtC1MljyJjhEU++87vMiR
FNeN5XTDsIeEFEmf853vXHQoz1panvXuwmtG5HmWhyiFf5hYFax2Vz68u/hpeuHeEs+KUcx8Zk0X
FiYEhSyyWBAinwTWNLU+2ds6K5aj36e/tYQHTEtRQpXwzgoId2/9oCWZYEQi2NUid1WymZUbkZVF
ks9ER7j1yQn8wP5RL77AjJ4NMUWYskaTeNzwIlnzjooeNhoiL6QHsd1MJ+OxlHE9FI6DQx8xj1iO
T1CMDSq+3uSJOI4Ko4juGbsZqj8AR+KT2djrfTuXREyT5dVgACEKCB2OYDpYMw4Qi/3hmj/yfDFY
uQr405R3HI4Qelst68nguCOEohD2HYxRHJhcTraiPIbBZwgHe9Q3T96vRToet7Ji8tkLPEnQ5eVI
5WutyFJTifvyEgzQjwk8wmks9UIWeCj2cReV01j57bJiqsPxAjI8W+IYkTBs7E/5PJeee7nXJCtP
rCmS3ijqFmW1S6r0RlKmliVfkpWrzrZyudxuSAMW5SD/Jl+G1yASoDg2pDMNNVscMwuDPIbbZv3Q
IB4Mw+t6veJiWxXHQBCGGN5HoyKq2OY5+P1aB5PJ147Yv/5ZeOR5srye29tm0gNmureYtf3sIRJE
8pWDYkJM+VzxYgTFgNi7kR/ZXM6pPS+3eaqX01KPYsX1ZFECxfLsbuRgOxthu3n9Q0UD8pjMRhZr
TjsrmlPc5vQ5INfVZeEDT9LaVAg97MtLLSpoOSZ6dVGVaz3LYJ0n614rcq6fQeh2Ll7uZ4CQzjTC
4U2BEXlObW7h0JElA8pQdKnqrSLNMTR2C7h6Mj++HupcxyBqdzaNd38uiwdeibrvw6RBI1XrOVjd
df908louZv+1dms6/H2v+t7wvNiWfvousf2/9cCJSd1yQNNktVJ19pDxnUmgb2X49Pvk9cc/t0nF
m7pdmMJcCL7k1Stn7anBWyto/2pN1hCU207oaCV/h67AWcfHJ3bIz2Xa1y+XcSgEvoJynWSFNPis
1tC0m2dwD4E/0/Sno6cPCCBRXgJxvyxCpsyzAj17ie7vKaYYdQISddLzPAfbXXW9ngS1I6nVCDIf
hSw42Aj6nqVXfZNKfoiiKNJn7qD68jU0ggTbIrnP8kzI6eMopjZc2kgY2JtK9oHYLhf6uRnnZTHn
G3Gg28TIk+yD3v13I59CcaGgdC2VjhxKoEis9ViUwizoYV6uN1kOVQOeqM2LZVZw/SQLS6onq2Tk
h/aD6Vw7Yu5HYKLNZXerfnKfmxOyn5Bj1hgNx4TWIlZZbTZVZ3/QBj9CJPa1DRIrpnuscKNlMbN/
LaXMnfzHNbbqSopldiLFY9L8TpEKpySZ8rkZG1LV2Tu9VmdrKXArX5Op3jFwYVN/g2uLzrP7Kqke
Gytw3DcDM0RJqM1YKQ7Eph677jITK4l5e4/ALHdpEC5z7s43G0eGuAN3Aaf+49FJtaGFC10ld9dJ
LcBD2HZFsiiAC0oD+726XXjq+qCw9HF4FNHI0DlP8lwZIu8ZdZbyKz3NCpCcmAtJuTARHfTeDa1L
RAm5WJa99Ogl0f5EuT/Si+Ce0DuhAWxrXo/PuUVKmf7XPp4e/TAqiR2PZybdzV6nCJlm+c3sOQEt
Fd1EZQxFIZQNEiLqmZKASecnv0wv/gYDak51CmVuZHN0cmVhbQplbmRvYmoKMTc3IDAgb2JqCjw8
Ci9MZW5ndGggMjIwMyAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNrFWN2P
47YRf7+/wshDIDdrmp+S6BwOyAW5ZIuiLQ7bp6ZYcC16V6ksuZK83m2Q/70zHEpreb1Ge0DbF4ka
ksP55m/EZ/czPvvxHY/vjzfvlp+kmVlmU5nObjYzoRTL0nyWmoxJZWY3xeyvye9u32+a5sPP3PAG
HuLb+d9ufr/8JNKjjXy2EBmzStKWP9XzhVIq6R88DnRS+LlIfuZK12VfNjURu7IAql/NF1qb5Lru
eu8K2ths8JB3nHE+40xreAg1a0HuKeXzj6CC4mckUSSJ2/cNsYpKn2gsUyaMhJmwGhW9mi+MNElz
94tf96R1GH4d6WiCX79UOqE4y4wdzmt9v2/riXycgXycpYr4BKYTyudXOqiUpXBa5KnlhB9Qvv3t
jMcWwipmpJ6a67on+z+4bvV/8UDvNvXtet/1zbb8p8NYud01Zd2jH16cg6tWq/55599HP13Rm6a/
Rh/R8Is9tRCGpVbAWzBrzP/UX0iYLXTGeKanApzzJGc2h618Jsb8NVqxNBWzmy3s+UtX1vfzhcw5
5KPraVSVd61rn+e5ScCm0srkGidE8gAp6eYyTx7x4Wn1Hb4S72v6dHeVp9Xg2kApt7vKb2Fe2iSe
sHU1cnimL0joKEHc6Xa7Co4q18HJHRFfVpVdMALoZvWpckqwjKekXO/XeMpDXf5jH2pNmgQx8gTZ
+oJIZU3vwDeMdnB22+yCXk3nKoZFyCaf5jkUn3ZYHTkCo7jtml4PEwshpW56GjwHYvyIZoGzSCSQ
B7USjMtRKclSrmZGWCgM0WMY7FtX1hUYT2VZgmJmSVM9b5t291CukQpi3wUyhj3GO7hRWR4khC1r
V9Og856WuzhReddGtq5/oDlwI4h3mAM71xYdTT80+H2gFWUftzf7qqAhHe9Jo1Mf8YxlNvqoAPsx
ClwJi0I4y1gpZMby3FJw/3muIAS6rgzhpTKT+Kfe1x3GB1wShvPke1dVIZpptuz68Wuzr9cUSq9T
BAweEu5YRJ0KZkROIv7xIxygIHhvgs9h4Ei9YIPR0UDfUdRkIWqIFOwW7QILY7LQ3L7DK26zj0tD
ICL3uqABRnyY6MPCaoOBqGzyUzQ+cnrEoW+vaCUm6OgZ+C6aUYp88AYUN3mqrrbMQE0K6u67ELYC
Q5yGEtKGMsnVZbft4nRD72bXUwrJkbQePQFE8ARINTgDCOtQF5Jwv4fU0slHTINqlBxYUC7KEJnw
uTvORyJtIBVjGchfKaQyyJx8CLF4tA05PkTbBNsM+3PFtJTT/d9/843kb9TW4WApJMuhGk02Hsqq
onPBHjGLwucmVBHN0dYtkQofEBAVJRDUQ3VwvaevnWvd1ve+7dBeRgGGijP+yWEZGeuhPTWEhJvK
RM9u2maL2wzECVacfrdaLg+HA4tR6+tF1xesae+Xv/RrsezWUi4P91IsC3LZulvuXFzbdkvJRb7c
8UzJVjJyT7E5m/JawJ1jo1nK7pwH4NIV+XDvgRir1aZ88sVt17fovtfmz3NmRTbsGALJdWRCnTQj
znQRuBzGmqzHWgXkwfQTWKrASYPT4Hz2xVDBgpiAliewZ/TuBeijBcv1CATev7ZIgDBDYbutIUA+
fLGQ8bAJnIBj9gCaLog4xSqjKFUJkeqqINKvv53rCBaw02ZiapSbwfBH1UMl3XONVaF3T0c+fPFd
rKerMxHFmTL59IhgxEe4E5v2fbSVSckowUbBVhPK5wC6AGOe4rAPZP9HwmN8arpH9v6sNYZDAwYM
7kjVESocKHToV+E2/urVwaHtGHut06P/2wc/vtnlTZGmFjPFAb3zCFvIu0IeoUGoQC42fEA/IDyM
joVPdKxN4p51s92VVSiV8HVcKuGTrksYjMBr3Ee5LMZctiGXaa7zEYT25ZruhCn0osIlocqINBau
P/j+0t1hFONaTrdM8vM8+BivECjV2p7sH3AU3Ps5qYMA4HFuDNwp+/hJDfEbYkkL4BHCecL236mv
R6Ip2JtKO+UBkEOnaTD/26drSD8ObCc7m8unaej6MoibtwyB1zhiBxpjLLRd/6YDs5RJES/A8R7F
2wJQ6vUlwwkLV3luphwaNvEoZsTR5cxYaC4v29JYyLcTtgHtaBFvqIAadEA4W18gtIObDZxfE2iI
jYoW8SY9q3aqIbWj7bCg+gJ0TgFQ/VAFUAdNXXkxbLhgKpvyeaX60HL/pyZIbajJE+ZBJysJMIMJ
FqQ9EaPyKHQf32+rbiRTXB2rfkXgoAE27aFE/bUE642HgGkyYZPrmiYoz2BwgvMp/oAeUBciVn/B
giqF9gXD+FgeunxWK+q0LqeBhhsoM9P9aCWUYHDpAICnlVfCVqXzofIG08ppiYXPY1AKLLs9Yfw4
WUCRgY6PunZ37yMP1x1vHgsqUPZ1Sb1QG5sfMQYMLUCZ41HPsfw/hb7FDEUkqHL6v0LKnIHHYwg2
bcgR6EQjRMgimoaO+qjnU9nYZnj6HGBghqC7izv3NXhxEBEIGNjdhCvQ/OENhvg3JPKEJijuK+uz
CFiKlEFzMLRYI74Z4aZbv/z8BHsfoZ/8Bf08lu5cxKmcmdxeBGLnYo1blqv8BUGf6cIXUufQEWWx
Gc9p6XcVMK7h8n7Erjz246H5g/eoCNJcbMBD2MD7BVS+HfhoMmVnIgMYFv8SwIEPzf7+AcPF2NAU
GqgKmJLPu+FmQFIIdWiQ9tQGAIX8CINRLpgGuSIrsj+uc/iHMLClSDFHPkGqu+8io9ZHLsfnd6MA
sS6J08IkTM4kN6QRsN5DPjwPrf+6LAZMFH8H9LF3BwnLdvhh4OMvgO9w6ZhbdpAO/x608e9CjT11
/D0wnNL1A+aB7qMYfif4YUs58Dgfw0LDlaVtVOAlBjDpryhAx8jW1N+vK7gaXgI7/NHAYKdXTC2V
/L2sCzYFnCJNWQ7lb2HgnWsKPKEni364efcvIfMtIgplbmRzdHJlYW0KZW5kb2JqCjE4MSAwIG9i
ago8PAovTGVuZ3RoIDk4NSAgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnja
5VdLb9s4EL7nV/BUSEBE8y2qDQJ0gU13e+ih0K0tAtVWEu3aVCDR2waL/vcORcq1ZDet5QTZRS+i
+JqZb+abGYmga0TQqxMSxt/yk9kFZyjDmWIK5VeIco5TpZGSKWZconyB3kUvl7ZsTGGrf2LOojJO
uObRonxPuDCVrWrjVkRUX/mdYt6v8cgW1/GH/PUJwYQggoWAB+WoAf3DlbevnClkyxSCEqox15k3
oljb2osKxs8umNw6zhSmksFOd/rsqq7PXwTVXIMOxd0j86oHK1413ZLFFVZgU5A1m8WJZDICkf6l
av1YmDAGwO4dAOOBmROQJ4pBECRKGMcZ9UbYcnW7LGx5nwsExVpszD4L6KXyejq1nfrBCqiHw5Wx
A8noXYfmzfnU6CXBmIRSnEk5KYbXpX3oGI5C1b/8XZnwbmqT2LvbMuz0Xu9mt0VTrErIhQeO8NEh
Pli/hOSmvRQH1wCwe/WmmKQbvfl0WmQCU5EeRQuzXpVNNb+cF+0R/NAcK60O5scPuXE0NSjJsAbj
j8z+Mw/lElCcP2kWF2ZxaW9KMz1UIVkODVVhatDb3HO66Av5Joa7IRw1yERriAoQmEmsM3VPg5wX
y2Vni5u0d8Zt2eKzEz67oGpbJnhA6mG7y2+cGL4thnsxTIOYOKHRZ7/2ya3U6+XCTz/GCczD5bWZ
u92bwlyXC+xVD+AEzT8Es9vt27uYRgCKfgdUaN8Bzh9lE0xyzdONN3XMUjC+m9ge7baedg8+EX0D
9HzYsSjDNHWVJcUZYOzUUjw6g4kjJkEUUamxSiUSTOAUKlK+gvN/QpqVq9I402xlACE4XoARhRtY
1N6Cd9OonFfOzLlf7KnlznXUcotXdRN2/cbem9bpuQs7OE5SySDwzkNu95Pb9cBFCCwcc4AQHYMA
8GnGPIhB0CdnPrglI707+dRvsNP641/l3J6/J5L412c+12pYof9Oto5KKBV0WJea0q4bM6q/YF8o
LSCtEz1YebuDYfjdIPjosyjqqhgURtcQxdCALyPfDPJhQM/gT4Z3ProI2SKhdiQMqQ9lwCeAoxsQ
s8tDmALjQqJ0lOOerG6nhbvLkFfWCeuYph3TJrt9D4gpvelllzL5U7emjRmngZSPQ1ZGcMYej6wb
PIJ9j6x7XHUwWfkhZDU9V4GpoWd4ro6p2rN6QNAWaqEQItTCPU2gr4XdZLfJPSW3f8lPcve37bIm
Dwlj/yfVnT1mdRfTqvs4Y9qfSxm49l+q66dTbUk5ZkwenAjiARKBwo8GFexhWsovng9KYe1uwMj7
v1gqB1d+z0++Arh3xScKZW5kc3RyZWFtCmVuZG9iagoxODkgMCBvYmoKPDwKL0xlbmd0aCAxMzY5
ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42q1XWW8bNxB+96/YJ3fVyAyP
PV3DgNtcTR4CpAL6kBQBraWkhVe7wpKyIhT9753hcGVJEdzUyYO95JBzfXNRPJpHPHp9xsP318nZ
81dKRiUrM5lFk1kklGJ5VkRZmjOp0mhSRR/jm8aZvtWuvh8pGZvRhSpU/PKLXq4aczm6SIWIdVt9
dgvTjv6avD3jjPOIsySBf0JFPSg7pHx4jXr5nl4eXYiCqaIkjc6AbO0MiQvWPn8l0z2WJGc8B4HE
cXV1M3V11070/Hr8VCtyxSToCCLddmVavfxvI9TAMXmyZpGyrBT/S7NgRbLTzBiDQMg0vunn9vqp
VlxImbCSZxAMwco0hF+vXfeYJTJjIpW7QAypsBeQ60885ZPzczLRjR9MPT/fWa5hC/cEqgJLOCul
ODTk4vrHwFuZaYMQfzu8aP+eP7j92brq8nLW9RvdV1cTT3No//jgwMcDzwb3wF/84N/fT45TKpni
ySE69ewxfwTIy8S+P+67TOBBeUYCe+PWffuYASpjmXjIkh8K5i+UM6EYD1D553sdDHJMYx/NF5+v
O/eeHtkQpwPdJ8D9FtHRR19X7bppVq5/zPjDvhfQLBTLiuwEmqeN9EdH0wQwlCkrypAkk0W3ni9w
hjhLQ6Rr8ZvE+tSEsdvW39VfSLTI9oHiLOUFTY0wNP5c1A2yKhVD/6HFnmCZx4FYmU9cJW2NGUiU
2oZvO5IFTJ/eWFe38zFRf8dPEltzLH3WNU2HHBu4TJeqkYg71LVpbV0Z2NnLY+j3/RASUE7Bj5yV
gB1VpxT8iOfAd8E4ZhqPBDS2gmV5GiVZyTjyLxGIUUEg5km8QVu6dVPRtjUmrKCnw5dczmPXwxa+
1XoaGPXAsKHFXd0Gzm5GX+/dtNG9RiCxi+c56hZ7uos93bqxfo6g/SI9diDF4s3JgYVGm+6RHUXJ
kqyF71Lf7VHtuvcrCNlCO6Lppgksi+FseEwQGfm3K/A2iClA6BT1LerW9NtBivWB9BvCsL+zdH1T
uwX5cexDkjIBQ8v74BaQVI8E/gIif9ysviHw4iul8GITWXYUecWPQQSKB1FBRq58rM201g1RptoO
dx7Agt3VFZ1r360/O5zldAItmY5CMfC4MV9Mf6io7dwQ8K8zVgomRQDL1yOmCdR7Y2aOVnZRQxCG
HfZ9Wy9rSDgikBYZbyj2uEJntaVN1bWGVsFWJK1vm0Ccguims6FwJbxg58PRbY8JUcR31DMEtquT
8eYlk2mAvg6t5Ldnz4T40YGH4VIcKVdlDm+AgN97iAL6KDhWAloCb3ILCVDG9+Qh7ruloTveuwUU
7hRancUuJzIIVrgWamNaY1SmxKGr+1GaAUgoEtLAWLrse4HXWgeKXgFgq74jCE8XiipSppIAnO5D
N+1ukeO+7taWeikFWMVLw4Y02mVR+J2ispwlMO68pNehy6P/SREyExb61ud7F+oBbqDLKTV2OKdj
09RmNyWSXUuBFcwC3yDuCMoktACS7SvDBhY9Dys9UJBvG+ot0HwPe9iimQcgDa6lKUvSglxbdtYR
GNa0lvCAvIL7PovkMG1zVgy/oW5GWNj47w5Ci9XRmGpulgCPGlL6RJqVe2YkIlKQ4yIYMYHU8k1Q
5SE2OTziAQkI27qn/fufXmy2vuf0Y6K8hR8ynqmIX4Bu6ArGjWn/AXEtMRMrIvyxRGBFHM6hneHY
AEJlllT2Rfym6yEX81i7xfgkcBIqA58zlF3UVlT8bkvlncTv/Fhqe10NU7ynBWQtZWC1G+eU9c1a
3w5PixlM0NvQH9hBzUbQhlkB6Q0/XiAO4dEjsoNLLydn/wJfBscdCmVuZHN0cmVhbQplbmRvYmoK
MjAwIDAgb2JqCjw8Ci9MZW5ndGgxIDIzNjEKL0xlbmd0aDIgMjcxNTQKL0xlbmd0aDMgMAovTGVu
Z3RoIDI4NTU1ICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjatLplUB1M1jUa
3BOCS4ADBHd3d3d3ObhzcHcN7i7Bg7u7Bnd3t+BBwyXPvDPJTH1/b1HI2rq2dDdVQEIor0QjYGxr
CBS1tQHRMNDScwKkZRRtrQ1sGOhpBG2tjAGMtPT0zPAkJEIOQAOQua2NsAEIyAlgA5kB5IxAb44O
AEZ6eg54EoAY0Abo8KY0Bhi6AWSAIANlNzsgA4Dc4B8gb+sIojE0cHxTA21MzW2AFG8uQrZ2bg7m
pmag3zGYaGh+R/rtLUgLkDQwsrR1cbQ0BxjYGAMkaWVoAbK2Lm9CcwC5rQ3AEGhmYGUCsDUBKAPV
ASpKIopKADFFORV5JQrat8BKTnZ2tg7/x0VISVlFjBogLCCrLAIAqlIDxFSUlH9/VQbavPE3pQbI
Kr/pf+d5M/ztLiOiLKCsIS/CQPe7BgADwBno4Gj+O+3/cCN9Ywb4Q+3N1cTB1vqfBAByMxDIjpOO
zsXFhdbUyRFEa+tgSmtn9Q8/ZTNzR4CLrYMl4O27A9AK+E9jnGyM39oJMgP+K8DvkQCkzY2ANo7A
306itv9SWr+18s3pTQ76D7G3RoB+x7T6lznAEQj8rzRmBo7/+ErLy0sDrA3MbUBAGwMbozdDkAHI
yRGg/4/s7RNoTPYvgkCAkJODw+8cMv9WOfwnzb+pC9q+VaZt5eFl4PK/EzOwcXJ0/6s3/122ka2N
o7kjyPFfEYEAE3Mr4G/2jr9nZm7zj0xGQFZCVERJmUb6bfFsaGRs37pjQwtyBf1j/TuegLA0J4Cd
nhXAwMEMoH9bUhEbYyFba+s31o7wv9snbP7WJ5Ctgxvd/2y1pY2ti43H/0pNzG2MTX533djJjk7F
xtzeCSgh/H+2byL4PzJTIAhADwDaA4CuRmZ0v1P9sym/xQy/xW8t8PKws7UDmBhYOQK9zE2Ab9/g
PRwNnIEAkIMT0Mvjb8V/I3gGNoCxuRHobcnfDgr8P9ElbExsARz/Er8x+bfq/8ZP/s8hpXg7oca2
NlZuAGOgCTydrC3obRnI//85Y/+TS9TJykrWwBpI/t8N/V8rA2tzK7f/tvsfEzXgb6rk/w9nc0dR
c1egsbw5yMjsX139l1wCZPC29AI2plbAt4n8I1L5fY6s3hb27dIx/31nAWgYmFn/R/e2i0aWNkBH
RwDrv9yAbz34H75vjf/NFkAnpiqnrixA9T/r8o+RiI2RrbG5jSmAkYUVYODgYOAGT/+2A4wsLAAP
hrdVNga6/rMkADpaG1vQmwvAzgnkBTCxdYD/PUhWFgCdwG/RvxArgE7wD2ID0An9QewAOuE/iANA
J/IfxEYPoBP9g96iSP9Bb1Fk/qA3P7n/IPY3P/k/iBFAp/gHMQHolP4gZgCd8h/0xlrlP4jjLYPB
H/TG0/APestn9B/E8qYzsrV6m8i/JczMvyXW1n/8GejfSBn/BRkAdMC/4BtJkz+Q8S2+ifmfBL+1
tk4Of9m/lWH6F3zLZ/Yn+1sdZm52ZkCbvyzeZOZ/wbfiLP+CbxVY/QXf0lv/gQxv1P8KxfBG3fZP
sjdbW5u/SmF4I2v3R/02NTugg7ntX7UzvLH9qxaGN2qOfxzemDlaGTia/WXwFgP0pxlv6UFmDsA/
KVne+IFcbP9yeIvh9GdYb/H/eYQcjWwd/ib6VrTzX/CtEJe/RvAW1PUv+JbV7S/4VqT7P/C/D5f8
71fln0uT/s9p+7/n9h+sBHKwtQSqmRu//arxl4mMAcjB3FWL/u3GY3iTv338+yed/0pA8uey/stb
UNDW1YOGmZ0VQMP4Vi0D69t4GRiYmLz+y9foXy/fP7ft27Xwb/z72QEAga5AI/ileVsjrkCL5Ibg
Em+R/MlSKBIO2tNvGLzqkrGQS2mTbbhYwjnbREC+r35NvumkX22lxTl1vBP9bArVSQLRrX6tNyeU
T9wYK/DvGHjLeOO+FxH4nq1Kq+KfLrPoW9pBRHEkmZ2nUcQ8nd4S24IPUPl+LMTR1vnwhXH89eNV
EpF2actqLpRLwSxDI5qDFYrrIjJOO+7iZDsY6PUBLTrSoEdgiXJGPy8Y47sktF13J7ImVXKesl5d
xfyhMXRkZfcnXGslchtEFVe/yjv09EWIcgl85jiHPkEkWiJQf9gk/xhjUHG69D2ljtVKbb6ZN7TQ
dJ6qk+dX05NZvIA+6Ag9Ndw1pSgPD3Iy7hP2DkMCf8yDSRU9CNlvoxwrNwgv2fkOVdHJALD5QFlU
SoxrqQgH5rnzBzW47K+6QpiIpTY/wQW2igDdjJQFQIOR4cgjGJMw9y4DNGOMiAKhfhNBwc6vuDzO
oTwEyEeeZQo3Hcxjw9Lvv7FZbPs6IDItOxjwRdL4c1aoQd2Kr/Dcz/kmFWrNgMmTBt1ybrCxwDPy
knI/sFNQrgfLCsJh91TSF5NZtu1O1JpJvwj1U+T1AlgxRrEXu4XvEkOHy/rqEpLzsmlBXzyjVdmW
hhcu1Nrg3SdiW1zhIGU8yfN6u2ozX9jx6yLIP+bXhLFKpS1GQJ1aULndC7SKpOY5F8/gvjJ+Wrv7
SHXR070HHAr7mrXi6piXk4UAYDnc2zn6/GCZXBfv/4OQalrz/aeFS8a6+TS3yaDZ2rqfZX6pC8r9
PY652E8vJQ+o2x/XJsYTkco/TflDLxRATd1dtLf2DphTpx/kyBSGtCVh2P4S/7DWXX6/wRj5fasa
mWxTQ+1YoO+i605CYD8HWojLdcpLyQ4SUnuM6KHZ2g8wsYvYWPgSvUQUP8OeLZiXLWdQPFvknysA
ocEyOb9CVaGuqTwWCkZu95y881KOq/AOUrvDoZHWv3Dbmq6HVHV3XZ6Yu6ttsEAq29QpyIjULn7Q
Pbj8iUmfr7bYedBuCEFUU+nqas4P5WUrrfkrTBZiTJC2wudsaiL+hlNcXXpEH/ZA6N0BkYSY3buR
lnqGUwZFPCMtNHT2y7gZ/M9H06E3nMlhcEKZ7ugWQ9eeEESqralJrsl7rLPe+SZPbdSxUI1C/Pww
LoZFbcoqmFDkBPkrxzQgj5tTgi0lCEOcjzgmy6Wldkv6HbLENEdmy3A2BKqLTonMTR6ER8g/ajTQ
UHO0Z+IbEpnnt3/hLbcHFsBIqTOCd1i0VLk2zjLVB5jNyKpjzWE+CiQZLmmq4czVYcfGpHtAOBNc
wSCQ3sCXEp+CHafejvbSEBRvIaMiA7zEVV+kb15IhBr3QS9B29ybL0QfqmOYoc6PL450r1x4kwqg
3ZO4ClXWmri4ykKlGqBZycU6KDHD8XWagWDwG8J87b1LRvvtKBj0MsiGikK6m5C3XgKPFJOvfD8g
ksGjCpUFhawZZ5Gfe7JWjgDabB/1wNpf60+srtCE38tMXCVsYqPnZ0+1L2x/e8d3Ld9QsNB4Eh9P
3MBvIqr7rkwuqbOUOjwybFa2IverVsNpzIc9lbxeSbIDh+u84NgShuUypl2xKm6sQKfD6yGD7zGb
jGetFEKUtUo8I9ZKIko4/R25Gr+u5x5/OMmODRNHVXmWkEripn5ez1prcNibMN67z8ijoAhIuVdT
qfDG6yNO7ciu/HIoNNTz4Ss/4MNlGyTac8rFBQu7JoFEwfASOMId+adv08pp4YfG4nhyzq0JuFiM
Oy+dRV41swF0mbjiAMNjOaHtj+/Fucu8D3qQewMv6Z0zneaxwV+/My87r8+p5h44p+PjrhlYlJp0
apkqn3sevT/sbTjqsx1q+8pcQCprDNF6EMCKkKhIGrja3higm3xiEhctcuwniiEsQOqtjA9VU1U8
llOnyJ8R6awrJ911pSzj7TL0jglNEGZV0fZzdXCnU/RjcYPrBqaFxKdUKnqDBXzqEm7sYOv2xN1P
kJ0o5QbZGcW806X8eQtyIgTHY/RfHQbw3AA0nM0UtZSncGJTp01UMU+QlyDDZyOqiccV/umH4avB
K1UBT33p/q+jyTAfZebEUKK5JSU/k9djKc4u+9KKQguLfbPGQZ/Aw2FLnjjUq9dS/QYJ3hH98efV
xyYbf288BY6zcBTqJqAHWdAlZPCgkRJcndmik7QanZvO3oqPkozpxIOE2HEmIw+YdRiXQkrAt2Uo
dsvjUUZyJq0G149s0CJz+WGA9zbWuV5kRltb9BgSgst6djI7Oik8BOvhXDpEaQJ50ETWebiW77Gg
atVCls5pAiIR4x+PLR1+xnhwlILfFtz7jTnv1jCy3sqSloYG2VbiNFBT9R4j1UqIv496gtufZt4A
9zQY/AEPE8jLNtFLvFc2BD+8EI/Om9pX9yDqntJKiQsePv159vDFNmKGRAFikbjJ0p56LnrwlfuA
prIH5p56zF/+pgVyDind2r3Gf/6+omyfJgo/VAYUj9k/suvohzMqXr1lJW91AeEf5aNUIwtnVqSS
J6ZpJmwQ1mG1p952XEPC6rCkt6J5EKMwr8nrdAHN9A2DSZzCOGERxeZciVQ7GuL9/LVrH0/HQaEI
YkARq1jmlU3EEAr+R3vqzJo1KJwgaBvp8ADMIHF4TtNVIpuaZmMyN7nqaaRMOd398ZvvY85KrpwK
2L7kr9SiKR8E/XEQhqc5NBabHUK7XVD9ZpZvq8UvUsa3c9UslXjh8MUB3XS73gzKrlngv1i5GWJ5
P+vuKess1A2E87mJ9qibXheMhipTynhScuwqRB2Acw0LD6lwTD8BOQtaTjStwDZWBk+X3fiUbkZ8
i+c0M3/ig7GEnM730Lwq8Wp7c/f3IQTUV0Me+LiY95CFMknGDhOAj5vqdEt2ie3Ikrsna69Fyji8
b28chJbhOBOK2dW3uBR2BhfnZMbRyG3WzQsalivAiofQhiFnNZgae+qVVo9MQhKKJlbzcuzItXbs
KB5TINvrVAN7mF3cxYSuuahbpvSTQVtFNRhNVF6hFa022N1ZOqw/Byf4gdHAtBBWX56KkrOsYmYd
FvCwKoY/Lx5eGDQpKNQp+k5hWWNO/5RxtEHvSMIfIwkeLj/E0pp3Bdj8LYyeMJSZS/XZHeldvDl+
Vy+rIal1sUbNZ4juy6owsJMDfXf44H7iXpt9X+ojXC2yX8lbc4kHIUdGGueZxINbdnnwgiLchKLb
xr2NXxrMnsbHgxfDa7DNsxiZA5AX1r5/+Jz9YEONilwV3NtzVFr3zqDQWVbF8zRkRY1SsO4mHUCG
CrbA8ZFM9Mv0cJQAuJm9d+6sh2KEnLT/F59bJJHshmHUVsVf14WzXtsiq2QCiJdE77mRt+ukoSot
rLxaKlD5ljfMwHtwVQxWuhk+MNtKeZwexJtHOrUtZ9a91k3YKXZWHx+wQX1SMdScemh6SLIBFg1L
RjEjJ/ArLZepVsNoIrIzEsEoTkE+fhQ+/SKWz5uX0UHZHCkvD+m8qs0b3VTM22rwiLRstaMNjTFd
ZogWab8Wf72IXiUy3CAHtw978m3PX0MmJrgzN2uR7I5/N7pCXcIzfX6+SY0OglLC20efgug4uT4D
751ceCfmZ2vpSIFpzwWOnDI9yo17jHlV7BVHszhvLeItcA3xtGEJTXyrwanX1S7uUxxGCbDgX/4f
vzemaY0Tdn61mpivQ4/YtHKOdHxwm0j+Qowx/aonwHJwzNNMuO+K4vDC5l2rCy3KhDIbFHiMnlLn
HUP6BZPrkbSbkj/tEsrb5orh1L07EUmgqXraqubD/IVmKdq8hqKLCEMOHmxltOEXUx9dQI+vB/cm
YpeeVe6i+6cAJST/91MPjC5AlWr9Y6r7qNpRBW1k7vPGKgWGnQ8tB4gTtaRZ0uy5i4Es7czGXO81
0Lxgr7Q6edc4Oux0wjXP9HB/vtRiwH2j/JnW5lJo745z+rMYG9qXzV3uM7dVZ2/94tBkVgEcViBh
1zsNyW8BZL0VQvHd1+cHRsBCTy5jvwkfMHpbXzTcEqGSPOOwAMivsSIfpkSo1j2mUOrTi8EWlMmv
GU5UcWxJPCMGfOwSMgRSs0tsgkEVD6AeSCgpHq/lPlqbBPbdWxgNBpMISPMI7o5oUoBQXZDnB/Rl
q6CNYB4sC7BPOyba9fKnMTyW3dD4RdC0GBj94XMIqQzwSJWISKQ/yg+w1atUwT+U2j4drM2udB3f
873+dNP6+gDyGXMhMd9TO8Bo69CEtqSEV8n+IvPrHiedoMgQOVM9uDPjSDcDVVRODKt+jQ9EGlZr
Rl/qsDgYcIMsY2/Ol6HTIR9yEku0ToydNkglQXAvZkx0N5vsWWObFlDpIa13iWUUHHGx5z9WJjb4
Y6d4nofIuY/YnGkEtv+T1Wt0+dfucpfHdOkc7WO1rUAKJsONdgSdmKKYzCwhc1veEQ5pcoGQTicv
LBZRncZRnUzBmdqIoPqWZDaLO8b1reKe6uQx15pzR3P1cgwYtoSh+ObxZB+fzsTpPi8iwvnF/EZi
paSUvYEfSQHUYeiTXTuFEsCSzPN9uN2ASTCKJvRC2SvHEY9xisDs1q80vePFEUN648k2FBJCQk83
PpJlnnvpGe35qxvIMfY9oulCG6IrLfq60hIYJK/Rk7DtwuCxvkIdGy5N/DUdSJXFyFvtHhxm6OOj
uX4NgX4aPWHZrCvHp4zUq7RjNYqU6vktZHgKEeQNhsX6lMnxsERCEC3M8Z3xsFGEiLFkaYvSRumw
csAAhIcqa/mgoGCx93IyRFgPzKbDkCZ4ypWg5QvoL8MD2hCe/ghfCztnwac1NIbjzYM2LaqcHY4l
66Ls4tXCwt8ZD7DDdX+sFqQW/tEd+86iXrzcp785I73BOaa5KAd+b7W2W10IpVQ5BSzRb9Ci85C9
SCO8WAeHf0PpegLW375MqxJcTE+uM20SIrAsWs+1GIXWBp61GWW+pGmWWXKb6f0TTCyygRsqSlZw
pb77Viltv8zAsAxmk6CUTYyrFT2PBoyYfvj12HwBrirKyuvtnS26PbNFu45nu7sbFU+dK2yC1hcT
yKp0+5J1lA3L4i1K1iyqMLEXPU28mO2D5jiZCZKj45/0yxXZ8i12y1sqOFQHBw0OMbrugkRnxuFW
OffokAlF/bQrE7iVC03BA25hysQJPWQss1WGiA6uBdGV5ncoqxHSbnZfuzgdEFdQS163poWEbT7R
Ru9Itt1Kvpa40wkQttkdvIBfvLtLJYOHTlcfpm7zGt+1GvB13SilfjrwG0/egA740JfSXuVYTl1w
ylo7GVuf/P2xpDBxRdzwbHocjiHByVfuW6IsZCVDWcDxWSHW4AdHnZ+iqUIC+d7dTb50XmTgKyw0
sCBhKgAoKKsuHrWNtGstHzlQvv2nrJLj8yyKF4FsKWX9YZTpLDJdiX+UPA+dmv6WcInzjVRZHDBl
kffnd8T5SeYia8bVQOlNuIGTzowESv9F5vPPDXSPVXZeMB7OiN9b8rktbZj5aEL1k8nrlptG+k9W
fRLeiZV/hK20w580QEppMTHoKr8al4hwGIR7/AR9o8DDrC00KBtanLtHVnXgUWEYHOC/7JTMssMr
ByUhxoWPaPULTcAFjAvuPTTtuyFjBNimuWBMryq0MhmQQlLpTz5oHrOOmC+k9WPI5gTNVD2Pyjmy
DRLVHw3pcoUpP1Q7RXwz3RIc7L0yP2OZ6nRKpT+mRq20ynkyOZjcPXZSLZlVDzlS7qwke6/jfeu8
FEeg5fg9pDB5+/rzqboQl/OjbSKVwC2xj4pHq4O0EvWDHp3kL1jnSOFwh438dH4ka69uthJIiTjj
DBrexitgwbvUxDkTwSLUh+s9+LMRb0MaURgw5/egRFQdmy1CxeADXRNB/sQZR5KY+gPTUSzZZI2K
jny+zrP4SfVGPKlBwB36dAj3FD70Wm2Ra2hoqar2ddArVtudOSR6RQg58eLa6+iE5kRO+GVObYfT
UbSNPQVmh5fMaJSepwr3XbfFxvB+6x3LxuIIv7vA9zyobwiq41ZOipC9CxKP3IdoDIesjHuIiZCN
FIP6O6hJ7ghqFKSm6l/g9XNEKtScfuQSH0QqcR9wHSgZ6syvLfoZxp67kCjhUcRTzHWgvkucdcZW
cgzdqJj60mpvGxgV3WbdKMSFG4JjuA+hdId6ahCy2umDNVZwbU9bC55l9iF2FU1Tzqe0QBnZjEvh
Nm6xJPRd76fjtPtSBwMud5Z1yJmirAQbVV9I0oiMb4By8RSKyEA7aw3BIyTvO7lg5ifmkVPWyTnw
91hfk0iQ5BRMQCugDoXY8x/AV7JJMT33ZAV7WyPCQ4OtvEIolGQtlMkIBv/Cttwkt2grfWW7HlnV
6mTLDlUoe4I5ahXnnKNNotWHXgzatWOyklT7E/5bvnTWheUURL9376MUaB+mWF7Xpkj6IcsS+4kp
g7Gzuyl0IvqpWjLkw1WwSCYUZsYYoqE1MxOff019Y+ZmWH9YOcKAoVabCqW+9btW/CYElg0vrcLt
OrtlZp/r3C3/GFV7+tCKvR4O8xoqnU7ixJj4fOZdxnYdhyaE8LIFESCkWugQ4YuuFiKUdUe97VOT
I8FsFf0xdevzRL9d5jqhb3t1e9EMc7AapIREkGJBElF9tUZ9anvFNqVDZc519qNgG3KyG9+0COmN
zJEsXklDdXJiy0gjdhWyldC+dnycTtpKq+dZWrZE9yJpS5eIRt9pIyd3ul6Hkvjya5SVhdvsYeel
KM9aAqHrtKKZtZFPF63Zs7Z4vZ/A4KFhNEkv6n3sqJy1nOvNpDGz/mki6TDluzPmL/xrHE100FN6
+6g9yX4RXRM4JgsHXD5YDWffvmYfCrYMQth9qhaDFcbby83VTmCtT2715S1tyl4CgQQvv/JLmogy
bCJiLiKcKrP3tj64Hwz0CaoHYOgGzQrO343b6TOrQ2SLLHq7enWdshgeFj/oxdFxbhW+d1IAQxHO
3wI13jIn+yWZDptWTJmfRiQLtfoaMhWQTCi3eCX1yOQvF+Dly+cxJz4T31KPVypK/LQ8S9yrgQRp
g+wa93d+KYR8WP/0eU3kUHnAuEKJ50MMgZfZTf29YfTqI3WvszCN6/6NZ63rCR9Z8pKFHx8mF903
6hTYmXL9QKiEYkKy97vtZp6uXGTyn/S5l8IuJSnhVX1dvrDkADngK1dy2WZq4bdnyWvcmFwhP2LR
nCyIpQ+5wk9HJK1+5GyRFiE/Wq7C/bE+VnZ0HUji19vKZ/bVRZExvNsxhTurRxQt0tWRV3UVOZNl
v2ah30ySFjrWkmCxfSr/vXOcouyIUawFZZ/FxNaXFZdr3fe2bM+yWadRqzgSGCIkToO1P9cJUON+
3fWe/7hEKgLzcLj16kvGEddBH8PuXEG98vbJjbC22d2bygeQ1s9jiMUonu0ZUDYljm/GYML8xCyL
O9kLFxkDa561n9KQHEavM7U1b2+HcUaxGUcnYmhZtwYFeSOecqVzm7wcCOnTs9NlbZ8fbrmBFzhE
p/3oXeH1qz8h5UpyEZQmaA3dKapm4TgCI2SaGYGQTjSgwH2nfMh/02Fbj85Ayax3GYGRjvJRZRQs
5O5V9gH3mZIOskwHIxhRD33OIq+cXQCOgsjtRQzlYKJaRa5O48IUhQycsD9eolJ+oG6UbX1oTJEy
AU4j3IYH8hfFHiTxF0Tje9yy4U3RisNgfQm2GEZlr/38ciqe64rDxdogsfCabzN+SingKQSCMJOM
WPjEMcAdKsyKWlJlcJjdAion9Wn4EXUzstLuWcP8EBh7hxKWU5oZhHRuHSIas+37C2Xp7WwOipJw
9cyMc6f9ORMVqykTzleaHQsiCTn02nJeN43wZg+y92o/WNxwMeibRoVFoejiYqhpqnJ2zlN/jqdT
7LAqyRnTLUtcD8oJPl9p2b7zogk1/2wWQI/8LpJ7sApGYyP/5sTo5CKJNvCTsYp0c+m5BKLzmL4F
gvFYykRILidnsj2UBFRBhOvIZPx4y3Z+SRrZ2AN/c1fSSosE+tO9eNaGDVV+NA8leeZiR/UxlBWA
SwiDufFLm10+oq+h6itUdqplwNOUAopTXnZN4LUf/5Nz7pIfnmsMgheznehrBmVmUcXWDS392lo4
0oE7gVROyMGenCi4BuWJxGxFUeVTk9feN7gXqFxnKtZH8Flq9BsVDO8kbMkzNjhBCv7iXnPDNjwM
K0wF4oChlDPfY4hr9Ba0ofe+n0Ox2yZKY7zKCI08PNhC1VVb83h/5ZVhg9+7XbLi3A+Sy5L87K2P
fQLFZG3ZKpV9EJY8JeadsfRf3pYuJLvWJ/m6GW5YDvYD1zvTzHN0BaPjUCuvlf+W/Vb749yHUCrH
WHah1UbJ0XuSX9YOI8qbZ5wP4xMzd3XfbR8Kbr+kliAIfY9EF4vPurpGFZ+NEl+C5uIGBR5J4PzI
76Jx9lVvoUo+M/VHJmwp4dYkMqKZhqqECS5Ke1khJvIcy7QAIzvMlNMedIlTmpirvn7fZ3uYjBvy
a0ixkpV9Cvch/7Bq75HYXqvFO6W4KqwAg3ELxWWXeOeCi8095SJTiIk1EW/3PL3kKpiExItKVD1N
f3NVLkP9pwltS+UiNWWFbX/HXiWubdf8inNcPgIguu6rDyiMj/XD9HyJ7/7uT4/4EhKwyNtI7u5U
EQjR8pMfp3OZOELabi1x3zGJMDmQIdYmivJMo4w5rE4Pms1htyMzszDh6o4/xEQYz1WVvUK3ipXl
pA0hyzX6RqqpHMPFEUCp2oO1yFb4HcBvGdT6fXlG9MhFn2GPnM1Cn0O60azvcGbCpKB21y99lDXQ
JjZlxkLnkIPQJ0L0LwneTKgL38IwfJ1ZpF6NtIwy5y7yDymNBuiTVQHApZv9zIcfrxCc58cmV0rD
pqwyC0dZGkS/TeaFDGIa6JVzsA2F9GTipocOaLRJzhz79zhUflrvnNc4zKYZtf/GcROc+k7uaZlw
sgT86pOe/PMyGKTu5UPbjtE7g75Gqm04ZlJTt9D7b9k+Y5vLQy377tC1/cBfCWn0F9FpZsoEg/zK
CUmlLhY1rNL5XAvJYIIVyI1DiBAhlh9mLTQS6vKJYWclNAQdhSHp/QWRlfBVRy+zTR1zAiyStRWS
kg3l6+dr8G7Jn8SwsELjBqQgW6apsAt3S75qE92YEoaTRX6AYWOme8DlQbJxc9A0iVuy/hbQfp3w
mQdic09oyxo8SrS9pKXGILIivxCOwfn1Nij1RzYhimZjDFSnYMRnZaF4SVtRd2KLmkBnr8prJgTv
xJq1XD8pqPC2O+yMchE9N8NeB667ffwa49kEJhiTotHJm+2MaD+saBK/DFQEj/xKCpFPhis0a0Rs
btX7P+V5EcPpS989Z4/cHN6niJ1vN8u2QdQU+Kd9DzpRN+jU1aPxufzxNAtSKWj09rdWPEWY87tL
ocDnLVfGery7zEbLhNQ1yt4Kd1m3h13UKs2EuFG+hO0fLEgPXjsIFbamhiHnDbAYHqE4d0YeyYLt
Kvgebm0+8dWVDImuY8c9b1RLI9nz328Q1OlHR/7ts75RguP0Ub2FfvkLjozxJu9XbAie57VYkfsO
7WcadePzlfCLvYkIMdaTLZdU9o/kpRXYWHN6s0bbDRl7zaDoIA//2hswHEa6uy3DK8oK7kYvSFqP
R9xUQEVgV5DoJwJt2BuSj47vcIY8ELZ/xo+SfqaJjYaizLuwusL8kuopVVy9BtWwEMSCda9IlalN
lBE2l2T8SmiNyWZH9SJ/Ging8w3PtCNlR7yHUBsFcXUIuqJSFT3dQcr0hIKt3t41mXJ8TypJpHk4
ARU+tiCB4Db3fWm43vaY3L5eVaTLnQrtuYchzsZ6uEkecTkI2PTLLJ+DD9Kinc7GjZvh5HYoFbhD
MSdCCyujbxEj9G4CMwmmiPfHAHiNQWwD7inPPXjT8819wR7P3a5Y6X3eXfdWW4xBURVapJTYkzOF
05a07XFj6y7BfNxTD6/wBL6yjfry99bGK1VhJUipnl/2NfpiHHsCWKC243c0tFdhnVhDJxVO6mpz
BHiKsB6aEUIbrKil5fLaI666e4T1cxz8Hi5lYxBQNY4QZRFgJ6+UDfeepQ/x8ynMqcEvVt2ah94L
zNBtsMXqbDSS6eoP9uAHZc9q9NI87SskOVNfw04iPpAbAtQmArpkhYekE/VwwnJ5zdFLZsU7nN1+
zsM3rHGHIUpi2K8mOUp8ljYM8TiKpICR4MpJ42zhl8P8NdhNd+rIi873KCKTsq0U7xhRumJlKSkz
THUZDB1pzwQuzx+V6eca2dywVlJayNWuOI9+TjGDGXs5Y3WXhrbSNUR9WnK6HnoO+SsWEdqO9Mmn
8k6dtIWlJudBe5I5HS5614QF24XwWYUBr0aMLvBL+Dl4OodVpoXNF3ZgTkMIjNUYGiMnLT48YEW0
YWw36EM/ExPSjPK+OYjka4LOSuc3KL8UGu8rD1NtS7R+4Q88c7lh5l8fgKWUT6rm5pawACoIccUB
x9PeSBxdMEwhqfzwzUj6w6MdqtYelTbDZEMO77a5TxqeOHfIhMm5Q/ayIes7FzMlsw9tl6OFX0WK
tOPK6gRwamyZNkh2hLGprepO+YPcRF/C7+g6UoeO9q9nKPLVrWCEQqDIUkVry0uFD0u9PLVfrgIP
rmBv+Y9dx/DynrXla+RIuA28wHdBYWN0M6cWvOOhGKXa+vJIBU6ZoSPoSsc4Tjyj1f4u5bEJ8QGc
g5wjHrrgGhiqjLUnS5l+yCRek02M3wXhYCTVYwSOB7UUqS6QjVOsl5WKfGS8m0zT/e8vgUXuMa49
ACIvZx1fP18Jox9wlcvqHnB70zzSBJ2qV2RSawgJ5sPIjUWrNexjRoVRnvjrXcJLgk0Jbc/5cANx
yL8gU31TA7OhSOcqvugPBEQwUuUD7LRDBJ9qjVVNfUNbK5Yui4OT+8t1Mh9eeak0068Rqm3d7b2+
CvEQgJRIXoN5cc/3GHjYo9UU/fgFvKplbmAplV3CymQjxI1aRLQiu0/E/UpOOb30WBJ/BgXCjMrW
7rXemfm7T41nzWQ5CA7J5QGGtbA8sFyIsM79heuJdJN/FY8EOJXKLdhRv6gNPDjDk1WlE1ah6dOI
NK+96+9DubeQsPF0weREXEYYFTXjJk5+N0FkivkcV+zJkG7YGEOnMvglgtqyFcawoX5oyOzJ4rH8
tAQ9alggFm7WE368bNpcJRicOAxz2+7VMi5f6Ib/CA+Sz489/qD3+oKWK0Rh01XBx0BScXhCvS7r
vtdOeCQpiaOTmsg7AlZ9PilVzvnDEkVWTot75E61y/WuKpFSV7DIRQc+Cb/UPSqqW44aqXEAuhIC
goyX7F3EK6hk0pP0dkbGIfzUhaDlaKcqOnQ4Cd+PjStJ9J2LqLRXhykiQyJf3aNNDdv9WUIl0ZVO
eWKGHxrLmVzv0xiqBL0UXVbfXL8T1iHhh54BAqgM8MtIdanbKyb458PXuO2NdJYb81LUI7fS5p2V
6qQEmspXk2xhycrktsLn6Rimpvv7uVG39QG8Y4FZ6BKq4SZ2TeFY+ubQNf/XWQPAx7F1pXOidfyn
tKDk3XAsmZBdsNPvdxsz6xc6Sh9IIFmp34Pgn5yVGuqiaQuxtvDJr7VHp3xX5Z4XMXsu5ZgLCbjb
aR36kAhP331mXr+l+sA+ueW4bMAB2wN1mz+tPuiZcoY5Q6o7iPXkhCs6mEy1vNMlvNk6+TpRtSk9
ZR71fYcQiUV2c1hAUgImuIvfcYo91UiAyfcjVJGzwiWWv5zVJDjcjwZEgm9VYvr3zbma2Jrvx+CZ
DhtiGPFxPqWTa7+Qe7Rzt2NFs79XYsA9520MK5QrcMN6vz9Qdawq78mTWY1QSBQ4iuEcRAEFx9gt
Zm9VMNKlIwJd9iBtjlYI6kiHHfyE5SeozOirScL9q4ZbN2fsQtvwyf5apzf9CpAUjIh7ftfmF0N2
A3FS1IHtsf+SOETRgv3ZkdPKrwLh8AnHfLdqfKTUo5XbK3S53PhY2gs3+NO1QyPLo5Kf8YGCnPC5
6QOaT+BHN/G+gWL7RXLxfAU1Vv5Rtf3HaoK41cNItLPv7oVIEOsCtdqys9bIspph5OTmSYdwcYqJ
3H02+PuVsSHbKd/dywqi+OrrBg9NMHrBNQ8NtPK1ZAPL8kHBlEs7X0IzoQSizae7hqwzTM7AmlSY
c3fS53qQtjFqmRy2z2mwUVkV2kvJk6pWO1cXmus0D2T4Dlp7FTuo18AKawzDxdXQQxa08HGbMXAu
OJnTfhj0ZR7Iqr4Se7kb1G5iQvWjN5qG7Obd2vzIbhLJ+3nkkpiroD8na80G46RyGNTgklCn3us5
tqQYHz/wfpNBV7as++Qo3cu8dnErpvh2x32/utMK6waNntnNiBZZux6yWDWaIRd+Em9bE3Wrw1ph
Fpi62LP2KyEPWa9nMWVDpyuJlsE/zXy7jvIswjOZwlQv8wenqwKSwmDdZxio7jTkenb6ciNvtPvK
GniXxA3hzWRaRX7r6eOKYUlPol9WmCu2SCI9Srwhw2YmCfR565IoOrZIP/t83YyB/pI8C8/8FqMP
Tm7NvhA1+u2hIMKjLhRgJDGaqEQRJSRr0GbhlQoDvU/O8KV3KLLx6A8E0XeFCE7+09r+ZQfv9uQb
glgiZsIVryWIDwZ4M5q3A6GWHbmLaoKsxkA+12Do8P1Io/nVplHshEY60aoJYco8jqqBLVzLbowu
RDYWyyMc/mAs/V1GFJKf5NM0KdxI0cPe25tnLHVWAIE4ijxyo7eSsMG1lod3Ry6acT60BxU58g7D
26vzEPJSAN7v/DdCEz+E57u+0nJ48khxDft86j1/4lXzFK9XDr+Or/UojHOeiEPwOKVlDYfT6d75
SnjRz8QJPzSNhhAkR+vJPdJSwUPpG+Dx8364qi8h93ULg07KoEdtfP64hgwADjjSwtYmUfSyHow/
nvSxbEMvDni56ZLEfxlq0JlpljpNQvY2viPsgANDbLhhiynHFWSl+8kfxiSPRxJH9jnYBzlwrRIP
MXdi69N7Xzz5VGfNPXzz2xIrvhnaGijl5tEwKp7k0T70A0MfdToTX2yTo+5RjajvQVafFtazMmDF
zanZp3bALG/qtkJmylelDNoB4HwXFnpcOAoV4vIDLwtWxD7p35WDQqP4QKy0/JF6gTsHrrgaXc4q
Rrgm7jYiBx09sL11hRHMO1sVHxa8DsDsPMuZHWBVkO5jJjQ+t8nPSOSYP65eWcjkTTMkyjXzNcYM
NB3P2h5shSo+5WvpxIU23cp9aOZy/ylMfMtMT16LbgddE+zprf5FaFPM1MYPJLO1mJ2Dc3/dMqHO
+7T1yq664Rz+4ukHT5ps8lwmpib5sY9+gHLNauDJC47W5SEwOhp/jhbDEcTcX788ohqUEctiIXYE
Vq4O6T21Y9CyuE6FM1mLpElF01dYFKXRb3iNB0FsV9yrkUHz4aA4gANq+2jrk4UNqZXmBHTYxx+T
EzVm9D7SU/2W9Ki+ZYkj8Khb2mxQRsc03beryCdIc1n1HLx8SmosT3QohxsZNhcX6ENYwvHPVrMZ
qX2uLhhRYS5jJdgjwYtkCRey3ilA9zYZn1biNsfZ3f3mHjdCKLe6NpYaPF8vi66ZkbQg1KaIxpoj
khUm4BCSKkQG+xKMrehz6FYUWHqUwsF5bupMBvVyrHMk5BmfLppbL5r15rT3N96TTdZOuZiBsRj8
8Z8ujv6NDsZHDHE77jCFI16xavLv3OIWWxCkNuqErGnkmBtYlGqLOGit9B7JxeNjIfDvVmlj+A91
iONFXIxT21LBP9NBGLVH56eAasPVHPfdnL/0L1THnDD0HexaEI80l6UnfRQnk8l0pP3QmBE6aICr
D9N2PhyzHAqu/K6qEIPQOVaJHQ0/rSFbQjO1GQm2VavaZKjKrwMm5zGK/dtJ6lbEVI0JZb2mXYdi
W8CVwIGa4GecWYIKqYb4gvefH0iui5fqGXK/zGL6Gh5O1b8GuvLxBbnQrT2Ii+ARWSdZmKZ0Ivja
rox+VfgytSewQCIYEa9tIMGp29hltY3ybjt40m3FUjzmZW8znQZ3FDNFvl9SabZo8i42gGsQLztk
Hxw09GExNu1QjkHAT3Hnh4Ae13mIgwTmMswk6JPVpkOsBiseMfeZWGOm2K+i5U/UFcCz53fQeIab
wX7SOWtEdfzW8Wv2RlVJMH7w0C2QxiU/rHFS+ckX/GLUy4zRYrRujlTeTTbBxlRBOMe6KfYnvdbs
ZuuctTsk857NLI3f1hlZIDZxRVhPNxffBc+Xgr+XwKQGXw79ssnVoL3STpZ/oPnlTHEWPpNryTIp
w5f9fjB0GJ/NUXFMKhnRl4z/wsd4yBdOA837gKf0JczA5fLn+/IJbxifB+rzbbepEY+TFZhjTi/1
yC7MMDitDS4ROyCWQKsES1D0u/08R8CEgpZH+AMStP9hNiLLcCN82li1Q0tdG5qEUO3ML+gjbUuz
0VDvm06E71p259gh847ZhEb4CG7rPMJgToybR373bo0J/GOdVt1y2F9a3CNSPs5JWi2y7+GzH9Dq
2HB2YhofjVrwP+kzjrdYe7AomiYXD8vmOHDRG/LHBl7JMX4Ob7pqYcxDW1WNKFX8pV7S3TnyS/oH
h7dJfbGnLoVHpp39BxyHxV4GXyk778H0PGYoiff8PV3sxZmL4jJSHyWjlXfq2vddJ+1JYHtm410D
iZzs8DIaB5A0n3jaymCKH3J8akW0Pu3HW1x5cHp7GO6SqQ8GKe5VN4KwziFuWlfoPAUtVyCjyfbF
5Ssh6ZI6X2dqY7j1g9OqwwwdqzhND/pdYvH7F0WeIRRXGbozo6s3cVyYgxiHCXAZCAVarPqbM4IQ
Jb3J29zALiPYn17NZ54bNJNZkfugYKT3TcekrT5bS2p6cknfPJ/m/pKcSMm5hrt+lPzMFwnqgtBc
1mqrOvhcmXOLG0W7CBxysW56RxAc9Jx46r2mLw+EPtss1SDk/ThTuu0USy4Y94R7RVsElCZL1o/P
mMQqwaxGYDyDPbgbD3ZCS2CElHhnvQJGh9GpsK23vq5/oUTL5QhneMf9BSXA4z6qzbRzMW5H15z/
SDx+a+yFLFESvpf0R0cW+AAeaB3VPRzJsmXgxfVe7WDxiyzZ3tnTeDfpmANleeFKCKOzBOMeuiJY
/o9px7yc1UD65EE02Bf86JneXSr+0FmXzMvFwFoL04vPBX2zcIQGW/gKhT0nHDNeID9qwdVbH3f9
jRaju6eD+Wo4vmw2iSY54+oXjbjuH3AVtIIFBMXSG+0Yp6UNy9uLMc72n4PMoeT4cXLk7fsxWh9b
UdbVtSi8VQrhFCljeomhqYOIjNInqX76/8xYdLqaBiljdbwAbw5RUNZgjcJlKNBNJ/1mf5rXj3Gc
1qUcO74wm4N+abBofk+1rPSciIqxr3q6D/1uuoFHaqKy/WpJ6j4WRTDbACv8a1BexwV7OZCHam5u
jBMwuaRyl73IiS/7hVfkUVvaviL0OwHy5JqTtN5U3WmWq6XF+fBc1dSwMb7GOCR6wiaHBcL2fFEX
RNWnZiI13Chdr2UOVDsdmUP1qKF1bKjCy3tFXsCHAlFkF+Ya54UNtYyYHQNw3fXmzN4YyXsusOfm
OBuwV/AwJdl4IBySeqssAlxmAfleqzFpkcpaXMMdXcOorrdfqdTjdvzHGDIk1iBZCX6JpPqkZN4q
ZWY5w48aRjt3ODhkoP1AWqbPEsHbFsUc1uY27Qn7Pwg4R9RgZ6tZxrVjwB4OctBiCDs0gStOsmiL
MTe0qbE/kgT1XtBiue8RPxmxf6r4aK83M0PHZNiI9I3SRWcenJ3/rjlLAYhAcqcsDIEG/YuoaTAE
vnFthbBOG3qkiLtO1qgjzMBzuM62k87B7cUCB8esDxu32SZCdYMT2lJ3nKnFCe1GL9vgi0uDBRqC
NHtS5abJQfchLGsAbknrAiUVehpQDAlHgWv4LCzXK3I9PbgVyRW6ilOmWS9DlylI3J7wibfzgFIq
zmzrehJ42Eqyob3oBv/pxUjj5DHm5KixUxnTBztncmevmv2bmlvFHXu+L6mhLRQ/7LP2KwbTUeK2
I1pQzFODHtZIXW5+oQXUOylJxKZLaLPi0dHMmgmr84Oa+W3JNb4wvQjpxXV5nH6t/WwoLbDNAEbj
hWlYno911A+ceMXzw3pqaDWh1vDspBjJJ0/Q5OmmNM4ydAo1HJyr9vkWXa/YZuHfvk5km5vuGNJD
37rDLs4v3AwCHK8c81A6RkNLq8ZQ4QhVYYkW7zNHtLDAG2l+KV7ph7CMUSpRRnD+DNIcbeaRthyz
arTE5KdsrilYoh9jICCJYSL+riFhE+dwGpUvtpMCdw1lOPX+MJUu1FD2eZcZD6qhNSHelnhmaIct
qs+5RsXSFmaeRLLuU0hTm/ZttnFjzPL6F3UnAzUovqBxm62SeHlwPVQ8c8+ub+uRY+jAdGVpw+UZ
pO7ohZyubOyjLnqA/V7K2uE82fiLQH3M+/GDX2vul+VheX1rhK3VQlZBc+4C03fp0jWfUc7A2r8h
HLIof+3Ig954qIFOpWvBtY4VnSkSaB/97t29oZKEX0FxYGcp+1qPa+yOw1bG7rHGjW0MR9b2i5wk
9LgN8mYXXhDCxZE5c49+Lj8LwQisOoaOmI3VjYp75IDnBx+I/bS1xKdq7xCPsw+sR9lGaWlmI8y2
phFncGH3bk7vEk3d9tbW38nG29vCC0/G2Qr9//HnjPFm2skJUa4RmQMEcmiipYzoxe3Eim4dXAiB
YjrCp4SeRZ6mWcosK6FOBC31Zc8OJ6kpU48kwKgJQ765mz1JKqz6Q9zd/+s/rrjqyk93yzeCmzTq
NHv1LD4PcK8bcKd5DgcjIfJGTCIg+6s9UG4FJ9APrKtdkF7HeVxPpECrje7JW7gPE6/q0iOQXZP1
r8F8yZnv2o3Gg1YXVtDuilAZ1l8ez73cQ0EtVQuPiO8FK2aoCGNwaJx+JaGCK89O7LsrHwDryljt
IqW2iZTmo0F9xcUXlu8aTph+jJbNqcUdIHVy0UTN5JxPtbVCS2EM4jaRUuozvdgi2FRNb/iYGsrq
KoxGjqumqb0TAsnJtO73vBlzIiNVprsYIUIvUAwBXJSqxNryezm+6hNMwCa52Rx0iHBaF1HD2xNz
ZAxlGQWr4w+i4qybu5XBH9JKFgq0ANzR1DRKDSjgEz2b7JZW3PoRwSpyXZS8q8BReFafaPKWX0Cy
TFMD1UcOgAc1+G4JBk3u8xrh5ExZl9wSL2rwEPP/6lTCFk+9d/QA49QWwp4v5h3EvWC6/KkEJlon
eYWS1gprWqr6uMFr8j0fsCwGikwzLMGWFDpU7NtZpq/kxo3HxBeZWtJXcnWYED73XhWOdoKoHh8h
QEt94rqOmNjAY6Dreva7+ko8whHQMlLDaitfvC9lTu2bxdJ1tu9XcL4X9uFugAv7phVc98rn1WeY
G5o7YFOu9isV+NARqG8XsXNIfUY/Ldyp7eKCaA3SLCXTuMba5YsZIiGjVw6MTTJdJMjWDLV5N+oY
w1mPdjZk733vGNWqmSm98siN02tkOVl3YdqQ6tqF1dmZuSZvhEZ8U3oSmhVostO8assVf9X1iM+4
u/Y9Q6ilB1OakXAjWdiZZx6sCKQZia9D7emXI0TGNIpRDAd/i+dKOM1LFz0AXxSdYoUiCV4aUQjv
ZvAjjDAsNXlBj+Ot3zNTtG+9ISlO0bPOthHZa2Nx4g/5aAKCEBx1/P3FcDnS73kkFp+9iw3QB7I6
CHXpuYqCMeORD9L9PaMZFqIOwhwoThqwa/uC3t0KbrpbzKPDDpvbQTzYsXIWWy06yXWCjT1SjEXr
7H7Px4Ki+XHpYxztPMPs/QtDpxi2+VSYrl56+pTpDqtJUmWuinAV5hbeazp9xZg60gdyTaLTpi1Z
cYSjELyBBw81X6gtBaHFC2EXAjurqpL0+oIY03coCVo3tHQZJ1CR53NHBjbUgjlNzSx0aO9+1Bc+
0HYc4WnsFR61g083slCXO/23UQBkV9/35WlZk0VPTM3OiCHkn6YeXOxcSwwfFzDGBHLogsMIK5XZ
i3xL5ROaheydKd7Ps0qVE9/EhOzU/awB8+xbblTlXvNoUnWxl0TkpczgkfMRwKjySar+1UiIanpi
csDrCN0ly+Wo4grbRthzdvg51Il3H+9nB6qVadwm5ryMaTq/poAeQG5dL65bkhLcRutuF+4zV36c
KVbiN5h9ngSpB5a1gRRxpXwh5y9rpFF3Qt9+3QqlBeWIP2H0oLblR9/nMcnRw1O8Ss1LQPFNxwdy
fhR31SrK/u5i+NGJPCH2IBcoRxP2bVL7cqO8+qONXBPecRliFawgHrr/MZl7vdooRpOPUz7vrxvG
3O3ivWexpi5naqb4syGnshxy21781gjyU2LII9PvLd+SbS+gyHbH/T/EfAjq38czcEbVQOHT+vwk
hucIVSJdMIWcHRVyzz5Xc2LNy54m6NNByJl6a6KWrPHcqrtZSTNNcBweCPHVnVvUgmjChaEcw1Yf
GdV1lFx+kbKsDW3K/LyMNdj8I1l6XwU5lYyaepyuJHGUGYx9OTzxROMdw2ZkaT8NXBWuHGlElWUH
hMFaHm9qdDHuF6nT24b03PWQ2IDR06aeTpzdEFeuuO9G0788EwrHihedla+1mOzfd6zQTQc93lv8
VB304k65hV0gnMs0SGguwwv/mYiJvuy9qgN9TDNGuyVEHhPrwNQ5SKGshMnjdRsEwtL5lIFh11Rg
dhcT2/mhLW0eu9KTQcgWGPcrBxAXy41LyhIIGxyQvLlcvkRLHiDrskTWFmqb89Astfh0j2Rio+s5
yAnFhBQnIoJbyUAyTG0pl6G8hO6+6tsyoCDQKGPCwvJDYeLhzqG2p160l8IS0gvu22iJ9Uei4diN
0azGgUlhBRJWraPE8qs9NNNtHn2EKqXV6JTPD+6Sp77tYVyesjk7yriO0YgOsSPe8XpcCLanE2Lz
5QYWjyeDX6zH56mvg1BEQj8F6+di0vmo8m1abeJ5LfSHV48qRJdO8rNZDPdUWxbYhBt/741felZK
jMcpY0bGSKkJN/u4mLJ0tLn+7Ro1RiZDS21QSU5q/QXzpz5jPa3lTGN9a1e3PbHERsDXB9RscTG6
O/HVo6waoQ/C8oWApmyV3V9wJp7PJSIJ4OArKtiy5kviQfnN42fgJ4W6PIjMeR7e3Xo2WoXBJ/6J
ef52WpcCksXeyKd2cWgeY4nq5k1QISALapUGdpM9xWdtVXbH2bSqZmBHd3H1O3koZTQFkicEy6bs
M5u4n98hP+wnlIm7hMBnmibs7A5B+Jr72L+a+nMbUktsH31njk18Z56VaBd5T7KR1bxiBXa6HYgT
xFZcHFE9BL4oMFCGcTbxun+IIl7Q8Kns6yXyp1OZ7YAMCFxdviko4fXWoFDjdAJamXKBfP0FGzCq
2PluhuT4feGkxHiqk75me7pkylTx21VtXCyulAqxvYdNX0eiggMZsjtc3obWZy2G7IZP3tGVHCLm
u8GfxlSpio+EfnTRLrbjXKT1Hea0A3sk0u7OhxIysPvpMHUruezBKjnk4WfPKnNLFIOoNOWO2FSG
0sFECuExhhe8G+Ithz/NQ3/SPn53QuE8h8jQpc2B+sMMn6EoiaoJfOkYMe/KZE0Ud7UJBmc//zZb
ObKk8Od2EdXxQF3iXKQMrYKEB+U886kQHeG5xF2WUMMKJOcP2KPC9tXkcEv7ipVJKxEUnKm+huCg
7TZRtiBWsrsCFLj17+l3X3mIU9WZEy1+5K7CCzSXRYff21moEq7UqsYQtTAU1BeS45IFqC0C00f9
bpcyie98i3LpCKfZWifWC5769rsRoflm7SXSxps2GAyNQWx1X21hPtvRHePXa6/o+sS7efEZL+my
IAG3b7PJ/cyH2NJuE3STZbF5B0HJwbuOqpmo7NooH57W1bQlWT3EcjYn358Eja5IWLejKcMT8E4P
4j9yGRRpDMK0ezU/bpizHnmZhnkagYFNONCnyk85T5TioSuhqFukraJaJ5bQIYI2qrUYuk4iY2FM
exNPm+xWF5NOWb9y6whiUQJCRjm+LjWplCIM1KiTt3MtzZuwvxS3z64TIKPzqHwacySBoBjLF3Kk
/qDth86wmtnSoaXpHL0lWVw7RzZqZ0aRKqcrbYdJqMSwYfTNa2k6QUmlNSMsUFzjfFPlsxpAb/Uz
nbHEz7twTai05qzLNcko6un8H5Uk+BA25qZGdPy+tQehww7f4BC9P+jESfigqp8P4f1a4F56TPre
/vVSTpcBifdlTiElkICNeqfcFtohi6CBK0xvUNTfseWGmKRoBEtzKwcARjx0/5jrG+xfY+GJD2O6
KmbDUv4l3Qrxkcr/mCtA7/2wjwBY4i/T4Vr0tL6puaOpyZ4h5XM7jAt2hG950VmLxDsjkwUfu6l+
lo6tFzl1BXXkFL46WKIHM25eolVBuK+yL5RoWqyVr2kSlpH733FiXnlNOUK3wC2C+703L/nQy9S+
I7VwaYB2tuftEJuw9Dg3mlDz0Vd6t35C30fD5yRx1ABc6XVvwolbYLm1O/1iFdJdXoqYbvdby/mR
87sLFGfX2hEFCNxxg1pAMe/t/bFyEBqHR5FbI78LZyJuS/xkVA8zBTLZScXDuvL1AvLGSREstuna
jg7RI7lY1EjInhXZAuRhNIHHZlry/xfrLRTSHKvhW3JLYrsMHMm67P+7xYFRrwWuM1IAcR7ZReGL
S7iv0cUWgtI6vsLiT6g13ycePDdrWsyt+C2bZvpx4BPCMRubgmbUHkwmG1m4XY9CjvBIIVet3kId
X1ErPdUk7UtK2QRPOSSbdHYD4vL+TzgIdgu/3UDe3J7I73onZXkIR7yVvlIlf1AL3kBy3F8HNbe0
zQ25bdDQ5YwjlRy/No4LqRevJ8jVV3yGM4NP4Kifve79KoiLYvEcu6bXR7/PQhPfzc0RQe+HOk19
zM1RcKpTOzFNM4pG+Rg42zSg9vh06LtHlz2NINhYEnYGu6EMUboZ7tAFHWMcx94l0WyNfeKLnfvV
FJuuUeALTlUaw8DFjmh5yOL5dVnl+KAr0/MZ78KxLBUBbdZ53hiuRzsdAPa+r/E8YJ4X3rC37A3C
hj4fsclDEMNvS+WI7vCMsFWjnEgJHnIWWrq69fwnZPUtxnn3bzTS2c/J8hFBhHAqNpyjKfam2Jpw
ZuhF6v4iOm0muEnifd5Pc8d7P9v1Yfdw/BciQkxyxfOJUoMop7C30gVKIc2l4iYvrMZaaRenGBsk
m3SWvUzJ6ycwpiuszudUj8U3CAVLiuZiMk7N+XWHK1CsZ/wGG1SD6W5EUYoY7+2JxCX+vNMvAwwV
XTovr2QHd2AB95vRF3nlp7bZO2eILv7dx+dWf5H2xIpVS9ZL7U8ZGJZ0irmCEL7eM6jdmcJvQ2KN
3+8bF+P5gd0EeIusQzJw49kdBWnc0dSjlli+NRKmTu7pMeXVSHTGqWCV+GdHzXPcODw+D82RBjS9
GYzp7OXSdoaHzEcaleLEciVs0f5YJZUtZcvNlnaIjGbMhUQPuHW+1tPMHgyzq1P+0OidY6J7Bzxl
2bs2CUHcCxqEWQ6nC5ZEUVnfpvaPxSSZKFvUm/lh55l7RSGDs4hrsou/ihs0BBRMKBQtCSHCgrHV
6ktFuumqIWc5HrqHvKY88rapCibFFhTMxKtkcs8zZ/HDic1R57K87HZSSML4Y7taNJDQiVa0MjlX
BkBvQ1JD5VxWyXTwY2xFVT4qAkxOJbzCWR2XLpFYrR8CVLYNFKN5hgyAoEjFyMxvbEeUfYY8cZqR
+b3z6t7XUyXOOfDXbmC1fe778qgsd2OopXZP0PH1sopfI4R9n98mTvihcFEzFiKoCQ0ML3CWVMVa
WWt9TxZP/0GRZaEz0AKFxP1+SfpdL7VpBhyulLxaHie0mgVhoTAuj3mSCs9kA9tiPJjwbRgfvlbe
FFSIwDBsbuWJwucfBDO5vt/vrbwn8dGm0owt/Y+gVx0PlrGPGQz/JWrSVmnd5yt2edzc5jkVgXxO
HrWU4i8m18QehRXsNYBEtZEL6h4sbAZN8bvxRtkECW6oSme4WCc3kXCPaFHsLj8dFf4tCeUqQ7aE
LYdrMe/rh6DwP76c9AofW5CovR7IfqHnp/TPuhNX2OSfCM/j6EO24NVJGp9rGWbqxMHBGjw7BsZb
+Z4z7N6Y4xA3QLOo7DX7DEsgqRYcwT4i4M7MmHTsbQP2JnejaozN4MtMa2dN9dAKu2SOzyKuewG0
hxVTOGCPQIk0DwOMxIgOV0kqUqNsFktoLx0J1ncDhH0GlhSSYRtz8nlqlxOqIcB05rqg9JYKVdzk
x4M5yXtvRDwCSZRy916dxlgiq/LOs+qRORj3+asJPHnQiSm4n2BtCFpMpfFza6QdCvmuurHBaH8V
xMhpVwGNQo32JEoftqmRIru0Ha+9GnpiqqLLn1+8rmrSN3Q0LXiOox/zhC8sk2JBTgPGw+57/NLY
xqisW7gFXruMGL4FPO5WEHa/Bi9HZpHtqh7EuR1CHTyM9ddtBx03SMMr8cd56RMSNkYErzGrg+rt
phjHD3Nd90aZQ0Gjeo7GFFTPqu08MM7OT9fPpuS9DtBxGClpsG1toS9g6mBSkMwAAEdsAjXzzS3H
zL7/gS/JH9R+G6k7DHshVkB+aHn+cptMG9YeF0XovLi3kFUM0+9UmPdckvlH0hWQJBA2/KKttt0t
WZoNxc9auFjnUMd180afmi2SAUY2hBWCuhAEWoPLhhlGmOGTXbEEAKmIBXnH0VfsHjPGEbbgv3sq
NokmRtBCMAbgh/40u1CgfE55c4zGo3/6cKJktU8VxNccjOLbVZGnCMg8Y9KfcqsTRYgJfME8qbxp
X/aE3WlRgUwA/nWbNTc+sxEjvR88Q20Au0Ze1rGI9LC1HJc2BG1xFyLS7mZA3eSJsSWjG7MX/hgl
L+cblA+acEpWqG/DtwT0DtbfeW9QanBAc891IPcHzrHIZa9q6z2etzBfIVpAqHz+L4gaywS7XBi/
gwDoue0IrOlZOSImwtmvm8SDU6ovH1UZEqidMnOdDWNSSzxoPVrYwsT1hr7zdLU8GyqiQLRJyhb4
G5z//GbmYgjcnaTAd5JxDzcvTt894/0A68zuNp2Rq9wlPVJrQ0clWH/yYzS+vbjlQVPiamR4dsud
m9+XzZcwBVlBUg6PSM/POut0ZO0cwikfmMC13fPdIiYhJj76WwSNjatxgCUJrRkx8UMQXtq3CgVz
5hl2Ly90Tr2uYg8gjTiKBPxCU6b22f7YZCJ/c/TtboPNT4o5PeDk8eC4kv4D49y4/c8SuEeisECq
Co0KeES3fos/m7mULBOp7GlrIO3yczWiLOD10T3oiWxTy7WV3U2LzKU+NxLGg/VrKBCfjrydBWed
KQo1auhDUXiIJl5X11HFgM9YZYZlQDjsVi+4w0CnojHeLQZchEl2COp44d1vb+BzKJRiKOFnXskM
+20VGj3G8ZtNrh3fjoZ7XmuQfwivCPAe0yZ/6etjB2cDsp2NTb6+IVUzZBwHggZogx6lLsDCxEcW
J/tfLQO9+HJrzZun4W4gZ9g2kvnhjjGIAiQ5AfHgOG79IkBJOAPUfJaidFWA7clXrEKRcwqFPqWy
wUWFtLptkD49v4DLYXgRJq7Umh4+gZs+WFhtBBpmM2oQiLXPq4bdISaMoA2ij6DWteTGfrQler1u
xldijbycC3m88mS56LddHDLheSjTJjG3rSg6RMcBsMWAPVf6+s3J8FnP3ihHulEdR4PxG18YiZzi
LckiN7TVX0ZZ8wEnnzGRcuOANByqx5hL9ESsXqv+9hcbF8dB1SnFwQ9vXzj99akAkgVBP7F8na5R
D3wS+eU6FQ0puSzsp4P4y5Z21Ig2Hly77FHqi62ZFJzMTRBjGGA2CWFA2fQNEsDW3dbomjumRotj
Iu8e22fZVadBkyKDQyej/yOiP9SGYBeLew/ZD5nmmMt4FrIyfGu/zfQ6205da8A/a5nLMEwHVbgC
3THolUWEzJM/w0LlwlyjNYzSX0CbWmQs5sM3h/PJJ8eRgOoLGnMSlxHTunxSwI6HrwI8gz8uNsKV
gpdWuGb05mbu4W+SD5aH0aSFgPfwtVKFtARX08HCAEg8DNr+g32YSnYShsCDc3Po9YNGGrC5K4W3
OULqVTqtbkvCyZdh7ZTfY+VZoWfAAtnGG0azOC4+uuItJLfiTuiPsgessBOUeoZqis5ju4dfSNS8
+KtMsUZhdZxnWCT5TNFRzRkt3p2/qxX6QvLyZM5/7thqAZSF7zHkAl9i9oGpS95rOERsebERZgig
phkNj6ZZ46YFpWYdu6aBdaZW4BlRl7xFL1e9hXnAzXkuzE3MZi8kPLPum2Ogay/DC57HApPr24UH
wTTfXVYC9j+fjrvLvZVvU+4gN20gknxODcJ1Z5aAPUD961JC1U5gWJf6dFyvQzn3KOx7J7QpkpdC
+k/nOzHZB1tNN7eBNtfV9XA26DY7M5MimxSezscsQzk8y0fBdAR49VxNbahitQ+QmXmJzkktiEtY
dKpdfycB//xZNIfUPVybpXJIiHV+Gwboc//P7uP5MoRYHNcIppLQ9zjrxOI8ZwFy/K8xxmGwJsLO
L4ziPGeR21G4L6nBlTDGTHSh9t0YckQQIoITAA5+BvVpiu47Pdhv5e0tf6vTChgnMH9nuSIKdwvu
iDSWZL7KrM03DB4QFaxDLzjeNPiP4CasKBW1GNWb7yftv5r2iB90XscSmNRUrTGrmY9YIbgqVhi4
q740VIuhLfKnUMgq7qM1tb3n1BtojhlOYTBzaqM6U29xMPP63ll0CCp0/6zOyQPpq8tq36TrB6w2
RD3Bml4Mk2BZYUhRA788LdOW5oLrByv+HAh89QFJI061HrblLGhANlg148X5WC472rWvR2xEBQsh
mN2yvZOnRXqMoQSs/xf5x+A2BZ9yQeLAXg8U7I2pMNqes3fAQ6lR3JO9rvhHiPTAcZC/thtxDdps
xgimI/1EWceH4FwiX3ddnMWRZ/5vrChw8W0AKgeYYp2p9mWs4VheMxqPi1rgb/CFwfNJIVWFNLdT
uMPFeBppJBDxi7VggczTFOW7+WDe/Mb9W0+pLHMmFRX2ea99F6rMeZMR6chX4MO9RwFneCmAjOu1
dfpGMwsPuJUdt6HAo6pVGT1GAewL48swPgbLcXdu0FOlxzXtyXXOxApG9a9TajrTXm/68gFqS/w7
OXphfhdsea0KcpPRyXckUmm8vcQXWLQSLojlSNIuFaIIe2H9buXQqU4WQrAhbz+/lHVSnl25QH/e
DQn7ytX+65rVhJNaWGdpdt3StuEY/R1BW+AObu2dIOljZLHQxds2dDFK+Arkxb4jmro2IhRHpEgH
tdhhbJXMxEED6H8IJqkXxVg25BwMEiuSBEE3aZ+z30PwlItx1Vo9Q6qeCri0LU0g2EwNwn0TCjWM
CjCoBt6ggRAf8Bww2+cykUdvJf5grl9fTz3v8f5p3eFNsUYuT5hZOEsViCxrDiIW9NFf1Le24FgJ
BKJ/sH/wLUiC/uyMkCuXUTqO6gODYGFvRdblGoEpEcIF2RFxNDyiLrq9h4gl1pQYxxEN5/RQNRqE
U0nCnTwaO9ngYS4uU5uQRJjnP9Pf40xwuv1nQ8D+2yJONgsBknbmWTYjNN7KSHrDW66qGY15nfYr
V57rN54nCtZh3MfPH7zaR4b1tqcp8BKfCh+80cGKJx1nqUtYfbPXulFji2TZNmlcia3RyB1okIsJ
RZpbkhB3qiEiO2yizbYXisRhYW8WaVPRBzHL6ZQoMBBWTxr8y44fljt3gzQdy0lhgPpa2fYGrIRX
/hb7cHw1lm+I+pyRsZ7hYDhgyGD6wLvdzz5oVLPbIOC7mhZYmR5KhAtO/vYn0Vm3YJG6FiE0/D2t
tvpYojAEziyXaFYb8SAbhoE8a4nqFq4eW4kQvSXiHEmazHtbaiI+RSPzNWhjhXBugQXi1gK+vMjP
Fj/sjzwyMDgu4JpaXI7OCfiBruQxcEBDfszJ6Gt21ULxt4VnOAcyOL0Njnudo2YKrNh3MXZX0u7x
fK+2klaeqYjqwfNR5PvntMFa/VNnCZZzCvkbgo+uuRw98dBBc0ETg8SCY/iH/TOwziN00F4lAzXg
XN2V4778QeODR67UwdG7wxOaxTmsvaSd81dcz6vqh/9ugYJ/jjua3+LmhVaqeRceyue54eVC9gGR
g5aG9RpnHbENdNlQhKzjkH3Meeayw07/0wYAlfcnFRKAU+mxSgVdn2iLH0oHGdQk0tHo7YYDC28P
BFonzfrvpm0qH2noy9ld/phZUTBHAS1dkrBDubOOYTNYO+jU84tW4yQ+Bfp7plQ7HnDVz1VneChh
BaOJ7FGiMm9Z57W3RYAhQd5v9IRQFDZqaIkaILcZ2h1cemkfIUjSkdkUidEBKy/lI+NmmWFU3Q+8
oRGTB13DKnDxDLyr3RsMfFY8wtLuJysGdAQNe4K3tA6vehmEojjm+MAJfWa3kqMFAeYEUBi2ObP+
/KClqBjQiUmFb16boI6XJ1qm1tVinZBNymLRg//98aKIaLjmkRDWv3hC3HXQg9GHPFOSFwGx/Og6
q4Je0Oxw1k2WJ0aTHOhZu4duSpYlX0o85qT8FdwzVYxJaZRwXvqcz3cstXQhBKr39rNyNL0yVnhP
kFXsRd0b5l67T28qxFT1jtzGt6toBy3UIQyn2oH3RAeUYRgENrySbwjWn47GLbmlf4MfY3kGDjZQ
zbLIf6VS9ZmaHufjT6wE8xRehNAeHsLG/CnWDYU3XFRg8L9iPAtBznngyIIBQa/si/YHInE3mG9V
ahFgZJdXNO0+hgMwTK8rz3S2B9WoyG2OkiVgQuPoj2ltTr/lj2UScHfnENUbHiL8O3BeXKYU4qXq
ooLfYgQv0GzozV3n5aZ9QiAVCW1qmY65iknOGu18s39txbk72jFMQWfCVgNyLfjxnxgl9a8myuAx
kSR48WsO3zPp66rNYMZS3zseoE4szbDsTuiKvgXeF6Q4qopxqyytpvdlraqlI8cqYDnL9I5E3oj7
8ta5TxJkVKK+zbA5OsBxfAyrrJseGiHkqSA1kAe+rFbnpsLljExB/APSzswa/u+qcLWVM0VRiXgy
e09db+1huLYD/tfgIJOfTl2y7nHg6QrqezJDUNWSa/Oqt89GK4xGzMD2DbdiTgEWzQilnveeXXqa
8d2YCTlYzRaPKeomvCOkaRThOrvSQZhM9uDrb6vXewQmQGn85USq1eKQcjqjX7tlCxBR6FnHVd3z
Y3lnO3+MzqmD/BEcSIGK+S9YoG1HFGZn4yyWSujrzao8j9oS/RFvM17zDupRqSgaOMh6+tvSIwAw
7qIT2ztZoA7sX28YvEqM+PNMksvU6AMxfocu44FQ4RoQcgtlDmGwHpcbwdW1gUsuCYtsBdmM8JON
wgqUYGw7Mkhp/Ozx96sHXgzVkqqkEod09QbIeLFKQ4+sSZcUc1CU/JiFgo/IO6rGQucaTeNsy/Q+
6cAstvJVWHMA/UM8O02f80zct6T2xtX5qLtZqBM36OBkjrbqtvfacErEFXYlNAhm/m5Awt5gqS/c
PDOEwSqJRZ80jJQ65lxXJuudcp8x+FPRG65O2Qlm7rFqw4H08HA5tvnX5W7qcscwAWloqj/PbUwV
/BEKFMaxfYXHit50vjYxJQTY9/asBRzh7Ygts04XZUi5fGO78rsum8FPKwodLFNTrRxgyDJKd2Bd
egclE8ePcQ3JpU8YkXWdvFFJuLcqV3V7LL/G9dkVwmCFnEPRaEn3j1RBmkiHtTdzPGNl+uoi6ouF
4H3jPL0X9EgzfnSJladOnT3mDekJZrmigo5B3P5r+edYUsO8fL274wviqcmKrnMuGHBApl/M1ZtC
1tjJ3n2d/fed5dcKchD7JM59Tad/iTF3jDL0wgmqtVoyvFgoPIIqR7UGn3Un7Pueed9P+/Gf1pHu
fHooU20ZjMEDSbPnerJoLfY2ZUcMQqdNoWFHWJotPa3em7GmOkBH6iDY+nvLBjRXnMHZStWbZFVJ
mjHaO9A1BO37yyZDbbhh3i6gv4rSA0ufKvYi6NSQOD6PaZNJFpKXPrZXt39AtWtIHm82Vkd90SOd
2PTIhMT8/zrjnroa9FZ1LKNTLmIvOGv3NCzQO8SaZ1nIdzIdcPvH1DIQcxGU98ktg2le3rVZ8NSo
9zbJFVWNNTmUKh5uTca3FVKIHpWla6S77aBK2vh9hux7MAx2kR5yI965gLgp5mfTeqzAyQ9MRZNS
+BSc8wM52qVPj6ECleBXhtuXKhmR3GWdgyY/O/JGFdR6iX7s41WY/i/UQSLlEeX7L9yMvfamkBLP
nbZ9p/FGldCQzf+OABp30hofjPhbCFRNhibgAI8nstKzQsqddYoKLz330zfRvVzg0CzbtPNffWSX
d0siGxZQM1RMx3EXZhuNd/06r3YXElJoBG6nEbXkzCxHw/g7uqyl9lZblmv2UIOpEg/CYGqQJdW4
c/dBOoiCisIFyBb7f+2AMGQhnUJnzrLhmyx8O9N7K2MAoIPn0aElB/tIFW8fsTsIipMkCTN5kX3D
N9QzN27dS0EGofF+Gj+skwosPCvrqGzYdU+/Ac34SaYw1Wz+j8JoBbRVyqm9CioyhoENwWTTRlSS
eAtWDXpk9KrPAN1hGg1KoqTfNB8VIqKNKSRaSv06H++Xndo3v5/QmwPxNkcLmz+aQDz27KIZ4u9B
DPSkgeVzalw5puIvG1EXxJxqxbjryMJxFBIJHYT/PhwVL9HdGu1Iu/K2X10FO8JMec62yT9kVJaZ
ZNY0m3Nh9SI7lPN+Yz32rlnVedjHF7ikQlXMf7u4grLD0KiI0OkUqBk8GOf0AcRIFjEXGeEdH84h
J8gDj96gnLrI7REPqBav3jNdqD7bBLDXE6kym2hNpQ3Uhb1WMA2nlOylJ3Yu4zUFGzm2WLsL0S38
Miqn8mXoIfgyFYBKWh0QeNzERM5zgywA3comR28BryNmhKpz9W9Xg4hVUkyJZM4cqKFVU8TUSk8W
DO7ofH1Q+03cPU4yQtmiJK1sdJWUjLfM4huqx9E1jku9Oa/qMeEZv0F7N2JmxYW287F7HiPCa0J5
w3gM2gLVh75u3UbgkcleV7XBmXnmdbrcg5lC17e2EpYqncS43Y3YdQRlKWfGe0BN4+2rVyuBbALO
JwAgXX4dQ76CxUo5ifdxK2w4LPhUH/fiw0tjDqGxlEhX8k7p20PNE4hETyI0g7gFEhRr+f+XR3+M
IRqza6ohvz6vdJILr7iYiQcXKQdtdVAnDQQZfXVCvBDn+c8v3f6DsAb+Gm0TyUlyMQPOKCBxS0Pd
nqYrsvUAD/IzgrS2/5f7+WM/iUF8KG+5irLS06YIGrUD6d/zwxEwc3Jz/7ZCnxo95VK91h/yhR8R
ylFyJI6ZRZl1dlk9knGxaSC5QzK2xoAFO0d52ykhHYkAAWmUKve8sI86JfVe05J24wDFaSDZCRst
lYnujIM09kTP0kmFPJxW/583HIJhLDcXwLDUKHqdnbw+F7co0+J8nXV3J8H0zkkkB5Qh2LrwNxX8
Vu9qMyf4ydf59pNLPY58RxnQw7GE5HQ75tyYwdO0UNhktrNIUB0wc8Qqwe607SCgI6V/dF44P/i7
bcDHUsiuOH8dTBGRALkGbpMVEqoBVYW/VYIBAdEGeDWRpq80L92OK0bzxu4lT7M7pJ1AiAj6BSb9
1BTqduGtfXILmM1/7B9RpQw5X3A2zJowT9DFVdiIdTBbr9gjVlR7WSClhh27rpCwE3kG0IsnjLxt
DwBGzwBK9NdshDTmattytnEKGDC2MSrXMOo5vIOWh0UGt9K/ffPronJE6CIvqmCtN3IVmsr4lniD
QwtOxn+m7KcJPpO2Wsj1AUeR5RThrl8209n0TJOlB0g/a86MW0Jw9qnJVXPitkNz8g2VtLtkDfOv
NCDZSFnlOu/J0d11v0oCpOBgmqTVSfTA6WVRcSmP+1qY6NxVhV8Hrsu9FzLeiEThMx/Mhvntq5/O
43VrwLpeaBP6QsU9x+Oe1d9dWwSfCaVylkM3Uv0rQRfWyL0xRk7HMckiZql9w6VpRkdN2hVwuYDz
WWkGvg0jpxOWugoPNZz29SIR4zGWBWvGh/jzPkrpe9ifRJ5oagDtiZJEdOIpicJABI09x/U0M9j8
TDm8iM4v+0KuWR/lBKJlhLDQ/equu1KJVo03lDz+a33gndToJhvCUqsDZxXsGP1vrH0Udqh5zpRg
jm47+SH5Tpycx70wxz5/FRxcZQXey6rU6/ZCCYiamKD6M9nDN/DQOsGtRdKMYukE6TqTLCd5w7AI
r0av90eB8EXj0/SBXE7I8Kzvby6zulwILp5qzq30l6L6mKkFiGkKuY5dbg7B9J4EZPedUVhEcpRj
ONvR4RvLLlMjtNjgjC5W7CtSDwjIlD6TJ/uGcdyfG27LLsfuSDUx49+donxDu4ZYVyTGVERcHgxh
Wo6YrAvXQACW2Sb5yXkjDffNqA2lhT7ilPK71wn2sMfSxwRYG9OJ1MJMRgN1/2mzTRjuFR7O5eMc
+29ZTTJtSOZ5GQoPrg62n/Df2U4hBp7U60gw5eG+TucZW0ZQaGmDw2kmzpTDo9ZPH7gacFfZ5NSL
KRG0MtJPlW/AYAHD7xcESuJjoFpiXhrvVdNSGLksKltjl45Qx0xD4ww2J6vnu7AkIb5m9GL0F/wV
7nnZiy8V/6cnHfMr9bqq4b7E7P6zjFRUm/TCfSyfeSsybBOGhAKABvPzJItUVO1txynMUHBSTR5r
m6w/EAA/f99vqHxcJsBryG6j3j0P2QJ7wyVrENa5w6BtHvGMiY6PN8CDKT8ZaeDeqyr6Or4UgqDo
5S5Y46CgOP8hHq5fGe7ZNCV0LZfM/K4lRz863mIp+4Zg24FtfHdGCkGQXsZgCZiEayuJpD2dXG9Q
xHmtDQ+8tUwtU1oKakjglBYopT73sauncG2nw7QmiCkn+t7+vW8QmGWWulasNI/9ulfDnw53e+h8
lTllRgvERpTSfhjwJagElJVk9koaGX4qmAn3FWCfXzD+5LjXFupzWy928MTjNN33Pxm1hEAD0zmU
12oQ8+dcNunKpK1UGBk+ZnhmWQUIat+T/jJ0QFYVk/MqJFfya9/i5CHMyqwRTDke6arcbSbx07Cw
6Xl4NsoLHVyXOOOJiPNiIruuEbb7oprgqXRnPChns5PN65vFjk/78oPIYVZ4NjVsvfUYxNIszZxM
sMDJfLy/zFmXIPycoKK0Q2F9slglatWZEOG50JWXk+wq4P3rUrs1U2dHcaWNL9MDTvQjhgCT2B/6
Ee/Ib4EfLrmKlX09rjPkJev51bqgkj4izMRBqhh+kI/0NrAatU7hc6mbNCi3UZps7TWS+6buSBU7
Ra/qEzcAoSjnvd/8Iq74ETXhe4yYK4OVsfjtQ1vgflz8SbKgGDi8rApeCY4Z/HDK9v++twroeLn2
/PzDoFAXqZPZHavCZaOe5KSUvN7gfiDTX9U4I2Vg9qmVfnE5hNUWcZpT67MqfRgDcy0YqbRoeYnl
W6qhWGeIF+6uzBlcyFpDg/OAx3CtHkSXDWamxHPuEO7aWZRazcyNpw1TOckZ2ZVP6R4Hncam2GPy
RWxR9wXQZwh4963RvJbbyMgqWp5u5rwy/mWO3wiDNx2q0+Zg8J1SB6pvI+bx5Ax/r95cjNulZEvO
oSbtdzTvn0QuTSkfxCK10mnGClE6+97fwa54PKGCzwXtSUYmEGkMrFnWqGlE0T7G9mkX2R7WTxc+
HC3jjFNo0OR9yyEW3OA9uUCycUdkLuS3dZyUT/cuzoaaYB/YmDBMbq75iJBc4BFU0cDlq8mXxtnI
Snj/guDM/MC/tLDQErZhZUQynhXwndNrWaN0iAe+vV0OaX/sbJoltkhDs27Nls64LbTxUOCCbhUx
gNOUtWZRdNmuSRqej8Yk/0TSizYLOKFYEPN73eomUllZ3L1gt/mRTTrtbRpVMBbhbM2HQmwgtSiK
0DTLDEEg97ofAW7hlXf5GgpXt7q0nGxe5iXy7feJTaIvQAAjoZNH63axr78M4XvSGq82spEwLZz3
S2F4RO8VHtyOBkc1sy+rdc0nKAhMK0j0rdPne/4q8ButdV7dsQCv332W+Gxz2ms7AxsGCKYz5v5C
qOPfQHUr+UqYkFxnQImWNBxUqM3ZWY5LFh5yu+kOxxmxlbVXPXN6wsa+i6MKMz+xDruXmwKV+7Vc
bKShbbzuDOBt0XmYVzzWnprXjG4ubxcr9lqTYUX0u85g7s7rK3ubOSteCsoVwv9TyN5P3AwOLxov
FsmPP6cWJ3bDEUAZ4I68gcAFJtR9Q03EpODCgwnmfMBXAyXCv/i0ecpKnVaB+KITdQkqveCZYFD+
2FViiJ2WCqtYzDBky6NLX3EYFoAcZsTU9mejDeCOyR+0+GDq5TXZKsxY9cAnVwryag+DzcXwUkJY
OYW5r2i414woP3T7who7/E4jA/XstZtjqCMuUfVX+aiBvSbTi8vyO0x8+Eo+J1z0iCEj0GB8kYG7
JDkiIKwLdVUF+HvcwCEBAvG+SbXDccOAssl7Bmqz04WnvUPVFOhbut1BU0fpjWA7tTM+twFm8KTR
1ZLSEffN2kIqsiHyMzbqcprsvhY3TZM/w+7Dp55f/K/nOnGv9r3SzyDiEb47PeJfPKi1HsGiAOx9
5BPsEYh9klU/QEZb3zKAB2YHTaEnROhHqia3n62pczPYPSz9Ts5AV74IrdSLPaha+8E2n6rkKlg7
oXhVT4j3TZfuynuruZmrLdDHuHSYrIneI0eVG6tPQ5cv+VdGVcLfflEKmUVgndOSVSG6Mg7TmJi7
n0fmKPfQyvJpNw6lqICFEcv+DMIL7VuZCfyQR+sEkn9PCFMvyLGuEI9P+8gyoiMBXhYYelZmNddO
8GLiJfvN0jKc1RSP9D3IjNAlgTs/90nubGZBglbiMQny8C8XwLjGiBSZRPj0cbl7IEKXBG02LoG1
pm1MfqOhc7iAEcLCE5dkocj87MeLJEQUieSWDcsM1XJTTbCCsZX+klp9gQvqLtdk54KAFYe8ygRl
bhPDIGCToVqCwcOL3mcoVANcoCA/u5AaWk6SdIH6BQMb/rwaIomxbxC/pz/eGOmVZ/78h77e92rX
8Uy0r47/Eb707qI3wItO1XqNjQWkB/16ne89yR5eUM5Zv764GtE/xnrv3FEP7cVFizi9yl4j/Csd
v2agu1GWJQk3Cz6JQ/m5y7voP+QlJmLGGQ4gSpaNKusYU4Q3h3y1tIAT5ohenSYUP0zZ5hSU/gMv
jc3BDQXmEY1UNVfLzyk3tTZNdMDLWPhfrwgEFAKFrp85Sn7ja4NWqHQGrt/LmhDAOd2lv+GD8TSy
/unigBzcqZRRMs2/2Rcors1avQLIQisCEo6f2WVjn6QMM5ReJrAGgkyTkUIii9eaK2dufqsrbaPo
aPoSaXMUYwhuEXJD78l0TKmkwrMZx/Jphfb4iMw7UUf7FeFWApJ76nBHPxP79+/4sbWrUPOoq8LV
Miux4pE7dmyiumLJ1E5BGtL5KNcL3mOR70WsWEB46joiuMwoZ6S+AiXxAMHaijHtMBGi9LWto1Gp
6PwDmtjcojmToBWU+fhIoEpmCjpmzxxlq3wu5CIorsjFWWyYMwEBQlR1UEwp7gmkRWhPSidxZfGU
ZLb7zJXdsIS60bQDKP405+6wEJgSufvKJXxeuPVpvHin1+Alaso6AFbQQgxAGmsEW6t+I7siQBGb
VjV05mxvMYPeazSy0IgKemXtVDpMMJkjszOm9Mw4z6kRG24rolmne9OEZWZL7JUfDTrwHlVkXFYM
9oiW3NQ1fp13xIcBLX1VE8HYyd/oMONN/UVjv47ZsDYKKhE7O5C6kPpy0z7HEIC6bf2oDLT3ktxF
4x/+ntcT7bm59i46PpUZNUZ5KEfZLTbZs1dV4XojVXoeNHlcU59s6r+yu3onFMGNH97V0xja6+A8
OwHd4xKcOM3G8HtBVft5S39mELRsFzLI6DdFQid4HLVjN42MXA5XoC6poqpLYjpju6xrQlFt+h3B
wWp9LF1OAKCfFVtMclLMSH4SWop4mZY1jdUKV0gkZTfvFDnaNQgxBF/fgQdkPsGkIiTzQeSBU/Mz
ohONiXf+82BsVk4K0V1tv5V1KYD1MpNTLBoCqtI3dqkL12gb7WlWnkVkwFzCSei/nKZW3XP5RQ95
AqAQFRpGnYvpOQyTzwUG2p+FnoPC2/1iBMEK/dL2C4SQtme5c4kornKuY4AKN7btteWOMlwhMWDK
fbHWOYJutBNA/f8g0qt+MRrjRdaggQko0DWdfO1pMSUKpJ6Qjp2s6ZljET7AMwRRjDXlVbEkBlzn
S4UYfP5FaQJJq39m3jB6uDB7XPr3s0Mkywm+CygRTlsKZAX+wDIztBbh0ei8MH3n7MK+ijOUg7ih
EmeUterreShXd4N6IX5xByjeH9fKDsjGHqnGcUaULa/l3RHCxusyyYg6wmfvu5jHSdnHND4jaGkX
VyimLvYUZJNCddNJtxVSu5wRkV6UHYM4cGs3j+hmkbsSOOCYnBoRN64UwXL8xj9aQDM20UgtMDNT
h+WoTMwvGLdsP/O+40lhPuafTz3IUM4DvgydZFZWB4LFK/MCpL6FBLDVeFDmKC2n8JDZM++5do+r
RbmXyqwW0thG0S0IMG0Ot/XDZPH58j0W+4K8tr8awRLhGA+VaIDkwVwZA/zEo+XrCDVsTUrAedMo
qISCKiaV50RyhjpD/ZiVx5J0Afzf+aLwu0+ocg3uOth6otI0KDYDS0rhG7BsD8dOGs1leafat/xE
pcazj+RbQzSZqCj45vvAXazVf1BL6hOzYyjAN0Md/a83D7zDb9S8TfzFzgW5aAyMKwW8lTX4NJuC
28hzRz4J+TAtqFxWksPiIO4XIu/Ns9gCEJGZeozRtWJrgI5/2XsGIEFgWJlmm0UiAJ612DQHFswn
VlLo1+w1Pn2Bm4hHjGmVy2eoONatbVWD4imqXtiOifknHqH6E07E0R9zfN254kRrSEGB4AEz59f6
zj/qYUCEkIhJwPqFJ26iPEANwGJiQ0Ji6LwZhAuEQr7xycu4KtXFE/QI63mn+UJwTCZE7ZouTdr+
AKcsfS86rUHwnrAlqxNEw+CWbpCXKzxKvYvonokKD8t4XgGSfgHgCViPvo1iUNcMDdrIMqZu9Jb5
/bWhNTWdX82iQoMgaHJwuMkAQKQCxg6R2kLd75EHZ4MFhQTpg3aqeqJ/1fU37SoMWdhSbVIhFMuR
GLAU1ZfUXG5xow/EOR4xOtZnx5KIq7bWcANQtIs8zJ6zI29lvIYUXtD7/O2pvl5+BfYA/QPMUeOX
3BLSY8+V1I34amBzhjfLjfMrd/vZcDGwrwPYOAm3x1wLiO40MQ14U/CmwWdM+AEDK3tVhn1q4csi
3tHq+wewwizbR/Wmmn8YIOGg0TbGF77/0+0NIAS6jMZoOu8/FgcoBF7FBcRXNeJqH+Zn4ffshZvD
n4BNGaJYJwKwUX4GIVWyqtyxcqGRsikNHBqnZKlifRN7nfQdzftOiPVpVqy2ZziUKNnVewy9jPmE
HJW68OmkxdkGsBusgyUJpDFsCS64qLf88slfH89iYPSwxAMqmABLQ+vsOtZGsIkw3zSGO6CATnUx
jjim6eQZwqRuSwQdq7L1LTIQQGe8LmCHDX3Rul9sbAG8y57pd59oOlzCx6X/XrOZQsm0oQjtlOe0
4UslrYQGWZhS1lgfHnbETfuAR4WkFpigdmbntzzBwk8D1o/YHkAst+wptmHb0rab4NESS3Alq+1B
rvxl0Kwj1VvVTWRaWLyL1ygmcEX5xxV3P8WXHXTNsn7SCy1emn0fptaX2jefDW5s0dX+2h0jCIfp
KhWesEAKX2C+gYmJhZAN62RHttH1Y0cyeNODG1T3zVEP+bE8EDcOoFizdU30sNds9hYu5HKnR+nh
BqDRuRRZFt5zwdzi5PQIIr9hzU2Pkc9ZC/FqqaA4k/W28fhVJSPo2bw4MEOEnFBTCqw5pZwWnnP9
NZUXddHTvO9zstk0CsbFAjyXWTaBexSTAZFOVHIKGEas2VuOmEj7nj6KCqL15soQ7dQs3wi7I8xY
LvxOLY+5WkRu116fTkJyIlowgOZ6ufB0mLEPHalgaAGGSU7V+BedIZIsqKLn0OECFdpshd+GPRjK
F1kBkaO6dSSSOLx7LO2sKJNlbNLre5HnJzl1BpyQwD4QgaE/6ejFJb/K2CtaWzKYD5J3Hvy/wh/c
/JklBGIhCId2tQR+yQfeBCTCmMJVHYsA+4KGpQUMWV7aMNPA7Rz8X1IeBMU+YyQLgFG3ZU4cKbSf
nWccD22PRaioEhP8d7Opx4dZ/9C2T7M5uK7ZzHELRMi5OKBqX01N30tZtl8KZW5kc3RyZWFtCmVu
ZG9iagoyMDIgMCBvYmoKPDwKL0xlbmd0aDEgMjExNQovTGVuZ3RoMiAyNDA5MwovTGVuZ3RoMyAw
Ci9MZW5ndGggMjUzNzcgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNq0t3N0
3dv6PRw3RmPv2LZt286Obdt2Gqdx0jhNYza2jYaNbb7pud97z7l3/P59xx4b8+Fcz5prfcYmI1JU
oRMytTcGitvbudAx0TNyA2TllO1tjeyYmOmE7W1MAcz0jIyssGRkIk5AIxdLeztRIxcgN4DDxQKg
YOLykegEYGZk5IIlA0gA7YBOH05TgLEnQA7oYqTq6QBkAlAa/QUU7Z1d6IyNnD/cQDtzSzsg1UeK
iL2Dp5OluYXLnxosdHR/Kv3JFqYHSBuZWNu7O1tbAozsTAHS9HL0AHl79w+jJYDS3g5gDLQwsjED
2JsBVIGaADUVMWUVgISygpqiChX9R2EVVwcHe6f/4yKioqomQQsQFZJXFQMA1WkBEmoqqn8+VYF2
H/zNaQHyqh/+P30+Av+ky4mpCqlqKYoxMfxZA4AJ4AZ0crb80/Z/uJF/MAP8Te0j1czJ3vavBgBK
CxcXB24GBnd3d3pzV2cXensnc3oHm7/4qVpYOgPc7Z2sAR/fTkAb4F+DcbUz/RiniwXwXwX+bAlA
1tIEaOcM/JMkbv8vp+3HKD+SPuwu/yH2MQiXPzVt/hUOcAYC/6uNhZHzX7myioqyAFsjSzsXoJ2R
nclHoIuRi6szwPAv28cbaErxL4JAgIirk9OfHnL/djn9p82/qQvbf6xM18bb18j9f3fMyM7V2esf
s/nvZZvY2zlbOrs4/6siEGBmaQP8w975z55Z2v1lkxOSlxIXU1Glk/0Qnh2dnP3HdOzoXTxc/or+
U09IVJYbwMnIDmDiYgUwfohUzM5UxN7W9oO1M+yf8YlafszJxd7Jk+F/VG1tZ+9u5/2/VjNLO1Oz
P1M3dXVgULOzdHQFSon+X+yHCfZvmznQBcAIADoCgB4mFgx/Wv2llD9mpj/mjxH4ejvYOwDMjGyc
gb6WZsCPL1hvZyM3IMDFyRXo6/1Px38jWCYOgKmlicuHyD8OCuxf1aXszOwBXP8yfzD5t+v/tp/y
r0NK9XFCTe3tbDwBpkAzWAZ5e5cPMVD+/3PG/qeXuKuNjbyRLZDyvwf6v1FGtpY2nv8d9z8hGsA/
VCn/H8mWzuKWHkBTRUsXE4t/TfVfdikXow/RC9mZ2wA/duQvk9qfc2TzIdiPS8fyz50FoGPiYPsf
34cWTaztgM7OAHb2v1zAjxn8D9+Pwf9hC2BQEFNXFhGl+R+5/BUkZmdib2ppZw5gZmMHGDk5GXnC
Mn5ogJmNDeDN9CFlU6DHXyIBMNDb2bt8pAAcXF18AWb2TrB/NpKdDcAg9Mf0L8QBYBD5G3ECGET/
gzhYAAxSfyN2AIPs3+gjT+4/iJMRwKD4N2IGMCj/jVgBDKr/QVwfeUZ/o49+xn8jLgCDyX8Q24fP
xN7mY5b/trCy/rHY2v6dz8T40dj0H5AJwAD8B/wgYvY3ZP6ob2b5D/fH+sz/AT8G80/vB1Prf8AP
Ojb/gB+1bP+GTB887P4BP3jY/wN+8HD4B/xYh9M/4Edf53/Ajzm7/AN+0HD9B/yg4fYP+EHD/R8r
/KDh8Q/4QcPzL/jfMlP8c7/+dX0w/q27/3vw/IVVXJzsrYEalqYfD91/hMgZuThZeugwfpx9pg/7
x+vfv/T+qwHZ39fWP7KFhe09vOlYP3REx8zJBWBi+9AQExMLh+9/5Zr86xnw173zcUD+jf9cwAAg
0ANoAru8YG/CE2KV/iOs3E+scKoCkoyL/qQSg19TOhFiOXOqHRdLNH+bGChQFNgckEVeZC8rya3n
lxpoV6JJFoJu87bRklI1eWOqJLhj5Cfnh4soJjSap06vFpQltxRQ0UlMdSidV6BVyjqT1ZrYSgBQ
Gz0S4WrveoxlnnhHuUoj1q1oXfsK6V48x9SE5mTz2WMJGacDd2mqA9Tl/REtPsaoV2iZetawIAxj
VBrKoacLWQv/miSRhHC56iK9z/ei2adzAjeQXNSvGt20p6eM4fwHngF6Vb0iqcYnuYlfqap5y0vt
mq7+PE+rjWHaebLW8hzVsBwJv7Okefvc0RB03oE0WrsgxLzBc7+iSKGCFCK4lQdW3M6XNeZXao91
61Bwg0tO1Zd+UYo54L40Haq+687CDHiCGVy8kV6SoW0inYedAGqSyX0uQoxcOUVudip5JW2tfseD
J+TEvuGOq4tpWUnaoNs8zktlKJqVVnsT92Of7Eh2sVEN69MRjAbTkr7cyoY4xpwamVYFsI0TJEe7
k4+yj3axbgy7z1GpHkSSnSSwnKG1DjwuNMqHdh9xnXObEew209nHKueIDqn9EN7YrTKHJi2zh6L0
3QlP8g+7SPqSRvqusRMknIeWwMPpl9ni4bNSdMwDdS3BbdKAh2kD/jDMVNzU2OezuQ0V4HSujMCm
xmiIQAmhJReX/26LCsbUBk3sLVvlpuFJGKmalzTYPeX3GULmevlY6NAXSm4wsH9v0d5AtbO6jqSf
T8iMB54shU2Ba3a+cIvLf2YXQd9IRYu68Oa0LKO9zJ6K7bn7ODbIHG1VrDCZNpEzIU74C1QhtUuf
KUYa2SUE5z2091VYd+QRr4VZ1Y0Mmrfb7FVaXDrEUE1eEMkaWjj3DOkEoVmO7ea3hQLrle0G9I1y
AjG6lVko+8AjcU1aZlkgapo0tCRYgT4RMsyBvBPDu9GgZT/cLFVzlI7mMy2XUwFXocbnfPvL4rsh
6wPHHZLg/ek0CwHa7dQhRIFUsS8sFXSyJVC6NJoyshPxayILnyjD2ObxGQTk1nkRF9lPG8X2qEZQ
cpO95BXcG2E44wpf875+Sm8sWH/GlCEgXHfQviDnrGWKPmKuncOo906FGIrseWEstLqqd8e10JHz
e80wFZ6UUIu72DNbQTj77JP7Ze1wiGfX5m6ubqWgeo/+WOHTA3jYkFOjeoOJkhu0MAX+UPtQafXU
e+EJNFcdRMMsVw4vkdNs701ByTo4nxWCNTv9TXIxLy8uB2ueUpt+MzPHYFEEJw7mTtX2dVs1K0SN
YPGP8DpxB2yktlR55JlMAViLnl5Jarjx92Uj7u4+ez5I/8YbP7r1x0Ybdsy3gt+vkMqIGTZwAgJn
1Xw/TaEQGgN/KwtnfTEgOc4fDteeUluquxOcRmi+geuCYpAwSzytwIfs1yI47WlSVup60LDHy+7v
3iPiomZAMAjLiyoybojgNudON6HculgpoAkYdefYIOP43aigjyGyAyJ+4HMdmylW7uzq3WPTDwkB
zkQ2UxKFlz4Co6vesEARnPYpoAEjWcvC8unWkrrsyUzkZfFW3ykllq5f+0UR45lWsiYnFJskeSCo
ietYZGTp56ugSv087yMKGz1NmRfwISULzhPryMl3Nz/2l7cju048EzKT1p0eY2khVg+k9R3nOKBN
fcme+JS/ss/eFUnQoCaNPC6gCGY86te1tUVFjMHMrwPH1RnjqBNoq5rhC9lhVsGtstrKnrWqJo9g
Z0OWTLLuOB743xakSIgxh+/JuTI4JkAz6W+Wbrhe2d6pHVS1WclwCEFXP/Oyulvk1ftiR4mXLkZs
THj247Tcj/kikPmFGQfyo78/w2+UzomzI9NJfEtoYSgiFknhb/jtZ/Mz9rSNrrnT3SPZ2uFpi75u
O5HHzaag9eeTmm7rytXoXVMBxkuyBKQqbQi6cDvhKvnqTuTEdPJ2FPZEdqvpy7FE3/JgJKbQr68k
z53pBMsCnj5gR8FQHkwuypKETbFvr/Xa7GJVXJ4zNxWYA6QjDTqhaby2p+TUp3qHxB7XuPQaAktm
acsRIKICzJOWOj3ghZUl4c8NN9SPQ4kkg9ggmqKaYeY/Vyhriklajza9Twl59LT0bh1VEaDVnjh8
nywCbsnCY634sAMGpyHVpMf0PlUeESBQmCnYPtu9h8fCWhiKAae6XF+jf5E8sU+bNnWSPT6gFJlN
QPROaLvL71BGkWpYNp0yvjwhk8AuDB/AsOLe7ulrXlPGO31ZACQlMXwCc1Zu90n7PDnqgNXAJX1/
5uDGpW/+czLLsRMqc3+g7/ODlZSdjzsmN/wK3Ji4BS9JOsgkWfadRcvtcMIGU1qzzO+kWwJMTYG5
MiaPL2mchR7pFW45Lr8aCjLWUxrQHlufnDArHZaWp8hEi8XuIhBPWbkyg9XQxlo8Oa9/fa6Rs+gR
HJggQUZf5j3vJ55UPy25RvPmNEpQ6Io+s22Y+Y3mOc4N1gner1YbECvYojJzoh5u6PYV48wvMNjM
jcQ/oh/7YfU696fBLr7HJAZw530q2+P9hrKSov2CKRZaKlmT2DKX6RZF30O1gEE8FUfpSoz8HhsO
qwF1TbOCvsYER/LbTopZjD3eYXXVszqK/TPnz4hHI5HWcEiOsWh+A7oPuSUjjplI6LTFGGSKEcX+
0pW3J0OyU5UzRLnTvwmI5QPVhPFZtaOELQIjzrT22K80UtY0i35ltRw3Y0vq+oy2d46HYiP33TtA
n8HQHcVi0nMSeY2u7KozJSyz2GGTujiUCLUf7yW0ZxcdY0KI9jtyB5gx0zZ19tSd6aItp24PJoRb
nfd4ka4pvKYAxgrAgRJeUwM2zSS4Is9nL9lVWcVyxEot6xwR8hKvfJCaIgZCB5/M6QR6A410RhhB
DdTdU6Fho7MzVwiyYlbhEvsbafBYPmu59kW9TAAmcsOX5cNyJc7QzMAEFGHuxiT8g6N+q1XNZ6xe
L6EJRd4aer+SO+dTA9bLnhk4w0x0+o3JAgundt6YAGp0zOWB10IJscTLHA3+WqVbpQwEcKb6ja5C
XEVkARNmKkRlWvSBZOXP8shKpehcWR04thwQ7W1b7w+56pPZ/HeQkcEwgz9nEJ5fkTcNCpEEM92q
A4gg9LqzU4erZeTv2YqF5L4Y2HsiIzqItTCS+yMeZR0AtpgTUakPUbB2vUOYO3AWy8cTGWjegwv6
HLTJX9r848RGGZYr6MvjOHFAW2XlmVwcSa5gYZ0wzR6XS9zyHuAE4QhWXypNJtAp+Z1ORL2r5js0
a1W+4i46cOUyPfPwhdq335HoVBEicG7bsGG9maJcFb9KwnSHVtIZPjHhD2crTL3Wsnk3kgjwIRl/
vkD9RNcxXn+FMFAUMJ7xRJYXGCgAFz9OPy7cNaalYPskI/Zjl57pxOstfFNsgAUx57Psu3I8zpXF
FCa7Kwy6n1wiTBHWIccnEbHKZBNrx+X15j1upC+oZHEgkJvObOH2GjPU255+bzAJTW3hciR1Pd23
rjflnu8Qlw09HqbPQy007sucSLOXCRrta+GnD/ht0xTiEfrdLbyaAzcq36qcPcpGDBNvj3wISqQw
5L+gLPiOZBzJBvoC3WqTcnxloq2KKbfSX8H8cOG0hz/ZEM3QYn3t55M+8lOO3HDpZGcig1i6v6uE
xNs6jaBrkMceKr66KBCYRO6mX+rAucjsO8jvAE72JYuMoith4hVtnQ7p8SmcPAqSoXvtdM7a1ffT
fI27ZdqAaaRxSF4MvWFlpu2b9IstitpCwhYXdj6ptLKpZVlDQYdw6aSAgja73iticlj+BjHPpAox
xmLUGM9Z2RlhMUbO9yn5VQnufKoljtF3BkWEN8iNSqC63SOL0PaGFKULEIQGINMxrY/I9kDo0/NY
RxXWCNSSd1T+ZLLwCsgkuZJxFEgAk+1TntPB5MEa9Ykt0pu6c/Ad9N6NKLRSXZ65kmM0bd0YJ4ZO
NEDWyeJ5s4jlJRrnZlIgvDtT7r/EYIIcgCZMB+5x1dS3Kz+kZ3vpFs8zfP0ek3Ap2MJ6rKlsTw0x
Y5HBlfdIqNASd7dNWTVDB8OY95bu9MPf0z+38Ttq4kr4flUCXR+MY6xfyUN8X/6aLbUEjsdjXEdv
eRjuIEcIvDOVwgKFgBGpXxYbnE7N2bIOLoi+WSFORc3Ifj4j6zYl7kks1H176VynTwjTVzL276ZI
+/gPNPpa3tlky3uNHOJiNp9mU9rQoDqSWQC3KR6kuGoFVtYOKHz6v+t0xXeSk/lo4bPs1HpMPalb
FC685H75gu9nQfsoawTXIISrB8Ao9gnk/arZs6tllm7wcTvmusN3CP9a4weVMKdkYDHtpzUqHE5v
VRo6GpmyL5Bg3IyULfwoM3rskxjf+8h6+05EthH+s23Wh7/HOAnRRtaa9ayMPUP+SQo9mQm2cZKX
nprDYnBtRDfPui9KKk82aSpIxP6Yaosuj2Qm9onql7p1n5TeTsGNU2v9TfW4LXZcKzmjemP16esp
2fyF4fzmgj05NVFLZ2jOjM/3ej6ank9h41P+Y0QgLLVM9j3cinfTyMw8ceROvTEGVuWDllEEnFzC
UwMT9saCajIbsc6bi+r4asO/+Ns0vVlh2aKAVauHR8zk1/bPFumvT0jCEqMcga0N5m2e+9nw0tYS
V9uQLhoFrfdyJaxFVI9T351ZLgbon85YUzORllNmNjbiugRMp1KTgsyy8HE90xlpxAiRgXDZaM7G
tCakwvrgB7JpLty6gBWrQA/YtyuYV7A0nWbKGFQ5/BFGg+kFMPJs56G6T3NZX/Z+ddcgOk58bPhD
dtgGAxMnBdQRy6Jlybcc0/y7x0XyUdolXKnyG5/P726Ucjyf9glmE+Xw4GsYqGP4gyQjwISrQZWx
N2fdxrW0Y34d8ol1+Rt+SeUFrTqAK3PU92ZL8ULUOIL0ynBOl8536Yo/6rsoNY1d038zL1hDuHYd
Yq5lUlVZqQtIlpl9GG4gMY1FQTl+DwxWZ6qysW+OjfPZlu9EJr2NiXuArk3WqrILpYxC5CHSPQ0j
rykAE5/p0jONXKyRr6IAv/XpdtaE1vxGGdQEjT+LzhqG2uwERBYSpMT8FB8xMz5J2XqosJv9LaLl
ROKcvUvtt1kCZ/s2NcibSgI8PFsNFc+RqMv8+cTN5KICuxbRJV8Rz/BnP4dpeG6IMzyHr6dPKiHT
ucj99qmEfVBy0WbClNkb69IZYwxwU2xxzvMgy8WT2BC8dv3GjCK+rchIBglmZTtG+PNPPRDzX5oI
AZqzI89y/WnyvSKmT309hAyhv1pMUagb1rg/IdVKxb7csGFzVW+M8EucQSHRh/ClarM1wYAczfvB
EMclcSfW3/tpNkZ6tKp2ZsUBKdS9vts1izhZj5KXTLEt0XdWVg5i3Sboh8nNy+YbHxHeQC1vzSvq
shkDfYZP6okZITApSbBJaGqab3m4NLJ7lqXns0yL5crfZEF3j6teMvIHUFC/cdb1Img9+sot7IGG
XeJpn8uYZN0wwTdIm3JhSY5xETrXrUjAyW4pyn5dOIVQ6sYfS2ouAoU1aBFnGTpKYLGIRkd0z1vP
aeI++4qB/nvjnrxigv38djOWl74Kbr4qfU+3Ehl2z0RdoefQuJPring+nIy7zDE3Gg0o4CdpZJbQ
3veyRmcN1p2mu4aQuIkj6dXWtr0daT3QL2Vh7+WyHNrZz35oxtJZNNpTa3g1/eryiAbC9zTAScEQ
bPKdvb/20n88O9VQD7XtPBU5mDXdz/9AuAA9jyY7VEnFciDSpxXFuqaJuvY4/BMWGxuLxRL6tdg6
VcP3RqW+mKt7rlH6wUoBsxS2t2Bi9O3XodRDRfYZJgo1Dw5FKx5VGkSxpGNFbjo0jj6QuPRBW5cq
ERjnA8knTkLUZH9jR5ooLcQxIj/rtS0BmI7LaOZ8/M+xA8K/V8orhap6a9di9aN1MwuL539xfc/U
pFwnoM0TkaYKifghW69J4mC1uCliqPv9nG5TumIDFL5UvTYKHOa4wbQQ1wSY1YGcAhiIAWCVF4I8
8e50JmuAPZC8yEQGa9SQjhzM4P1qGCzLZQlED0GpIJesllPw2nFEQhFwKI+vQcNzfxIv0dULP2AG
HNVLPnNTjopaQdytA3Mc11CvmArLiOdmrqBQeHgZfVc1aL7BCPdZOWYMKiFlUSOv7T56urk7vMC6
vPj156eAq1kdCyJY1DMVHs2cO/sVtBedNzwZ47IG6BQtF4qLrCjTCdTNDv9cpCRoFcl296OvPXUL
1LIXSJKeXWLG7ga0KJYhBlzz3oTNq2P5JduA8bEqh5FRzW4kpGa0uoGzTY3XMS8hBl6MLqtwu9mQ
TCuoy4R/sWGEqFxr+FaLQ6vsb76Kc8JogXBxZxLXsTG19iUVIedTN2MspoDpxP7UESZ25YYIKDV1
BaGjGhiglu1HJS/mJCwSpsNKV34649ug8COlP0VSC3XvqmPTt7UtvizOybb1GJMfwBEtaemzChD8
MPbognJu5aacaHSY6QDazjBnYtKvPBPma+Pyzo+UYclO1nW/ZnN+nim9gljbXrjB1EqIIXFq0Bq2
yYoBVdAoqh6JwZiiqzpSp9md4tcIeTDl2dJWQwn0PCEosaiu4R1ViWFNu0uas97m3Kq3yagfgphl
n0ALQTgdXTXIzxitqIAlZEFzoIIe3T6JRVJSVixXNZJL1OoATERcNTlNluDmQ0jLxj2MxW9g5Kuq
uHssHG6QDDdkeRNNoFGliOncFiNegkZFUT/McViqqY9K1q7HwHSWvMgteqPs2wIPv+qoBngTrPRY
OPnE121VvXSYUj8pWWVALZSOJL1KsJmxbcS7AJ6Jh1m6WMo2Hegw4FkVZ85wR8ubrNQLKSD5kWzT
pnt/ZIT51YF4VGiXTRECLskfxVOKKTwbwn/Qm3u1yNNu3eedbTUgTh8V5FXkLI+aEuh0W1EMJzh7
hrBNqFCpl5n+sHurnu8xDr89+HwbwxWtY2VFv+37RChgxJiiJYTx64yav3hrAnY8rnfO1J/4084F
pgp+bA0mppoPav+GgbNFOLnZlzz2PTAstUHLL0aFVA2ZahGbnjNbqFCdTc+wOtW2gDt4TFqjgUN7
CvufcpQwU0ub4OrLubOrTCFuScBuXljezn1SeIRDKPHf35wR9TRqViA5rY/GmClZdH54oHBAic0X
RhKfoVbWM/CoKCKUK4t9894qBwtqA1SWLdgJVlnmN55TWEibLD6nHYktpWbrWRqOtcKklGNoUFRU
D7wJOUFcSMD4QdDBwdoiVfbCx55uYJNUvH/HeGakqprcm8grKiTLYmhX/kzv6RKSM/ulW3SU+ckh
Yf1RUeOyxOIe1QueNV4MDvUcbFGWs+RoJYzGYKUJa4jalBCjGpNTMGNSviHuVnPqdMGfDT5bCPLB
fLtCAPnnIoQ+sSL9UQJARo6D9muTmJ7S1mkcNK3ud/7hQcPA6FoB/2XILz+j8ejhMzODruGoLwI8
R/Xgtydq6EIPw9fzWkEi9cLomK0nn16QHEV4JBpVtKoE58LfTtlUo7Qu3jhq3M6+2I3pmCUygycn
5p8i+pPFeOC80eSG0y1nmWH1jkt0ByP6ZhMpb27R4gUK2TaoFJ3wu8PhqV8cAPOwzr5brDSsH/jQ
lBHFoHpLMXs4HgVc0GUfK9FlyCI0I1KzYzqSN4UvffnufOoZt17aQwkLWbcXzRo7F7Ush3AOsq3v
Vt1fzzDl7EAo8zxtAfTecW3z6BFS0avzUCAi7wbtZfeoVxNLVKBSdqNaO7LrQoB4hy4Q6LzSN1u8
tHIQEYdgf0N6B8fbhmHsdT7Sp57OBYe2wxJoMWBHOlW5/Lr/e4L1rGTjl2th2B5a2USYlqEXfpCZ
SoXx0g8uDnKZr3ui1kwTINoZ6hL3iorRIG6baA7EeAuiXmNfFad0yFqzc9YYtHxiZeAzpD6buYAi
7ljaolAR0gtAseXVb8IuS0630MGeVQNKB3vd2x53wmYNUk3sevZz9JnBQbTVfp2kdT7Avgxo36FB
wysJFh4odbx2PEODYLGEaVIyOVs5jHEPaCc7T5Crx3t8wZVEsggTLx7qN2l+qrxu3a/9AYHCGb/4
8GgwWKRKN+XY0lbhD/68nzL6VF6SuippbMs9DyfR0vt5+XOdXb7vUFH8NC0DN3UL1dFv5dZDqlyH
vBktUK0Uih+qyTJsCCfRaLee+47M90zjoZGBDHKD/qXx4bOeCJpHyzuaM0VOkq0V1La1dqyTwGsV
E0bswYATulcG0XuaUsyIW+zciBrIw31L292d7Hzt+MRMSRS6dR92zSyC5kSfcFsfD0S5defuAcLX
gQuzvoUtpcriZqJBmd2vuWHEWS/N02Ic7VVEBekDeb9fYDbk3S0WoilWSIVxWFjKGwgGe4dz17w7
nuB/hQ5OzvUo1qxjLAXBDuC1LFe7r9g6gNEjaMepjD+W8a0txprbOf7oxzEt81+iHnz1oDTJ/NbH
js5SlE6sJWR7wpu968/OOJCTSR7zu0Yk1cRwWU+vMgHm6XJ65PR+NQyuvI9j+xyrMdkwrdJCUd0c
HH6TNY3w9faaazF6/71bfK+LE2Hq++91PETEtdtA98+DHTeVIWOcCI49p0EmDn5RGwNGTK2+Ba3L
qQYJRsXZqXJcAxGs2ImIer0mFA0DUJtVrN5Xcbv6Jnxqzq2boQbb6j4uWktMGRCwP+SPKYRlyEdi
bJxHsvm35lH9PXyTqiNAZ5VnHyBhpmFFBCKUR3LokaST4U5/3ExA2P0qb1NYuo5nR7CcQmaQHon0
hwTrF3skhbirk5VkuRdY5f4dbmtV5vkSXEVy0clVHVcEliVzC5FNLT8VR9YXAk0VE/W8Z38bsrJh
Pl7//IXyXJA2qSkrCpaHLWzfH8PuFzNv+XekxPbrWbxaEoO8lq12iqGwIy6byGch2erO/OO+vuOF
u5QegR1nRBUWqYNLyZzEC9QD2mfpSocm6aH0jWarBsU+J+N3tzi2Qu045C0/rPTJGxDcqUWie3YB
CHq273BgezYno4SemRskOr/gzecIQOCQIbYY6ay4eyCvoip1a0oLaim59JLFyiOdt9uH+XVJci0z
OgOkx6Bshenzhwj7th69FYArGWNuWw6apRnxhdJVMR4r7MQ4aN5+7ntDyeg2QHrokeX1cj9Sf4fJ
LsfiV0Yo8clvMQJSsbA7TAUbj3M73dZ9VQ+oNLyZYbc45vh1CC7LiiGVOwm+Y5779YMhV2vK8VZM
wV0Yqe8jHhjqRCdRdaqK2hMQpKShBjIqn/Bv81e0mZorHp8VFKaWlWQjxwsHsVfoMp8xlspbapa7
uEAyGT9vw88pSGp9fscUExSPquvpb/PiXzmlQWm9DHbZOIw1VajuvCY2jVc/Qi0s4RRIVRXdXTLg
lqGaf7SIR4XYYVZD7WONUvbbbbLA39YEritpjYxSCWzz81ZNqpRsszg/00jN56VyuDCFIm2H1I7h
CBSIirA+qxI9cDW9GRXuxQxBbux1Ym6QOg4e/xYt1gNeP/O6k9/FlT6eQOHGWU1+UzfMtBkiCO5y
0LVD3M/3//p8fsPCQ5attArxINBcNnl7BN2sqM5lprZ+u3Fdvcz3PZhP7oAkzNymmg6rQ45Bzc2e
F1gzkjJ1IOv/M9f56Nduj/Hv+ijlYdZsdob51KIYFCfUJkW6ai9q4MxXVpcIJ5E0Zyg5helWXaFC
atq5LUz8ii9mDzhgHddST3VUV/xhwx3GL4gn9F8lGpDKs2VjvGfZ50BvV193VpnYbh1gqeZYndD8
p+Sis3IFe/Yhxiu2RIlwVG5nkdu7zqy0WhqgeUaf6IJPHFwQ8NUL/YwthgS7q0ZhRGPEtd1by75l
lAu0kKOmubnXotCj8JdfgI073hZ6jpTr48FlU6KOeXMWti55AU3fKCRXDfSesuzxUeoz+thlpgcU
sgk/96Jz36bpDDGXhTCJnr/3ru5VR+lmiDWUbLFsf+3xt4586p5aCsrKEAmrcXUSrMbfNwb1IhO1
DGEmKPRI6iehkzT3TDFevD47NixRk6Y9yyZW/8Q1TJ5k7cAQYpndbTN0/TOME1ohXsG37Hv12TJF
088o0OYU1eXJ/LCE8XsNwdRb7wZX6KosIOxslUAz/2nJuq1xmSF1ejI0seD7ADU52iEkgK9Zs/1e
P5UZx5FJ1Q+JdIIZ6UJAd43vhzq7C/Odw9aRucYEnWHfBDfXOPFENgOfDhj44RPmVU43YgrMllmE
dRw4+i2J9W60ir/tBryKDnEqiHubDlZz+QwCoYqserfrsG+SFJTx1IL4ntXSBpMk9HMYe6WMgmB2
gM3KifziYUpzSoIUhgq6aSvzcGZurrR7cpelt7Fh77EH6jjkwPyZwcyTo15EgabtdDzN/+M/LKTq
Z6XF2Q1eXRPvb5iqNHrrRTpGyuxW9jjwPuq8vTNnFDRQLhAI3kFN3xFr/BRFsKr6dVawoUSZW1/Q
OXCfYnBE9vmwuzxooyeUhbS+J9BVRVCVUvZ9a3/Nf6XMXjIEZcrurNJI92KZPrN3ee9Y0FRiNxw8
lENdPrguEeUAFXf9inm8PpgDAxrV/gVFYKPFcpjYKVQaLspqA/24a36cpvyp6bdixjtOm9hTXT9x
FR696n4V0QnaFXYqknDT2ycw/0LNgyDh3m+8bmbHIsMlKlM6EcLe6tqkuHmJz1AQ61Hm4nM/fq9l
BV2vv3eu7UWIisznByqRpLYd7uefjfYwWb4LCBLBzlTYqTLh6UW7EcXu8hWRsBBzzH1hj98nzwtl
qD1UJEKigR3ieboQK6iisZH6Ylb5KTVL1zFS4tSCE/8u/negB66/BkHbmkoRBZlFRyexD3oXETVO
ltvSLHB86Z1RUav3ELUpPcyxknGSra5zL67TKFEIrEpeu3vjMvochb2mE304feE5idEnIXXzxhsb
ud9LIki7DItBXboHzpGSrMjK4tijgo8WMiSiN3fv/cmUoOJ1tTtozzPfNoqbmVUzILoK4TyiuwqM
E5O5s75F09dacf/+++HKtHeli27YxQ9yhpKWz7h9stpxlPKSzl3EXx8hshA2nFou4a6TzpqOo05p
VEqudlBsqV5BBR3JZ9MFtmlnKxXs22AXW2xD6EUR/NllBRlNo3+mB796bUUqITQ6B+1QBHX+fHIo
tLOnD6QlQclxLfJr3yHSv5DvdK6+/m1zT2ry1F/hRZFx+VNy39uA7V6TzYINvcZm6jdTCg3Z/FOM
f6+gLIZG6Jo3tJb6dgNeF4b89eeQNekTvuqw1+/y2U6y+xFjMVl+6kXW4ej0g+DoXVY7SRjJpXW0
isEXw4ljjWczrGvhZ2qOSAP2o8AdLNpaYH0nCKsKMB7oJiLNxbmVjhBXOC442PwsCtDMMLa73tfX
WrvfiX7kRucBCSLV0ZAFMflc+7D7Wzkwu9DMnQgUT4GUuinJfm+JYdvSKnjSXq1l0MGuzOcraTuX
/ytks90BoviLpfWBtQMR2OJrLlzBkWKtj95XqhcKrZFkR2+fmnXooOzfrj23MwWYUrtt7Dd6sNOv
NdgKvuOmsfFoxeQyxu7fN3nTkSJ/tNpFQ65fNXK2kzaSn6zBbmir6a8yQvRJHx3S+tpJlcSTtOuR
ZkvqfoP4RhsYorcvy+nPvXMUHFY+qgEzGcMYqjym9mWiHC8eVfcI6icZ/hSdxvRDJfJ+P824aNFj
wS4u496w5FPt0HQPKaXZW/3uSFHAOraLpBL5r7WwpoR6vnt5pWxTrx55N7Kld1NbVJ3bkLk0vr7w
B5cHwM4jVsFmYdcxyW1slsq2x6gUR462P9BJystCqy1avLGpanFMn/2CxvOT1ZIlTyKgvQ/AyNDP
ZYHKPTSDpE6GQPKkqNSwKFJzvgybmXmydpjB64bttulpL/oJ0Al9JhCqreUN/ETgKb6EU4EUqIkE
ubsiwEjn0JD1apyHGNJ4kws2fADmTCdDUgW9Lzt1pBjbnGzkwTIeZkNR7HvxfSwHJcxsMHY2eJH4
hDaReNNhR0GN6YE8nGoS4ocyw+Jq6CZwb83p+ZY4c6X1edFxjYphPB/7BLjZ/tvq3CGRn81okBIE
3f3zgX46a16lM9XbQTSED7nFlhkL+nfG6SEEOq6HuPA5NZlOqPYf4D5J/sryv2FnFNBgH8geCh1i
2dxyVvXdEnRWBCG5uy1o+Ep/viVOhKq8aKjXfUnJ+92fRegZPQrpZk5tybODpMRT/XPKIdXzuFpF
YWQh7mryQgfKamQ0Z19yFZPd03sTvbcE5BQzhW8Kuc4DzFgEhNb12yLUu7HTSfRnfyXaZRlpa211
PHYoV3XXFA14fAJsOXUwN4JHXusKxsVLQR0IczC/nm3vzr5YpQGXIewbHDiICPlGA/qvWTEUNFYI
S5AtLLQfT7OVT/YpDTi7pwckTlhf6fRzzlqOSXNgvbttA3BKUM9h2us1j47VAS+P2AIsHZce1iK0
IteD7CiO7xJ531/fh9Bc3mX5S6SsJC3QS9DhA0waZ6a6+Z9J5rnBFDEjkvuwVDAtR/nS7jO68EzR
g+BkykTSwhmS1L6gx9Mbk0U03LirYH6e1O7XaZrovggM92ZyN9sogAHHSLRW54vYbgLfEXjP8dAi
OP5dHediEBmmZJr0CKc6L3f+lEhStgYO2NU6aoKgnfwc638vDZAsHUC5a5JPmP6mGmURo+ChZcbP
1cYYQiD/kjsdGqxSKWjikWUl6Fc+yZZx+eKuKG4UyWC4V2zIwqq5TuxnciHo1mbhwWPSuj5rqGoe
QehTzLorBSFJ2ZHvonWJ7oJ783SAGNazglGllRqXBhW2kD9CvugvyAu1oOOc0kU4OGXLZyNHqb6n
wcc4OuOb2vfDiZkzZb5edjmfaYc73YIKNqH4RR9rVFOF+h4b132SsnfdUcpBoXEWXQ5XxiIhh/7Q
nWQCpNq6vhMXWah/IEasCcfROzBYmuRWPsCiCHa6/aBelRWvfXf8VwD0jplppjtyVbocmz4d2w6P
p8KSLIW0XDa5yPEJql+DZyey56IVaHw4wd3DJF8LybzUkZQrg0FqlJycYC++m8jJJ9J6Stlxa1ZB
tdBclHN0aeghy1a8ad88uWUuYUWzo4rlPkUwmLuL25/+0MuwFFvPdQCvdARPjXRWtnktbtdPhJ6T
eZqXukklz/ftEOxlANltGhio09P3gZCrsT2MclBzbukOW8PLdbuKfEVLFWOLYYZap2zyErNoQjfh
pUE/tZZD83FIH5zjXHEOkI3DycNVE0ZX4KeljoZHJ7P9QmTBatSooGczaigNw3FLLSlfPDFG6Bry
UOt1Xvq5bDyKPZseDXXYvOOufYrNF7uElr7xjLgfgMNHdDOKs5vvFz7vKdwOFc6ItD5+UruyaGkg
3yGoFkqCsW3Qcqr7DGkAGBtkV2tSUHXlcDsV65J8wfzSh8YlgaYzK9SMaVDhV2sX/HE/G9hUBR88
4fTehDe3ZBsSBjJr2IaykPluzewOqyHgfJUDhlj8C4LbRATXj/tm1LcEPG5onBUOQkRqmgXSNsb1
4Zj7j5izG4RBAMzQ6O31WBDca98Mq9z2x4r390TcY4uoh+556jQYPFzHVKvlN5HD58mEzAuwYqYL
KIcMhUPdfVN/k6JuBszfpb3YURNVX/40sORc94TIoJgsb/96hyGr0mSamOeNEp8Ngt2ANc4dPApL
EJHYaWAFy3m2FJBzHAdRcARl1GKHI+TUMidGR52CAJDRbt6qXWMiXPRVJkKs/8R7DLXjX1fsBwY1
Rxc0A0YHhrpUgUGhp1LB9utdFNP61Y2sGYykl+kNLdKmJ5euwXxwP4b0W6JG29cVC5tb+i8MKz65
L2v2HTl2W0he/N187chi4+1jP1PhbUT5CVrnlzRG2zOlBEMDFou7hiLHi45ITrfMi19IhwsGOwo1
XA8YvMj0Mi729JXzPMhc2dQ69QgT31ulSWgsHj4lYVdE3iXYxZ8VLqP63lAWm0zKqrsb8RyltIKl
+3u+dbbZImMhZhnYtODFzW3L6Mec0n7tW+2tv2ewxX6Cl3+Td35Ls7zWro4ez44f9q9iswMbU/QL
HFl3Mn7is5HHqwYBZRGcPFLkUMNx2R9HxAHpWVITVsQ6pVj+yb2kErJT1toAocBLFusHMLDvTfn6
voXBIGPUqzGxcFRPAQADHOpO3qHzY/9w79XKqiBPW7+Ao1jeqqDLwzWd3p0RnevS4HvtMMoPGG/h
tS7fg7oyD4UMTE4Xe5w/O4lI6+AX1y7IdS0j092noaboAz1o6cxWgF3c/VYy2szBuqzkaIdeeC12
nXpNe0pbpxOeQA+xldAxPhe6zBcEMywf4QqlHcvgG2XOXSRxQpa+bBUogMnDUEn7BXq2yjAEMqWM
tHnULaDXGXkcSg+lT1H8hKXWxfLB8Za4B0v7B8ERUBEBIg5lNCpOUT+XqRJWkD4BEb408McsxliT
grprxnRXH+XGnmY6tc8Wcu5g28FeUwXtjUDBt7hdIm50LWwjc6XiMlDVuugM7N9b+SpHF4myT/Xx
sNtV9NVD0iyApqqHmnxTK0GmI8PgooGuXZ+wYOjrBOuzXSGmOlwatC1xUSRDLu0FLY4AUkb/R60U
7e4GfKIxvTHwpEJ6kSep23Co1AQCC9sA3zHOyEjySwkvrP6nZJyRHbz9Jnh47HeHg1qXvf/Hf290
0M9F2nFfkgiOXoPKlWwlxhCMgheinlTr4blLIToLlXE6W/v94H44EQYrzUuPKqTQJiy/gKIv6Sw2
r2875k8zCq8+9H26pxVtozSXjn6+OMZpDI1lfNCjWWqTqYcuNpHQaqSwRB4x8zlPtDyyUes/F02J
OOaHiZI+up4g7NEi3v0Z5JgU+217eR+S0ggdQJr2pZz2ilc/XoyC+pPjFdKDLZ/3p3WzQczlC5qi
noeGWlty4JSE3DEYdoOIImQuk23cwZAGtXbYupt4rR6dD/c98efbIej39IXjxr411O/PAGo5r2/F
z4Ri+1RskEG+GfQrUW7qbWlTkpxgTDHKTb2ywzUejtx6WFDOS9koC9XIc+97VmHFeS/DsCD7iWft
/LaRx1UdZRPxpS8TG7hzzepW5BGgpaR0XwMxN+Bjz5DAUTpqyTgwRpLIbLoGWc9lWEty1CmQ2sZZ
PqE5VqJmJ0z4x8IKr/TcrVYx2x5GYY4Yfey+LyTtBIc5PWlIXi7pbJQxhGnpd295vGOH9s/oS4li
UVzLtSLLxOvhSFChxBoVovghq1b6XGRTqaBUqOBoRIXTiNkdevIRlsst35C573FVfJ88mw9kuG5q
67/VPbh2Jssx/P79wylB30uY+NQ0yib/AR0ipbSbGL5ZSPBaUjQb9ECpz9mEaGFzAoDKvZkTjh/B
14Y3fNtJhvSZkeKs0hJ/L8xzYmpATizJrYsunuySiWPwckwsu6HhZG3QcMOpEYk/CqJkUWDpSii7
1Ifdq5wasrQF9P5bnPvAs9PiKJ+lyqWQjeBlotEOVeG+P8l5yYaUrk9OmiXpJanR3hui6uz+XX1H
mdo5ym89pzO20suXOBpzB3eZp6DB2oB2MJP6Y+98qMsdGR1hIg5AkOPXksGUma7NbqqRN+gquKXS
ejQkOL4DTXriGSI02gbGJk0WqwW6GuPG0jpfDF7h/reG8BrvnbdN4IE0OtJ+n92SmehnLZ9wPSus
99A6nwSH/tyt8ctYoXTo4PFgWwyLZp0F4ftb2C3MH6wrnA8mSaBLqfoo/bwlma9on4U1c0Chs9CD
P4uQjknhlMNUrc1Mcf7ElPkeW7mFsHIQx3pSY2AnVeo+rVfmGwj785GVkdGKyZ7atOzGksuXSKHo
68o7HoySrZQellcD/JZKovQj6Z1LILNZTRLIKPevnYkipHmwyjbUnG+zYq7r+Olu+gpG9Siz58s0
6j8rFCYYKVCvpvidX4hfwzfT6FEJhlvEWcJQopCJCqSdIEB8lxiNhu1EoeDxZRuc2AEJimF6TX10
d4BpikFd+0A74+XMXubKLIP0N9zP2U5+1GfUPJTGCzBoIiNl4t85H8/ZbZ2Q1XRhLAQf3U7lJ1Yh
u40nS7eV3+e55Hhmgg4Qiz/9utHuz2wophE/u6Lx1Jtx5LVTYJWkYG5C2XOdWbM+6dSRlC6CJ4/t
Ol0M503idgjpYZf/BRUWr6u2ep5hgVzFBTGIU3MoAfBFtz2OT/2BOeg98/QFWjimlqivu2VNRloE
g3YWfLS1kR/JiOCu8ODtgWxcYqe1S+73qyVq76vjnPLYszbII8XcpJsZsJkociXbS+Fmpam4kHqT
sqegAX84qsSnUKs02VyMVJGvSfeJCczkdMaXeYmbyFhoLcR00guHk/DOSZTarAR0A/Z2PBLCoUaa
L6dWcROCx2zV8AbJsDUa3cuBoVNYORL8BrVmedjKXk5pCpRxaMf3ew0829t4srH25FSojMUq3NVQ
P2eFD+LUjsfXH9xf20hKMX39zEy7q5VrBZt3d2eZVBjhNLnXaUdPyDT8DEMzBIml3sO/5ep01btK
IyT7M3NPjmHGQ0wj8cS9xhQ+WcH21dnENb4ehKvg7B+5T1XFraoxc8AEP3WN+kKfcIjelCV9tpRa
SE+wk6s0Np8PumabRGWdJ86dGM4X47vZWI1gyfR5SYATega75CCeW1RtCBqiOvESOUYXb/XfIYVJ
xasqZ32ItCoBd8UuDwaoRvjVuS80WzInNanYSgikq48e7NKICB3uOy6tqCAmhbrHbbr/ALnTYvYA
RZjjv5m14bV+YYITou4YNoBC/7nINtUjevr0BDq5DafpRhp6rZayH3jT8QPbucz5HY9+Jh5E1gkd
bYHKxC+4mR4K91w2SGbhDqxHILxxEu6RxH2Rl0fy1C7T4mt1LSJCrMBj149+pqtRgXM6utNvcNat
CMJYttoooNHG93bj8A4rA67CaEGDMorMxNehfZIztP064NpNeSmoKmn2U8XWzaXF7WVFd9S03Dl3
QctP0JdHJuow4xm7FOf+4Gk0dCsEtqnCruwSsT8xhkS/6WFvNxRy1Rtf3P1aGfnt8Dgh1ZzlLB9O
sx++TyniW3Oxbnfv60X7Or0H9f2hoO1wN2fr1+m4toQTyByFrTWGMChxKctvtuJjRH6HV5EGujpO
nFUUETzMRcoBu/gRafi+5kR5Pg2EkhZ+fNg46qri9APu5mcdZAIMIp5vy4/3fAQqWZEsJygFTwFQ
dC3SscNbJNOijk0opJqG7tCT/F12eGdLypsO6ppc6oWKYUKvPiSjoLy2Ta5LWQIVHNbYviG7e8RO
MDv2Abs0v0jaxd9k+I2x+aD1BTKxAxl78L4w9Kh2lpEf2mbkIW5Q1WfUaJJgB+uTCMYJyW5TZc8Z
skcrKb/K34l05nb7Tipm3nAUnFyV6E5FaorFZdU2S4sa7Msh8XbCuNzdk7eDzxEjCnWKWzKW4AtW
M8Dg+AXKFrb1260aFF5LXZlDATdgVAP8UUjWEEYMzZsaqYdSjK/JLu4dKNQK6kttC6RKcHSDL1Ff
PRsCYnPCcpkfB4jAvFzqo93AD6jnciKrbbXVpAp5Wfpho6dehZ3Jx5zQmuWZdAWhKstdXI+uS4Kz
Sz0qYFe8uZWiRIrAGC42BgYfEOG9zTqOtU/CjCERYukygVsvNyXARAhzeWAn26nBKql0OX0ZsQRo
mQZGtk6RBCyF+9sm32UBcGzV4/OleeXVi1xU8aOc0GCSioelp7Z5E7IBbRvl/i/Xz/Q4311Ynw1S
jXZ3+hCqRvO78JY6XFdsO1YMskr4pFUEFOVF87EPqcKF39Ms0giQoPa/YebZgDSKoAfPoeF/HvbQ
aqWzzDKsbjP7uap3PONIASsRdZomyEXEoRpbqBkwKeqFvYwb8xMisLEvy2pUrk/psTebDYvyfBS0
QTt16pBKHEca1KyhGsrFMEmIXv5H02J9vse2FYYGEEFxlG1QATtvhXBm2fw4y9+aM3ebDg8a7Gmc
8mHJImjewERke5tAgQXpccly6+pF4KYRd3uT1IHm12J2oJavVBcYNV0ojkTBos+5mBM+km0MN37M
KrerS7l0Prqn+caP6AmmrjRGWkNsg68nZJ1yASiHkonWyF+M+/Ud3dCM3/LwSC/pigW+AMf2FDCA
W2u5Z+26rC8d8W79SL4QskJeCslsL/sjR6EgPFMunCGDn9eYBpD299MRu2DQCCfC7yG7zu9mK4RE
P1UVhlWBnoaVZkLfKg1FutiIt5JGQBWTTuFinduyAkPCQVgzr1gKuWbraXevtqfyGaPHiU+neHJH
ETHWfvG1CNY7Sl+WDfyqEaZNrOT6GgtHNLEHrRyjb3ylmhbqDCvFeE7A78ycNAQ1BB8BNNU1oy/Q
lXV1TnXAl3/wr+5tQKA2EVTjf84CR+/wpX5fjQAPLbN6mnx82H7BY5fjxOhgq8TY2XPMOmaalN/d
fbyaWG9ysORxj1tX3eNjkQNFzuh4pgs2QxbNiDMKXGtuAlF+rXDYL/jB9YlgPYAtl5Zak5zHwmc5
0nlQzjBDPr81Vft6G920xETZaJwM63JClt5CkMOetC3fNSct9Qr5JNBaRBGdbf3Or6QyRNT7nhHd
QLSNl3NwKNBTSdVBqVheWefrXruzrw9/f412/+f0A5fywli+KiWC69VEE04vzzrwA+girha6kEhO
DwBYdUPBsyHam/ytOTBUjXR+Jx4/lMvOR49n+wKJ7pRmX1UqgN6GgCkO5trWenj8vOCWXbr1GlZq
XMvXyp8sGAObJO20+WQsFvK1XJPRMbAhoAcTS0gN/JEMktt82QUeL3QnO4mZPknWuaeY/5gGc5zK
XPOEOUbVqnDFd9hJKvtro+Ct57yldNFC1ADM8k5YC9x+HyW4e+++0Dm3sAb+5/ipo/cWtWPXjpho
9B+pgXgTj0K0y9bD2Eg39UwVTnHsnWTiB3gcvWBeEW7c/rBX6/ATglcTr3Ie2mJ5ECem8T4EieBc
HC/Puxw5SDVQ7+AnUt2ObTajNNcb8WMn8TAGGMLQBxTl3ba3FKo16Pt3tpqRFZzIblhnM9bcSGkV
DlbjwXNOI9VuksLX3/e1Mq6MUvWFs/AhvYTJxFcBcS+829oep7h5qa+wzyVXJNE7D8s5QESPVkwM
LaiAnhW2bgiRH47527LbQk7eFs14Vfc9O8ddumk70COEj+VEednmyw8k9z+roiJiGGxtyOCSzP0Y
eSjGZYneeVGUiGSpFYfclEDcyA9nzl9BvOK+GJyQ89sktOvJxQliiN/ol/CUyrcN0DclMFuAWOUV
bcU+RQ+FPv3KTBHf3EziMqrWhcIgL0m9QEpEHI/Rs+XjEoHAFuPsCGF9hlTZns6qwO0drl5/vF6O
jDOUDbj0uE/Pu6YS2KTe0Z5ZXf7qnBg6aoe01XB39sz1xdvLyvD6+LW81Yerh0PoQWEDxo1do4tS
LZfzWpebxMV16l1J2/GFoKhatwwT8Myo+ckKldp6kIDaVlA5nV13XaLX+PjGRihLrEhTkHQnzIWZ
26BNGn4dA/fQr9HdaMNZyotHkjj3OLMfbfeCrASdoT2xQA37Oc0QAdqTZWzvuOOV3uL7yY96x0/y
bDtKTp0DN5qwjbdCIgSIjKHIrguWejNoOzi8GC89rT2DiCPIz8c1TJINGdVb2pqQIaI4ElsI6Nrn
IA4ii9xXXHpkK+XvhgtcG1Bxplp10pvlT5La2ZlEitB4RVju0t+T43bbxIZ6aDTBKs7aA4hjO41P
p2MrJWwPHk5WU8TcEz2Jy+u6FIcECbmgugME1jRS4OaIv2W+cU1mUPU9N6oiRs8VBKmjP8Yzj+T+
bggbJB2rDRVt2seOYVk6bXBiUDCjOCQ7uCeDnyRy5RCgM3PFEk6Lf6MsqHrmMqBBXQDiphNpCwg/
iIe9diNX0O2Jxy8F8J1l39sisGUfX663GBWOKNZ9v7GZMMP6Agmriz3LpYWC4nFJH/nr0mJumkrx
CQ7z+Pe+W/9hHliS+/eADtISkPOK6XrAY7JCeyMZmySLVw+tf5FFZO3MyuBEbnfZuVCvviPc/cUA
dxRfqBBIRt/e++3qCGCBPTBKOFG+RmpXjusWnJD0mJq3eJUbOk/YiprZ2e5MsdWXVhuWSEzGJV7T
nk5RN+T2IvYSM5jRLDdcHrcRcW5hxjmjEaPBaUqRMojzDUoDyf4Npzvi4sV8qiA4d+HixH3QVnet
dlHbJcnrXALWiOCc8dE61r/BaxgKMWX9ykNfzGLr881WbG8q3tQohb5fn9btproTqd4RR6qKoScU
QLf38BORoA09QldGgYYRoVYC5vSPWlMqXWJz37ESrmQtcJnUUCH22lNFPKvLLzW0aRl+67tCWV+R
auNeXxMm7r+nmiWU6hrq8bgx4RFY9SsT/x5HnNwwQQ0yOJWjNBH6LsAkbFgdd0cMnS8gT25sDykI
/aL7Zh4OYdfk+oVsTJJ9HXS+62z1JH8EWuSZohlZMYkFf8+xJxQgxjjCwXhbU5PBpt7/aBE5BomW
m+TXqKlMek3LEnLkVy7UU/ypr4k2hBeUjjETSQh9caV1Rg8Hzi6Zc0sta+/pnRN3idrGsddcMAWI
D/pozlweADOyp1KIeQg9sCKWVl9xRFeKxz8URQ/j1ts7iHJxQNMOiFAsDZWb6gsaps/BMx27GGc2
tHGk56hTJiqdTao3j4I4mlY3WACfNdbqYxkh0C0jxH/C/WIQlqW/THOLWjVTKO4+f7YRS99Ak0Se
i/YVt6S43fdkG4QKXDbC0tyZmV4rxC5A1X0AiTqWNyAj98sy6jf2/y+tIVLeCGtp0FOlxzXtyXXO
xApG9a9TajrTXmxocXerqzfdop8cNfIS9knwzdJ//E3aXPveu8H32XZJ0cOriGzQPfljMs9F1B3F
aKb4jUsv7vuh6crlcSD5d7ORafC+SJC8+Byw0j1AMhfG9ZNWHWdqfRp0Lm2eGWM8te7s9NhIjtKv
Nlpf9GD2l7Iwhq7DaGvK+XmwaxrXHelUJ+YbmykewCnPsGFyGEWtNDhP3/RdWeHpk7HVC8qYsG/o
IPbaEsmy0iuTfkVyKEQuNGnY0SBY4wKnsNgDLONC5aB4r0JV6G6eK3BqbjdEJxQSQcLLQV1tr3Vb
ygQQ2nm6tdvgfepK+8Nt7wYQv7Mgs9CRxR6ILI09BKmh3syrdBB0c/JwSYKaBAKZ3gPXZirPX1jh
ff3tKH6UwJdz0aJr5QhIRi+wL/JYntJkWe5I1IHf4ggPyE5DZzVxdUS3tLBgDwiOKXNilOpPeGhw
nu/D7idsqXYi/wCzseMX3SSphJM4BWqrrYIstLDXNdRuytmzBYsSGtPyHi0g4TeI5cbP6VHEX8SR
lt2MNQ47OdvQxc6kzxveXm9z7Aez594A7e+KSNEBk7c9LH1scaH7wE9umFgbXXU/ElHA577FgCjZ
2G5+5yo61axlSym+WAdHcVdAFdSQpw9VvhpsE1wRI8shbXOCQRBE5iwrOR8JLsYYnxzBXP+FJ3Cg
CWPZfr2mMD1rdD2Zx7rncaF6cehJ0jqxxvSZE9K7tpBXBM9BWeHV7zZ+2HEkGzV1ZTQ2EMbHWXT0
gyd7ChFacJOVt7Uxl0jbczpfJlVgZBG2UJ/hchqskMH2h7lQppLa6UMA6OH9K4FaD8kEnqUlXnBT
dD0m7w/upNAItplE5ZYnHRxzZ1vE3rpVjVOmP58dMLm4mta0cblvBtTbLMePsCTYuMk7FBh4UuJm
tPdF3ASju4hrsvpxpHFv9EDbzsBIhmyu0yP+v7prSmWfFM6VMdmFfDsQ9kqDaa0yGnePan9Lw4Vm
hHRMXlC7O+NnyYyxEoid07FuPCv0GR15R906lGJDqURXmWWPlVv3Pzi2fh/dY1ee46pKRnwE4u99
b/AAVYVsecX9xT4Ut2bKjv9oHYP/O/xNSXRmx/CRBaKH+4yNMIcPSiJHTITHw2lq2DyhUJns3zon
PozrOfwuLwroPddoevkM/EwaRkVLdFk4vvu44v2Yv6nQiBivbWscFzhyN/yVi5C9aCe63oxp7X8i
br/7D8YJ42axK4oxDNphdauH4aURphZDpgfN0U8L+Jbk9IU+Bb1LliGmoeV9/OfF3+rt/ZgFfd3j
LY5guX5e80szZdzHjgGdlSuGRNZ08B9IemQJRoR9pk+ul5DT7NOpIGffE1Pq08HX5zC29fdKHj9/
DT3tKWP6Egchza+t2dRQos/5ljxhWq1lTpBmmYu06SrnLGaIpZQqgg7IUzh4hKFT+9Kpe00ssbAZ
/E6lEjEQlOKdX7uS4vRi/Pe0ySqOqcDgBIlTXVDzxztUo+GMUUrqsVTfwsCPjLlOLWc9PDb+ZhM+
oCP9EHNz/H2H2QHuyHwx1HiedVnEOmOC6W8iyZ4Lmnl8lg2mCv7qjfz6dhmHZKKVKdzXVI/BBVRK
ZznBHvcAbYnubo8quU3Q+TMT+9GwUwL1/nCC38B3bYBYBXleji4Ydi98MJTM0OHdB++vucAim1RP
56GSh3+Pm5w+W99BK/DoySojS8gCMDCfjULCoXTD4PktJo1jtVmkBNznYzgaoMqOGSUyR2zY6h9a
9QfLhToy6MU/uTGRBtZVio3bs9v8XjUy5w4TZXt0KM+6u85kvkwVOskUUdyFZC8fjBIEESiKc6GQ
WhjfmahKJf0cAL05AQUXtU7R9nyeuwa4g5Q9jYEZhpIVf3DSJcKFDqSH5WHmGhYe0dV4sfFrupcu
MYKaaeK0Ku2LfJcpZ1+d7zp4VJMPGOzzzqfOd2Nlf3aqnkVXsH0RpyszMrC4IBdmZ1AOWHghVu13
NzRZZpkWabZLIEeL6Y0M1kA6DO6CORqnL+jABOw5nCGQ3B2Yfy1jAY2xamJqdz0kUmh4Nrgwhtau
1EYNcb+yV3UsWu5CQ5p33ZMuM+5/EipjXzhwSVcCeglkf1LwujRBwng01Y/lcq2v+jgUhwXK17f8
ZwjXw+KAkzbHpETLOehKx+dalN2KoSzkyp285LUpda6OXXh30pOfJKE75MdPeDhOf9OZzEe7IR9D
t/OLvwYMRRzbMXXEDAUY0WOk0iK66Q2VxB+kpa96AW08dz4EAxKqAkDZOCNcl8NjbMKOgSF1OjZ6
qHyawfm8z2X0L+PYVFp+UWmYrBNNJBpz0x6qiusy9mpbUa7OhMXgS2teueJQ91MRvsOkRF2B+WpO
xH6gMsa+758uZWWgBxJSjbHf5sHeBYOOWhI2RHpkcUS4jPcrUgDdFRgEKdmYRW2G/dhI2aMKiT1y
/6aLZmT+rIGr9/V3gcv5R3NNk40cQWi3OD6X8yNYzlIrcRA3zI/8F1z77JyibKHhCDe01ZDgBMLC
uKx8n6G9ZiUTcicDYid7AwFzjf/FgSUlDFya+7AkLuJ1drnZ6t+g1RB3rN6dpzIDHmKYMMVI10xe
pZK/oPhTCpo3Y+XlH1eA95khNCpY3xdmZ1AOWHghVu13NzRZZpkWayx5Xa6M9ZnGUeJ69I3FRBPQ
N899Y960dx1ZGf5/p6N7cTPcofXpJG4mvaOI9bdxxWDCVqcREUCQ4tOfmy4XC8EStPtGBr2W16SF
r+E0GAb/B2jERBJQpZTXe92/MTO1jlmouGsBmK1tDiSYDFv5mUzJiffHUsiuOH8dTBDn2/PB2qfx
/hDN9sCB8zRbsjQjnTQlIIgdvGDkjM/Z4aw73fP7aagfLTYRHHUOVZ4LBedtHJpvVJ+wESQ11jzA
cGEFdmfCWag+oNkt95j+UWWOJkjYzvtsLxHj9nTp73XYakRAu+c5q8lKW1QPXi/aceOoFhK9TZ05
w7Y3D3NQWgq/k2srzFol07M/u3xarZrywEAq5qymKFos1ukYuh/AQK8AbP+6SJY0qONPk2klgeHt
T0OWIU+SlsOJpgykf5oP60zC2/D6Yi+/ws+6c9Nb9QfLbZ2vPGomKJY4C6/rdkHq4U3UBybF2zhV
YfLSWfBjQfyJHCjJQwH2tQNauEP0V0Mw9hwrmUxIyR5GsEbPbStV+DQthBszi1EhiCC4pqbuSuj5
CO9IVTnAHGgvPG/iLlhLEZezzvXdCxN2Z404H26KAhWIk4o6X2i13OZHeXYMFBcMx75OLC3yhf4E
Gzqb1Vd3NKGZyc01sOVBxukRbyBnrS+bYuXt1v/auvagg0qKNju+SFqI2KtzdOSF6UTPUBQrDIS3
KyzzUChjPxod5qPcj3oBzdMEguTcQjs7nQ4PwRhyhdu9gj3wPwYIVqutHBFD01N0mfs5iVDqj7K9
enrIID9CElomUhSZr2ghHdIK89NKNJjyGwCZmsxHbbrWK/bO/RyCVAIQPZO1GvfP1VB46RI9Xuwx
gt2LmjIi1PS7nEKH7CFFIimGfziLMZqAnq57zpp6tbHnexuM1/Vhhhg+waUvdkvPWADKryrQonZe
5u3YQLMJ2rXKsGrmMhXnSjd78w94rmLx4gl1F5Xgq2CsGyYQ1yv1wIMqpj7ncfqGxCc29doHvNFx
8K3mHWOforreGBfYqdkW8X35aW5fPHUyC0ovtMMikppwOiHuCLu7TOl+hwEioKRsz9a0FYvgbHaM
c/eYjlIFsejTNF6z1yWV2iCZlGklcrAJxIrLNohbdNXK9b+mCeovrJmPngjflYziFgCM+/wPJIbD
tx8Q3qtcuc4ilLxxETIHn/CfUtKD9v2OpooyVpEGykqlOa1OMe/t6KTTQSENR0cmG7lhHbIpHyrS
WFv1Wea9oWhaL2i2F+N8vTMutXZAykh4zxfoIuOVdj3mTSJYcVoVmc2RauTaE7d5MhMvvTuOll8Y
3guR5zoq/V+NxM3xTBqdC5PprAcYh2Rq9/qIj1aJ+ygb5atIpGKOw5KhAmXyRHBK4rBlJZ7oIcqt
aCslHfVlJnsCZmzsNpEkC3vpIcCUzh7dYwHtkArjwe1jlHG2ywUnwXkn54+n2QvtKbxHgFhL+LWy
/5+lCMaZ1FkCY/hrA4zVCUPN1bMq2lb1Ch5H8VUTzwPdYaS5Bk0B3WIOf31j6BT/p9USpa5Imsgz
+EJuXSc1gabSdNzQXBvwTtVD3jHBpwFPS1hU3SoGSD2Sqi6SzrPMwLPSlsMCWp0JTyZHfVjeH8NI
mLI4Lxrz2vLyS4gbpyoJdEb+jaTRd2TGmwzdZkoJux8CBMGSZTlGkDaJONMvXQYCznjiwujkAHoT
ZXLmw7MxMggZN3K+4oVLVx+amFUH70q8Gn/03dBY4WTYi1bm+c6uYfu4UMOYN3qLPEpD4vfleu62
rD/MFIKffGeZkjTTAv/wN+RMnLMuqRF21cMpTjBkAW6FVLmx2jKD1yP7VXy8Ue0AJ6cLGaADne+f
0K8+BFgmnWfIPqa59TUYFeZhhf7vbHYytnm+EHnXagGPhx72+M89uSPVSepMjiz+QprjyohfyCbX
qQC8lltY1vEMF/++8Fep/VY+dZv4DFNS/TfcV2QjUy0MZycVtvzOVUmT5cLm7kRufxcYLSZvl4yC
InYbuZk+7Gu8072G0pMWu99vJCcmfoTvtZWYxdfSJPfzrqiWJxo7bbMb1LlJCCsmRSfMshYD/Pth
HdiEQIo0fmZobNro20xRnitPdegBfKStT+k7rSxYcbMYe+GGrvk3Mua8/dyA85+J+vB91EN3+ioz
wOtBsQtkwUJa30I011zPnbpMLD+RkSxIXF2sQ8Q14vVSfWR++Np2hDa6v6ys2U/uAhoD3c3KeuX6
e1NsmtEc9EI4nrOWSW0Vf0StF2E9AZ2BOjg4+/C9EKDiUjb2Kbd5PI/azpJ8j74JDf+u/2CE61Nl
HaYRfWY+NOWn3i0602QV7oUHUcEsbFtQsxZQyy/kI3SdG6lNgv3oYCdBSoAljvSEPDnt1k1Z/ZTm
mNCmUAWk2Zv7NOkA7owTCnKgbo1cHDASSGvL5cLV5PdWy5XqTC+fRUG0rP6cpmbEbH2tOMtMARiH
aUSARIAT5ZT9x8DUB1z3N36wYuDR2P5WOScQMTcDXxnRYGungnrDakrk8W7DqGTYOGLc+bcaj7Om
QR350N0MLOEiZ05PIMtQNOZguBTp+FfAmWtZLGBq7al+pxlJZ69M9t8w1pY79rzN2zngOHRELz/l
CTqzamIYKmqJmVFOiuEnu+A76oYBtFNW+BHe6xt7GulZcN+lW8G51lQTSQFe+3M+BodpgOxcEXU6
Trxw9hW4bw+UyyJCuaGhadn48o/LWdWs2TcVC4Ws9CYrE32eD69Tj4g93noCl5wW2FFMpKnWwc8J
NXQ4LTJWRaGbrR8FbOxJUiJ6TtMUiqjyAQ8ZXCFBPc4otDQWG0zZOFpaem2QnextuugzQTgWiEFN
TaqVzRrP7KExR5lACDhlR41jgPXplDaCpRZCuifJQ7RgBj5C9tWL1WuriAfOyKj3zhrRSXzi4btd
5OqY47FyvkFv6g01nL4EyDIwvz8awJaYzPib1ahAQoLXr2gnlFdzljPbXLum5kpZNxpS+Z/ykOhD
hib7X2CIWQ7zy5TuPWHD3v1fmihXKsyITJj0NxyTPgvTCExNrnSRWoWHJVAeOHyhUxTCRpHy3lZt
xev9q6x+zlXGFVgOLGUFJtWujWDGg4s2ZMGlLT9tUfbpt+hKXburk9088ZcTCQGl/CeCdxIC76zT
OBfXuut7lVyriG+iZ2X4d08Cpc/pJr1IkZhdaM/XrXdPPUWypcHN4rN8gE9QV3ttEwjdnEFMXvMg
V09+5sblrGDTScw5Snq5uWT0FovxklkGY8A9s0ir55LbXn23MxGgB6zJwR8xAjEqPPxKqXN3Zrki
sy+VamVpMQ4pCrY16KaLsew5zrXEJQBpa36SVIHh8rTZD/uL4vQn0znR7rqtWLCUbGrXLTCDX9N3
4Ax9vbw6K1M4sUyT9wfQNJmdaWetBT17SE715pVfm7o2WWShJaB/oztSHi1AGAoIewrex3i2D+P3
GktVpkVzX/4oTF+54N46yEIBPGhqSdQnzNDaS9KlMwYE0OVX7gNmK9Ma+QWHpFrnQu7jXIpVva1B
DRMxDTMhE6zci+USmjtH6G0lbkrG2BkIjVDGYGP/7CgRuT4Evravt//6ztWvtR6ERAfgQQ6cyuXz
1LP2PXD+0azqW3SzwUbGwrrhf2VYD1n4MV2EWkT/tGqTzuPooCY4glQvfxA9FaLZfYI0AIb8Nvqj
uPrfO6R+ZuO4kyHYYkTBW9JdUSg9FT2Hhd0a1jKjCIcrXtIbMBQM6Dr3cumOjLMVjAwyTGx2L24j
1D1cp57vPUl0sWmyCIfc8DJwi5yuV0BwdikVFYJumF3onF4Nc3W5XsFJ6jDmhcZ/c7F4bfTtf91b
KmxQl+xQxMUqusbW1VyW3Exo0HPwz++6kLdKus03W5svRLoUxhpxaR17EIX5v6Xb14ve8g1MIr5Q
qkTEaere4/5uUZ8996QtzH9q2X9dBpcgSuTc96byjOYMq5KMzP0oQ6txKLuNwba2e+OY3vRI/uzB
QN4Q16oyfkd89a9o4lQECKcRmAasCi60X+cyjnNduXQJZ+aIfRo6TChiViiRGPlayYrCM6Zqcdnt
fOM2gvhBj+dE88q1Pn2UDux013Z36ziwmP/DpHb3q9tY8Ws+A4YvLM1BBGWgMeH6KNKjJ9/1EyvC
nMxaXhlHoagGQuc0MUSRWWlCKPTXHjcQlrgXFVWjh7aiwXCTyVjpYMe+pmgszkDQTWHiujaDBVm8
Ho/ww9eQ/Bwv/0MwuOcfgWBoCB0yWDOu2pbA2ow0Yhao+WL3h50GO4uA/4EQNqmTcMJLEZdjkkrC
M3vrVa2xEG4P9IY8Q/e0zE5D/IFzIKPLP1nBMRoah2MpmIlCgJVXAdcT1CBvephLyodQqLz7M+D1
w+33x5GRgs3Dra4YeDyoEXfibPgo/tDRaxaYfWK27Sbl2Rdbs7pwMD8sAG6qM1qQbgaMP7ETpDSv
pLLxXtR3Zzr9EkhL65zgGh442uodIpRKyRAWQezNkrZLdaSJdoKzyeydhmHyKPk8hvqb8Qk94UIq
GvcPAjXTA9O/45iu4na1/zZKKJIi5tQlHfQeBRivthFA7Zga7OjRPcZT1ZJV+GjvFY7ddr2LAYGC
UqpF4BXtIpRb4hqd2grU2SYKobor1+VTGGTJDwJ8wzdnpYBXz1Ib+DYqWqSLIoz2juADKxlo64gR
mjddSYxNfd37Ig1ALzyvx91za7DEh5YkcwAIQZ3Ixha6nxqiLHJ5CpfOcDqqbMIIAHi874uqyJdy
+/5l0z4zbZWV/TSdC43p09Vn2saRZppKrHNg+LhwE7N99CLmGSTqY0hXf+7Z3rBJ9pTrYBGTIZFR
GzpJh9gA/yQD86nGoCsD4T25nWnPp8TxFT9nKmcMpulMi8zHVhpicMeXSqKm6K54Oob7SA0JLclo
g5V6GsSUlVgSNl86xmAhW1dFWZWbihMGqnRIQecHNr8s2t2rdiik3owG6UJerLKeJEHFa5AJPqT5
2E1U+2L0tgBKby+BFw9SVIgIw2Yug/mX5Ph4RC11BkQxz9u9pVHmAYUdMfVOYAKhcnpC87HGSU5e
OxT6CRy/0FUz5Dh54+sC76nvpZk4qkJLHIf1Ij5sNovMbDjvO48swuGCVeVrugxPA6ROnKJw3Dpn
7B4Kfa/dcrasqKXHaw8l/35kVYSngbmOgFIKWm5Qs6tsgxSyYyATlXe1i3NcH0TF3kvnkmJV/QMC
RqxoeISjVH2gBDiVHdq/p4HV7iEXn9//ZV5M/at+vfHZfhUR0l5Q1BtUzcgQbkesI7kg97U1GT24
+IH3R/C03kMVaD4gTfpbksMZ6ErZQ3gvya4+jvhr1cvZCqpgij9lwPsS0kzQF+OYrZ5Ovw5hyDob
H0isyhR5E46M/32JN2ZtFlnd6O5m/DDXDjOTNOr4CDXKahLFA6lbOnM+Nn5Q+qkqWZb4zSkBkmPv
Msr+7SP7wPesWBlbuiixE5T8604l7H6qN8EJfTPxN+TjK8aNgoBHKkqKmXW1cn1AA0RkTQwWpVXF
D2gmdQ4qOqOc3xbcagAGTXB38t70lfPa1cJrBsyGZdrxPSbCS8J2vF9yrBND7knXDs6PPlaGFIf3
p23Wj35d21ogCh7kEzuxmk+z41FM1bB4xBci4Dj41P8Zl8ZSSO8+5p4f5o+wb71Yv1YzctvTC8ty
fDS+KBCY3fllcL6pZKpNzz3Wtx5xbyF3yzOtDRRuM4y0/WWL20nhBvBFMHCN1SQFKHzjK2XNF2KB
xpt0su61PnWwK1srxKN0VQpVtstKMWglrXQ68ktIcN9A02lTSVInFaa2r5UQBwJzUrx8lhLPz0ei
JSxXKqqxX+9+k09dBJjEvk0ELbt/W9HpFP+a3Zs8h0XhXAEpAmlq/QZNwkI7c4WGAMfZ3FRGlOJf
JZsDlVjaM95+DDSw3zaoglt3b6rvFi+iTrF8mfaXFDBSmz7hSVVOuVJooaB+bnvNHuGfElZaBJ2w
3Cfvsn4JFyhibd2rLzJUDBgtFF27egz87OiqaEW4A2Uc3itCcBir+6tqJ3Gg2g943HP6qltC9x25
zSooBJBufpWJ6sCA/lxOVKf1EfaTes7D9ceTjCnChCekURA+JvwESH417FQ5cVv9j4VIs+E2sQcC
NO39yGb5MV/Z8RWI4T3wOOR7UxRSKFkq4Ov8/Gr1FU7/PtOlwdsToXvlR2C6svD0sckb2VrfFkXh
zwdw6rqMgvC3AZYGg6wQ4XzFw43UEUHFmfsFw7fcT6pqrKeGhy6xv4fk0VWU1mKzxbNAGTgzlAFx
0D2nbAi2QhwTkgaKRhO5lX+ol9lwUvRLcqH3Oy3gteUG43Kr0Hs0aU4ZqkwPVw2wt2f06bODqDMn
he+qS67gUJLz+DcKOOFCqtWNuuK9uaLpAzgf49U8J5f1gv6vbRefEv6eHHgcPL5k+avc8G23Q6df
wGrV3inSAv+QwW+IedaBJNr+yYStgaGfEWiKRKZE1buIvboSvN+f1rrsK9y2RbfZyy1qOi+lLadY
da3i54qakxwVjV2WQ860UiMjzuaZLRJWey1b2yhpKs1/n15OVD0oXQQJYoTy4l9HLorIhtY5IHAx
a0+3VaCXnciRebpxOYCBqOVA8ltPiVOK4GwnkT498kDGcfBctFROEycavYjHjud83J4XbUyfAXRU
dbHjlmZamglE1OFFG9322lEkMVTdRs0AUIpdJZ7ngy4vdBhPXc2/wobcoQpxUrRO3cHvGF9trcNj
DuAb0a6xnrShyKtTz3q4grtNj6Gs8xtvoCzbHc7r/u71rC92R0dlg1ABJk9CnadcqqlA1aoLbulX
B/0W/Fd/9CVzmPYoSdj/Klcw1Bg8GzyNHkBnYSV/KEgqhj6oDLFq7toyTUtxI+37Yz2erQ869lrp
KpCJ0ssK6Mb+2fNkGTIANVr60roxAWoVL2mUrpE6Fg+EbPA1i+OiIFu0ELPhMd1hXRI0WoNgLr7d
L8kP3Dg21JT8rbkXn0EjvOwfJRj43uFKO7dTmhl16CkQ0Rhk3kfvax36qThaYp+oXk6gmjwYhjSU
eTiSl5adQ4y5uJN+4swJiJXxUjuDc/p3ZqL5dKTedV/qJxWD/brseVCWVpcty4O4rp7M6WsIRpss
6RXB0i0jvVkp5PQtUUUfCnkuR4U2EIzIRuXR/3X3J9Rxbt2whu4+AJ3mCGUxNxck+jWiFOJU4fPn
hslvmb5KEgpfP3G1uepsQqjJ4uzy8aemvBxO3j0MKJToIv+0bhLYvr3REKi684hWKVmrHll/pUhv
iN6mLdCvn6IeOpEN+FBazssTW/jm3JDQaLNEoKgi3Kk6PtuL4BXIjuZDa18naO0oqvbb66Mz2Ji4
uzuGFBByGEajwKtjo6C0mooqBzd/hrjbBybZR6XgPRT87MPqXq7WvEDgvohWO9ZmE5no5YDN+Om5
6s8Ut2hmqM4W9nyGSdIxa4wYxGCYEMUxlvH2beZzBMgVouCZG4OTSXrGLZLf2b5vALHznfpXNaCL
AVBkOoBF8vXE/qW1XnYVk59O47bYoBNuq1yV9HgIxoNaUzNxJ8YGi5x5GmaS3fm8XR0XVyrWaqJ/
1WNnJFF9LUFaSrmqoa2rP6QnKCOE15VMHrBRAG9Mmsb6kgUnLTSGzp8CNlI8dmkvIT4r4+F5gxgR
CdXfmXxyJekc35vy2SXFCCiTF1pqbrbsVw4fAgblbT/2ERpQsLhOtdGIbJuHaYX7vEHFnde4vVGQ
AfnnoBSQIQQlXDI/EhKa5YgnG9xQb+5LsmL1Lyo6LxNLtLXuowM5LrxGOHZwXO+eS+J+eBVWj843
FIi5gjTQGnmcENUKc91fCbi/Q6JvPDuq7AgX1SZVlTrj5G+v8+JdOiwLOdtu4SzAhWdYZPp1w5wg
grQziokoOUZuMUuEBZDYk4YuOdRQu3ke6CK4BPHyLZKltv6vXwfMAMq+fW839m7BsLq80Z7MMcQq
0IBuDJcfIuuCQ8IyB7gHFqQz+0hQT+JNwJUj4ys87IHJdFVazdFEHLotEZ9npW3ShNgd/zrWx/FW
usY2Ev4u6IRUc0rlg+u+3AiIBhRbwIYNB9PAF7w8kYrV1+7YtKNjxkqtuywH8icipVmiMYOzNWOg
D3ayPp0Qce2O9tjYZgcI3+Ye+4PqvbSkzphIW3cC/KcroE6iP0YMLekfOJDsAxOQlGNG1ED9dhY8
2I5Tqsyw9jtuF3wJRn768scdclg14QLQWxfDbBV1NFldCRV9G85qvsZs+Z4dyMbhkW9QxumwIvYD
X7TML0xGejoKiNvv0XCgvWBFP2ne96MTB/EmqmFf6121+ubfHFWVD2oI2GNvime4S3962kqDENdO
16oIl5ouGEf2fiJZtif9xGYFimKxej4Z9dtkDP3YIhythHVpZT8cNyJFzdW88YAlbOeDU0VvptwY
kUR63Vb7F2PAzczYPxDNLVjNazsauv9mTaV0ouK5uHSrqG10WvcOKt8nxJ+crhgejD3i7GfED9yT
jYsfnOgA0azWqD8C4UmSMnOMh3jl3oIUO3B8zFaYNgI7kZbhPalBNE/uTetcrc0nKvkAEFWICuQT
vIt52R0nOIDqExAy/9WwsJ711JWgstybZiQ9hDloXFQMKQiLQSnR/R9oYGtTYZqn3c7QYrghxMa/
lRdCeC6Tpdzb2xGs0z95wUsC8CTrRBts6Wd+hE4c7LZ8WKUUZ2FkL8+RGYdTzjcgLZaG/U0pMaqB
ouW5GSkuonDAywW2BIsvNLV5HRoZvkH8TCv6K1ZWnphfkSRsSkPTx9Claz4EJqLZUYaXd8a9Ft7h
Smdy547Fhdmpvfdp/4EMLGOJggeoOxIiQheksee+qsMkAQD2b4IT/H/UIXzbF7/s9/NcACXoIl9B
ZE7K+0u+CmVuZHN0cmVhbQplbmRvYmoKMjA0IDAgb2JqCjw8Ci9MZW5ndGgxIDI3ODkKL0xlbmd0
aDIgMzI3OTQKL0xlbmd0aDMgMAovTGVuZ3RoIDM0MzgzICAgICAKL0ZpbHRlciAvRmxhdGVEZWNv
ZGUKPj4Kc3RyZWFtCnjatPp1VJTf+j6OE9LdKQzd3d0p3ZIiDDDEDDF0tyAgKd0hIAgIKNIl3d1d
0iUNfsfXeZ+j53x+//4WC4brzmtf+977eRYLBhotXQ4Za8hroCIEDOXg4eQWBaip60CcLME83Bw6
QFt3R0tXAC8nNzc/OgODnCvQEgqCgOUtoUBRgBDUDqBpBYXlwiK4uUXQGQBKQDDQFea0Brz2BqgD
oZZ63s5AHgCz5T9AC+IG5Xht6QZzA8G2IDCQBZYiB3H2dgXZ2kF/1+Dj4Phd6Xe2LCdA1dLKAeLp
5gACWIKtAaqc6pwADYgnzAgCMEPAgNdAO0tHGwDEBqAHNALo6yro6AKUdDT1tXRZOGGFdd2dnSGu
/8dFTldPX4kdIC+joacAABqwA5T0dfV+/9QDgmH8bdkBGnow/+8+sMDf6eoKejJ6L7UUeLh+rwHA
A/AAurqBfrf9H26MMGaAP9RgqTauEKd/GgCY7aBQZ1EuLk9PT05bdzcoJ8TVltPZ8R9+enYgN4An
xNUBAPt0BToC/xHGHWwNkxNqB/xXgd+7AlADWQHBbsDfSYqQfzmdYFLCkmB26H+IwYSA/q7p+K9w
gBsQ+F9t7Czd/slV09JSAzhZgsBQINgSbAULhFpC3d0Ar/6xwb6B1kz/IggEyLm7uv7uof5vl+t/
2vybuiwEtjJTR19/S8//3TFLsLubz1/a/PeyrSBgN5Ab1O1fFYEAG5Aj8Dd7t997BgL/Y1OX0VBR
VNDV41CDDR6YQx0CUwfMCfWC/hP9u56MvJooQJhbEMAjwg/ghg2pAthaDuLkBGPthv5bPnkQTCco
xNWb6/8dbAcwxBPs+//DYQMCW9v81t7a3ZlLHwxycQeqyP9fOMyE/sdmC4QCuAFAFwDQy8qO63fD
f+blt5nntxkmhL+vM8QZYGPp6Ab0B9kAYR/ovm6WHkAA1NUd6O/7t+O/ETqPEMAaZAWFjTrsuKD/
U10FbAMBiPzLDGPyb9f/DQHzP0eVBXZOrSFgR2+ANdAGnUsDAoWNBPP/f07a//RSdHd01LB0AjL/
P5r+b6ClE8jR+79D/yfEEPibLbMGxNXJ0vF/fCA3RZAX0FoLBLWy+5e0/7KrQC1h8y8DtnUEwrbl
H5P+7yPlCJtd2P0D+n19ATh4+AX/xwcbSysHMNDNDcD/rzQgTIj/YQxT/zdfAJf2Cx1dNX22/3ds
/olTAFtBrEFgWwCvgCDA0tXV0hudGzYLvAICAF8e2GBbA73+GRYAFycYAoWlAJzdof4AG4gr+u8N
FRQAcMn8Nv0LCQK4ZP8gIQCX3B8kDOCS/4NEAFwK/0FC3AAuxT+IB8Cl9AfxAriU/yA+AJfKH8QP
4FL9g2BcXvxBMC5qfxCMi/ofBOOi8QfBuGj+BwnD+un8QbB+un8QrJ/eHwTrp/8HwToY/kGwmi//
g0RgPss/CNb99X8QDz8s9DVsEGFn8D8RMJPVf5AALN4K4ggbhX9b+Pl/W5yc/tTk4YZJaP0XhGkI
/FMBpsU/4/lXAGyZNn8gL6yjDehPAt9v6PGnAg8frL6N45+A3+kQd9e/CsJSbP/sL8xv+/sBDPw7
BEbb7s8iYPLZeTvbAcF/RcBsoL8gjLf9XxAmo8NfEKbLH0aCMIKOv4/EHz9sTU5/IA8s4E8rAVgt
MOwo/eWHSQb5ww6WDPkvN2xFzn/csGLOlrCnjSPQ5o+q/Dz/Z3X9L7Fh55fLGegKgvzZIH6YWs6O
7n+x5YFZXP6s5jdyB7r9cwP8GRXB31YITNT/3kwemLB/6cwDU/FPZYHfCOjxl8wCsHA3kNcfMjAt
3Bwt3ez+KgHr9KeBAGxdUDtX4F8TBVs/1BPyVwKshvufAYb1/OflwM0K4vq3iLAt8/gLwkT2/GsI
YUW9/oKwrt5/QdgG+PzhDKvkA3T9F4P/vvq0fj/+/3mucf+5C//vvegfrAt1hTgADUHWsHfCv0LU
LaGuIC8TbthDiQdmh339+zez/2rA8Od5+le2rCzEy5eDH3ZOOHhFYFcoP0wR2NAI+f9XrtW/XlH+
eSDCLu1/49/vBwAg0AtohT4/A7ESC7NP/RJRFqBQOFaOxCDCeVhBLGmkmvBsPmOsmYJUPm+DFihV
FNwQlMlYBFFTFjULSAkGlxgxhBE5Pq18S64cvbTWlt60DFAPoMBWkBnMNeDUD8lUnwsqb6Vl+aGa
W/DyA/9EZmNCIxVAf3BfTqS57TaWd+QX3vl7WtPyxqV8JM/iKZ6vhK6O+F5zuOQtFHNjLfDQX7eE
72IsO2XmWSdfFUQQD6oiO3e0EWzBxxRLPbxl3soUvSFQYL51WVnQ/4FiEuXWgkEJ9zyQnrLcVgnA
lGSKTuyZ0aVOkoL4ZhQbPqHIrdU9uEBlTI4pJ3SfrB5vfO5OhO/C76W03mJIqsLhYudeqgO9aLqT
ko9OZoRtk9RXLwkMT7EUVgVAfGb+gernO3Xh4Uz2n+43a4+f94ydXg6iP22g3tTPv0KNTqYCZx60
cSIMFkY8HnOpoiuIvscK6oeXrdVco7jmssU1R8RTJ31uLxKPaCx4VnGiuBdWSsoNkI16IYucPf3G
JLVaaVKzzVVh5Rq1fhtul7qi5OdL4Y7+NUH4M9xv38DfqLApjaaTq1k9qcOCFCFLUGE5RQzRX6S2
gv7WWiQbH/odcJrKSLPTzT4i0VSe0t8189mxLUYgEZmbkRJsiKmmxc/pLLL2crjLHcXy921kvHGP
O60XVCOyl6ARG45/FcUupLfWt304N2xshJ1nQD5AFV9h5smy+qFmdKg/toGl4/M+A45GvdpqzVuD
+eiHycTLBZWn3KyHZAI/gbtwN9n4uFF1ODIgsrUmI94vDdvqRHoSF8attZeznWUyeRRz7k+VzBHS
ys9XDEpc7ru0yb23T6SIJBkt5qSVXtg0cA8YoymY5le11tD/4gNWhqgtrqOTVMeJKjGz7xBioNlM
HYQMmiCq9yyZObaCKdOJMWouS90VtmYmDwO423RurjMiocRXmU3mRSi6WFr7T+/b7NvPPUsLDT1I
BbfSz2lKln9UoCNWjp0k8HwGy/HyUmtOZ2nXE+li7JPXQr0vKHLAydtK6BgXzxAf65+3xvgjSVBY
XMeVDsBfjICp4gylzPc6Q3gpVL5KZEtmdXfBmR2oFRaEvOV4O1yhcvnpzgUeyRwwnFYHUFBHZ/d7
IcLXHFyBc0r5XHvi9UyD8ew3Z3fMsZlzLezFjwxdirf2r5jzcZ04SiSLUTrHP1lJ86qwOdMlq4/f
PmJuXF/aFlHNFuHsRzRNY1iblAZIZKYVoiHwuf1yVyGRs5Yn6DzKRlUuuuPjMOJ4++tibFxybSsB
4XBjhj6v+PgaDumlmjkOivpPc0T9cr6e9vPpnwKfkuw4w00olh1/6L92DWvOSEg/e/PIXt+aJrIs
4rQtMx4M7zRzaiDKGE4+vbmGMWMJzisijucQrT9M9b/PMB863Hz1MFmTp0kcAqFgDD8JWUt8K/y6
XSD4U6DpPZh5fbzPKcvmCL5Bn591axEniB2PxR6jpYtfsPBlSj2m7P5kPEuw2tsRspXn4Ko1JY+S
DeHXP2jYqeGkc/HCPgnEQkz1eBfL5jdNMWNx5zPlxSi/sWjOqTGaJKmiGlZuxRP6GTcc9LsNx4oo
bmPpGm77zV0LRK3Bn2w06EL9SkbjsXjpWQItMQsvPr/O2XBdTeEutOgh1OHt8p7WTZGi4ZYoHHYp
03Iue5KrHJiwV0N2QfNCD3ujdZ8phhDee7fIXOhCicwk5n0/Kfc2i3Tnck+78xxR9MmpiCA/UhyZ
F2HlEmstpF6+rsqFad/J5N3PPDfttABdhv1YlvAq31zCfXY/bTSb4K8u7IlM1MFvHx+ib9CympeH
f62br+c2eeNGvwRFGei1o1twF9/ALyqk8gmRComKvXv/llC6J6HmzsVjbSSRCSuS1QS4USwtx5Y6
HAi6ti3xuWhcY08qmsn1QSXmnLt3fKlB4Yjber6kF+KXIRiK7IXB4y3RZRRNgm0M+IzhF+ALnfah
43Wc2+Cj9bigDR3FcQEd67R4ePF/lQhP7KdtYFZztNYxUas9qPQeNZ0iz9HZlBpXdO6BoGDFXO++
8lW8YnRpN+1yIcrFsvy6LnibrRmxVjL49OPt+Rhl0DnDMeHF4zvPsUqsxtHn/RTxHeROQPxOX6qV
x0pJSVt+tme8/e8fdtzEhCguXvELmGzs7j5l0vBvnrR2OBRXo/m7xnu66Y1LCxF8zxZt3Xh7R7UW
7FrT+cOasczbU2lqY3tXQCga9178CWTql+EZW7PMpmdx+S0plvMHQuYMkHGwAAORjtG8RqrvfZmb
eEtuZMF9L/1r6o4sqdcyssHN9eJF9sGW04KdY/Dk7AsvZmfJtYnXMUxG3dkFs9bEaqGWPhMIcFax
15svc19XM9uHPkX47/EtCEOSKrnoKUxL603OY1uIXTFqutkzUluN9NgVTg2Va/Lz+Q79fw0xmCMd
WO7ACSQ7grkRrCHD8G7RFd8qdZrHZkayd/vHPvRwOFL9kv6wxLTVTistSVqZlcdm5FkvpDTJwzi1
xfTo0/hk7EJ1zdrNZLG8L/gCO3akZHveBFMsh4ewfIADs0X2wBcXI51PAk5GPypaY6r71fp5qPSq
ULn7ouWBCsvH15EcVQWz3mnErj9nmcLIxiQT66lej0h3mnnhvFoMOaTX7XXK2zyhpVoXxx1RxI2s
RjJ0nIlkctFoXqhZA93rs9Gr0CwVfCzAtxCUFTLAHnjJIJY/n8tH52WXq1kD3ezh16v6TFia/II2
fdZCf01RQ7ZmLs/p0Xl4MQlS+vXMxM6Osf5Y3eQV3tRTFEVCbDu/KDwqknIQrcE9viFhFI6bSZ5i
lJ5O1e6sRKqxt5iOjGd0gvKAvXJv6oVa4uDUHiKPfyfXZP8cNfXj0DIJuiMI3T0feJ+NmbjyGrr7
jZ9CVK/UUp/IiYi6XGnGeFoAwWP4mdcQic+T4bgJJX1AYI/Y8K9IVXcXzUn6xzkbGY3p02X2X4pO
5Qmh2Yhxs4OtoKQmqP6gkJoi972M0LSFB+obsiDW9sMVxfjw5q6SZPWMHYflHr4T9DYgxaQxmpvD
wEAe09opy/dZIc5zlTsE2w5pghzewj4u8hAKo1Zd23Aog4B+eU+WpsUCzfhGo5S4v4qreK1WLkt8
BlymDcOwbk7yuAlBM3S4Ffxgk1hzSMgZ4bhrQd2SPEbOQUslYT2mPMJvgNEG3225UdQk6pfxgr5d
JbfGkgCgQq68MoHocueAUAyX8FSlq1bMvD0X9xhuEyVl8JnSAvkCe+M0vNrhSXSNIU+PCyvQjuL0
TgT5HI/QN19xNub1F67WwjyF0ItuhZiF0cD8nl/RV7xY7gg89Tr38We01Z3CJJjHHm+Lv7TMjGtj
3zuc0JP1U9BdxSebVQwkHsdb3nWVrjd4OoKe0gEB3+w5HWlTDyIMtnNC5hrm5rv2OsfDdoCOT06s
5Ha9MT7eBQhNxs+IXN/Pct8+cYklET/IeJpdnr/ppdD2HQ5hbsupMkSlNly8ndXw4yaxJrV6L174
0YxgEAkO1yFnehyMofA4aOveF6FbHrwa9fwy/lvll09aLhyo0vxAxdh86wYOcak2J0rf918ZeXOe
CS7g0Lu+PbPw6tv7OHBQbREpIKvZi7K0g6XdXMTOJMYpN4eAR2D1ZoR1kcItvgHu+4pCoXaui2Bp
iAtfeh+PsGY+YwaBBVCUMYw9jdeTneggZM+W/1cWY4Lv2fjdVeLtaFFMMTVJ3aEggjtF6XLUxvO4
RxLjnoU4RKmLVZylQE1b8yPsz1+BsVeR/R/c5/fFXW1VDchEHrnGrR78edEc7QM0UJ9bLvtIzQtJ
ZQS+WHiYNmlpPaTTR7aoetpzfPuBc+rHiI0CkUZHLQZPlK0nZKIYLXRwzR6dZjGdoyWYHE3Btx3L
j9Fu3YaPqI57vA+LQ+QmLnJKXzqlgCF6SNQdO3l0unPi44zAQuATSYurTugIvHgOWpbo9Kum/g+s
WrW5gs5yjTEm78PgC4eDU51opCt67qRemW/2qeKWfdWWLboBM223GcLfTs1tkaBfP7aJoxFzRmv2
DCt1aJX2CrWmE7WhFgs+XiE3UHHb512/y+kPVY3NyhRyytTNPLrfaku/8FPlL8k2YMJpGuZDIXSp
IMiKHwmMRRGNUZryeiJ5U+Xx7seTKJR/W4q5XSYAY6LtZberVCNXR35VGW+NsjFRpOCDuSi46EhV
XciEQ3Zx/CuWjzli3UPage6F2wl9KefS0YhWdqLD9Gb31U7n8U82Rc0dXZ2fYK/pt2driVwtk7PN
dgiMZ5MRVM+93zMH20c6QhrLb5iwEQnD1yW7KWQodUVNezbqDWoFlQ1EsSzx6fojO7MpMt/0vGyb
HxK7/U4h7SWLhs2fnhwnt97XXi/kaCGIGkXnvIIiStIJUkEY/1XXxZZU69Sl+et79LLTPT/ShTVa
nad4+j59AblMwVq2VKjFnYP1h5NsVeSxhRrzCuie79etGK3Ux8MAj2QC+t09KaBs71QOMg5FUld/
15KaCRKXlCyZEYdCcmaMqDfKB4bar8FWZjNal88aCbt+TE4neaQZit31vGjHbP+pfoOgxnxFznrS
/djlpiq8lQYi6XKvuSm5r1qTyI/Hfx+LSp882GezhQtcaYPTPmZ/cUB3RDBuemWsNyLYzUZb4XG4
awfWiD3IuDeHdB6Wg/Y/n9h7njk0HftTcNsxCaBlkWjmSUqrYeoAr9q77kI16Xgz3scJWy2uCU8T
342yuSDFDKd69O0pCW9LODSXxaQK6Jbi9S2jwmUyE6nMiGuiJY7SXZFMYY01f//ow47VdBPQO0OA
69HI8CMmNl5bMAlNcyJFwo+1LP+gY0HXrN3izHyXWk+u1KNDmjV/ReEhNey4EandD5F45Z4p4zsH
uJ/HxfFlQpHj+VYpUnLTi0ltsQ6cPIhXI8orRTQ8dF73WyMK8Ql2CZ73bEOGzDMmEa8zSPsFP0qf
r2rYT5YXkXnQ1++4zDbZnVPhWSG+w+KTVjRVafnIt9EsfBwZedJ7d1M0jnUT4xbXcipjEIc1rgE1
mP1O2WAgLEH+8RSQ6YyrPu12G3FeEmQkNN3gEyCVxOagv1beyjFiMdCmq/2c8SmtB0zSnWX/veGg
r9MF/4tHbSDgzV2qQL98+4uETN8vJVhTyw/ySgW2kDQaoliDN0ygzSpfR5x34fY15kK0LopjKqb1
V9zsvldRzRkEjYCPmvNocvVxHvklGaFmjeyJxKyL6whDXxF75DTVZ1lAMQNxxGq35O3vTw44q/nh
PuNE3ni8dD0tY/Rh3nrRxBTpwr45DOoZW0H9UvR8p0r2HNAQSJsgKqdUpEP3kkyBTb/ehD9iyiV/
rp8PKWF69uemX4TiWKi7XPP3idw3n35odypw0Ja/9+ftuvBJHqTikL1OqFEPPVtNMbRxUG+FR4nx
lqabMqtTjrfcDTIi8a1/0PbjeqQCUS4KXgVpeC3sP5xfO355z526bCM9UHLh8lMZumB2yUx+hlmt
T9igl62Q03jcaXCGZdPstWiEn3As2CudFnaqM74ou+xoMJFqjn12YVFgnvloZ0XznudCJrYpR2Lx
yIwRlNOdGRbLleHgtVNhqWO0Y9U/oX9/mOe7c5d4y/ILVDo4bmB60WD/TP8b/nMK72robJRCbgRO
auPrxuY9xwt85zdPoksdezREO3WNDONSZmQm99BUbaY04ubAiaPEphKg3W5dz+RakufssKudLUeL
xEoisYp5IGNa5hVvBO6n2Vj0vhIdcL50ssY6sNjxnRwhqkuzToTM5dlrgnCRsqQnGs4VHuQILr3C
ceWWN7KGSgdzL64Ek1Xti+uZ0ErvC7b66dsX4hQTvcVd378+2rWOTp81wQQbAFfJePnuFfme6sGd
xQ8m6scDj3jEhIy+PvJ2EiibgTvq+awpOAJ6Zdl8P79/JLR5Wf3LusksKYu730O4XfdCWdKeVTF9
a39bwyixB7OmjP35XiO/4RM9eprPraGFScuEe/jLfa4vbWreGPr4fNjC6S4Eh4ZiQqbXZrmjovY5
cnk8iMTXIXiV5eRlKWoxMvkF1G5bsqQluTLFFuIh78c5K+cArtQq00bJws80LEpXpWwLWyBgrs0x
cXyuSD7DTggJUzHDmbNsznB+BAqh9THKcUrH0qi6KJ44p0/s6ccsCnlEMTfBhwgsbvtWatJ9a3hm
PPX3rczrtyNI5mdX08JWgcfAINX5y8Dpsdxt7TPZFJO3pmSvtu/xHidINKgTQavRYfm7tRhgaxSM
aWhYTHjz14tZzbXGj4XoPD8mxB5ATON9NFSi3HC75Kd9qVag5/hBlh3OtXOL5ETgbPrXAPwykkj0
Ot+X7qY9slVvlidBzUCVuTGG9yvJ4sg+OusbKnFMWi9dPYQ+iORWrLFmS+HlZOXoHp+gVtFECU7J
twzVcrxkg9snpmdn72kb1C1S5dmzTQNfBf5C+PWSlEY1+Y1/xy0i9nv4mfzZcshBGtR58NiBePB6
r6ap3tUygs/h52prG/yjFzZaKC76V6I7tYAml7eyjoB65ugxfm+7oDhMnuKoMVc0vOqufAUurrMr
Zigg7rTldrWay3x7sjCtUPRFU035GisPCf+KUeLbl6XuC6QocJ1SD6Jqww5MggpJ/AztVy/I3LNd
KXyRLOTbYo8szG9wpViYPqLmzvY29dmabnty+Lm8KgO0EB+Wf1nYKAlD7b+Fwy1A2ZZMXONIo/O3
ChpICduvI52RsQ6Xpy+a6mslIuoIqPOOpvR65KeckR4Hm/u3hz0c0ege3sF/CwXo5wcpGRNhTBAD
0uJ1clUcaTh+bAQFg7B9g6OgI8HuKI/By6qFYrOp8LKfcBVKvgUImXTTpSWIeNvPQmhy2ffDKWmc
atyevQcM2fDQvYlZ9MEMfkXJkM9x5iGqGDYI9dIX+kSUdV6IuDQn3b4Ysrovd5TJezpjslfI+ArV
3Frijq3EGTd5Ko8tarMoKYuIdST0B/6gz0TQaXrqN927OUkzs66BFLE6ot18qRAHO6zhxABe/J+I
eNkd88+7kRCxkgSNk59ru2KbLtLaUGfbuut8I8+61mQlM/90vEDcH04vA6m77DzY3xLhtqO9VDWt
+Mwx4Puwmp6GMOfzRPKTvu145klQ7Puu5yziZObWHF/+VndFo2dSzR29gF3XKsnWuZ6oTKfg4kFH
cMpUoxRHFkVZ7mhvRznyfl1ACIRrTyj1RVGpvuIgmqLRDRVSjpbFS8IqQoYw3TIFZGt3isbLNPyM
Nx45KT2nbQdSJu0B9dnd29+eWcsmxvM+YgHtDiMUyMaFO/mepibLkAWFqL2sWcjFpNwlTtJkLbnz
eVt1Qg34FIEzMb9sIpkl2C5cg4jDJroEZByX55W3LdYeAhVVMTgkr78+u7am6LSuYXhi/eWwHYDK
tOU8m68XMBRY3tFyXVnqLLD95Xxo9UCaG26WEi5LwI+RsqLqLSixb/vXT++9l8Cf0sFwdcTfAJ/W
8tlQv0zNyLch9kw56evmt5A/0kP5OY5rPjqv5lY+XZoDUkloFpaVOYGCSaJUw+0fWotrkWqaC64E
1ChtCX3A6XZ7P0M/jsLf+F60DCDva/avni/UWjJ6tdEXKOCA01eiIIGSSsOITbrrpcX3E0RqGUs4
+cGsO4uqrwltSCmxFlnSz8FH2bxdbpZSnF4xBgdYPXyOEtmhh/TI6BuzjikbnU8yA9G2Qkmi2mpW
PIkpJ7TZ5m4MtyhuKv1AnRx7rU2uwY5qzhIH4wpVO75XNluc60+m4wSepGbniAN11NiOyuvOmjzU
2grPZ1AqfqBKtddUkSbAn9KnseAIUZdUFxdmYmyIbHz3DLoN1jMP17H48XpifRCp0GFa7kpwjPue
DftxvtgVrpQFun866YgIabrqx+9N8HP5EZvphd3YEbHCSXmjLDu3/xx9Ps+punb6p3NAK89ToM0m
RiWD+EQSi3FmPq/ECsYiPqrTOLPlwjroe8miuSJfbo9ocuLLTncZU6DuR0V6Za3LH72DNN7dzAjm
KZLR1/1bsu9K4ofLVLm19yo05VSKVCtXuQPCTllqc8dRlowUqdpmg5Z3jSNQHo4k5CW4m6jUty3h
NjE3cHE3y/uU/TKOLPc/5hwMZ4mg72+sBB53ytuPQCk5kEfT0oy6jRNMlO6Mounv9mmtK7N8vkY0
cXfDuQs7vsOXDTkbnNX9vo4n1APpDumLzPCFFKRHdo/UeXNn/HBrSn/b9KSmbD+X8xELk2asxEhY
yXuRheZ5FFywyLmiTadH+e0xwgGlEpoiSRP2bRB0xJK44sQKYQt9JsXNNqFnzHNtNehT0+3CeAPL
e7R2mRc1ig37+tYtCWv+Kn208gI37xLaCJxdVRgOZpUy+7zQJ96+X8ITbVRTYP6xUNvicZt7yGl9
6g4YLSJYuzGnggwlgMcj7Xti+Q2sqIebmpx5ps/5Aj5qOtOQjnQZIb0isOa9t87+toonYWQ1IiPH
YgColtE+lBn9ISDBkqo6lix9nISilxvHe3LYkOUQQEvQ02RW+PweKdLeWhgcISKROdQmNKVEcNEx
WdCvxMZZ+I5EgutNWPBYHa5kU2LhDTyJ70rmsuXGmx/tM8tY3hP45ef935PfSvmYOzZ/hpIc0p1/
SKzkbudcGwrEbaJhum5HXpeW+Pg5Geq/UbkoK2ZbVejJ9iIJsaZOvm0sn5fueOvjs+OoPLIDcPyy
ebpbY79ortl2tJO2biTGqtYV1WCaA9Nm4EygDEJAlfjoM1K/4pa+E3zFL3QieVbfp1C/W07ZZql8
bJ9VXu08HzPXHOB4F77bSF4i9/Smrwpqd8D8aI7ZcrshQX0BODhLU8lnqSnMcDK28mHOL6OzlW8m
dkiAN+mAogU76zccCKHIphj15OZffDGQQb/SlpB19HpJm13HSFis0Va3FJTaPl99g7b7jWt2j501
XnqfSYqt7bDmQ5O/mjwxY8bQ4E8DB2cmqzmk5ZOq71HigzxbqlERIvAEbckaQk2B9uual2J+kDuw
3oZCzhWzOAnu0ApfOZmEZaF5Y2AALqncptnjxZoPMpZhTFOnuK/S6M7ozMEnSfpSMzgGDG3cc+98
Oon2tqkQm0kIw87QeQeK79B6qsp9ywLeu1EHudR9d/xStY+VO9677yZ+ujYZfKd/+t41TbD3jdvx
2xkWmbr9fKfsJ4fMlsQ7gKdhixb+LsitP9+2nbwHz3c4xQjUgBQZmRSRP5yFlMKGk+7WnEXwqv8X
KVK97XoqIMBSO2V3noZuhsDFce7uWbuvGP68yjX+XZyqzbJnTnLdJXw3LTm58PPVNwIkEB69vZ/6
sXtAng4z6dd7PYSbFA0Ep44aRSrETF/XvshFc0ptvRnp5stKQmsqrSsvB7py8hkVE0tJA2ujmpx+
WRo0rN4qn3QvihpsGMm60T0LPwsmmJJ0tRwVRGq5gnMLsZQNR39DrDx63kLvezw9WWsh67Pe/Ux+
O4oA1VmUXN/f/pDvoPeZw93Ek6MlRjdIQd2G/LwrFJVWjPyH0jtIc1HbOabTeOqzaZXBpIDJVVm8
ZhIM7W9akUaXBxytjhnLes0K246JCWazNx8Ow74DpCeMfZRJUCgrG16HYluKHVZJHCcIyRCjLZfl
8uy5E6JZa7zRnufj+cUNx19nbWypECHZctpdoW5v7H2j54CkYf80rVy0sjxyZX34+PwZHyXKpxR1
7KzCLhWBiMSCyJ8oqjHwjfqkCSRR1x6+szvTMp8XO7UIy9Mmxz6gHt8HF3w/08uQKBWaIwsoYULN
dtkvWkfsa0PcgUiEjXTsWNEex/tTSl2WGHCydqPdlNgG9uewMySv6pkL5LLwLjJZeyG/6U3Gp1Lf
ump7LY4hM+K91hcCL1N1+PYKhdaFT06bnRF/nJYoxlUcVOEl1764z0Frn2rVjydatOXeMCflUMHx
Kvj5TqJLqs/1ftqHBsbarxGcn+JwRb6sY64RyBIPXFGZIzKu3GwBNiG0Utu5uUwiI3bFOuVKF+Hq
TIY/0c5rPLLBbuPOXPw3nkzdo17T388IZaJb6hTpxVxjZT4Xdwxv1PoFaWoZ+joRoC5nyaiZvIrB
qtLGNL+RoETlIgXJZqIzMn7hpZAd8aCp2f0x/ymjCJjMHkM2TzTaL0OoRwaPnPeQFGxaZ4TpmBCs
tBd6Rnan0pnyzAc0X3j/KfdXEsgucVIA9HLRcqep1ZN/wucuj+6bn6DfCZOjq4nb1QZbM55PPY22
+AzcqU4oeaKaWb8nZUPQzkCdTYfB/cDt9CWflWaVAkKDjG7N7U4M2SZdZ5fV5lT6xRIUb2lzApsz
1xZxF60ZBSP22Cxuku7IejbeAN1685v4FmVENQlpdyj55RBUXYt5gl/pnMCFtvl8/yfW4c8sF8dB
FvSG6DLaUEg5/DRmUyZ+vVwVa0RZrrqevJTme9eafFFluh0FoaiXm0UpCbzznUnXzA9t8IwPhGbX
sbfZucvhn+4+iTRbMZmmdlk5dsYF07iLCvqU+mV03DYP0r7yu/mhKpkBlK1jeU557gy1zgh093w9
y/zWP+xMIB/VIVzacbLZVF9ZZARRpM3h+1mCkoMZ0It/oAllg4T7+uh2Vvb4F7u7iTD8Ey796wjk
dBwBivYEgnc6bxH9xo2Ejp+BFKNnlFfdrbDMWRLYZ3cEOXXeiUdh3kMzuxtG2H5xHRQH7xzdfHMm
1CV9QE9VfawkN27eu0sqlJ6543tjmplFZNjpaI4vqL3flK/vMOBHsfTh2Ps9Xk3Mx35PrnCE5ZSo
yOw51ymop/v08EnOOam9Pk6FV3a3w6f8MeYoihEUtm649Jv9dMImqrpK/VU7X7VAfBXApWXEJKEH
mHe7g6XtDEfZJIRGWZx1yhd9gOLOq2zU7lYCjLiguvPhR7Q34CsD/+pYi+LiOKUrvd1inasQ5ilV
qzwyq9oK6+7Cy2Tj4aHYD1i6Iv1k8ymaP6hQsocxu0T5i8xfjk9TGSfTcAVo323LXBTe5xBixcTV
UMoQIuNUjjxeMG7cMZyre+W3hS9MGfYJUH4ANgqEKPFgcQCvy/F+0J1KOXkvweMpDjAf87am6bKe
q5uxS2R4BHBntDoWadme9CSKWowgZmRmX1IyqWpYyPFG+lQE8RJUzkmyI7INeNIqPmnO4/ZNBvgu
dbZDOy9o3QJb1ltJSaXtCD9Kzr5vIM2QcstyTTUVDk7ZQzTBQlpqfFUH943jAp2tt9rRwLtEvX6N
aliMpeHEJAZMXQc2la6ZmJBIv9uEj+pEibyHqsOr8Abi3K9efuOYxKqXfpZnF5uuL5VqIsuewJ77
hfj0vZMYDmvgYqZYSZNP+xuzaYepXSHSeZGOL+FM+s+I3W1iM+5lJu0NPHECPMnJxLdfI96+7DA7
9/JL2Vgl30aOVwn8El2ONqsQQgvfqmSo9vxzqHyoEJLGxjt8fN9brJTeHJMSiy/8tZ58KpmqSDqE
q6CxcqHOPTkdEUqJEC+mVxQVIklmhYEvJA90R2TTuuJ4v5l5I9LVFbtIgnSex0UXPFIDLYzb/f0m
dedLsl/3B4k054O+NJXJm48ot2W1GkbFclo/z96glVJrXkboZ3ew4XR6+vQwSdahMRQ8ZyM9652o
N3v6HP6g7lKCidqE2NsBnDvsSXDS+EsGrzAxQvrWF2wzVqDva+8+Db4T27MqHu+TiyEoP6skQy5V
9ifeTvEybLqhty5+oO8v6G0pNHTf4/JhMEs/3TbXSXsvIXm2pNzyNo/cCc2SZTj916P4XCQV9O4V
K01tqnJ6Ud8NLmXwMGQ5gOOrhOLsBLGjKg85ps4R3AS3qXMRsUGg+Z5/RYZ9I1ZBYOxlVWSxUuMs
msmTJUP7sizVj6dHyJ68N29rTWHX8vqEgF6OseVrhi6u/gR6IuOzZq94WWum3rIphyrG01vXrvRo
lXo6P0V+Uw1taKyoqe7SGntj3IQT75uNU2KcSpw1X5o3BUmn1xAaX4Eh1FZqfvY2cNyr1BLrou5a
BgLtp+bjKlPcQ2dVu1/0ghrO69DsZpbGpfIeMAS8NaI6upfcJbnQ+5JvFPkbG8JqC4OkZlzju5I3
3Dst6d6P2n0C5p9Rn7ZMbrFIkm5jAz79FDIzkyZNpCVDVZjYa2QlZ8glxlNjXj+v7I4QNrnmkyDB
LJQKoiPNQ0h+gyiWLpvv+yLAkRui/c1DB4/MRJlCKkc+ZvvffwBv7UEE/PBUGboO5kRXI/iFTjnk
kEg7OS5OsUO6KiaH2iQftRk7Vdw5TyioyL0RneQe5CjTEjOk2bJSbbbEfVmCR+YmBXFaa1OzFipV
KbGi5t8JeYEbohrXoIhaTEYhrMko57CL/GbXzjdHpwEV6+3BeemURNseNB2la12ROFJ1InAv1bPp
k9IwhXphSYCoLAVwjeouR7sSn9Q05A6jhWko99Ik/wgOjiXPt7Sfxfemupr4aOAGI8GlaMluWOVA
hmfe28kctAwOtZM1co6kcxH6LsD1YIlV3oXQMPUKMNCZtrB7bkBn3SFhg+N4Pt36DXXIbQ85Ae/d
beRnlAFMu4udIHsy1jlEESB05lVYgYidIfFVieLE6EP556wBesLOmryrqgw9w/Yh5/poLdJzeG71
Z0Kj3eXIiDPkblHLIZ9JZgwzts8LPqjmox2pv5rrCXvPF9OpdVu+ZfR61upT9UvNFmG2IIW2xvaZ
atMYQ/R3L3YpwRUh8yWRrdNKg/5UrCVS4GnAeyCwjNxcxxvkPmxeWGt48JGcNFdWmefKMFzmnqYQ
rAYm5irY61kyTZxgo4d+KsoRtD3OOHZhU/Q8L9/CQF6geGiGO+zaEFop7Q9iwD6sm6qOqqKxpth8
J5TiXOhwyEe/n7YnIqFOtJYQzx5qtzqakXdGVbK5eVzFM91nbPa+h7Zac3hR+ov7aTASn6eg+nGk
Ov+yXoo4WcEa7QiCO5ptSkIRAz+CUL8zcc6pwT5SpcVx0Kwgvbr7CPAcK2Ajec/a2iWdv46fPeLI
t7zEQcFXTeijWCrGRDdr2mzxfDpN7gHYcvzX6GtfnXwcqZxBvxHxe0mbWz41jg82NFnz1E2VUa9q
XF+F49RsokC1H1XpDbE/JMnc8Q6Nd6huopatxCGvKfVaJRwlzQejD4BIcI3pQUtMkRBpAT1pZhEU
5FHyxeZT3MnTnyiY8kLmKagToXazfhJQEVcpxXOxuksuItPgYXSQUZzqZMdzrMQxHjWvswzG+dae
D57xGssglRma1sgs0VIk3SvstaaI7qd11/hZXQuMyrD0Youv/WhLDgVfyIZ0O07FDR/T1qvsMmiX
a1mTXV0PlzUHBk4wsKSj4t3f7SIzANKRVGfnBCsRaIi8bOk8NmofdiRLSKNaQ613tTXlj21vCQPD
8LyVu3tKXeaY1W7k2fqppwIoysQw37647AwvmDvuWeukC7+iuiBQ2m2EaOkOd8FbI39upbfI1aHV
/fxlU7hA+SOKkAz3/DMF+rJLQWyIkQ8HVE7w3Yy3KWsz53haJ+Vb1gtxUhYnobHaM6zIlNpAWZ78
aN1fu1cbRYK7tAHt3TemH2S9Rqg9LvVM8U4tZfeEPKmFJESt9ib4seESZQfXWEcuPIXK/eQ78fjw
DJZEFgZoZdHZcib8jKLb5QjT7JsyxC5sgKFqElWM2x+KoewnAqGLIsvaUB4Q5/odHu8RXOTciTn3
Y9iJMvch/I8KU84Ji9fxrhJHCxvJCxzlZrW/nJJ3EJSJ9baFYmIJAkQjmXSH5pXzPmG+at41/S5f
okQZlFwe804A7XNXAopvAlVDZTQLMUXIqUZvoL5s85A/tydV8nsNYU4/nttcB7VCu7DoLeEDxK+s
06JOOqYqTiLlrqFTUvNHUQ0JGdYfJhItCZ5yKL0oxVutjXHYBMRF2P2hz9TRwYlf3WuQTbyR7hF3
6SJD7AnHgxtuo7iofmgRBk/zfX7KHDObjpOxdCh9WLgvDTE0sWYs5cJ9/u6Ass2KJ2ww3C+Smtjv
Z9u6ZZ8lh82HUGKNkQ/8W+KMavyzA/cpWD8fKR8vlBvyT0O9E1mtPBOCqgmmpFNfhlLsJHV/X9RG
mlAUzxFctP0Mx2n34ZC1x4uu6jiPiCaBDvU4vkTmUc7po6uStnhFx6AlEZ/RlqaSXpFU0Jxl5bqP
/lcnxHcP1lPDZRO9HD+HQOw5Pf4J1ywZFQYh4lOtiU7YW3vDKDjxp6hTGjet2SYl8ZHXfhB4zEQE
zk5crACXm06KInCopCPWKNCgY8ie8s0R18pVgb3pke7agWxdI7ms1Fc6EU6prMmLzeTP5/Lhvh24
uKuy0hr58pYUHXMUuTbpb+t+sO6y27wpTmYNwe7TFfYKN6i1vm5xfRsx2bS+6duJq+ENhSIIElJT
H8aT+2VOWGnMX51f3yhNxusSGMhqZ8olIyho9mtv8WQ8GznfMrWdYwsmAZJZIROtyju6cZIRMj1Y
fShx/+RT8ey+dr8kbEwSStSHAx+/yZd+yu/L5G50j9V7q/gMjsP+oG/rJt24mCgn6Jfd3hEjc7Hf
lNEqeP7m7qr6A45ipLdHB+dgE8KbBqofaB09yuSW0hSz7IROBKJ1V8K4QFc1iIG3UVYokoRaTKZu
AieNr048o/vxFyaj5hfmxP0T0IX6RxW3oJL3mLgGaPvCSIRXcj8+YhmG8y+zy2mKE6Zn68+6kOHH
6kUU1EZhP29hho9uhML9InvsrjQRHnm29V3fPRDUA/p+KM1dVgffZVfWwXF1cBWFk7slLGCVXpf5
43w/rCzO+4nYMVSSTC+rVbc6ysb2MGAZoy6OXnGrCq9XQicBh7D11PZcv1vhPjGMbGJObTvkiB/F
dlmrhXljmWI7MrqSfXMRQ3FDN3EY0tV6z1T2akiuJvaT2OX5N0Vjpu9S/KWVcLzOntBFuINUT62a
x8gasm2lZ4FyP4ZWKKkjFBYQD+jNV11fIJFZfvo1GDbjYc+IuX6BfS56maNVPjZ5uWIgAIngsLV+
zMnnF8hVVJ93LR+8+RThiPRs6RNnXpXVlFnQRW+1lOsAZEugoCbMnaNivXCPJQzw/QLB0LnownVA
ESd9Q+/6y8GxnUf6+lanRYqp4tiNuhG2dSnoGvU4aKuRHWPRw2tXIC0rQObO4G3+E8HtY+3jWx19
yf7cs0IOd9OdLjQc45KqfvGmhTIR3dPiUoo0JICj+CtNTYQ+oldm6BNPKMOlZbfNJYloWqEf3rl0
96PbY58kJovuhk6zVqWV+vbf4upoHCueaXKaLfqR+WfyDd1vxpKHEmYuEudX7c4mVAfUy6ZjuGgl
2JUkXXfTfhJe2OiPf9RrjXwrS7cca/E9oTcfZ9YH9zR6uSZHRc31SOn5qTJNft5O7JiV0k/8LAVp
vhKRzqmjJQyJzeJkk1efJOTWFBP2+bkGGelWS1plK/OJN3I3mwbfxShJOts4r1OZ0JIQXxAd0BHt
dBglY/Y5Sopf9DnIQHbaUpst0N5PW8kY+FCGNUmjBggtK5R/ynpYytKMNU4ypvy687km7QACV1b3
fZB6BYJ6V0jMwXJ75zVcywr36n4HqkhiZ/T+uJAzsH+mzoDw48MlydUjyYdn3TbvICEW/l3RMs56
6qvf+6IqfyJdbddzVluQd6VMbuuihLmnV3Ma4ztHKUmez9DKWA5z19PS2HQrNXC666wguVAIh4q8
KFuY28X1IMx5WYSwlyxYE7RWzjV/WIz/YPZLLhTYTNKn9Wvzeju+93mUx/rJwrPAA5Pndb8UJNFx
hXJZHgsuaPyx8zyZMa9ynt0d2+h6R8l4mzCIRvTyWLd/znRNOb8ULfxWZVWwPFmkoXbxZvkrFhL3
nphXxykCleKAZ7g9Ur78MkavX1uFUmszmSj+1OOnamjcxmVGO83lxdvj2EudwRCT3phX5KRV168s
snAs2k65MXEiW2M8Ej8/11XevLq/u+YRoy6Oal92LKuuQVP4NuxL2hdHxlMzpkA/3L06j69DNDh6
8sxCe4f8g7UIq/sc7y3fu3T83TDIGsoTPZqHiD/y+hYavBDo0HvjGr2xdSJTwh4J9bpfEN9s9YWT
t7N4wX6WWR8ct0mUEh1CHBJLz1el7VDcpsIsS7PaT/s/Rkngr1Zfm9XBhfY/ftFGJotEoLctENiO
zmSnnGy8x7dBCYuGBJ46Ngc443x0x5b56p3aZNiVyEfTP6l3dGUVx297yhRR3Yk5g5swEDxXjRen
VbZE8tU+Yu0DXMuPn1DlTqSZQdsHLoVJG7/z6q3TkfzEQrVP3T5Cla29Io+vNW1kdZ7N+FqRBANx
KZl+Hgz9TMfb5FdaFYvUOH1dbJ6OFV/M28c6wtfSvlFMOKjtnEb7nkOkEF3CTI4nNStBbWE4TueT
2Nz9Sw2codds1TaFoCF66DS4bOxd5+ClEBAU3UfTihX2yxOfc+PDB3UKW3AbLUv6qGy2hthJpa5M
6Vp+5oFr87CHmmKT6g21y2aAPaYx2uNhrKBXx5PuireBIoqEbGn5VslN9ecj0XTFzNGcFnhEWYTY
sw1krfioF30ArJOkasPeK/vIrzVXj5vn+u/Gv1cWgIb7zoUKEnewENZ7RSNkO1An1dSOIP6tQedm
7ngOLfkU40wccx6NzCxF02aCxg/3x7XGY/oP+/zHslpLC1wCumL2IpJrriMkm4JtFBwEB2jbFxlu
FUtvVQk7X83NqkRL9ggXeByPo3Vy26vGPihZwG8X4rdkpWmscbKnM795D2R4S411vJ3h3XRTok4p
l9fdfehZJ+Bww0zNwZasf4VXhCf62evkC1f+mQQuutzQ2db76WnrfhIjAe6+yRhAwujbT5jGYvhM
r9HLWwslIxKPKEpZFl7hIt8c9nOvHPYyBSO/Cu8Q/ckpkKPSw1p5dc/rkDc1b9JpQs/uVsJTmNN6
1i0YW6vKfG6w1TBPbam4Rqk/0GwFtytNvyYwpRi93csteOH8gpiWxruZUAIU384j1Z7FpZJwNP/4
+NU+F/Xl6yeXo6/L39JEU8tMn6cq5QyRXguGjkyD0jLIj5mDqoHf7pF7CJgtkdmK0bKiEek/8SE/
G9s2PEa0YZskv0WKLDLelT0SrWEWblaDozGkEP8uTaaFteT91vDL2LzCIoJA79eO8ZD+0as2GhrZ
7SXVz1/dr88cEVXpGzXzwWFfRUi2pC4N6rsFetkczSNO8e0/G5sWRJoo91A24LGq3bxNJc2lGjSQ
UEFDpWgtaCXWnLU8TmtN4Ir2a5UDPeiUFMhNVXwUSncUkMENrY0eTw4namETreiZWrZtntlEDrPL
S0zVe2FfPCjp/2ZA1nQUWTX0aoVucKdQGiRcESs3XFsY+kTKuZeh0hnDYWXMElMtJSUHsHD0oX6O
ufJt8OPs8HrrVNkFtZz68Vni3X6OsE5SUvOzg2Jg5358w86npGJdItbkvLyF5tS6z2XyBDF6RLgr
njugR084xKOTry8yB7oxjbK8j+IkXQyUeqNSiHyxSpzI+e/mu33zOn1CGLssvqF8x1ns/kZWlT26
20fLTZ2t5p2dJ7g2CsXYmbN4B4ngaakZq0D6uHEAeux7B/p5g/gAqM+OTv6Z6vkLII4surdyTm35
wLmzqp3voAKqt8xhI3paxJD6qKyy4xsc3hq0WCj2wUVzwmz1Xs9SYLQ8hVl+VeXqO+8Uy3YfJGp8
J/XhEFwLcBtCdMhfivXKjKAFC1cvij6SprT4yh30pR6xg6tcuPE8HToe5qhuC7KsKPFbD7Cnr/hI
knxx+dmJKqfe8+OpYQsg2mJuKAWFUOe7A0GH96EVSwzx/rUOk7wuTYY0jG7mrq3yKLHULvysqTbH
9snhFcfPhWNNFToJvFzM3G2CgraInrGXsjWzkmRJOVhVrJbX1N++EEjyAUjugMIoZevS3im3rsWt
9JCWtIAVoZ+SDCsZ3BFRS0/5Y8aPUBgqtUHxDSZGGhd6lzP0+P0qahQ+JvQkmP6bj4bKvvDr0QfO
Yr2C9q1LpAzuWG0o7pLMmOmph6WGUtekI6cb+4pUt9AJ2Tb0hSH5DIeJUqtHN5VpV5ksZG0+uDwX
lJdfZogb7MMoPgAFv3AAdnW+OlTelPOFcGGVuasQvtYsf3Fe/1AoHyuIQTrdcBu2JivYlQyC6+W4
HlVQQHSWRB29VeS3zdb2Bhzu9H8YKYLeJWgvWH8venMyNnP5uDlxIcUKGUC8Fzx5d9/iMlIc+Hg8
QmlJBI2xpHG1wXAW36CIvnKa5nFzUpEyFGrdorwjGEDen28keCL6GnwS8sHaHVRPKtCErzh0LnyR
fNPiypTZVT0RFcfq/7wqzO2YyXZQr7nz6GYjl97QL4TGb7R8n4q/ISnCrdzJAz2oK+5uCx903eGy
91PdWBFregVu5N//wEHJhRCf3ymiABhLpzuDCBP3e1qMGB/gBO1F/STdYPh+2NQ26G9OsXS9+mxV
KSZWoF6LXXFVFa+iWJ2WQp5WhXfCHLvO6Dkcu8VZ+AeutzQzyo5T5EGHSFSRxgb5SXyKii8IKz1z
w7JtcSFEnmWS+B2sRZKjL8uFPz8dyL9Vy+tztV+K3HL7fkivY0157g1w+smRLNYZXo0yTmAWKYiO
YZ3VFTv1+QdNsPBEoMp9YScKhwrVd/k7gtxjCwUCBvouih3k2qX3eEQqR1oKuV+uq4k1qxArhrM/
hIrSSOWirn5npP6S510zi1OBW3TQfYCxNctwJQq5w4k4uFT7pmuXD6Bvb5ILSM07qMMnPwvKfGeD
gyBaOeeAYLFNEZscXG42N14AVDxIRJefsTjr3bu5Kew5H0TJtemC2FRj7c1rziDu9d5NCJC07+gs
s5drKOo7n+alwF93nx3iFG6U3AqMQN1Y85n9hfqMiQu+qhri+TgSU2aZLfCXFn12w82jOEYG88lM
KFNkhqWgYDB35l1sxXgdJdn4Y/u/FJWo+u4bXLhhUT1VINgPR1QxXEbMSKudzh0lWpTXbwqS98cs
Iq6VwbcVu0UfB+Xx+s+PVVzXZeVgu9mRbFxxoFDrlYd7StqOmoXq/IxYQSym23rFAe+GJWJOlCyB
Hu96k4aWJFiNHJA8kHdjwCez18jNSoag25xuVked/irel/BlXaolYa527pXlXsUzToqG87vnNhxN
DR+Z3BfU6sh11s+OMREfrsAKxxf9wrYPrE2lZi+gHg1VbuNoBNAw3uCd7MpbeAZ8M6IP0sOY1xyD
GhLJrQjvooZJG6ZTNI8/jLaYOiWczAQ+4a4Xm6e0KEX+UGQ64AUil1vPVWC5Fq2rk5YlnHx3+kQK
rHOkWVvPKYK+3UmhDWb4puv+dISc1ieSf+U71CSC5HEy8C1ET1CXjgeNI2rS+crS6E1k97W0VvnP
vJG22wnppx+mk/hc7wUkakYMczz6C5u+6gkv65N3sdp5R9bFgT7PJI3TCqteMhZNSS0NB9K7LSVQ
4cpgs2Y7EdgxjdkDv3iumMmLLzo/j8Aecbc+qXiLRWzirk0/MVRvang//rZCJCX+JNKS/27iWe1E
ts9zpDjSYDEeUNK1bjYjQklAZjhaaZc+r1TLxE//uXx7nR/J0/Rs2LPNSjvPA010AYsajoHOXx3r
IuRi6f2R0fWDgk1flxsiz7r2rZ0Xcgun9DMila9T0I9rU7RiQzObKy1x17ML6Hs7My9k3IcuEazS
uJf17L6PtDad1F5C/IWl5oFE5azDTI2Bkp3tbxbuCtH5BaaHSNzgY4orrvBG5sa4gYIs4ubkDcY7
i049SEB+qm8vpCqybJw9Btnpetq1Gcb5J+wmLB5k68ng7UPhcLJKP2ucwhMvhU+kvK4EZ59H1UhX
/tyVRowUaioydadZn2GpDQ/QZbfBdK03r/iYkSF1fFhDU8FDlNweKEmkwyVn1QRirkHngiMy5RU1
RyXv6m/mJShuJJtw85RrK1whqFfOIaYL79O8sf6x/BNhImUVkyQffBvxZCVeaYxNA4dEuJRbzpte
J8k9ikId1hpkpES4YfAim2nHWc5ZmX9nVFTZV0O8xdOPJFvA0YImZS2EWUc4oDsJt+7Z7vNNVmfn
cVZzm1pW78cC/coSJCukl5gWXW5Gcpuioq86UAe9lgNekL4hgnDrjHUQoTFD03213WxZNmUl/UMg
42I4eNpXd+gObZtNZ4MdAyRO03gO/G7RjBSxYTVaTRoqfaopyoDiwL6ecarb6JbdDY7yd9gapndk
DgsgvzfrlS/iud+fWc+gQmhRN2mYBfhvKZ9U4U2nMH+gtrKvfzK6LRXCPgnyNzcKJbe9+pQWQTBs
rU6bumv6sM1A2mxPdiq/hhlFa/vZvikMF8N6O/gliF9Q2uGKjB6IY85u2jJ2w6D2tpDYH7EjcrMg
bGbl56XXClJXH6qSdZ2pDrQMNWi71SkkVxalRG+Z3tne3QOKDchYV3YJwPZej7rU1wAtuOQQmke6
yVicMFKzBKtlEHXQhJ1YDYjj/LgXKo5jixMc1pLmdpbYRnEPz6cgwe0ZjeBs+X5YlBLWS4jZwXyu
LnjcXaRpMR0HJSqWQ0xlq1Q15A644HPBqtIZ2Lrsc9nVesx4Ne1q+NEH37D7ze0Tf3i99xsScpYd
vNgTY9L/j61zWhJFgZJs2bZ9yrZt27Zt27Zt27Zt27are2LivvUv7KfMiLVybypPehoFYzTLpk0G
2AHCftCoXtdAuhXRalqDx8FhcdPMXWzp+onJmIiiDRjvFAj/4403OwupLCU30HW0FRO5xLlGGTvG
WIz7TuKxVDUPpMzuroJwEglU5rgSWsjnN6EJfjgXByCb7rsEFCfnrak9AnmGvxvthszYlLYbmwwp
BeGotQ+BzF4/JURL9MpbE1Zkxg+WuoQ1cpKvC0Inwx2FF8JEl5ztySpbq4KYFpRof6z6wGDqE9Xq
egCv/EUs9E/QoQWVUnjExeiH5LiXXzarFzXHHhyHisMFLjoZ+IEaHP0564FWKBleuzsr2ntUannG
6FbdAFdUNQEMOOSa+/UJBEVeUkS0JI9wKkAzfFlz2Vy9Ku5MCej7uapL4Dm307uwq8bjWiiSK5oO
CLLw0TZ8C5se5AlC7QlNRjta2SCvICgaT2QsH89SRoT7QpauTX/ozITHhGG4ahEVYVeGq5vJXYQs
ZS477y+bVAgJEFrYAwHVQP7LuJmBmRMngNXWhUfor8kyU+WVZ3tfZPC/aQiLtApLXtDnNHDaAbL6
OKlIMzTiBD9J6W/TtBLk1F8FDVTKpgDTdfb38OIaxs+xCoe1FKukpn0f0LZc0a6/kE7a9eLGuWf0
CbIRqxEPKirE0sbbtNYPNy5AYmRuf+y1p8y38Q420zmbBbzflCI1vkFhKMTuP0INt82AzhoUuLju
S33mcF3BXpI47w7EYL6ozKMFPi6tSlGbvJhKG5vhTdYdm3sHUJaiwO/ZNQaezZ05+OkbLJOVnjM8
2NzwSjDFQ7LbqiqLG9ijtXv0k1DQjpIW+03Fu6HUHx2rfB5DrmrqAxgVD9IGqJcQ+3KlcDmQtku+
q2f6DSR+BZUmMedrRfwKCjmfltnE8OMaNQxnnivblOlD9knGtm5ysgdqx/02Jua+WuAstcEY2R5W
GQaujseNgOAacamVciMJcveTaVE9MpnazLJcKDluxI69+zYEHkzL4x+qMhDFyzcIJ9paFm9lW7Qs
pXTcOpY5+sZtzszolXdgByV6aZL3sWesNIZBUIKMEudOs+vVIoBEIh1KSwchSy6ZZkyLOHvmtmo5
RL5yLodOPD3pCxNY4JBzh1jaPNxNd8Sy+5fF+vIc9La/QqYv5oBIAvPZ4Y4k5rMKqjUG8zid7O0V
qU/GH4yldk//55yP0Usacfo8sSWr9ly0d3K8zWrPohF32h8yWZIqidUcMQfk01Z0C3vALbH9MAg7
TpvSYg+bYsnXuW9QzwCU+M1pD0B5G8z4U4rUJMVUUTF0hDc1St+6mLbBPHaPI0dPb1qljx3MhR2N
Tz2mEkfAMFd40ybPPGVXgyD7mLJ4zww8r1cwR+Chlabb+NzBAmTKpRZfzggyKq9s6iu54dt4DBb3
2AmHymBplE10Ug892+c+eubtsqbi0RqcY1qTAKLQVppbYiSvLpnTZUV9xuTOKWO2N2rqcij/cnsK
Y+AiUefFR8bHUj4XI8t/IcHPPj6MYpPLD0X9BmJmrEnLXy5m+RzBbexS7KyKbRSiBMvf+Zkr5uFs
y/yiQLwgVL68JhNnyqQTgeN7V7djo4FZ0f0wcCX7z/k6HEEI95OY+maUxpzQmMFZuZgXIoY+ccHn
iu6ovfWQPhjIx0QiZQjNW7NsUAeh9GCmiApXhJzsGmjsR7sbeNwdiiszKKZsW2wbnJUqX/rA7v4c
A4MfgDV4ubZfxlsvAGKS+TYpM0GuHXiIJFR/35CVz7R/ZwPk87UKsJxSlxgStMl202NvAWsCG/4K
yoMlmbc0LSs4nwVPem+pIGROsm5uodI27A3kglw6zZDO/ws7MjG30Ztf668PuqP8GxnVoiP6GPgH
WjoNXGDnUbXlM5BFAj9k6rSQrBVUZ1sLtKQ2uW5AfUUYxqOWhNQK14koY4zI7BsF0DcRKo4+imRM
XFqvRuJOLJMKskxXnelAiJE4w92l2qnrtVFTVvEMzte1Ze62e1m5XkIHpbDE1Kw/64lwafSgIYug
OpMXu2A5x+r5qmt01aq7iegbTrcsuuRgsPYWE/EKtxk0wJ/2K67HbnEDMs09sKLgHO5rq3M/2/RD
JRlWwZN9z0790bKpVtIMTua9BPLbxRjMNJd5ND/0P7rdVSBu2IhswND9alOIyKyNGS/zR88WaQ0Q
H7ohVAMTtAvF4SaNQDt4mXjEm5yRFgrdONszVoDCBwW6gy8vk7QwqG7jtv4C5NatChbQl1MJQQOy
48KOrwp486+UssQzTg8GkdkCHcS3OOQsQa4tTLTVzsSRDm1xng16kck94R6m6kXXx3UJQdamKDkr
nnysejZKfLeIRRh+doi8H5+TpWBcQ3WrpeM6VUBELRXTighWw5tfjtQpprG99AQ0av8VlHSrNxZO
UGi9BrpuTgHJqKksnaTIKd41j3ZHIZE/BSGAISXHsNKGWcmpJeYZgA7k8MVj4z4Rmtgbzr/DCZ0P
xxWmUgVkzNjPhN0qkx0ObU3fDnMV8fBjBNegeHF4C4aYXIWwZ4RHq3l7LO0vMw/Kn7/hBu+ti6Lb
mS/yjU3RqOb04yiY+aFA/COpYnHwfNcP74vClkwMjpiUYI1ZngMw9+XiqNxvA4NQaeTy44/y7pJW
hxNW9JRrvljfUt7kVeI34LSp4Xz+ehAJrMu/HiLVoiqvxSTzDXUJopwmY/rnDNk6rbDyC/QLwTpj
5aaXJKMPIHF9FA1YPc9bxBwLHPKlpOrnbx3WFeO0WMsioasegBKPydkQC92pclFL0JXBBCrWfmij
vIUnj1MOsbS3NrauE8jWUG4R5e5eXnXHDR85e4LcRdBvtUrIJz8AhuqQFihvz2KNXhQcMviZWxHv
Pt2OyDVpXmpF0lHgRxE82oVL/R1lp6dv8P23Ej8sSgKuoRbJ4yVwS85o5odzhvBRCNVfxXpm+g2X
lbdla8rIRVP2MxTtpAt3qbMVdftAY5XgH+Y4BcvfLallGWHtGFoNsfq/+B7cJIAh2N7shQyM+Tha
XOBjVLOlmJnowwALr7DwcdnIcRATS93HzuOWHb7BeQhbKmfPHlWD06SCwXClACq5o6xnNagzNRzF
XllE21iTex6dFJlTec7dkElqScnq+TPQacMemUto3kaq6eEFDOXc8kk7cG/1twAnA+20zeCg+yPP
81mMv1cqBEC5SlI3UQF8p+5K6fpCp7aQiM2IMbiYY+2mqGLG0UrZ/HGrwJcq2wf6DOq0aXy5SAf4
319FTzsWvb448wcFyqgZTje8wu4unPMJTnKRvNF5BdObCCFusZBTbpSWOlMt9DexJwqjgVZmzbw1
PaQprQGXlZem930zx5J1lyR5ZCNMtWtmmNrfTo8XnnbJ2HZ1BGG/dhsBgPiiZPwGUt5mcoIyzXkw
ZcrODtrPU5LAEdFVmPL6mu3tgyzm5DRP/Mez6YqeuAH16TE/yvQMZXFDCRnABvr4bTMsQqRwoT2J
cSmUnvabpdvvQN14JaFQwPOmkImoKCetOUvw5XqGijsdSNAnrbbumrQNwZFnhCczePZL3N6yO8RC
uUPsCRbFQ91XzRHzVD5T+01YoZN9Sc8A5s/Qj3erVBv6Zzb0TsVEP+dOY8f6vaqUqXwvtB+VVXoC
t5wQtXeUxdi7tmKLS83Qj56tf+KjbHflRMgK9SPZedZj2P+cREbnmHKYmNQnNKpgj3i3VDbUD379
u0tAhU/mPa9agsiq71qFPXy3AV73EiZ211Hvh+zpag+y2lncxf+5hyOarMC0+DAhf8VWuHIG8qTr
Wtm+H+ApXdzi9EmCkIXMPgB5HrBqlyYJCt1jNuDuJTkXGQp1xD0ZFiwNBVTshpf9UwZsQvQBYUey
l9DjJ0PTEhxviqkshM0RDtc8dT8MotXiSaUWXAwPlzbOfh59ym9LOc1qtY9bxM+8IwvsHfq0L7K1
ow2gJkbMcSn27T6Vrb908JDN62FvkPMb2/vfZKSaiKKoSacdMXTXwo6h+mbr0esn6MidMl0RvHPD
nNS88uSxR5xoUoqDKEoJLD2yNDs97Q4uR67N5Agn4kQaznhQPvSewpIUvOToXVz2qGkcCq/0pcNc
pkqApukWNrLeO7tSrt/KUk3TOH7f/AwbNKczjT8vJXfSrvdEWTuUAQBPqYy8pmiISpCtyhavQz76
0UGdjFj4t7YK6wkMri1h4BxA7I+YVMtvCFxMnfAnzklBbk8MjUg9rl9Mo9cSUs7Cqrv/oLuvrUvG
259wm5Om73ME1tb+yd7QCjlrQujsTOk2nVRUgQ2MCVyx094FU4Rm2fZEKEZ4rv1ZyXXpXc3L5Ukd
z4RH0IX1pLgjp4j7jRAYEBnyslf7jwAk9zgtcFOz8XurBjYxT+wm+9n2dFtLvla6Kl8c/X2XFUe0
RKsWxb6QEPTGgNj6eG2kgT10J5SparBStL9NfJEwOssICmOFtgGNfw2zaUykbQsdhVxm33nkTDuF
NgZDxZR/KYNQm1V6FobshQU9gCX1sHXISzpikJoCW+GsujeU62lYu4ku41av3wSrpTMVUeWkUkOk
9e68kxx+Thgw29YT2WiLHqRvsdDNjLLpTEi06s6mNlL2Ad6EQ5YebLT+GMUOv584jO7kPVd4MdRz
Ft1aBlMOXiC26jOyGCrt42gq66EMBGkHApawriFGadP5WvYRrhqsrxGQoMUxZ1My5VwbKrxnWImh
2r/yzKlwMF6lCLEvlnRTzd92RMyWj9xDpElaUiNnq1VG1ccPA+VEvgtjL7TXJ92ojQxzoAZFHJtK
QX6UIX0VixXRBD8O9onNQoURqd/CTDnWX4W2rUNKE5/I4i2M7PcIct0BBt2fUIVFC8jdrYL2muWR
pW6AIBB/ZwNX1WsjgTodxJD7VuRLOIHErNn+/oXMxsYqLyqi5Leu4l3Sh+kvZWKupVTU2PAVSD5K
CAzVw+bG2plJXnlN+CjKeNmpuFAg2nQb4MtWuN/tum6MS+LW3swfEbRjf1P0b0I1uCaXpBO0FX/n
pD1sr+Qb18Br0LDDpXwrbO9ugf+U2MrRxENzihpNek2www7jz86WtXOejAsyrZfzQvduZJ2Zhstx
/y2WhHc4m1pMIaJoB7BtKJ/zOugoI91qyYzvc+XO5plPbaEy6WqKyq+mJICqv5WJG8hS6CdCKTKC
9mK10n5ym/Tx8QxaAA4hTAL/1sgtLWfLnnPZ5KYr+COXD8GIt9DLS4F5cp/Hfl/a8SfnZg3UVHiS
OJevCAMmJprRvfHXR6OyrRCkorb2lF9XOapM+j/lUbvHbqGbl+jVb/qwW7HKepGxxWdaWvDj05FA
R+LqLWUM3jLtHCTHph88Rc7pHCh6r/9QkyeDA6qwauCr+Huoe/V1iTg3iTKCSRE7hKznnibqvHha
5tF3mWT/nU67v5bwYCHaU1OcGu/UyrTvcCPgnuYciS1gCE/FR7VEbknZSvlEgfaSTO1JslM2wfxs
aScSQMwtjhhuhY2BqHiVr3T3Idmk6eFt4wFh9iCqYCAUH/Ysl4XxHddNcnndjpBohKqvobxDS+1o
aR0G7C5/yssU7MZYaqaj2Ksm0ZewKim60yZlQOqupgPY7/kETjfhou043hy6wBM0H9u5L6YbUqlT
qpc++pT/zqmTXGiyOxH9xUva9wap+dmSrHqXr58BbbVfn9lBWiHa1X2jAbaIOC44RzYiLAXKfwVt
edeT1MOG/VOjz+cJ06t19/RNg9ToqZK+5jfyDGtbrYn3+/RYWkdCJnop+Mn3PsyJREGXJQG4If7w
ieRavV5sxZ43wXVJjEMYdSl+Oj580HwRF+ebIXTbXp9YQWTi/Eh6tNXBN8pDsnHrZ48zwjg63pij
ckrOqZrHO0cJyZixtWkH/ec3n0cWJolk/KMEYm+T2CZG1kv8iOgx9usyeYCyhr3XZdKcrDcq00PY
PEn77MitCClYwi1W9O+UUCu3vSSqbtjWEIKN6ho786/qbXFJGj3nClDKzwtyoXIoK60K/16GwypB
uizs2rp+D1KtHMFvAmpb50wgbMnNbSMWTGU58Ngp0EYRa7ODyNZkhPrDHXqPGLoIILjybg67lAVA
ebug4FKWD5Xo0SEO4BW3bqVzDGoP7DF8t0o/7pkpFaD8PIcg493QAeOOENECpQFa4dj6sv9ZtpWe
H4PdPL63uNUkXIZXbn6DkbWqe4gJMOIwEKQEOJQdQcu76KOV+RaNKShffO/5j61Nf7gx1Q1x6Wok
4kCTddpsw1wbDlFhIk4e6J6G14t1QCySRbLoAhkwlKf4/WsjXodVB0TLyQZ47A37OUT3Y2dYMrNn
H+QC4gwiRRCpBQuUH8QktG5N/VuS80VfPNph4paYcvDoox68qHcd3w14NBAN799cFGNGU+nvVprl
iLBGiZoOwudpmi/+MOybxYkUYsnem0tCRZyjq98jadRNEPrnTwsjJn6RNoW/6jzoiT++kCzfowww
xvvVmZ8WsKD8Jxn33UwbDmkOIrTTUrzl4Hz6BHr7QihaImcNR2Atyhsudzxt8VknIQG7rfY//5K9
VnmeEc4i1BgWL2Er5PFwuLfJUAYW2KUavnbem9Kd0y+5u1U94w7dEe8GsmtDIhahny7bP7lIQDiH
txy6s6pbE0BI1glDjRaoyvgltlBlI/pZe5/INeLXlbwQL7XOwXddY/BkS+oB51azh2DFq+WIiYdd
9ep0Jl8hjhQb6HjkzfULILT6YRlQFm3WXxhQwW6CxLQuL+aqeEAemdPrsx8GRv6K0EXLmcMfUzZb
xl+/GGg+i0W05BUbjbnyVen1MP65As4qkVmia1BvQFIjWRpB5x1Ca1U5v5yCA4aNROy7PqXJhZrf
0wx76jIFNVkAv8Z5Fc/wJbYSjOzBGIHVVpMp2xauPhAq9Z3IaGoxqCREayixYmOv/umw2dq58erc
FMb2zA1qnjvvh2nEw+wuCsR/5DpUQ17/EpmBDeP+DSG/J0yLByhtJD5ef12nqgE4wYg+N6kPRoBm
lIFIzhYc8POfnp2lHURG8f3Nho+cyhNOHATaGxvSBqzaI/4O2Ys3AIJiET4tpdVEVYQBYU/Rc0Cs
hCSAD//xVj0XznqHgBJnglYWbQPyJa/meODRUDqAaXF4E0LZNo6xgWNjfn15Vq7IjQhQtO3B9ngE
z0DCCgIbC/+IUShFVXAMlVP9NEuY8/Ya9XI77SAYNS45F8fbTAk5wdbrDU0dOiFon7JF0m4gP8gQ
DDou8OsrcaBWKWceMM14Vdfl+c6g664BAInXn2Xo1X4N+iRRd5nwx9x2UcT+f/6W2f39uimQjqY1
Gwdn399zVp0qX9i02AfrM3727AU4N2lVQSHKIVNiJdP4jOwxzp1tr668tR39lojqBPMVJgs7IJl8
JVZ+sR9pnSAT1nt3IfNV7TbAcWPmCoxPVpoItFYEeAzrGoP1bcTixTvRqUFtucGuh8Xpt4pFp+dU
hbJ9H3n+nG7coH/jJv3cKRAhZbTXugKuFN24sra5vlf7BBeBqv86Co7XYgH9qvFIcWe0N983aQjX
xBjYHZiT9nN8WL82RbAx5qRzRpCSbDr60xzzg+o1mKh6WDgEQGwHD8A8VfiiYvWQmL5Pje7dewqF
5h4ARYgTNxaMRhF85ShuhI7/tu+qEIZg6T9sdl7m8sCT7sUriwUjwvFJ4Rg41ufItIRsNJ0Jwjbq
36UGTSm+CH7MRe9oNTGo1G5/RmgNDs7p34uutP1TU9THiyCiZ7oBJABxH+axzoxCqmZZ7bEL0AVV
7K2fM21bOTg6icuDHlatzeRmmsKkvM6dhGfCKfADkcDhlWLLLbkNS+An0Gtr/Kx3Fst8rA03zwPe
fFkerMPhvMkiEoNfaoT87krHIGG9jHEm0haOjb4MJbYp/kg+4mzeFFb0xlg/b+SS9rvqdvdJr6ep
ZMvtt1cgqMuSKslnCUgEZdcnlcYnXtbPs69R4yePiAeY6HvTh7jrmXiGY+dlUTXu9ymMwyEw8sdR
TU69vaIrp0lw9QV/WL21wcrXdR9le6NrNtIZbZxyUF+5ueQ/PmGafb/D/mKNT8qb03ZemFr2bsdk
tDSr18Iouf6u7BvnPY0tjIAJf57G56XQme25PfeS02/TZYpLAWal5AbLFbde72HTlYOiv6iUbBmJ
wGTO4Zc8sgY9+R8kbb0t2i+pewxYbm58aOQKGJvQO2Rd3vOjiareWIw3tXKJ7NKvGMLRwgdH7eFj
/fxbMLLaQm/BNjuA1OIU0pPqMM9V9qeVXutl7embsa2hNADl6AZq9SU/G6bhP+wSja+qM91qO+IT
NsCgSNWzXalu4pap8miI2nqis12vHoh+cFAo4zcGdGqyH7+FwWpwpbpGIIkbkpS26aDRhQBd7Ta9
4OzQm2BwyzpTJ4tGuYybT4ARhHBJ1tH4Q9LpZmyHPvJfy9LIu2GJ1ceRYN1L1k20/2bhGnHltUT/
YSOv6EOdKhvU320YX/zyfUWIfGMjODzwuuFMiJSdpoo8KUGnzFQP144qldPyUSjltb0fmKT+LaNi
M1E7RKEzHgV7UZL3CMss1N9tvppVYKAjWqybZhV6RV/ZKVrz2q7YyZlmb5o4087HisoXbltw09xB
1ZQJ2TUYAI/vzy+989jkdxG95uzIQ5xLSt2KT/w5C/H7cAk+i9aboxzBoliTYsh0cr8fnnM6fKk0
Hy8tY9NdYJHIWyyKBB70ZuTIhSYvFV82dHNngrX1tEwlMJTZXA5Mz3Dz2P2pZR19KiAUFLlAjjxD
LboWzOPBptwW1jLjIBte6RRxyUYhVyZpNcuyPuPSkZ+3Q571vo/USw2W0Lj806fF7VgTc1kMkudB
iFInWd2kd+hsmmO3PJHJK09YOyaRrhAJ5VVrzYoGSIlSxJvkwE9c6/VkPhRCjsi1fSTnNjfdSSb2
FYROtSk3hwkTf99MasKe0Th0htOMCVtnJd1fnx8AnbIbeUUg9moaPRS8Klbjt3elQEUNtE3XOc/W
hXVy6dAdEGfkCwV/k/iX7JCsLsSE3RR4N1A/jBosattynbt3IGMcwWrhPFWRaLohSroWrf3Z8eDd
7XSv3MobWzy/Bt2FfmU1YCnXVPtQ0bckyoDGpehX/S+Vwks2x7sd8j/3IPfHnz+KMmso/Ej/q+tu
ycL0SKJud6SRfjER/aiF+1kmtsm0GNwXFXnuXxJMspNfNDt/0VL/qzVgpU4uY7jAeE4p9e6HyWh3
hEAK8XSZ0vsNOSMQQjJLFNDKjbz54lAr0m0NFNsHqqGBTwvX8L2pztaGSSpOhFF6TmoyuQuWbH0U
uBwxSRicF0ML0Q22n4Kt6X41yLDJB28a5vU0gVnH3zxrYodaaf8wWYMy8zZPaxfdY2Q6qU023Wxv
54ZA7IdMgPR25Tj9jg0VsRJgdnT3HVs68XxRoC8EysMi/q087urtGFBoPMUE7t1y0T/q48Bx0tRT
nce9Cyka5XpHEViikbSFGjqNaofN3u4p8VybSPYSnpgBl2z58e6+rqN8P6xPVcv54xb+5GGvDBsn
S527XDUWPdvNUuU/tqlUEih9zl4J0Tz3jo7jQlUgE4wtl5TbomyzWX9jeLIfEa6bFOeTp/LGhN0u
iLQOH8IaWkP8Vfl8XCF2QOcF4pz15/Hg4e8/zqPcTqxnVRfqIkULrwZRjV5KNH9JibQaX1RvGQD2
spfda3TBBrt7jnlJfY8bFqIV22UOzwoFbOukamy21O9/kdQPB+nyUfNBJMIszaqwDZSuYeXfHlmq
W7FcMICja0rkUiZ+rKH73uF6HHxqVIa8vDte0mB5GDqHGCpSngo7/Yjksz/XpixRHOy9hmeZ7ouJ
cbd27Bf1f/5tAaFrTwkzCa1EtOH93X+mBOFoXitVmZelQ0Ocu13KvBU8NITzbuP83AEKpiVEDmiR
ixAVIfx0Ogy28aWL6l033NW+vE4H/mE4MdjZC/ODzt+pcy/WvOcr26B9FElij+w+6XO+DcjOU2vO
e2WjJJfhyvToeuETOmF4dMF+MpSSK6lRhewMhOJUbmQ3dLdPmEH7HmQ/0c/0brspHZqA9KTfxcK4
FsPchaF73z1PiRPZl1dwbRDfVLWbNBA20dlMjCaglj8iBZakL+0HVScAWQs+kfHDCOGY55a6ZZzU
wG5xZj/XQxR8ebpN8/SMiAO6u4MvjffcCfrGfkFVyQvizEu6rPAMRQbfYS8i9lDe3WyCUB4xAFYJ
t/WO8oL6G7CsZKzyPzRpe6Uru1flNleCK7RDanpBzo11AexGJXBsWf4caQ71jQnUUfuCkWNYrqv7
1qHTZnGvKwUZYX4gAQ195WBFSkfEU4uvsF/LDW37IHivkS11Wcl2H6z63uqgBJ+K5vx3SmbJdjyv
3gjNTm4VuX3g+loJY9RYFM/kuKrqHyXZzL9z82emdjk5ARcD11KG3dD2IouSfBo2mRQCWaD150wP
Fgmc1jMeIVOeihKjEE4Hq4jokGb+engzIeLGAk+cKmlr1BCte8g6TRkfLbbSdJWu8iMduMD7a0xr
F8SdhynLuqptHYW8puABLMpQkStWnGHkW1dwv6xMzDb449wbYw0a1sk7r9qDG5hVDcOVxr9NMq8C
ZqPMGgzuw5dM9h/BguPcAodRsOO7IPVCxkyYx1EjweyjGLzwC3Ibwcoqz0+pFImwaUN2kg8nZ5S6
bot4o3Zj/p4wLbxCFMoCoQ+SJpji/sYgGMCxpWQ3xiZBSr04Ra7x/PfAF0QIBgl0iG1AUDSsF8Dv
CiWyvwmrE+lea/S9ZMk7OYxzyHmbV+9is2uBOXu27h7bv2nNiziaJ9G9Sd1HLURfQ0rEybeijpLs
bHg6unTRJYfzX3d7f/tD0RGkxmZiiL0cmXh/p5VAVycUKFYd+wsyaIZqTgrVQFws/9tlEyMsHB5D
kDWoyDHW/LxMKBPA+ejqnk2+9+UV5SiyiJY0zTi7BZsoO4fvEDVbES3KuufePi5Y/WF/AF3KseZm
/ZvtnRdB1WcuTdWQne53+qqvg1RwDvW+q0eESwVRkyyXg35CvQaTQr3n57ldWKSdSBIN4sVe9BAt
GllKV13zAUKBOoR9GSjLG0la6vix9iASMtwNk7i7Q3ITdNDCwMbNOVFbEmqm0vWPtDE91E5/r3kz
s3MRWraLFGr+VnkdlpGwn8pF/kVHQVT0h8p71rOMs4wXdFUoFUXtME2pxg4r24VKpbd/UUG23fcu
yHMpCYVHRb+bIVZgVD1a5aJwIOJTEeOWezesnhIv9H1WPcQD1y+QMp5qg/vDwrmcJlwHaBId31uO
UDhOVqOc23lpLlxL8gCwHJZ4XW1znFVlRVp7/JI0OCjvdim2xbO4e5cLgnIj5s4ePuedd6TDJaW2
hRatzI9UE+b+PoMAZ9y2uN6rRU9/MXSzSwo9O/cjW5j2kfnmGA4nLL7uh3LP8+uWNn4WsM5NaD71
4Xgsc2W7H30Q7B8DBMU5hCEtOW/Urt2Xa5q7qRdLXMviAFjuHU7fxx5Dk7PV526pTEkcGNw4tZes
WAcfdAuGg8HtY/qNAInkKwT7ZyxMPmrxqRcZPDT0Cx5G2ryvt5Z4+KPuX5g/KG0bKKFaY2SByx6J
DhGpcuvrml1PVJhlTYjSBY+kQfI9tX7dn1gIrEQRiVQuEeaYz1FPTWQj2aaJAAM6QGCB3SjTajWv
EzRsyRIBlathkAFglCvOUxyW+QUa/dkS4EAe1RCbV5kOC8qkghEta3J0tvyNHTOT6ac2hzKhFoWH
3ahqlHEIWWrIXSLb0c6Pfx+vmJDSsL1+l5x0wRdyVcTgR10jw116SM233JSlbMa03a0WNeW2v+hO
uLJbCypXlP1IGqfRJOONhBB4w0FdQARaqienmHZr+bfgXQlYCOwpsbA1cXsIhVSTEIY4AFBJxr9b
5BBhBu4skJFvsjhqDaeUN3HQb6t9s6thn1vI5jPiaz3vRNFIT9VlkmGnP1c6Pnmg81a1Dzxskrk+
zIIdmanDGpbpueRAsMgkKVtScGhqoTWUfYJuGcTMlR3CfGs/uHDxtb/O3z3aS/ejW+xWo6YD5RGB
nuCA5n7jCyF8+TIPfNDIIJ0S1k2iwJ/2MUR3rvz0g/o0y8Vg/o2bSWyEpTV8fqCaVemUWlEze52N
JmRTqTO3EHR23cw+WPTg4j1PRIw1lYmR1VCW0ltHLEbkawMl/+P/Yh2wp697ZutzHmUzcSRgXcZt
lWfLBIFK7UEpciaHT2sO3Zc7iWnL0G86M9RX8kUPBhtScKopYHgPh0E9U1oyC/Vw4t8GB5kR7P12
0JfcNW6289wAA8TE6dxHyCPuhQMfT+Utz8AJx7v6SphwpbxWks+FrUfzSFWIDJIDRyFHtG7kWwXR
U7PJFrZZsZ29BCeKg4ZdEAVHH1z8HAhnJCqYgCm+4Ec2IRiv8xkOyN+SxaunY+/ZB0QtRAfr5jx/
zPagFdG48UGIJknys0Y0pGMWWmrRX5w7lNVWm/Iggu8ZXW0qMPzce2C+L8JpbVxaDFqW5qq72HGZ
mB9IhJuuB1EKMKSx+ceYHiVA4Kep9nP1I2LnFiw36Mz+CoazP6CS74Ngtl4yu/5CLuUEzTTlzZtf
CyFBxeFdGxQBU7iq97xlYi5jvVxbjIeOCeG+683ASubaCRTzErWaSseqgMDdxGlMnYTEfEdbKk7G
La6pF76Ny1DRdqR4LVp85iLD1SF4l+f5JLWEubZXOX5Anwa3K2lyqReV2cNGjXXb3MVDMUiCh+q3
rrVPK7yElRwbAG2DzIFflgwZxweA1ccX7SAz38wTKqecJNy0uIQ4Fli/xN25PkJ0iG9Xzhn8pTv6
m/1nMH2ZDbCgJR9iVZOLJnBTYfkoOWYY2ZyJ0reBhPmL2auKkqeaDHgkiMRRGJFnnyexwOZILxw8
yy61Ezt8CdskIQ4X+xXGD+zRFfw730nr2Lf0bT5+LFxj6pe1pjbtYx+SeFM+JAEOxjXmw3+GEO8a
Z7Lyt9XovU/Tor8GDYONVJGaccdV9hyzRSQ4TfFDgbGTmD+ZvZRRXDVH/gn/I94zultjZAgp0khF
AP9bwDSxBQwBwHRZax8lfzih7W73UCNo91D5sYReqlE3+m6WX9oWohgHH6seXHkfBMg5gpGGMQln
r0dehwLM9r1V8QsiWmv5C17wosJ5fN+hTLZjthQWZVE1qHY+lCoAOjfwZijqy6JkCgEtLEf4bgCl
Mf1nqtr5wet1FPnVkkT3xicpt8svO+vl29kVd6xKuYCfoRha9aHSK4mKZura1jAlW2R0BuftUYsu
ZjIwAGUMN3NTiplAY6skRaU1Qbfqydg/8ZyPKDA2rVdZDZUqfMNd6akdpJ3Uq1c2pVsMYmAduBcx
twpYFqM+R/U13LDikdRiypzTGGfsT8YnNljq5x9q+4ruMJ2GM9EXetSEG40q9agvM6fefKdebd8M
VCzoZ1OBjGj1HROZOLZsyxAt+iwG3CpyaKJcliw86a2UCNi7b/zWrlk4ZrEpu5OBkg8aZYeRYGn9
ntB/UwRC2nQU6sgzgQvwneaEj81RnChO1EKq5lRybolejH3g8ACCDIpaGNN39lHOaa58S/6DTadk
k1m8yIQVObeCu/4hT1ziyqpw+7pEyxsgasJY57C1aYYz2WthQukJJz5jONXmzSmUbXiEQKAMFoxk
iISyOq3xZb13wWTnX/AUGrSKCZAyR/3pMZzhXiGpziSjijV0xkZeIs9xXHZpNLPdOFhJtxpHo6Ob
9vdwpKY67GkZtyz7j3xFFEp49BcqAa4i9pshn1+gvei4ApBcTj1rgnNd6/j0MXTRxwnvCFbcgd3T
2XXz8JOoXWbov1HX+C4LVJ7SVTR8byWhgKvDQtJlesK7CrTJIbnAPv4ywfbl60Wlrtm2EVSKCY7R
FjI6yFe+oSBKIOcBcOFYMgm+B9ZYNQWyALXX0Sla/ZlQFxfZOkahtTpCRwyAJSZtOZ+6TM9hxd64
kEmWTdYqYjiehJsBdrnE2r8OBXHa2TPamtI4S9ht7Hcg8xOIqK2TfdWGwwOpC78inTn/gRPI8zIJ
mM42+eCGUdA1XqV7sST5RtjBK1zi2+/h1TMtK7L5oza5otYS1IU6Zu2T1C4GP78WuJ1b6rhDaBH9
XNNB/JKAc339/J8Mc4lWL6dgIrjl6RYxb5DZF+FnZXWKUPP7XYSLDcEY0tsaGctHYMa9vohlRIGR
jC/QIX0Td7UVVilcrWRl0wEwJoEjaIn9Okc9pgHFf0TrLRL2m+MDVAxBrCH/AgWngjPshaeQU/JV
Z/ZJoKJ3IhnyIaG84VchhnS7uiNezDSYlATMA5yqu3T15u9PiJVB0t9y7LEySBTyH+PiuQ6fJimr
vejpKSXz7iXxP1OdzHgj2lkVXhBb2RAx2CxFsIW/YHTdC+4plTh2wsqnbGiw4MPMKetJfbu4Nqev
1tDrGB12csADEA65tBm6DqOFxMZsIw6jaST/ruXF4LPDUZUDZDBEx2mNG2tYgPmLAeixF+cAl1Gf
KndCtLOrVroHnJe/VnHPdton3jlFn35mENyVDKibvNiEUFFpYCRRNYbGSQZ2YR42fxG9RL3SPXoI
nF5FXLgrUxGr0njwS1HZMcT2NwaHBN7TQZYRbY0vm60c/5bYVmku4a43+6vHBxrVz0Oo+23T1JK1
/5m4Abcts5NrJRb9YygXAajiLzALfSXRjPd1sr98JoWyiHxj7SJMN5UD3zvzlEJbCDYX+FPbd2FH
P4z9RVAJI9Hp5P8mudwW8vlAImlEcBvzk43ZXgyWUwW8s3hHkxPnPOnJAXuPZHEuozDxwYUuzQ61
Iw85pxsfNIiXWY5QlZc4D8QVlRoJI7BKGDcBvY1wVJNeKUmlM7OR3pJI18uKLUPECo4Sr80dawo6
nC7tJuAkQi6C6B/pVvW5yBNpWJl54RU8tdYBdqXJTt/sxPLibYK7+Ws6h1vF71Yl6XhKPrFHbwOv
aFirbw+cy7oVV3BH4vMKFXQTUT4QEUHoybFSCtK5brRE03pTTLizdY7IbKpYJ5lVg4YGd2EZC+Su
FlHgosxAbEoFbkZFi8R/rNUtzbxlcHlUxuaVlEJ3LT35uSVfxgKFbtz/oltG24796LLV9TOjdFH7
mlHD2dMsvXTs2VMJXqpJHCWIEOi97GLL3qmN5b8y5EsN02lDwwRNTlKL/RU62Q6JrLKfpqNpITGt
Y5iZ7y2qrMRlafV4CYKT2p7DvQt5kx9OQfpE53dTZw5+MTRiI6gWN9f1UxBITlZUjb1jwdE5rplB
P2gIJRS9rKYmcjMFjxtcOVutO8GEzD8yiV02AmcI+ne6ebG87/uprW1rZjKSUVHn+ovt7iwagLcD
DgiJeFpWbdGBjcoPVx2ZoccPLhidjaMyia0WpV/vexOgJ2iuLykcJw9SykHy2UYArCHSSrJ9j3Nj
DAQC6qPpr7JgSC0WF7fJTBryrr7Lp/QwWzm8BhdI5Jtg0sLKaN8F7Yz5QpWcJQBXypmDtcuNJ1Vw
Fa7S9TuJiSvlT0izjzVvTxBjHtz1SSO5iS4q0id2LN4GnE+orjx2CkKMx2uw4Hjuacorv/4roQAy
LjxV9Oqf7yoxBT1WrjnMl4MalV34yBRjPf30SA7LoF6o9EhiWvam/l11Sb+3GaIGWjeVWQwMR8l/
WuUMRB16IsuqrlCfqVlRujqXy9Q/tyPr7jx8TG7+L2ozNuGfMx7JgSyvc6GH1V4oWAfjvIluQFZb
eANGZImLJxGqNHAQznfCPWfP0SvHUYimIhLJqUVgfDcsuGARioQPylcKdT0NgJ529eRI8i4i4wNO
rl+G1L7JKsUpqwSKhUG1e1LrSEHyIBtWZcsO7b+Siz9FHNf1syWYyzBz/2HEQOWCBLEF9gyjYZyv
arRmM26cv9ZPVvKGq9wgIsU3an+ivJNuBZ/YrwAGAV1SaPQebZFRiGTNcmwNwoYKBrAj5lFPiEP/
8K1kB2ER7OqTrIm/psSpAHjUExzGFDy9ua6vNqwzLLGOg1jxl56S9TzaC2bajusV4anDtdHvOwGh
E/jMeI8dulen87oongFnTcYSm+DyCeRZuE+/cvvADW85UucWdCz3ei1BtZTNtcv5bGFqLqVLEZdc
RExfOsEXVt5ZKU8524pRQOYvXJ1/Q4Z7e9aEkjtqH5nEyY8tTHHd6/T/h+ieRHBc94B1Ujk/6BUK
wfAGDhUqwDuPLOUUdG++QD9225N5hoDW/diL+GyB2MS1tWuYEWu1Ise9UoH3eGfPNXtx5qxXZ4Kt
YQGNHH3gwU+AqnXan+uIhhYB8t1NQrUw2tPx604SyMu2C6pBNWu3/PFan68t+3E1eggz7XPM8DHD
iS0Xbv6Ltfp/Dc+M3hOtoFkOgD9VQqAZTCXsg8yeEUGRzDDVp+kocnn/VKv182krps6SSSOq6EKV
ZW9eDLDvrPFOJrbBqteWd66lNS3dBAmi3L3AZ9O1D7m2OEp2UkmC9+7Zd9k/sm4lJgM5d+oJyZNN
0o59eJOlTKMnziLJ7htjhYF8QwcbooUXM1TBOUP6+c2TzmBueMHOh+AhUIQ3W4BZEXI8d5uMtTZp
76EJEugLP9uTZ//OiAQ1Q0WGDtSuEFOecup9+WilPTY3Ar0AqFITqmUVWY5eb+tJfbBe29IrFSE9
IH+B/vlhOxP/CV0Vq01/Ig8q7ElWvE5kNkSttUuIN79At0wm1pyTKXGBwFlEewGaVPXEKRtrSNhb
S1iWmHjLHo/XP8QhS75fzEwkgtGxM18ooGmdTiEj0jgfWppnpDGUB3uTbG3xNvSdAMuF80dhaCKU
SXQK788vvTqyjBLV6hPp+fI5ueyLG7WskdUot3zcOKEYAIubOzVxz6cdggtxkYH6DP5NMS3RRNQy
Mzp7mvDSGgqnmomDAOlLh3CEUWi38YyyAxQLLSU+OfKcEUZeM3eETJCG4CyVoPoKoM5yXaY0i4fz
iOsn1y3jogT2Gp5e7/IehwlqYSvzyaNF1fd91D1IiS3u8yfC+zbKjgNvxuLf0ztyrOZwkN9iYO/H
hA7GDCMW6E2ytzmemKcQvuRYIDnlPFTMIu+Z78q9oL7ywdWkp+I7Wn7igRu0oWyrJOrvJ1WBes25
oF9ZWhh0q5PyGjzg/j2uF3dNpzYOSAPHxue1wlPtRjm5X4DoeNm446k1I15nSf9uDHSXTVzi53GJ
8twKT5XnR094kpkKLLY2+DTO/py0RzJfubYIvbwlUJ3mFOiOqO3zNYqZlI3LiZKhaWzncrFHntRI
rxjyj1z5mD78GPBmYsKysrQbsrdoQ4Qfqgslc/B6/vaNqhHkHKF7s9ZC4yOr8dxsAFZ3GYk1p8m2
DpBLrfdNU1GepMS0keIEvBkS0YvWQ5wAnOfg4LTcGEL/xpZbEsh4FC7jjwCDfWdYJq4olaj0Ldkg
TTyXFbLbTtBVICACdZKmIeckzeKpx73DIoG1Z7ZvY8BLpjlxUoXE0PC75zYAQC5C8bH1GRaRCvwW
La8xZVPiFwQ94AI3ZctJsYTLfVSYdKN/E13i7b4GfoV1Iet+2YR4p5JdJKUwj2ESHX1KVTl/uqP2
a5yWZ1eSpS/XTIx9c7OUPYoc+/qnrksVBAgkvQwBr5liIHNSF0zj+lr09u9GF43iJFw460PUNN+1
WaeRdGtdCxJTr5VbIjQQ3wgs29pi3s76dlqTCC7btM5pLCpuRBRKCMkECGfSbQoUf4ADr83xPZWg
xkqdyYmyOvb9enTZZEDjG1loAVIVfK/97KFfCARzZ4eX9lD+0UhFjgSnC1NCLeJpi/UrHDTUNHIo
/28LqrcCsWzmTldbRJ0F0XeT2v1ACiBho16L8v9/t1vk/kJi35jJNYrrMn5Ciopiat/xeuEqsbG3
ts0+m7CmXw4XhK4FJFJvEayJ/ik47B5HeFHjxwvcbKFWeiBVnwGr0oUJEG3Xbz/eyVe70nwJXEJ2
TUe1p5jA6xPu7+Jcchby2cufqo6eJ9lB18HVCGo5Ccf+Ce0v7HPu0W7REZODLQC8EpNVkZMS5OnD
xXVs1n4M1Iwe84L9BSVFPTp5sYruo9fTqfC2OuJZLpoTMvx8fNfaxtnuoCkpc48b5IVSPujCfT6D
BlFphfR1eiT661wlBADZECx2pAUh96OCOMTKgO9SDv7jEEO/Ww4GltUgQP0aTt0xhBHRXzVc4/IL
EKA0WJUsYGAPGneZbw84ubb8uCbkwXYzQ5XU0c0aULDQv2a8J8KdjaW//FKtxmSuwfRQqaet3he3
TOItjMnh/lSJkgIgME6F5WgmyA5kbpC7ZOSM10AjKtmMBGzjWmLqooEisvquxJnYt2uXU/GsrkkZ
IFiBKW4YA1wX2Y1GO+gYaHWwQYvZvemXUc1wO0mdY/8cIuZAmYagJx6s77RDQV5LtckLCnPBpGYb
u7mqIxa65dnlKtYVG4HmwzrxRbwXplgiDgFulrOr/xoMTlTBq1Xa0AwJtcUILYStU2mVthrumdqi
CQMfvCL0r8k1PDmWg6hKEd/Tcg44kXGoS56x9PZ1+/pKxIj+xlSWmKtFUwC8KbHSZuj9YOuVmvJR
a7pWP9Rayphs8mUO03EtgCAcs9CMS8m/Apj8qvOkprHHJSnV5l4bnqtz5+RTnzLoqXTOu4GbpuwI
US4hs/QIpWLdH/VWvJ3wCg8+zRdXNMlfVLzuj4fmLG5od23ILJxtRV5jhCX3+EW4+O+DynhSTENy
YlaKR8ODOqOgwtQEXfaBTSHMQ2lJFHuawmepXQVgwRqAlMxNqt+Tsm6Dgl8TLFd3ug7FinI3koVU
x7BlbWKTqUVCsFXPo6M58tJP9QW6pu3SYgbHjuwgKQ6TF0UeLkXiACljVseXPuO3HMff55EY8Kj5
r5djxIHzpH+JGD9rrfysnRAfkRuG/5EBQAu73XhLZMIPgsWh6gseLy2Avh+vAYmNpKY3l/Sz/KR3
iDwAmZNLWASg4LmyBdCqeS3jLD3+5MtVtG+f5JMoWCcIlr0M9K5LEzKexoHilTNhL13qPEuoV9k2
CTNJ2vicTAwDsHa3yvVN6Ul5WInxxC+JfA9Q0sclzxE5DIR0gXqBz0v9ZTMZWYjYpSO6GVzeR8iS
6fdHvySiD9UGd5e51yOGubqd1lVHuIiyoF7m3eq1yk1NmRZwBt6eNaVcCC/bxbLiqTFUd9LI4dxw
/BGbvND1EqsfL8zS9E8daUPkXZLoYRa5pIbgLDtvIHwb58VoVx3o5sB7GlU/JFKANCTn9xEJFQkp
43xNRX4gtUntn/VRSo6ZHqwehWv0EmWzt6oLiy7MzoU0Bmp8t9nfM/qQLHctusvumuJ1YisXriEK
XJf1ToIFuQhH/KGBlUoDisu/oyb8E+GxQDiOE7WnoU4I+LynlNnMINu/biCUEvGQ2BfI3t7xVaFP
9ToHMzYmSAfqfqeOCk03C+5dt3f8SE1QOhmlVSTZQh2Ha+Fu/R3ojdf4oQVXfv5okUlE1oaBujDg
Apj2h/KJZeM85EtLsvkkfHBu7DJ8kPrALYDfrt97Bf9lLjKpWoQpUj4Le+VC2yiu+QBJQhkTHvka
B5ImXVTFRDFF2/sog8UMFZrwhNtYcgdUlVvQ107SiT5XLwbV/sgNb3zxvlq4/FpRCk7K4eqKiWcK
F+uXaJBXC4QZKQ1rkLRC1oiDuKChZOrdZXc9CWzAiaR9BFiQBaZ/UoaUz/i/CQ4F5p6aN9QaWYKc
I9hBf0d6k2ng8jWtrADd7PC8mtHwnZDK66LGsoR3uadsK+aq80OKfN/MY32xXW3GDDI3Z95duPPg
1T4u2WcyM2A1Yxcaj2WZOPsGURJ9592384DM1rBgFVaOaHJgy4hkMtmGLJTUj1s6QUVvSmoo+vw5
coXaqUb4vL2QXYf2qpxJ5bOjRKAAbm+ZXcxILvlsUjNnCYMz0aixgBZBF6WcKoixlmT5tIqO8mr+
lBQ5+AZMQ8znqBn23DLGRuhYlkhlKeaYg5OsSqNuz9PfxD6ktg88GL+iU87IBSpdGXNvvWhoBmxo
2Pq9NWGF7wILVu21EtE+6gkX6RuYMGftvYSbPZ4uXjDRqMR75rw0eLH8PgoNQSjrNGtNEHnS5pp8
upnaifGsuMUKjh56LKNFFbPAPzEejDlXvVTlN4bg95+dmytJkWv1lp9fkrCwYUbSZv55q7QDtn6W
g5N7/1KXqZCKyhiYiTB8f6pH8llP8xKvm/NGHq84Vwp+RRA9G7E9mfEVK1uwF3WFmpKVRRxhs9Rg
atBfOyE1e1yD4lbzl5mttpbw/05EDbyQRgI4MAfmkr7hwL3075hcbqKhg6jXOTh6JCx86Nu7hWNq
2fT9szxRstd/RYA8Cq7Bo9VUYSBC4+BJdeaDJ52SgCIEA2ver1lad6A2RlNuroU9dihnp+HVJxO1
ehtfUq5wVPefLGAuQdiiPNXP4fYVw6Id26Zdwi/gjYmUB4Au9FDWyfD9YnR6uxfky0/RAWDlV/WO
FecHtmC+DFJxK6w8tHZOCO4+4b1KmnoQw7H47xAhWinOEfRnXaAS9XPA+T0WMuvUIi/97vkMyO7q
nHngyVaDYpXaM9JhomnaH7LqR8ESAeJyLtlZxp1ijsbCBh4dOy2HhNLyehhaiSohAxzs/uglhjEh
VR+c/shw+9W8ETTXMcD3toATZmgzQTAElnMGqCPVCcgdBsiogIl4891yjMXbJs4bk71IbJIbSNGr
8sq5fQpL3AFK3W+a3T/T6a63BBYnh59Gr+cnL5kC900+6NrfvJHRLXG5yH3F5K4sFcNEIaHAI6cF
HlPrvMiOlZiLIBXnw8o/550jVkXvwl1aVmEOi2IfdM2htrMhW5NJUakRXwUzEeYjVtFAevz6NsfN
umWOXoikrM7fHR2uViDmx+7V+zNuOqY/lK9unkW2sTSAeUGkCLYyw+P2AyPkbRbJiQN/gR4zIVou
Z45s5aJyV5TuKk+ZHvk41xYcdvN8NYH5r63YandGQNzZ4X86t7HVfxVyEPHb0awmQ3YS7KX57/yc
CJbBCDOz86wZJXtMFi097Vcy27hLUyCVfJf4KOdmSk9BGPxyv3KWyfUYoe7/iYj7wQ0bUWogUa5M
mydDy76E3lwjaGpuqYoXxP+pPcC3lF17rl5jmFWGFLjMFSEn4n/hLRp3GX48aAoctwIaZMtAHQEq
wEfCFWN7Y/O0X7KRkTRjzQhNSpJLC0nf8qHLZjh6LbLfpWv2ZT5K3DGewkmf2DSrS01bEJsNrO7m
+S/vWFOz5VZ/pw5tH1Ke6iDVyttlAPW7aiXDh0oK1wrUKSO0ix4n4FiKCrZXgZ2zZ4zYww4d/dIZ
7zWCe+AT0gnav6H9NSvjAbkzTDoqTcQfgAmgvGkmqyalacWoPzY9OR5bhzbh0qldXgF4GRSI7Kfi
xuGTW78ntqmcXuDQRowx7umfASsAz81CYwIcjm0wnGfq6/ak3vaIdHrLMU/O51EW5YpjTjTYOjAH
sH1J2BEuvJbI04/h/IPbTk83JQIYleU49Pp129/rSGnzjKlY70AmGy1p+YtLckf2VKO5yWiSqvmQ
JTixIsSEUyi0mR12UVDfR1z9hSnSYuIhR7t+9iC9yZfp021UD0oVB+NgY/67q1DLM72LBJ5dqY/u
R1XPWCHqrWVYIE7D7A1OE3qEU3vdAakctIURYMN2ICIPdVHeiuYIvdnkv6TH8LCQzLgapK6oq4EF
TDBmXVzK0PuWSnwVTja/MfKLgZHiuJ3qmgBNvTPkZ+zpCEFjm0gICGDRHF8XOU8JXm/lRNrYltKz
/8z0lFEK16aEGbBDgc2Oh12OYaQpn1dZiz7YJtPnDlM0EmgPCillZrK6H2cpt2zVPtAlMchAYyCl
dJGPotxarbwZLQdlWq9ZCSstxa8qRN83NvTols66uyhWlo22NyP3dP3AGextIcCJ3nFDF67JExOB
kR0X8Nx8VR16Zj48Je89DplvbJAXJZmRrfCotNMlkMORuo+/W+rd82I+3BIz9+sev4T+9LbbgHdH
9nrI6TRRvZbIUvESu/lTA+gX9UGhH+EjxyksERcwEXy5eMB/bQXR64o+HEGfshMl/p8AGQTm+1TK
WmmWmaXeMCisK8N5Cg75fn4sEV4fAzHytzl0E4CfHlMfPp2GTbper9r/hr+uwjxFQy2Ne5DJzztj
Unm9KZHzpIe/PbHG6U+oJsQNKcAWYhRbaqMcmxiLxtcGPzDK7pF/vMuDNsOP43JuUeRODRkajOBj
NaAxA25RT/dYS+1G6JZ9AzWr9Zml2FwhRdc2vKUiuEE4uVm13TldrAogH5bIM7qvjFqNyzJP6nNf
Y8yKkEF+IMYgEeHBZR/0H058Av108+if6/hmS0C5DnosJJEEJTEppSSRF59xUmek2BdJj+0ql6tr
tEGSTJn1TM6BAXKrs5O/To9cqZ7ZXywaeVQHYPKUL9nLv+NVeGEoaRcGCMvfv15R5XC9E148QRKz
DQwRj6NPISkfKGe1W3w+WNHuas6ETOzoFzWoBuMlELG6/k8FUgT6/aJL9VEjS/XLqEQOOCLJwf60
7ETP23ZyxX75gGxPMSO4EnbBJUZuWraM+U0DKbkc0osAqS4CTNdl/zDgMInDQD73icC1sMM4v6aJ
r8VochGWdXrMYh9HMJ0JEWRwDq5K2PJ8Sj/w0UqG46CjunhmJH+BAh7fqS8BqANl+hi86aDODOVR
skozcnZdKppHsJWPHfZTlfNp6WtJXc54m5mcFLy8WyC7YEUp3ofs/5hazuc2/Qv1AmCUkwjEXsHi
n2DUd1nZLZIxp+2mlNxCOwH3uMZHvZzwM5sbnPCuHMFr5GFLV/iEKq7EkFpzbuOS1bGkQX1hIaqf
ZQAyYajMKDtZf3rYau5Rn9UuQK2yNmWpr3MQhwvdY7uLUwSI6JkjU/GnSV9DQC9uqeqq0BcJWAhL
vFqPpneKEh7P9d8/KfzuxE3sxvvzN2B9ZSQj6Z4bslEelNf9rrGn01CCXacVQrouJmS4f1BE7coM
MEWsLbGdYeGroiqPr1kmuOoboIYV2da7Mp2lkMTonDq6IL2cdi6+RqMpw3++6/ielwBGDcneNsO8
doyJqAo3LcpLXtIlsPfg5f017SVwuZJgh1tQCeGtMCdRJldJNeOMH6o6IlQiTTlgBIgbK1kCQjWq
sTW3GJylyN3Uzk+zljhOeREEcfmV/5sWrhwhYv7jtIwrirzsvfaJhf1sDEFqJ120uGCGm9CUhC0K
MdttNENz9d/gGD1nXzj696xRcy0qWgcHA1HOmieLey8HV3ztzGFskAwmDY3TbqjRchxlNqmAxs/i
049NPKJTKDmcpqlC/g9+HMJtmK5oyhbjeqCq4yrhhQP1pLvhG1keY+NfiwRs4LapbqZbe9HmlSpr
lIAUm7DdQ4mOem8qpgUyk+niGFU3TM4UxdMQ69XeFkRMXAO8Jldf0gt5gOW3+yjLwPBTi0VTmciz
A3qgpz9aGATToKdeXkHtlVoSZwGMZOtIowplbmRzdHJlYW0KZW5kb2JqCjIwNiAwIG9iago8PAov
TGVuZ3RoMSAxOTIwCi9MZW5ndGgyIDIzODQwCi9MZW5ndGgzIDAKL0xlbmd0aCAyNDk5OSAgICAg
Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42rS3ZVScy7Y1jLsFdxoL7i7B3d0dGncJ
7u7uTpBgwd3d3QnuENwt8JJ97rlnn/3dv9/o0TKX1FzPqrlqVJMTKyjTCZrYGQHF7Gyd6ZjoGbkB
MrKydrZ2Ms5MjHRCdtYmAGZ6RkZWOHJyYUegobOFna2IoTOQG8DISc/ESM/MyMgFRw4QB9oCHT/M
JgAjd4As0NlQxd0eyASgNPwLKNg5OdMZGTp9uIG2Zha2QKqPFGE7e3dHCzNzZ8DHGix0dH9W+pMt
RA+QMjS2snN1srIAGNqaAKToZekBcnauH0YLAKWdLcAIaG5obQqwMwWoADUAqsqiSsoAcSV5VQVl
KvqPhZVd7O3tHP+nFmFlFVVxWoCIoJyKKACoRgsQV1VW+fOpArQ1Ajqa0QLkVD78f3g+Av+ky4qq
CKpoKogyMfx5BgAT4CvQ0cniD+0/avv8URngP6V9pJo62tn8RQCgNHd2tudmYHB1daU3c3Fyprdz
NKO3t/6rPhVzCyeAq52jFeDj2xFoDfyrMS62JkBHgLM58F8L/NkNgIyFMdDWCfgnSczuX06bj1Z+
JH3Ynf+3sI9GOP9Z0/pf4QAnIPC/aMwNnf7KlVFQkAHYGFrYOgNtDW2NPwKdDZ1dnAAGf9k+3kAT
in8VCAQIuzg6/uGQ/bfL8X9p/l26kN3Hk+lYe3obuv5zxwxtXZw8/tab/35sYztbJwsnZ6d/rQgE
mFpYA/9U7/Rnzyxs/7LJCspJiokqq9DJfEjOlk7W7qM7tvTObs5/Rf9ZT1BEhhvAwckKYGZiBzB+
yFPU1kTYzsbmo2onuD/tE7H46JOznaM7wz8FbWVr52rr+f8xm1rYmpj+6buJiz2Dqq2FgwtQUuR/
gj9McP+xmQGdAYwAoAMA6GZszvCH7C+t/DEz/TF/NMHb097OHmBqaO0E9LYwBX58wXk6GX4FApwd
XYDenn93/DeCY+IAmFgYO3/I/GNU4P5aXdLW1A7A9S/zRyX/dv2PACj/GlCqj+k0sbO1dgeYAE3h
GOTsnD/kQPn/z5T9g0vMxdpaztAGSPmPjv4zzNDGwtr9H4H/iFEH/imW8v/ItnASs3ADmihYOBub
/9XEf5klnQ0/dC9oa2YN/NiSv0yqf0bJ+kOzH+eOxZ8DC0DHxM7yD9+HHI2tbIFOTgBO5r9cwI8m
/KPej87/qRbAIC0npKEhRfNPwfwVJWprbGdiYWsGYGZjBxg6Ohq6wzF+qICZjQ3gyfQhZxOg218y
ATDQ29o5f6QA7F2cvQGmdo5wf7aSiwPAYPjH9C/ECWAw+g/iAjAY/y9iYmQEMJj8DTIBGIB/g8wA
BtO/QRYAg9nfICuAwfxvkA3AYPE3+EFr/Tf4wWvzH8j0wWv7N/jBa/c3+MFr/zf4QeT4N/hB5PQ3
yA5gcP4b/Hh4l7/BD17X/0DmD163v8EPXve/4H9vk8KfI+qv+WP8z779z9n9F1Z2drSzAqpbmDib
/z1E1tDZ0cJNm/FjeJg+7B+vf//S/S8C8v/M/d+yhYTs3DzpWNlYAXQsH+3jYGH903Mu7/9KNf7X
KfrX3H7o69/4zxEGAALdgMZwK4t2xjxBlqmNIaU+ot+myyDJuehPKzD5NKTiIVYyptvxsEXydkiA
/IX+zX6ZnwvtZCS4dX2S/W2LNciDMKzfNlqSKqduTRQFdg19ZH3wkEQFx3LV6FUDMmWX/co6SaiO
pXILNEtYZzNb41sJAapjJ8Jc7V1P0cyT75+uU0h0ylrX8iFdi+aZmtAdrVHdllFwO/CWpztAnd+f
0GOjDHsFV6jnDApCMMekoOx7ulC0aFILVDQzluM1HwpLe7TgoBWr98x04oVTj7euux5X5cFmDYyc
3HWJO246T6JE58tTXs8R741KHhXb7ewkRsWT3qI8U46VqQ+W/XsM4Ev8e47tlmFPyrsDZotoeO21
KpO3X0WL281ibkEwkZvZIVXMI1tONIPT0KuBNSLmvJ+jVhrU96vVq9CRDHrwOoK6/KcL0MpBq8mK
rcJ0IZ3UhsWGtb19XmnTUp6oHjJEoNnydDN1OgO+E9c+MrYxu92e09vFVraYCCzAiiOeIz+DK4F0
dsOTKnL+7CMtBFty5goBh+t18OgBiXgegRz35obKshMGmYZ/8j2e65zZvIq9aV1FvR6zzfY7j6wg
SlslFE24z3Fr40wxyfGazi6owjJaFNzEBsjC8RMD3QxZj9N5drrj92NPPGoeccmwGB9003CwCbXX
DZlkZ9asRTBcg0IbhHCCDrKprMCjVneHfXDYlcyVL1hiyXHOIl7L8Sryc5H2+LjJlitkkqEguZ/Q
CD9Rhw7H19r2VS1wmgp3JDQtpSX5SR0vEBO6+T7hSivcdBcn00U6vC3VyS/NxiLGjckGCHE1JvVV
BszGphpu1bjdBeypMx6x9Zd+4V8znfFLJoVRcgKpRSsxVjENbjux0QguAEyFgHYKDSmnki5SCZ+k
c2URewZqW62bRiqpg9dks4tolwuzRWXWM2qJvKbjRPx6eE/VFrR/P/U/quvtNj86jLWiz+ApHRlX
NCmhCmVavZrMgDGBFn5/ssiGw7bk/XTkuRZmBL5w3dupbCH+TqxuiuO6/AnxkwZXXwC9+C1eXbxW
hlJQU7d8jze7g3fsDUd1pr+EsQIUsVdFJlPljfDyjALA+Z4beoLgxDK6NJqAEQRKyYWKAXF0A9u7
J+792ks7fy6rf7PJrM3v6QKPSf34iQNiWxRv4DuXXPpoX1aLVbrCoQK9MLZIJpfagqIahVN7gVlK
mwHnRm9K5iczNB1nLKkGLqlP6cMVkL99F1sAzXIQCMbDuFkkfu2q9BMQO8IacXrVgearnQNTiBqh
+I8Q6qt4kZst2TAiOEcsFJv88o54TejxBpGUuQbvj0PMAbp5wKURzQQDr3SSGg5jOlGa4YIvqHQr
9HFhx6dDll8EcKajyPezMi8QO4iHdcatRd5bn+7EiXfAqtRuoEHDAK4zYdCCqvrSYfD6X2urcl66
Jl0x5N1u9FziKusGZw3v9U5jrX+5FCh2a1WS0bqhWHlD4bd+h0wgkKtpoh5+5LYoqvLvC6zuFbJi
i6BdquREeu5xnCV/AbgehSXQsEOF7JDBCpnAoBfs2Nf0Y76vudsgvCl+RZDRwwxaOKkT9hbP7VfC
FMmzKP41hoHN8NaKyFfwiE46hzhDs7A33ZfMm5S47Cs2KZflocJiUtrWngXTJhZpUQDpiEzlu+4L
BRVyelKW/wALLggv47OVLvh0JtAxUdWLELl/unkFxLZxGqDQHjGOjnD6wqcJ+ctY2i3ilYJqiJdq
9oJHQxmIVPaZmxD7M4QQRuH+LHoI9a0dR36agoqkcGpcKi/lMXwjNfiDj2inStFtjpf2WydRcEne
OinpErLVYPpEIYXzCekg/TTZ3XfrbPQCV/YcLY+HMc7MgTgEYciVx2gskf4qyQ54JoZVyB74T1wn
QnKbCW4oyHYcVTWaa6hAuZtnOjKxgu1ndxmtYCBHt51LazVZY8DzKiE36C6OBdsU12DfVhAwBNqH
c3sT73a4l7RMdype4YbUBaJPkZikjnUS/MTGkneF2iUjW4N+HAPnRwbpArVti6JhHdkN0H2n2m29
zIqinyUlUI7dBQ2kPDdu6iwDM9BweUMHisMWGiHu1TdYkDvmslSIYmB6a5vz7fK+X/3X+mRPXY9S
R3gObqzM07vZOU79ayNuoRivPhR3DNfpuQB1L1ZMSwXRYB5hfRE9Rlar3NVgitTi7fN5LrydFH5W
7ERJCEkpQmdIWH3tDzHp07uQqmNG4dQfqeFINOzaj1naZomes0iA+8cl8EGFqFolR5zozSDsivzl
GBLo6SnWowbng5LtdXGDS7EnzSkeHd7RH4TCN3gK1g/eqTCmXPxJLS7uc4pLxBKlSq5GxOQ1+Bqy
ZlGk5VqAxWINtWoJqXydVdOhrhEhCkcuhG3a+JgAQVU9ib6Rd4jwvH667K6rKZHQrVLmW+ez+ItN
TlvvFkmBwFDJDtNvjZtLVhvqGWBVzmaxdhxF7Ae/m3knwyQVIlqAXxjB5jKF/VLBvnmkR6nhdoK2
n0SHENoWoEvgCwyxyGItB9Ij0R+x/yTPPXWpw8rtKvlOsNZeLGp3aMNaqSvLJD+uHB50NgT7m2PY
s+UpvMK0MqSZ5VqKlHYNgdhAG9M/Or3xZufTocFjHy7qNW640fhXkf9DoQRE3+IDHlxVpu5jCCod
5C7P5XMxQ2/ZETnMb/d/j2SUkVeak9TSZA3nbZMoS7BRUE0Ia3+RueeCUnuTOoypPQ0pQrwI59gU
jeHUgfkCXYXGw3+3OdrQvcPwCyF0o2wM/WYxSNh2g63S6Oqm2IHP7LA7yGwQa5fgWUmK8aeFT6iB
ss24fE44AvbRXpm0gEx1pHdd53Iy20BkvJ4HslcXQtCJjK5GZOUJ8zJC0W4dMSHggcstLuREek/1
Vf89vz+SDccSAQtBATPvM0zY8ImV1FW4W0FUNoYqtB0TidvYDoVNJngkBv7h5nKXRfW2G+Ga2zG/
SU8dElOYlSdLej0CD2X1rWxbwm93vm/eg96J0xI+PofTbbA5L7CTrn5aB0bkKnDAiKz8NCh7vPhK
lTTRtOtKsbfdxQhEmJDyiCAwdOgMAQdK58Qpg0Bt9cWwZWcckLnTzTed3LnJZqOhvGwYCyojI6z7
e6VZxy2Pk5rr6ZGuYQPkEZ9fri5cX/viXSjz956QOqU0NkAnAqqbZ3otMvBzPNTkiqrTu5NWzWiz
IQCKL3pQvLnhoaKGyM9zFehfRkajavoSCdnL/KClJ9xat2vItdEypBWqExeisIJs9rwdTIrh+0g/
986ZCXUvERAPchduTKCblDMADp10fkuj9X4f61TMiFUftHEbfXfaHUKx2YWD372YdzQc27m0727F
4UKSNrYAKu/WBnEPKtoJH/T6/d5gTPQuz+z73VWhHqGk/dhiUEv33udMNA1V4GnzCq9TWwgptxbl
QbGnnpwvG9/cXV9N8oywXF0p0ZXa4piQH7C4cNWMu9XS4XFoYcNUd6ZfZucpZPSbNKWw4Q5bRMt0
MistkMZo1bL+Fx2e9BBnevCYvBYzOO7TUCUeV8iF9G3tqtA14jaNy44fjZlJ0MildnnKE1ih3O2q
AZk/4yOR3FooXpf12IVgoPc6vvTIxbfOrUU+xP6Da+VieBpsj2JiRn6KTDqR8zV0E+q6gNIx+L6X
q0LmH9EOjjd7DlxvV7NfGBLhruoMd0rGWhFU7kBZTd/YyjRKG1+bW9Y/8Wru7XWIetu7dtZZ0qet
ux2FCErQKq7mu7dZSR98fuB1RptyFpuZzide3gK2ek+BwBc52IghnL2pTJAcuiSp5GjkwCxkeLzB
f/45rU5r5y2foTP91eiqT1HTSL0TmMUrig/Z+msYmbKxzGPdaP53aCVfpN5ioDrkW1Mcec+o0+N+
uL1vLcbDnmDPevxQCoYHJV3koJK0euQUbXHv+d1ZGSueI7LW4ayAxqYEr4mvhTDgqO1rZcfp3V3l
sXJRRKTFZa4Sop1Ivm//1tt+cLe6IifKHleDvW546BxtW7bM0qIPi87M/NhnnC9QD8qvPCu55SHP
xZuPtVyh8m8AxxImaOQXheQnsIXG319BLMyx5+Ym3AzEnIFI0lAGibARY0Doo8xUjJjKe9ehsLz3
vvO60IovEFZwXaOfVNB/iSnF4xMPEV7RhDElKDXxE8qsS6LWpWt5t9QPWAfERgGTfnoPIs0FQrno
3ypQoNtsk7DPkouqLwBZW/xBhm8X/UZk+/p/7juZRahf6m4GRKq1nr8iIVaPt1Y47ic6CvaT4GtR
AnmYPELrs0PRNs2ovEAWYJoJ1q9ue8a0AWsmsLoixGkrC4waRPgCc+pTAnjJsbhWSovvDESUG2h7
DeRk2gHpYS77oBGXnzBrMzse+rbuuj1ifRVoMRC8MSEL61iY5Y2LUKErTry3uTfFuPggfb737bCj
ftquNiloyIw7SaVtHuXTjGWEOM3AlGHPIvWeje3vpBQGtw2loQYJ7zNGgUTTu6Z5XSffGZ78Dar4
nnIw8m1KzSCfFkvqQfdqYis/KsnfV8U4o21JnqknJa27e8SckyKfF4ttdlCye764mYihbzIhgsfD
aFsf3NlInev1ONNkBqWhWpnt7rhjua/wOy29ZiDYviSn0F18y+8mxtWQkVGAJDHBq9nbLbufS5bK
CAZibFKo7ApJWU+i1al55zbOvasaiwhYSB4xbLPJG6uaLVZ9fl5uZj7iGRTivUeYa1ylKaw4LIWg
xaEOF2ktXIEvplvpd+WeHUzWiGZP7EJsmSBVa4iv7S+px78ouEVJVPMOvE4IKTRpaTf6mGlTWr3a
l+abg8t9dWeg3F+LHi6eCIyrphpMe7XEh+wPaC16mN457ftpzGsQZAv0EaJRVjJFePBbqOSXZT5r
J0rBqFceMqSxsnKpZfNGweyWWcUcE6Mb9B6ydqd6jywROK2oHEPVmnj5NppBi/D7RjZjkx3R2siy
C4xy4zcyVRXhkpp5XZovR0B3E+7yIhcR3hRL+MT6wP6g81GINWxjjlBhV/O2/EZ3a+1zCzw2rns7
y1uUmdbUgJHkqpkjxoBtraJxP+Sokm4sARqSE0xFJIIt3vFNPwBEqMPFvIoRizk72oWMCmzMcuaX
fcNr595xw34MOpxXvhh7YPInJ+1pc4MEDq/UtLh/xoNkw/1J3fwFzXV7ob3Ip/SBM55+Uxjjl0GM
5f0vSXH5A8p42BdpF7n6McpOjDAdvqUce5gzwghJktx5edFxZOthHWJk16maNKN2lLdJYeKTBhBV
clZaZ8Edk8Yh7IfZozfpfu7XaPX5pXtkcCoxOtqhmUjDPbSzb5YOh42fEKoqDOn5zJ48sjElpiQM
U8RqpMjbBMh37jh7a6Xp2QrHVqK3z0bvb1NLWkk6pCmXxHuq17+TURU8ZC48WMGaivnUgLe5oXbv
r4JclWBHgKlXB3HVT87JGwhoMbBbACbPUYwfVKEqsGaETsxy3W6c0gTSMyGdbVDTsCMlR7Vwwrua
8nGmUhcebU9fGebcgxrrpRYytxS7Wwikq8cjIYyLTin8/BXMUuaLJuPJI/G/wnuS8HgE+oZ9rUwW
OPOuYlGD7YgiHyXMgshtpkiKE6BvxVf0kuW6DrPP5eoScWEVfJNHKC0gw8Tpr71EYh4Ef6VG8x3p
9lhrzk4TzExvq3MdeDwcR4SuATFHHmWHFg3AZoH9AfmY+ou4/V0rTnXI9vasrPGelDZNlTtHKPG6
sCznltnJmiS0bQj6AebUMZzMJpRHdUzoiNS1voo9/N4ODPPUInH2JUU1YFYgnuAyw5O90kVTkaZG
GmdOI2tjhPvSvc4ogeq4j3lIFpVmBd47HIaOkxk1MIb/rUO/DdpqpfXwV781ioSMGRUnlGKa9Kf4
bvRQXXhCJqtfbna5ns1GG8nqP1u7uDM3F4dAflLVCUz1624by0BMlc2x/H6UQ2YpOJvI8L5Ii7vI
RUjiNHwrs6U/SvbVuFdJGiUl26pveEGh6rE7IkPlbKoiB/9mhrcP2VFGaiPdOL6d1vNVbB6Mz0jB
OSHks5r3csDpybYjvntGdivqMeg9Y6uCUYcIg2jtpzww8mLooiOzRdBBkLDnq4or7oG6z8sKRRsr
p1jbRFNrKtKUwenaGlHtvMU2BeHIdY0gOVDaMTS0MV4HmdXYV/JXKA6iuJIXM4wkrirPeL0YSF2U
c7Twkp/HW5q4w8TrT8UT/UzwiVhhrbLTy6iMcyqQW+xRyBe0p1W2NOaOiQBOi2xkDIhZ3Qx4Z/oG
dyOp3gFI9mOmZIm4Xa7bNnjgoUG8cxnUl6eZimb2zzkUdh1gSHvXMXsJq+vHJWsMAu/JnWhG0HW5
UUGwE6hMPWUkojnl2NxKN2yH/gzYP+R+gOvEJJvid3ZxsIa1Io0Tt7ko+Q2z+BYEtgkLrP/qn1Xb
5ne7pUpf6g+U0iJAcVvrF5HbhWkuKvtxweoG/qAe6hJNOPxW4lPyHeU2GAXmTeUgIK3g+IClA7fi
4NKSy1PXhTJnDnqIseTWASja1Se3vEywMhEkBcEHeYhrXKg+6EbcQ7eFeDLwA0KJjVOdroP7AtfG
V6F1YqtcZRXXjoWmbRYTinmpAq+bLMioTRCwDUlpiAEgS0mjYrlz7z78ebQdjZe6N+1EGugoHKHV
5VcE3zytCE341BHN8d02JxQlVFa2MYAFCrYcmCAV5FbzAi/Nzh58rYBr9UpjDciyRSsdoMxPaz4N
Uam0GG/ohU2RoqGHMeRrwt0ais59XuwkZN/UCL5XT5duIj4tZU5GOy0mH8fX76uqjS9u0tLkKZ4q
GfEIYJU3s9AYOzQ5LT+S6pxR6LGzaeLkS70h1ZhUonFA4RiPfcXSefl1KMjGntNia6nYEwPfz2pB
fMIdudsYYBEsLcJ+DIZ38kWML1YlcBjpmFxcisYWsOGXwpWq8qRg9rPW7uBz53fYNQLviIdJdP4h
829fRjWDtY+i351DdUM79ytbrvDp8LI9gV/Bsq1xXgdZt2LklC9E56qXEGwLA9/TqZDQ1OWawYRo
lg1dHZi2Loae42ePy634FtSydNScmoPOsiV2xv1KsZr5k3VAOiHoepd9aJGmqzDchg/l/d5a33TY
Vrhpv92dqx+BMnbzHl6SnX1Xmd9BWQ30ZDBIELQ8GKdEKHCIGVwJ6LVOEU5MUHdI6oRYcRgiLu01
FeYb2hOXwyGPy5MjalYISL0zYFUqXLPJuPMpCDyHbVsk6q8SMoiyBT1gpt0ijpKVWepsde5cwH2B
+YUplhj3Et8GXcAseovUSIZiblVpazmtGYQxbpbefJfebYeDuyST+atGBCphsf40vpkpN6V5YB7k
uY9C9zB/zKRhpuE5DSzbu8j1q3yYiYytBhux7ew6HvvruJjfJ3+/BjP1RCz59diNEB4/VDyyE04E
Jy9GZhwOdO3qQkl9ZV1Huxn7QDPeboRovgBZwNqwg2hLX9/AJDLJfMNGb75bSN2T1d7KPBQnOdEO
nE7Mb65VBzhxzG0PAW+2VOb4zUCI5/rQMmmZAvdRnYkR7L57EN9CYu9gLrMqPXbNFaNglh9qB+r8
FW2IfC4xMxcdTlbGvBFdnFiYYZQtCgfI2xpuCyxJ3UMLrnhIOeaa1QfqCfnmWl3iqkImEbIvwKVK
OQSYojrVrltMnZlzf7y3SfTABf3ySH6Twh8H8r4237aP2/Yq4Fb0Wvf5KM9qzaL4WOvR2m5r9IyH
C5KJXPEH1Zi9P7Ea+lrhGUwo4k0bRJI4rd2O/e1eYGWmRZz7CVvrkFEsMBDkPcORlKKkBIbaPjZn
D6XHDVeObrAtqnDECseRZlFbo1CS3tQPPi0pcyGi3x7cpJRT5BicWS1GODYvFkeBM843pyEOr4+T
hfpKCmGoQHxr9lub2bQEl17KrT7cdNMAKik9ooE7/8AxJtgoHJEqeJkZvsSmp4Be/MRpcf9PZO9l
MZXMHw1coW4eI1WOj6b9L2LRFrjJ758aYhcf2zYrMvjw8uezrb9j/1aNVmdrTsi/z4rC9Z/slwPj
lLkm/Xxyk7kmUDdJWdr1gBT8cng41XBo7TJJL3GVX8gEGU+tmu1GIRjOFJWsrh30wD3ArdgfxAkG
g5nipn2l+/VO1A2oVwoBDD1BUxiWh1v/Kb+rDjqxXjBpvv5tzPsG1i26uLc5LZuETDw26TEyS8Yg
lw32XNU4MymkuRvvs2x6L0cQcd4duYk6x0B1NuIXDOMegnd3ZShogBNSrmKTMapr95M2GwQXyBTP
8KKy5TELAV1Jj/6ISgWa/pQiqvGpYOYkQSALjNZ+QChsdqLr6m3gCHxpoPB6gZUbKqVWa5O7KDqR
gu1KXHSMFwJr9Sb79wBtV7uyC0yGArkar/Qb15rgogl/GYRbq9X8/nLLed/+eL1RUhHpMpl4UQhq
7gqX8OQSNn33aQsTKG9/+uF6UnMvPfo8bMyzNGnHgI4e5e2CVvprZCFuxqEsnWcJ7qfsHnKi72ev
1xdTW2R9VaaIZYOCau11EP6/omEBB8+TtPFx+ei2ioGY6+r2firGA/n9Do217DLu2CENJC6QlEl9
2ZUCxvQj0eVNq4SDQrl+8moLA+Oz4pIkjOzKkjpHF5eSTdnWp9wg3Cs+X9OrV6YZ8BRvBjetmXcs
1BM8qS6tv9HwyttQ/pgQhGf1/cJ+WQnBrtxDxV1+nSeyRpKBCKqG3oM48HuIFVqgROL2FbsdsyVM
tG2XpWQm02MfDeqZ338n9fDHN+U7wQO9uYkzGPMM6nO8p0vdJy1aBtFJR7oc/GhpAE3ir0F4cV7m
otXH7ifj9hKN2jzaBzixAuKNKvr8RI3szO85j1Q04eVCHGBrqoK59l9xYMsuc+nZ/IiWbOuTrSmX
IUpErBm2od88I7AJ1GAju7CUaRN5jTfn5JKzCCTjk+2v9y9tHNHBIfkBGkdhGqc8SCAiaeQCZVou
soTfBVzJ38U+Qc1FcbFHyUkaZE6/uV/egHQsmtwNuOIajRgQohG32paFJPJstaNAfnljAUOPB0Xf
xWtGu7SWK5REPbuENq7zDKp8cuCjGf0lFad8apV+qZJBx2tuvCk1luUjyclZXwhSz7wckk9/300Y
PJfZtlU+bnn6bBZHB6pwJgk78PXHGxZlJjxGH6/6kj+d1/Y+vRA7femTXsu2LRVnj2PvAzLaejF6
BSodG3fdl3DJFk+8tmlwzxM/r+galeBOpeAjdpAFVZgt+KbWgFUjeHoSSJvJTRT/Iy71N2EDSMjZ
R1EYyIF16hh5GdJtdDK7HvBfxg1RFU0qcfukhJIW6NNT70Z0pDSERolLLoSGXaeB2aIgaDGtO9Cf
9MLFUXmDTLrO/LuGe/jZr/MakQPO8H0NoqZIGYaqidGOGVPXhDgHX38bkbqDU9MW7L+WyDy9cdJe
+YtTUlB15f5A2J0oMsPN5m0uP8JdkZ+w4WAW85MuusbC11FrVKNGgQ7iCY7sF9IUswjwbA0Y32wN
1XMCclRbtHeKBjrxcTg9LCawPXuWfhJJhmgpcR5fMuEduwl+jEQYUYh4bkK7qVsIKtr/SV6QxXfp
8E3obJZmdrNItORTLVOHLUh2KgqNLXo1nU090VJv7bolGDNCfNHB99BYsK36tI0sXP1P4OJNjajo
VlrIYyu7/kQ2ZJfwfPtRauM+WY/28q8/7sREhfw91bq8W3gUmxCV9ibMdwJnAprLYbhuRaaOKhgY
bm1qW5TEOwIMbzLz3BksmeHcB/N7uS20ECLZx857vLX0NZhWoDsm3AZCPGoOpwm/sC3kBY+FaHQ7
PxbqUAng+XRcMnJdodVOiX02gMeTkinqF3dd//GsVmsfrxlJ9+LajoqxIQupju0z1X121/OdzY0V
bqcCcqI0mHVLuh4tSOEHbxYetuzdnjkKTsFVn4DFeVzCNw47DTTtqaINqBRO7er3RlZtT8m9EWgj
8snzs6+LONU3n+UwuMhbL7aKkTJ+6m8S76ObwU7/ZJ79ed8/we7cTxgX22Oaqrf4kn0uGsxJ5LxO
GHl8v8Pt3I5TG1E9jwovSQs5gdtl8wORuL/+bONOgllodDmGGv/Uoc3I8SB44LEg86Fkoi4pOZ/V
pSFJgCjyJGOc9vrNF+MO4Y0g+fRNIh5PPujdoaTA4ABh0OVCQESsLXDPMQb/cU/S8dPqtsb1euN3
y5Pa8LH6H54RZ2tYHbfqgfosHb8qCLrQibDU3U5GCyQgq4cShFfjZ+3xmwpLEwN/g4ZWzKwU0el4
F+9Q1XoyT/U6dpKgPPUh3m5cGLMJ8GWQju8QvsbxhrKNQd1YBtj29hJhPkFjO84gXsVOopafaOj+
PGW3hrU80FbbldLgBgvrCZU+GpL26anu4Fi45E9Edy3TJNXv41XiT1xxfg1yhjevzL2Q/enxyeKu
1Jp/jr4WouInku64SlAlKXK7XM0cCpWt8n0m/issBJx2pvQ57kQzEOSHo7rl5+dJbvqvVPdT7/bC
yj8Xuhob5EyySlgO+hJv/RPZ6DhbGPhcG3R24iuamfH2uWm9KSS5/DdVhXK4rLPgHqcrELYYMPb0
0ZQPoCOJyGgME7xqZR88TdS8LbofDfeoGswoceAsjMzhIIomWzCad4hMoEXzyk0UnnsJRF+TbyX4
z/yEkKQn3HytcdxrlGv3Y1gVrgPhuCEyNwePO96pIiVALgswth4OMBF6a9DuRm5lXjhTbbxBDLK3
ydTx2VU9v67ZlRsxnoG4vCW75II+bBlGokePhpgAJK7bZKcut7vEoik2tuV2oGa69D3JhSF3ewtq
v8oEPvwuwFr/Zqw4MELIcn/KFegJ6KkC88R8l6w5QcDTYvXM2Wv18yuzudmiI5lYC5d3lxGwH9Td
XjRcCA5We6xYDqpAid6883QA/RX1Wwv+kQzim+Wj7vhcCV7B3G1EuuJvK0oSt8Sgh5Vzv6tcJsM+
iXrRGh5k6/dk8S+MEqR3WYjIIWyRIZKrwDuJwTNcvKdruLblxerH/WKekYoQt1D5PgkrvaFZt7yF
1TZPvF5Xn26rkbekgeZU8WZ9AhQf38596nWQISStUQZIoHErvKSSiig+G/VdQN5gm51BYhYaImCs
MqcU1F2qzvBzfnqe5/ZC9HlRXFf6VyS6gdPN8b0EWhB4SHYW6zRqRI2K2nJ4G6WREtFbgU4s7hY4
r16FKE59+tGNEN7UNyUYB39y3GUPLreDEh9Qy0Zn4llAYvU6+mb86ON0S+AqmHyUuFRMgzhGriye
9T7kr6ImrQNFdiyYRfc3a7cT4cex5q8sOMaO6l31yxJgLoz4qwaqsUAygnNJgSyUn9AYLCiEGFMw
y8GsX2wulNXlh+B5Z2YhYrf4LOO9M/WtDYwdy0XyYfb9jVW3QpGC9JxsHi6qNCDeOTWSqRUSB+PR
Vl6nJ3gXDL9UXX5e2VY/UBti/RzEz28pra+yxsDYlDD8pXqJCdLTOrJsJhfsXilh7gtMDpgQhzzC
zK1kuzDVjs+bMS9lwZVQM1ROXqtH1G6N680By4ZtVoz/Dx3EAtSN9+96tInlSA0IVu1Rvh0ppRie
Z+RUfg5jwU/ytLjoCLW4vw6UbfBzf5574lGCTF1RhwiSQza+FpVr8zDckvgT4wKR736oENSifldC
rONG5t2I9e8ROoSmQFPAqsvQwn0pMipL6oV0aipHq5pFVMIpwTBCLWnwXknRxoKhaDmDrY+HJXdL
u/KbvVAl1XR0YU/s488PtHjhS2NLBZVbld9pM4PYy0pmvnn0nYbtNd4FxXI/uUYh8jZI2SWYFkRu
313EZj9cyj6gGbuMDfsycNj9Q48sD+QRHHkAtN4lFh9hk1u/TQphHRPvAot0pB8XPViIVo/DHj4B
Ja5obapQv2F/UNK2POYyA3bct60bJOq6BAEEuRs3P2GTA4O+IaAi6Uwb5eSVZEjBhdoqlomIbGEq
UE60RaSWehW2+lEttlxxfBkmg8d/jubrMq+cXEkmdbwPWNxNtKng2OnSRk410jI57K5jTmgstqHD
RI0HcXeejSq89RYOmH+rzK8ry6nC30lOCD8XliMQTL0mxbGaoOETYSBAdnTt84GDT8TfRb73tBZf
+ksljfK2E6NbVxfVlyGn1IAfevqVmrAJdhXZby7f9hM58+bl4+otOZjdotkcxDSfV7GdmodiQs0f
++rc31m/2K2irictBPr6g84t6qu9OptarStG5iAW+a3/6m95BZlh/nOPwb0j+0Tv/dn26gv2m5j9
z57vu22kRJnUPGO/UHs7C3rtvsbsdfQMotbhe0glSE8tsHvJbkrQJNl6f22CEp5u1UN3+uzPqnMX
h6F9yR10uSbkpd6EBTF7+ybsSSsjcWP9QKPLvyzndA0gHeS/4GpulSOQKl9QAysglRRewzf0eVAT
QQ5FLKx2wflmyoOKWT+HPsr8DPc2vNZ5+iZz5NzEsaRfnR5otwu/4SJCQ4ohVmsiFKL0OUxBzJLo
wNhIvtc2zCWiGx8/rcEuyu7mgT9ZFHJsyCqegkzb/YUa/77fpf62Kw56ImS2DEJv+a6WWGSZNu5u
+hYx0NTmJmVQNly5/qb6OWKOFzJtCBc267g71SGDpOtuDj/LGvnOLvPLVQoHB0oMCY4IyjVj6Cup
VEbE+3oIyD5eVuODPqRdwMbd/oa1EuKL5ONIWT+j+saNusveXBIwMs5oIUCG+94bYRJXXjJSU0g7
NeOdP/gg4CzE72rmlsOZb3tkLRYO3sebEtQ1louHNHBf/5wvdntZiBM+O9ndmfmmVqb9jkgGvSeS
UFHsPt5AapyqnkOM/Xr/Z9QjPHAPo2NeWpgpeM+Rqhf+M8mRKns6OBRuKYfA8Dg0zaea4Zv6Fn2Z
4S+JVRtcUr7Jz5+R8r9I7rJ+mQmnzBIqYr1LUThiRuDisIlrBTAX2beJ9LTyTt5fMr2+54HH3oMd
TjfyujPpqm9jYxocniYYFqSUCE0pOJU9pASt7Lcdjg/dL8KyJv9EsjFYpEFmsOmDvhIRr+QE1shn
pvqpW6oR/6xTiyNpL1kX1osDf7E+0NWwYIo9ENiwjrLKS/Ex8nB4McJdzj4sM9MIl03v78yx3auD
H/+F/6yTTgZpx3K6YUfFrqUuCkobpSk1SG3QAN5DtTSI3Yt1KVm/JOUj4WIowuQ940J3X8WyX3w9
se0dpMUBNa3vOhWg9yVLdbcM05AF95AOxxyBsl8U1HfyKW/vXU3NYepHRT8WH6hxXuNS8qJ8msyi
quHOvkEASLPNGvbAMK6cy+N+TX9rUdXtIzi1AgGrgWYaYRdNx4wSuqFumgwTJjkH/wMX+bKRkk7R
QYpg9gwixxvpyATK0VlRv6UsuR8ZKFosqSFxyXV5Ltmv/NShwNrG1cXFlYmsmNDzp2dCka/GXeyR
nPOUtMR4WFzpRlvV+Pp6ZzZ0Al4g4f4x/AHPQsfi3J0MOQjnvnOzWGfCnqQbjBnsyPcI36kDFDvV
7F93ai1Hftm5SBx8sQ188ISlWkkQq200O9HTx+68WEBXNSU06xx0aZNWV1mssK1PTIeH6CP3znjf
iV/lq4G5CbcwKylPQLh8IHJ8V/peOIwzg6OKG0k1/pbh1Lun0WfvqCO6MFpUKXcqKB29YLLuq8kx
Ph0drmBdsczM03F0cYNd1QqE47N/mMjjFasdXp/DCAZjS6F035LtXqT8fJ815Urb4EwMUfZwX+fI
2sGs5iafwAj2f1w0j+OxPbCDczbQc28uPTXPithpN8bbwfMzX4wmwhBy/PgE4oDbGquSaohdcQay
QW3oCKeVSkV2eL9FU8xEcpvm8hLAy1MWrFyweHU5IHwUCUb8fi2Db+GzKUjyc3JovjUYkrRtfYYz
zGSRXvcpktFeu8OYCDy5yvbjL2wwXaoow2to8594sTucMhW/A5NVnHBbyvKjP2kbTRx7MsehSQy6
cK/c9O0l+Cp8Ck1WSykzYcUqTloR/wixI6NBRXFw6694CNjl/S42MMeGPySoNjP0ZVCGwytC+mFr
N+/4SzicRMY9AcXcW1QbubGdxEEhEUAX4jvY7o9e8IRv9MLPknehUMlxhOY2ft7jnOGRqRDj8thT
98ahNKRICehJNVSPSHmyaG+stgfE2xzaCz5neaRpQbW3sUs7L42v65Dsh0OI3AMRtZvfzuZTeqLC
nX8dYdaQk6NRdJy1flmUupJLccYt2evgDo7kvCN3537yyNrtCtUdWBYdDhLkFtG9O3rvbJa/141Y
X4NNrsECyckp/L3OYkR4UBUfupM25lFeFMPfUD90ZIrZz/HQeDl/aYLu4ptOZm3zVnVFsBsMx0JU
S65VQgNwNO3Q3yYn9wLnvHoFgJlg4Ot7EmjixfhqnjLhWVoYvs9taxcgeMx53ENZyKy/ZdnM6Kaf
YeCgPpm+LuNnv1L9VtM17wrv4CjYy2vsdCj0NDclHRVK64thbtF1ByetL3Lgs1AiiIkoggCTmPTZ
AJcdF3EGAavszH84wRkfC5KrboBN43QciOC796ZzSAUx6LU/91padYi8/mbwjVucz8Z4DkTdkza9
6FYXabc/rzuRXBjemsEPL9JHopsKW2mwil8eX6ADRiF4ubN1kGOuZ7IqpV6DED+hj22qVg/0+NF+
NJh0bTNxwWvfC0vz+tc8MLMvxqZ4P7SXz56MKIuZ3XnL8NGyjoxdJPp6yvfMsL2MSkUZ64v3XbDL
OLb49IOiIlckerES+pObRe/zxVP9i1j7N4HbepW4SZKLOAP39enYO2IFqxEE4bmHUrKJxBZPS+jM
VpTD2Get+OOqjYl2Qe+2p6UgDX41WkiOPCMdoM6hZPWi3k0gxa+9wiUUtzAspm4Rrd8+BVCGcxgP
hrHXhAeccqO30kv2fBSiHenMjs/BWeT2VRNqcYOr54+GGNlWFQ8nhQfRgW+pAcX1KuHcPVDi4wE1
iZ4JSAH+2KanyK45Pd+TFWW3wnR5ilJtZeMGKlLloU9yYM/YydxlECC0kjQGe0wNkFR+oH3aiIc6
xosOycpp37wk6Pn2BhNsgIRH+EZliA7hLhoe+r4n54dyN7+cJR2MKZVu127MvP+SfN4AeJJD0vd6
WnFvNLYBq0oPrxqkDxcIVFc8mz6jTcBZ88phrrYw8KG7Gbtg/i4Jn1s6sUQ9FYP1f/z5yVBQl7Ys
GuPzDhsV0pmCkgq83yAdOyhIXX8nGmNoerqtLfRSZFBkya1U/zr2W/dG4pxHrBYD8cDX0K6V5JG0
qgI3w4MQObBnpNmgSeC6foE7RK3+pJMxuYpKnbW49fF5SbHrc63kl7c9+QppsDCWVLXY5eBFubdn
RYHc/gXUAcCFEtv2yU9hfoahELeGF49sDvyylu/fAr7ZllvlDUh9QuCZv42G75pi2a+XJ71bAO24
/zW81uZpPBayaMoUbh5lq43KwWIII7S9mwyasSbkqMA8GwSK5+kLhMwnFJO8lsYi//HktHu7f5Uv
1xXgPco59lQoY6+wJKC1yod3yXjg5Rk54ccjkzM7qjCOYJKybp9BmiHQ2XqpU0CbZCQQtCqBKjR4
Ev71jmQ4vIxfIsB7hRKRfTHNSfe7uUEcmfbhtzWd+mIEx0YKiG/Bw07Ge1mtwn3Zj8UmLPpmLeu7
Nq3ufEM+2oCJdeeu2X79mW9QLjOEsZRYu4ZPtHL3Dsym9k1oV9nSWqvYLPN2i1MtNMEn++yfQ77i
ekEjlSgKsBB4IC44ESFx6SvlHx+auVcKlxMgWKGGLpI9LEV97llMmm2UZ9uqQ57Yw98Oo3aungss
gAlh1YKT9xsdg81+MuinLzjz9xOZ4nXsoeStQC9WUchmcmUwRxKflG/yShqZF+fupujBnEn81u5p
OyjZksCdwMrz1jROKERV4mcgGop7v7TAOpy5H6SzvgpjNN94q0+kvU5Sh1LrA4tFaWSzXs7ArIJc
H1oPoT7X0wsiwYuw+hbonSb1FTWk1/WpPQTni2uSHlk27Y0xW0ES+h4HTffcot3YtSmV9jG1kfSk
7fH5ZXL4W6XI7EDmUPftUCGxkzCoPxdxi8N942E99hUhfENAHkmSHNiYzW9dXS3nKDa4n7Njb/1j
pIwGjM7yvB2vg+0sYSZ4E07MskTDJwQ24dBoBh60n7ygDaTDsyGATcJxi+j7w1GYI2SgYyfqzIOZ
5aHnJCgUTnLebB3Yzro76UJxlNjf9DDD+xeCvV6eSzNpOKzmUUfkzqnDqtVd+V8cIlMS7DOrkN0b
32eTANN3bisVGWYBAMXEVHjbS/u0j6v/r++DCv5IpIts+D7G4gG6votVnEZ+L4Re9i3HodfpkKfz
8Emuv3UhenkRnEzQGRdlsxO7RQVR8u6hAf7M5aK5fnyIZ32rozTldMYproP9kINjonC08/KWoxFG
7thwEk59sMm28yCG7Aqo2Ekts379VxZQQOHE05YlIZDwYnDQvZVQ0oZ8Kb1d8pn+UQVS4Zzh7yin
vcQMyPPmZdxRj2Vg/IBI4yrq2CkRTBU/xU8OFxmMy87o5QVmVuB1UEipxQRoyB3ErTI9tyretvyJ
ik+fprEKN+p59dnPQJeT9T4N8BZn/EZHFdLIBhGAwUwxrTCCXlhfAVhyog/9rs7Gb0MzwppOnG+p
QoK6JE3KQKNED2g+OKYYCyM5b0STX7zS0sqY4NTIdekZEegGwqUQ1Tm0whf2vWpHolQoG10cFFIQ
0dh8Fm+67/mt6Hx36jZTy5GOPQwuDaMR7WoIaQJ5BSv1Qsyxz/RI1U59NuxcPw5/km8oqOKWqkc+
c0w5EOIhqR+mpl1oOgy0dpRim200aG3ndkuqbofmn7GM+enGB3Vx+SakyFkKEeRAl8u5wm41REJ2
ofgqbymzycawOR/zdcDJUflFl3pvtLvqZn26rJzwe2OnYd7Uy0ZUryjnWjfrjSeJLq7xnkAJzkTU
4IzElQgDWkBgZ7aNTTFe0DRCe+4PTbJHQM58tqbbYWq2iiosy6u0Y9zwED6sr0S5DnjDfBwlV3lM
DG3AkxnIsmklYxsERWf4fNDtZkzfKTqUPzxB7jvOD4Jx6iIYvHiNZpVWi24KTXris0Io+Tgyztja
4CZa8L6t9EAqC3TfMnbeKKhTZFkNENVP1cEnn7OJMPFWQ1wC6rmf7oZH8+lybfdL1Vx9BnGLqLay
P1MH4Y/0TJELcq/5ngRbF1Ru2H0utG5dVAvPBm0An1g7H7ZRrv1ZFO+Yg2q2vNTMNAzgXxAH7yQc
/aqpDGWGn5cXlpxJTTtY1fu2ujiYepm5SuVt3LyWTIuNCzbL0Kyfgu81FrOksMR3l7Q4LRbavBp/
FBwZo8y7VrKnoJn7S42KjCLqcVEBCqE3gcWx+7v96zy3EW8uNvxLtOlo1CH+7pGsp+uirhD/741q
qA0+6SUZ/O/huDEw3RkGGFALX0VjBs+IxHnttWrVWK9S7VnEgibsYeQoqEjcvCS75xPReNGElirN
etZLS93ZMIuEjvQyS4hZx4d5bB+c/TClXoVEOXk11uJ5VN1SSMQdJIaEvauJa0x9KGTQGdXYkWSL
DIM6U1znVLzkKYCmShyC9YMka4MtozU87Wg5SaE3nIJ6z7TkXGhRBZHKeIRpvs/DmYkhZxZCxWGR
eDzqewvEcq0tvenPTFVP5OWxxLVaMzVgJfYWkD1GkqQ/bJrTZed/IorSH1jAxYCgJ/P82HZ391bF
moVyW6H1qtFbKqZSol7DRrud7VJ2b3pM+r5MMhHpjzG6Z9/AgsKyd+k8m/2o4HdpoYaCsyWF4/Bp
EIksLnZQFWRE63rDXCgLU+V2JPBpuPsVvDt+ctBSoZQ1t66mtzg5EQ4naEGgFi7bpkk6wEAOAePC
2ckWC8qy2vudPDLaVVCFiSO70qCDpo0eHVTjAhbVEIw2tDjDuCBVJRt0/LGU1n9aQdbrTnuWkBGt
JNgGNF4LW+5anckcIzh4TJtNVkfUB5qUSAuB5HYc5fdvo1KS+Pc3Mbx+dOn8EOkEUIIrk+kck+UM
pbdp1G/5lRiw+JnhhkSYbgfPDNDiz2pKSmzyYCAAOx2C98PY3PqmDChzRP9BGbUrEQdUpzVUWIvR
KpUJ/fDf4TPKA7GIpkZMWcrqKCH5F2GfYMnj/CUeyIpm8ZUol3qU4Ral+i4OqW7xpVRIthmXlZb8
Iuvx8gZdnvP1TN84/EmTZFA1qUuiFAvuz3xK8e48MNIJyX37YSYv9VNaBkEOlhvlejCuZvZUR6N0
Ir8691OdeoAEW0dC9y2BGl46CqgehqWv37T3yaLjWPdFytoUtWjnEoCBqdn7UXn7FLG3hysoq1yE
njzMZYVpOlSOB3OkC/NkTegcxxpRzAwTE3IzghziXg6nGlsQoPoZDkg2kNAcOrqIB+i9jBILROkH
7R664em/CIwHndx+6WKQt6IW+/zzyDKa5ERcXefq57BzTPWsjZLHV+DPhalprkTOMVDm7TiM38oB
XkGQyBU72QNFifVITnQ8JgoQRWzaLYOHBj+WEzLkzjQ52deSZEjobuxezFN/PyMLiY9x+LfWmbW5
H6SxGmCmXeTq8GcRZlM24ZJZQfDuyQEfyn1+1jxJgd3jjve9KsvW+ZJsWX7FBY5AiaEyGVHp6eBF
axPFwPUS0ecBn/2YPaBlflNQns5ErwZj6fEe+M4XK0X0VlIUKqflNE0SnWYzHVhVI8C2KH2nGngY
cENKJeBSMoncrainObXR1s0bvcpUGFX64d49pGlrmO6JT8SLU5/3O1GFpOoFtyRoOup9zqtkLZDO
5ffzMm4BSrFg3gMy8+00z/HEMz7ub5jrGHnkn257n3c1ndl1r23jSeFxeKT935WzzxoR82oOfiQW
KWNQJ+Xlrban1teWiqBFqWDggFaXuaPIoQgh8JvtxZ9QRZjDupj88ElbYGrtDAMezTWZIGs2dHvT
jlrDbwuZlfY2dTg4aOI7gJue5uRkEYDvzF3lfwmc34Ac07E+7CUuAA8yDLe7/NVLS2lv6PeQx7F3
ODwjKPb1CESxCT0JASLXBg7tzqombyd8qDS9kAVhfjS6TFvG9neRrhBlUVKqyLtA3RlPvUbvqoIi
aAMeBjSdEx00v/xUGr9tAoMLXhrRWIXLCYTVmPWPR4TekyyOKq1epJRqJKKk4PB9SWx0FRB57G8S
vwtFbNm6cRo2ynNP7ICU+DakC5+uewg2+cuMTQaZh6dTOFwSD+/y5pvE4N+qi/dT6mjqVsaMo9q/
+4DIabYME43EaUoHDCrVgF62V3QoiFKiPLFmwmZwKhCRoq9dBrt9gzPbnXbSvz+lKVI6hm3+Km+g
A84vcOYIYi3A8FC1l254a3iPnGedDqUCv7UFRXii8cRjJPxuOTsCzDUgsRDXPa6mtwQaWOAnE0Es
Vk/vp4tooowLPX1edxjJ+wxFmbieI81dHiiDa+2KMir7Ce6FOdYukXDjGUTgAVvRpzZ/lHtm6/Lz
K/fCNIgL+/Dz3MwFJBSBX4OxOieqVxzccUUKIyknPTo4r3bfdOfhsbgUHWpxNOkAmPpnXC2GQ+W3
NVqyYHKTChGD+fyvtObw2pEPx+AjiXXz2976Abzb4ITlI0dGNHrpk0tt4UdO4nP8XeJ8lFROP9Vf
S+iWShioGNWasv2Ru5Pq2bh07+IGhqnkJG9bckmT4ODlcE4PMrCEZNcWDGqyw1duOb79XMSaBAi4
0DxJpcXRGwSYbCz3kRHBfAlJ/U1rBh7RRuoT2Wj6FWwqoqrkHgbxVbAemQnF3czZRptbp5dn+r1W
zgmPnPVWZ/HgDjY+bMRAjoGt7iLzHGaEy+dkp7VhLJ6pxOakx7SkX7JI8kTx0zXavaNrlf3yDFEN
Yo95SUTZNCvACUeptjmsvFadXMFQkgS0+5sOYu81usjQ4fuwU3/VklGv5VO/RpYp5EWv7TC6yaHb
lQeHKZFJhHO2ZxrgCT5bPZmb7GXuxWDSIEwzW2JlFWR15TNdFkZWnYrRI4OYxXDS2m3r74vyrKNP
bMqUx5oj0cy5Q5iVgyhofEsITDjY8G69YOgsMcMEmEx2xKAqoSbSqusF2+iW3yZBz9+CJx9a9u+V
K/mXLO0H6rRI4/aXGNwtzkWoTtwSEI2CdFGfikqkfKmXi+v4OhBGoJIF+TdgAt0vSLgOvRa1duJd
sInhaTBimSorxBp5u+HP59Q4C45Qx4esoxImwDVB0qwsHdRbcNJZM+IZio84H5TWCmesg7b4SUYG
CZDueoUJzidHbe8VVx7OXOLioejPqENiQOQEvf2tSUuN1m9Zitk224i+zUvUGffZpTGC5cgPhxBG
eT7rWzf5HSSLqnnSecPE1/Ic1f84Ye9SPTSN42xHfRPAshb0gNxXw6ojBLEI5BZlpYFCuonEaXEL
OLrirk1/S8gZGtusXEdPYdE/Zbw73rYcFhsWnndzSLOu3vWsJXmJlavqKy6riwBo9fFFKweozP+4
YmxSPeNCeCqXPxBvmDcUjKXo8kWwMNzMNdCGjkhovUn1/rbcK4bG6Rn5cM6nlUVSTqwnPewndJm6
uhvyrDOm3BdtPaklG1TOs9iIM/QUs+yjlKdlFqQDokC8GP2ctnamngPvbj8akrX/FPHWjhZfiveJ
o128ZQryJ2cUnFloU4SkWREz0LWuhqIOSWXzzRUUOOOSHVCkQvsq5UoXdhR1gf/4U6sg26CWbKQ5
lHZlX5ue+/CmAAqFvzkvenwJCneBO+Zxb5olMz/d6Gkjyf49b/olHbNynjUgYONttSbK7uIXvO6k
nTA/iSu2H42gwRYqnMkwFUKQx3K9DyMSv75VpAsUwldc44oQQj2PNlCLg4mCfksM52+ZhkW/phdw
Kov8IIQzwrxvl4g51VHpXJYRvi3pWwi/sg5uYpe/DK5SRuUcRHx9WG72F8/8f22cY1clAKOFs23b
xmRMODVhsl2TbduYdLIxuaaT7TrZrsm27Xvvh/d+ufdH7LWetfazN1n6+IYN/XzUuu4z64lgv8oS
iEe/4ccO/sH1WwJKxLQXNpEVKrz/GTGTi4zjgEEOCSnAIKCK+DF4KZaZto+L/Aa64t6Y2THm7AHh
+0KT35lC9+Cf+XVhGDhLQVgGctzuuTNhVcRfXF6itcYH4SbN6xUfDKg/YPCpuiyxJJDlNYdv48fw
NhDXe6FtB2Hrpr0ItDsU4QG99Lz5jQ3katWUA7RhRQpdMVIdtW3T8cWRU94chJbnSnR3U5VUP4KG
DKC1UvKgxHN2ghL5gRRKit1A3OBToeO8n/+KflYsZftJMeywkOswaAkZ+/7jGU9CMLLr2aP8fI5r
BOATYGsoBN0327BsrVsaGbJyDpqTE0B9vpxlveKXEKx+AhYCT5r06Er11ZS5xA/kLFvV90zAaJ5E
nNl+VA4DZoxrwwuvLuit2I71UG1FIj9At91GjJk5PmiCg/puPGKsDLfHCmyHAE99s7gSxDRtIcmz
g3yfP9mSAsOZp2HZU2KSyEQSzTNaj+eY+gM1dard9nRKTXxhHX2z1GQSc+SBhjWwZax9XKm9dKm7
XbtvE05BySG9HDoHQ9xWN+fX+oKuun6MkilB6tl4pjQJqWSD7qRKig91dzuwHQezWF2euO0+RZ3n
6JMd2+bF8DYK0j6tbQwN86EBDyFYqthHX596dIW3Vn/5JUwsp33KErudjP1Bc8GIcUKJstvqaixn
LKud2vmR1Pwn4/QeT64d1b8cw3yLLzfBQ6cWc3bGsM1ZYVEjdorOQ1287zer5tG2v3THPv20Z29v
JcjKdnlKRrt/VZqxgwC2i8R5MXaRg7Nlx0BWo5MVH36N+dheM5Piz8mHGA0lSV7U/ZShuBpDb7Vm
4NIAJgelBt4g8j5+dwtGjOemM8KKXmXmCIqJSOOz6RkLWtRxuYYitDlBmPJHCLc65+YRcEixWGEP
8hdnC41lqN/TW7XjhzNJYuPlRzrIgEDJTXBKuSL+QJhqzSXCWWx5DzZNt4A5xnJvfjtgxHieijHk
i2RlAuuel0DBg1ukhz9YVhVgA2ePZIxrWnOEBOlUIH8aLMyVeXPMfCLnbIffg3ZyNPihObTpMZbU
Q01aOzZ3D2cewn4141qmp2USJ9eayT0Hc6nwTMsz1ECN0sJkb5GoSZCIcIPKbdlndfg74GEiOxcZ
f/DPV6cdOIkS3wZ3P5/ZhZ/6PBXdStD2TWOO9Q2PjNTWvmEPMP7HTYclVWixYnw0bRTkoefs7GdZ
AeWJuLF7xIY3gjLae5SC/pp+2w4KmHMEamyq0P+jmx4APdHS26/gXVP5LHs/Pfjy28yy831sLAzh
UmsyZGUi05rKej07tc+JRSpOji4wCJ+zdH8sXWZKtJHm0bFYmLK71aQh2D4hZwwKP4bKcMmk0eGY
SLq2IGChr+7BsSt2AmBP5aM6jNKvZWmOxyMAkKD6x2cVKIkaYPeavVNdCTPwTWDYyhXyYbjf44nX
yEqZMC5t5MzemnIeF4ukfRsjn7obDX4kTbQ8kySK7OwtER5tUlAm8w+v31aBfVDqzD02OUP5otqr
uR4OnAD+5Xm6gMqlAy5N4/L9GOIc2EnUkFtBwFzQ0PBE8ftg8oFwVwL02M+dnhNAD2ZZy0KQyToM
6Y3OXsb8p4q6sKEECSATtEC7DOv8IkNlcFxiMWlCnpldEGssW7B1Dcy8EXRxSF7v4JByFZGMQleA
bH3BWAqEtJVNnG5r4datqavXKavL7c0niG2aUpljbOjW/ZiNbptl6IEI3sOH/U4I//H8TUAPf8uS
UHR+/ByeiYgqyE4zt2Om9W85uoOPdPzXRsG9UgM94oQWOACmc2yZ+eg5l7z8g1vxV2llObaf1Cne
Hk0f0wvK+lxv2QL/EDmUAFeYxZ2/uI1DmeuMhdRu0tRSEz/sqndM6O5sWARyaCkTKqugb615tvbe
/jXlI//pNk6/9mk+pAEnGARDXsVfgHZqwon8reClXi/iRhVwnILCnr3f9Y9NkqpXNRzPmxAY/vYX
+6/2q0dtTLC5/ZyuF8+GzdExWAQy38rDtLrIQwmzo/5zl2uBkCZPa0n9kaU5bfMcAst1hzo+2gKV
hjgFUTI9YL+zPERnNPJyau9x+FRQh7N4aZTWuo2+Jy8gbYN3HoPG5wWvKrfMnIFwkPfaGk9P5/bU
uJnYjwmietMq7DgZDd/PKQFddqnMWRSiocv1sZvq4ymlvFoo/de3eHPTPQivXKVZYBaqoYmL9WYi
31W95SfYU1AkKjS+JU4Ohr8phdD1dlnR4oZckNQkCgrX97YWF50djed+BmJdatIMdr+vGyVh+5qM
QTbNcwtb8XGoUb1PXlImexAHLkNsVBLq7ZZvIGUgP8ykCpzbTuq/NAgvzb+h1ldIehQsMpiYxiG8
ziZM8cXmBTO0sIPvOHJCqVs6Yeldc0lkKdm+mYxYBh5nGZjBDzlSkNr4OWn7Y9Kn0f5PJg9g4+hx
PpLziiy2FuihdeYGlN1ZIiL+tYcIQW5VK+l58m/Fd9JSp2GjfXymG6s/ypqU5+OpvqjOz0yz3PFl
mFmn6vW12deQSroyLzRQ4AZ7lWctz63/RDEK7LgN8wJppiAYA8dUKJhVW6tfVLto7/3Bo0AriSAU
Um5XR/6JaTfkeJYT6HOcRCu2Ws0tS2VoG9+ifX5xjC8U2VhJ0Np+78uIBEknIslgZRJiWm++y/+w
Qn2b0kJb/7OwUrM2zMnZ9neRwZmtk9QKBOROBS4KbVK/AZ8NWs93SFoWpi/e3CC6DLhKvYoEp1rt
sbdkKmyQOiZ6H82VRFIa7NVimt94s6sVzBCINGawX9B5hwa6WFLV/fp1xUD7/hY1CmcAfAeABsMM
4bXzq0XLwA62jce5q49G9eI4MBbdKXG6q48nVZ63CQd+sePhS8NV0TsxZimC3LDn8x6VLu9ybrfu
8wSzaGUt+U/RBIOpV9FJ+WbPufqi7jAL4Se8P1UovjhlpQ2dt5YWgbOkPHepdv8dI+MCoYAf4t5V
zXMjkUVg65d1prQ6A+5PP00dk/6iHnTU+3c3eFrxmJWJU022n0dME/H5Ihb7+ksiOAr75huYlXQP
ecxYYyQrv7ecSaG5Ek31jRkgqcT+G9+y/eJ7RoL/JC0VoTTqfo2FhZTOm8hTEcI2hqbqpJdn+yEb
WtFmoFRpLiDSx479wrADTbTsiCTQsQoZCCVXrzdYNFw7BATaZ0N+yQokqAlw2OR799BS19kgfHdG
wWCDbzgaSDxkpo2n28sAxkA3BBY3Wwwqrhe/pSAIM/GjGT4gxj24XawPXN9jI4lV5pwZQaQKYZGz
MqJAtJguf3+ZNSuCHzHhQUftPsAQvZ59GcEz6Smpp7R3asMXg1JfmDAFLugh2c042xW7rzoK5I9H
Sd5ZqBxoWfHiqGJibPZN/JUwwd8omyG8TAg+PTBhak2d2k5sljz703hyef3oTjqsa+a+MF0Q+BkU
/IEvcxn3mjYtfUzjiuB/rPMQ2E4QAxvONhklT6/QCYAvuaTCGXH5RYuGXNoyRO+KA2WCJh3JcgBC
tc91h9+jGhO6AFLALSwhZ+B+rChgaHZbXsiNirBrVLKsJHatXu1LWd8WCh/2+uEziGimi8RLWgow
P/bhop7d68z+AATy7SiB58xQ7kZtvYAxTrnf++PzjeGHX8dqK10XpaODqbxla/LFTCHKxMNOGE2q
aJZCxGor9Au/fb7cBObvmmeRvsaBAiAOHqDF3mtzSKhhT9opyXdQ6/Ys2yPKq0+4AtRTY1QzyZWD
kNcTn0ylvcjEYj6reTrZcsSM3ok4fRzse70kDbANe2kq5M3F5xdhIzF4AkFa9aFs9Usu1zNmB7Q9
6BhVyPWBEqAwlYybtGmm+RemEbxYGXXGNHiwwGvhDhzuNsTHcsqN2Oo+nWG0/EiixPSLeDTjRW/X
+71hafd4UP6E2aEvitMEpo2Y2KSJEsEVkJ0NTj1OQ0TOYY3mmSK+G5tSMXqbrl4+Aw90xZc6lHvg
CW7rPdMGTn9VPluhXUIXVbcRptsr9NwQ09i89H8mMSVoGdbP/px0dDi3dfouCbGo4UQ4mTiEsEzZ
aBnds+gRYouzu2gQIy6rdZ1wdnXQ2v7Y4JFt4c92UJQk/G79NnkqMA6DqdrwLUEecPPPnxqTPGdb
udge/x9OZWDp/1OOLR7B2LdRuTX7Q53kt//4KRX+Y1eNe93/yve6HgfBBxypCkNhhk8l0MUwILSQ
Zh+qYDhu79/BAFHzHn/2/FvaX4rEnzkuzOB70jO/pyMOERJG/ILzJmhQbpMmHYqIGTverZLcVHfB
3CYMU/37SsOarc8415iDbOpNxopKKmMEOehjlMwZvB8XZEFNVCfcXW6O4YsQeRwwyGMi9lb/+9Sz
DMe0zjyrzL/Ai0cpWYLVDIn/DMzu1H4iWsOgEtHHFtXb+WVBEYXnpdjnF3CjpMg8Fc1+k8tB+Cvf
6OPWsKwk+ZsUqFjF+vB6ULts2BJ6NTVbwnxaVmX6fwXfMRniYfX0697+j6v0kxR/dfrzcwS3cMcV
C6NwRkMV61tFIPrd/A/sQKdpuqhqdSfIGEHK++wS87U1VApVWAXxX9CUmdCVbXhXQ3Rxq+PJNWfr
DxCQDyUO67wcEFocVCU8Hdz+irn886LSe0/5zKOswSRD/2qRyTS87YWRVk5/M0FOP9tYPcA7FHhj
hY4DNp4yX1p2QbAOgf/6HRcdV4tefNHeVDC+Ompjx76k+ovufGkZZeLobLNSMYNzyRlUss5ofiUu
Lp5vE9Hf2wyhUy9Fph7LmYeOBzeaEnOb1ZQodonQQ/NkjFynttC6xi6hh3Izbgbv0p56nWvZLAKf
6/1g6LaO3MFwst/e1JB5qoEaV9AzblUqH5V1J3tV91pyLDIaTsGTbyvYij4JNICXlLq8NMeUuruv
yBS3k9Nvi7p5Z3LmzNHEcLAt6jwN8Hpl/4zMvrV2qePCgZNVRKMOpE6rJi54cHf/TEjN+2n7H5wo
SWG8SsRghPvzNIpI/nhce0dHwDmXqssSrgLwskMGQiqbWFLU7m5GiZyL8FhhNoqEG5MtXL3JHAtl
V9V83JcgQnWUDpdE6KoO3s+TyLbg7eB/lUqEpBTJYtp9kEHXh9cMrJSNEIderyr/m7s7Y6Ex7pyh
jYwBK7SRc6/g/s0duJdIT+VtaQ7qRMxIDmT0azVlYAS5gndUp5EKNvhxdFOUoJ4GA3iAAyKFW4gy
5Mmp5txs5JsXVTwi1dItBAL9w6h2gcuiSRvE7GDjBecrqkTENZFcSvgmVnuBlxuk882erOxhGZ47
8UC3h/Ux2jupMp0a+qb+umeVGyUulb/CWDhUKFjHkhiSsg0bm7FdJTVrNGYRJNiZL64f2XzSq6G1
HXl47pXibY/O/FVB6wL5OyvTJTqjAplO6JjRUKTGuFhqE4ggY4mDuJq087Ugd8dhLooix/JXqxjP
Rw22S99fRFubMRZ/qKvdzFs/7atkiP/IQWO7IE1xRYbH0LqolcElUXmg/3Op+mm2MSKfjJBKyiYC
vfOS+Lsg7S5sPGtyRUl6AZl/rtt4CTZELYcRTj8pnCJHx5REG3Nmwnt9sH9ZALcq8ng7igHK44n+
21p6BdTpy+jaruUQwZ7EmTeFLgMxDV8HmFF/sjLuUJyPKhA7F/xomAONRBnymiAl1Bjj/NwLHxOU
qrMq/l1No3bXEtM8npc3WdB4UL0VWdcvdPx7wl3KXM61XvepsYxImQn3qf6YdaIfivLRXSfwMYd/
4hfWP7iigmGOcrZrjvRLrvEs6Hdd9kQBrEwJwkMqPrU6Gy9VfzRv3D5/VhTuERqyW19+FtGH8d+c
HeRoePukjTHlmXsvsXoseak20LbCPNs2BaJpz334qcQb+obVBs56n4Xi26nakhobFIqeEb9YpGpF
mPZMm1e9GhWoUIIx1erEiFg49rYpTSKmVgI0Dq7u2q/PjCirGEIeBfFv76JenI1iGH2SVPDCCfX4
VpMn+jPZAN9mGzS7NC8eXmGuo6bMAGWpJEvWEJEehS7wibXNLszbWDf5NbM9VwvPwmdEkq8oL8fQ
wTtJKM1oSAC+FSbfUseCg8aZh4UaXxh7zGvNMilZtTLFyp+XoIoY3cR6kbAX+f70362ILdkg1n/R
xooIEAVYqE3Mp4M9NSIWBCytX5M6Cgfsn2RxGWubmBwPs7tvOAmCLjEsonbzoi6+jHz9zi4xvWCt
ck78pNdiafA39z9OtDAQWJtJY/l6AWGknbruUyZSdihFQdfqfbKMFa0uv49gDO4E3M+/8QcayoML
AM8TUhHfGGxA7yNQYqyJ8pIT6JvOulgdAxUzh9pe2QtHfL4Ez15rbDeDhYyXazC3W99jKVcnYHYi
u9WePxfueLnboQsDlYa7Ejotivb/UBd38JmR57zN1AuTv4Duq/ef+8Xhtpdt4y7AZp0/JUyqnazo
Ol86iA4fnI3WByK1YM2xKBX5LBPd4eL6ms6oFp9FbBh127aJ7zWAWwNta3Nd2xphAqtOKRGKqtDA
eb7SU7f3Y99dJVd5pMfvfiB18lwVMtapEPCQuES4SZBpp3mIiMpi8vlr9+GBXSoCKlMhXsIDu6hT
i1RCbx4jkORoW/7P7usW+O0mpRZ8oaYbj40sPS9IYc2pS7f4rjKp3ze9ZU/DtGdUuvWemmTZikU1
vlMY0y+Rf/jUbTOcBZFtQTuplpcVc/Yus90eCd+4/PQwoJyDiFAwA8cZgHvZag6lYtNRRsTPNxV3
nvMgweJEuwHBUbFgKqdqzCQnZncuahvqWIT95KAFqxVJ8+ZKImIGvdeHPOpZNWF14SjIhuB5DC7+
W1L1J1P7zhqmXYFTq3oiM2W39g2EgHga/GIRPEKWyEMF48eyYDHIyVwjn4AxiCqkP2xaCGQvxtTb
cdJYOLoVgGjeYLhD1Zzd5IiVTfLZ/olSpLzkKYfokVuDwA2FUiJA1Y8JUBCrHEUgdL24HSuIZk9V
z18lFjypHshCqUGmgCxmV2DMt8SLeTokJ4S1nd1s+eQq/qCht+I5vQxlq/TXs21anZszrR3G+qzd
1WE9zuTOkDhU/ZG8K4+KBwnRv8bdAFMj6neOkOpPhrBROMjyWatTQNiWaa9p1fWNzdvxNvwa4TjY
oC/4qbMBhT5A9sxreVy6gD2v76gPUer823qNBRal21FmpByeEbODp/h8UHKoQm4wuSBEVB3ZT8bX
755CFrpb19i65n+bOPHNM0mebsolupHMUYNXn+DTk5c+ejbWySpAOWTeyrJqsRffDq0Lf+1TNXAW
0bC+INIKXpOwAYvyCveaXdeZkfFgcQuHWlvGFz9HGC+HghBWzqF9KR4BZEIJm+y+A+auh22j6LfX
3cc5GGdw2Abp0RchafG7oi76VU+izFl7Vrc2SP34bNHqnwFyuJPZUT/ozvQa6XuJJuwENZamsSls
55BeXfeUPdAtBLFsVpTCOvrxw5lyIwMFcqae78xy9BkZifdIvtH3cMJ8Stol0IkXcBMRYyldBf5K
d8/LyNjJx8NLxwGVptPoDXXbcbDDYDZVPTmaWVfB2tGX+52YbG9UleLJVpLJF1J74sp7UUjCr6eV
OoRTFJ+OO4i9vvd9f4FN4mWPTa3Fw2S/pcbU4ZiOj3wS8VodLIbIIjqFz4AzXV75Lfen80e6VQNz
DmyukKZZJp6UKckf2mBifFmd3vXO36k3rd7jHvaVvyHGfCsr1eN4ptFhapZ0AwA76Ni0YUm+dFZN
1hA+Yeh7r0kFjwUokstsrfhN2vPcGzakH9+FIbvfc9zM6A7rqFcs0LfMk9PF9jglFrRvbNj5TYbD
t7DWq3dWg9LrpVevbwaEfUxNXx0P9ESRo3BJMeSNK9OMp0zTMUJy9d4+t2zlyWZNzgukSAgDOUZ8
Rb86fQ6Pb/TSeYcvLeH/UVlsrKhjkY2lzKYKv9mx2KadXLg7jsVdeSI42RDlAxnC8DLmc30sKDRi
0eXA3mQ/40YZh5XfbtX13f8SZLWDF2P+jVZQr1GM3nKvhHdJ9CqMcqD+fIVQiv5L9xv2QaKLQ4EV
P6O9K8R3pDR6YEDZhRGcLIb1xNJEa3BI0bt8jb6XpUuF/e0nAtbf1H9IZ5/V/M2Q9vlJ7X1OV1ru
RuJ2Fx+5YiHpHJQ0fdAGMgsVJ+/IasBj2hh+ejwF5ZZmMQgEIhQgOdm+J9K2Yul/QGgfxMqrL6k5
dJSrq3lPTZfmjqA05VX8nyU3vNKaNtxSabUHQYUIuFxfzKNCB3DhFtwkt3l+dPCO5zChT9uKT32n
58DCZyeNsDoCUGC/QDN9QY57vBHddgBUfIevoblemV4jR/4m1YFAxf2+WRjRpBTfGlyFRn+uLuCs
95EQLiN5SooA5/koE715LvgX1hZZjSdY7BYxUQV6vgX8O/7tSzDCiWsPcXSBAojtaszqXBKlFaFg
d9pDdKPoRLxDWbo3wvUxQIIr3YOgUerHZtB71D0YxLC64hBwxCS4+NdcnrFb47pk1s1EC+v72eEy
iblgP+E0rc6YJdEIB/dYv9VQB8X8n6htMmagq4bvTP7GB8P4vtkmTMmd0T0vvMD6KwHposA48i0X
jE45+F+OZsHRx0OVwV4HJJN8E9Edwg46QwkBVbmRqjaDDJhLQpyKzhWVGWXllBRqFFu+yCLZLlGm
/Ri+DwRtN9RHcHtVDb2egI5GTC8A4eC1c/moiSJSEWckoNtDeSxKmyL/WOcu3Q7Ohab4v1ht6GJ5
wnQiJv7i42JPjyBhjpLoV8z+48AX2IesnUJtped5RP6drof5GPB0iIa1f/WxxJsIz84ZyhtOGyIx
rm2rTKA+9DZqocgPL70OZ2ttYkBNeyZkXZoJJZC8vtYOQMRjVD6YlnKzy4dltbOYfx2LS9CMqvau
OjE+od0Nc0vIyJ5HGZogMnk5evC+L2Vz0rNfkQp3vwBcPkFrAM48CDlfYPe804Lss8kuiUKjBvzY
Vnoa/oxaXdHlVtf+f1cWP67Rr/UsdZT+UoAyThdiLtp4/yQlDxICRJQfXwAukTi7hUXYE7gUffzR
8fYfmJxmaI7XXr3wWbibQnbBH4vx+ZXcsUWTwGsIvBLedjYL9C+cWrsmGdxwDMr0/5H2wd9u6v+c
4bbXInnU3jhTefiAfXLZ5TDeXfEqETLx91A6xlnYbWg/YHMfWYefU5oYtDvmQ6qkVMeVUxE/9Pfi
587S73zJEzw4DR4/iXZVIb2fn4awDOeJUKWScEpz1sRLpCIOdhhCk3xCTirUZv1LOv8O/AsAg5RX
ezSvbsOWURezxGMMN6oTQ/lcLzo3x2RZ1gOlJODX49dtiyd7e5Gg6HXJaO1ynoTDrwSWfwD1DvZF
8tI5K5Fyg/eoov5OFatTrfzLC05rsDdZk7FJceM6Xpkw0mxKcPwyiBrdHU8GUOktpL2IQmoaKoes
dhLgFCM9itQd4+/rFGZV1zEI3nxP3QAVNCpdkQgs/JJGTC1ViCXgDHlUkL/noVs7p8JMIEdtQeul
wCVixx533mMAMCrDDs3zB9/6tWes+Mujvxw7z9FYh0MEFeFW1ThfSkVNAijn5XY3q6O3wuqFswiB
HZSCq8b0os7A05yJOkqZH0fRr9AJzROBhfT32XNNfz101gXrtliXhOoBWH8vYwP0yeJBab6W/N7L
Xi4ptvXrHI8pAjVY+YYPeorNgyzYT168G+GSSvDcoJ9odiZ+TQsLbWw253L5WakPWUUC0qaH8Cnv
bFMRrCwyvDSFqF/NF4+6+ZkCu4fJfUNqhV7lnAoVpQkpvbC9W3XKVrG1EIK7AgqchYhGhdj6LbB+
niFiFxAwqIDYbhciKUnM/2xREgZvx+4lSEQLhS5cDHGJPXFarEDRONB51wQKQLLGos0RwztJl8I+
csvUe4YQAhobxEt/lU81rwKq8AoPoAh37Oo88E2DfokQeTV9glDMvZOIidFkWXNaDL2hfKl7C7v9
t3Rb58PA4o3gCkWM/h0+288FwP1uZOydty4szlt1cFAa62UpfV79WGq6dw5N+Fv486ANDkbeSNCu
BpIYnBO0EU436Gma+zrCLPEn3C/l01n6txU5NKURamwPJWmbQfsI9SNPCDsRPW7gRNB4dESx/sUe
F1baCnkzBUQDhuLzTMHvPtzm7OjqhQIPkMs+2CGAuro/qwzHrvGO4IPfSA9x/hP1R3W8l+ygydRS
YeBWWtr5sNIDsn34jzYTd7Gako/upeZDfjgd4BfpeKlOZh2sazOmtkZ8fDc2sLEbeSItatHWOGOj
zNTy8ox9gwzzDJkpYNiniZmyXaxL9riYxSwc8NiJSMLy9vwgz2+aJbSOnpyIivR7rrad3CGrPzSl
MEfnU3p4Ry5t8dyAmAHyPW7OpHN94g1XwO2nlo/LO+p20WaxXKfOvFTb37WRSQH4av00wy/iL+SY
AjjOwqh3Dd+sc2dKXD3sCw0b3YnXGEln8+EcdLfxM768JX1dTT7vfRZtBcRcdb/nilgUyvCUimiL
lDW2rtpWQsRgGEm4o2QyoRQWh8O/tIednV1FkR7ERXlieNfRSPactwEhRDbdZ/x5rNcKkvExTWHH
zRMFY6v5uH/KNq0SEy2mO3M1fjLBAYkCGxxu2GPqJYIdsc87I9QxLm6jw7a5b66SAAL12GlkwRUe
BKuCbc108/1DxBEG3duf43HWfakwBr3+Qc4Bx4XvhhR8bBtoPe3Gt1FevEb6b5zUdt9FU2ddbF11
20cjOKViNiOFtLyw5xNUdmY9yHj6VmpnUiNsUISDED79uXrSkQ4jPQycSHFxnWbGBPjYsgQHFhl0
2EPSlMzZotfZEoIyA7yjmtyT1N21/i1nrys7WmQoMqaZYnXkOsusqxiProLWTfhqoVUCGyt0uI/C
FasTbrD7Qc4aHrrs0lhUdk588DaG3a/Hz89uPvn40SmeIQhwTFcXakur9ta2e0+fQdOHuQ0YOnge
eYkOi3wywiNRuoOWGCPSuFmiPJku7SMu4xHtBZ/IZI+PepmqMKSdYj/ap1qKt53xSLFcgyo148lI
N3H+C/DJvMkKZW5kc3RyZWFtCmVuZG9iagoyMDggMCBvYmoKPDwKL0xlbmd0aDEgMjcxNgovTGVu
Z3RoMiAyNzQ2MgovTGVuZ3RoMyAwCi9MZW5ndGggMjkwMTIgICAgIAovRmlsdGVyIC9GbGF0ZURl
Y29kZQo+PgpzdHJlYW0KeNq0uWVUnF22NYoGCW7BKdzdPbi7OwQKd3cLDsHd3S24u7u7u5MgCRLg
Vt4+p5Pu8/29gwHF8rnmWvvZVUBOrKhCL2Ri9wkobmfrTM/MwMQDkJWTs7O1Y2aiVwaauVgbOQJY
GJiY2ODJyUUcgUbOFna2okbOQB4Ap7M5QMHYGRQK8mBi4oYnB0gAbYGOIKMJ4JMHQA7obKTqYQ9k
BlAZ/SMo2jk5038ycgKZgbZmFrZAalCIiJ29h6OFmbnz7xys9PS/M/2OFmYASBsZW9m5OVlZAIxs
TQDSDHIMAHk7N5DSAkBlZwv4BDQ3sjYF2JkCVIGaADUVMWUVgISygpqiCjUDKLGKi729neP/YBFR
UVWToAOICsmrigGA6nQACTUV1d8/VYG2IPxmdAB5VZD9dx2Q4+9wOTFVIVUtRTFmxt89AJgBrkBH
J4vfZf8LGwUIGeAPNFCoqaOdzT8FAFTmzs72PIyMbm5uDGYuTs4Mdo5mDPbW/+BTNbdwArjZOVoB
QK+OQGvgP8S42JqA6HQ2B/4rwe+hAGQtjIG2TsDfQeJ2/zLagKgEBYH0zv8GBiLC+XdO63+5A5yA
wP8oY27k9E+srKKiLMDGyMLWGWhrZGsMcnQ2cnZxAhj+owN9A00o/wUQCBBxcXT8XUPuf02O/y7z
v9CF7UCd6Vp7+Ri5/ffEjGxdnDz/4uY/2za2s3WycHJ2+ldGIMDUwhr4G73T75lZ2P6jkxOSlxIX
U1GllwUtni29nB2IHVsGZ3fnf7x/5xMSlQWtIicXgIWFBcAEWlIxWxMROxsbEGon+N/0iVqAeHK2
c/Rg/D97bWVr52br9X/1pha2Jqa/mTdxsWdUs7VwcAFKif6PN0gF/0dnBnQGMAGADgCgu7E54+9y
/2zLbzXzbzWIBh8vezt7gKmRtRPQx8IUCHqB93IycgUCnB1dgD5efxv+U4Jn5gSYWBg7gxYddFjg
/8kuZWtqB+D+lxqE5H9N/7MCVP8cVGrQKTWxs7X2AJgATeEZ5e2cQQtB9f/POfuvWuIu1tbyRjZA
qv+m9L/9jGwsrD3+w/O/PDSAv7FSyds52hhZ/5fNwkncwh1oomjhbGz+D4v/Uks5G4FWX8jWzBoI
msk/KrXfp8katLagR4/F7ycXgJ6Zg/O/bKCNNLayBTo5ATi4/zEBQSz8F14Q9b/RAhhVhTWU5FVp
/8/K/OMmZmtsZ2JhawZgYecAGDk6GnnAM4H2gIWdHeDFDFppE6D7P4sCYGSwtXMGhQDsXZx9AKZ2
jvC/h8nBDmAU+q36l8QJYBT5twRacEb5f0tcTABGxT8SC4BR+Y/ECmBU+SOxgTD/kTgAjOr/lrhB
FYz+LbGCKhjZ2IM26fcW/K+WDZTbCHQiHS2crP4Eglw//VtiZgHV+ATi4I8CBOGTo5Ex6KFm6vyX
mv1/1P/aw39nY/6X2gro/B/+3Kz/1v9XADeA0fjfEjsIjLGdNWi2/8bM9ltjY/OnN2YmEGEmf4mg
ksA/TP+WHFyMrP9wASoNGpS1kc1fMSAmTP9UBXmYWrj+ScL+22zn8hcLTCAXsz9FQHaz3/cn8G8X
EFLzP7hB/Jh72JsDbf/yAOks/hJBA7T8SwT1/gc1B6hJ6997/McOYuqvFphBDn9ys4JS27rYfPr9
7DD7qyQziA67P6BAKexsgX+ZQY3Y/zGDUtobge6I/xgdG/P/aP9zcGwg9KAFs7D7a79AJNlbu/yF
mRmkcfjT02/JBej0z+H9N3K230o70D3xyfqvQJD2L26ZQe39ScsOasMJaGPxn5vC/tsH6PoX4Wyg
M+FkbeRk/lciEOo/PbCDWnM2dwT+NXkQBc5udn8FgHK4/NlWUI1/bnUnYzvHv3kEzc71LxEE0O2v
swJK6v6XCKrq8ZcImoHnH8ygTJ5Ax38h+M8Hl+Lve/ufK4npz5Psf97Q/COrODvaWQE1LExAb+b+
cpEzAp05dx0m0H3CDNKDvv73N73/KED+5yr8K1pY2M7di54NRBU9K4g9Tlbm30eOw+c/Qo3/9dbi
n6sM9MT9X/n3vQ4AAt2BxvCrS3bGvEGWKU0hZb5iBTPl0OTcDBeVWAKa0nFQq+kzHXjYorl7JEDB
woAW/wyKQjtZSR4936QA22JN8iBM69et1sSq6TsTpY/7Rr5yvnhIYkLjOeoMaoEZciv+5V0k1KfS
OflaJWxzGW1xbYQAtfEzEe6O7scvLFNvqDfJJLrlbRt50G5FC8zNGI7WaO4rKLideCszneDOb48Y
MVFGfUKrNPOG+SFY49Lv7Hu7UbRpU/JVNc96vFJbvleMEi6Eb2uzwWey8hXVfMxWvsIr+pROUKoT
mV2ACe6UH2FhbZU6Yyi7Um0AyTjqVU6kkthIsabUqExg+KBCiKQt4qcPdtr0WRD2UteS2IaurNff
8syKVXeGL3ScHVWPqka5O8nAjy19tE8ppzsrxNK7p4KDTeSt8DNuTo0QNv6QM+ccs06uSBQ9aejU
sn/tSApVt+KvBfnsz0/1EuItZURGuN6B+E4HWfZGTQH1pbA2HDAUn87aEdG2cdnkkYxyjE6Xs7V+
fmeYjCWGXIQvF9BNIup2PLX9cLuxiv9Vzo+JsRJ2S5XGFG/XdVkT60Zo17/1MneT3u1pFcVxblwh
8ys8mPAHpLEjMyppkcETqYf1AaBi0jfu9eMngiPPrHbsuCXst7M3s1f1z5Ukc2Oedm5kAde7HSPM
pXnD/APqJ5rYDjg2z4W1VZryr8HFVtlyrsQwPOANMweKrFGxbsX+AepYgoXa9yaIJiLC2+0PzOhO
MRG5perZ/ULIkZhQjUWO65pqoxXWm2EJmQJlM2u7xwInvEXBoZdb4i9sw4U791Po5aMLcvhaUWV6
X9vuNAIRKZQNuVkYYHnKB4R3hGMPeKaHBXPnwsudyEU5H6fSv8UvlrnuUymA7dKCba6P+aTPc+VA
lvHN8EQvqXl8tYLx8Idvg70Gvkh/mKTQV++jv2U0cxU1U/QzO4ZbxKqjmxRCba6koT9ADyPktP8F
owKOn1pM66ntrrZMrct3oJQqNLTKoZ1BI/ExJGj3FgKxv6TunW24djMlLj5Krv282EOEahM+3Npd
oj3ERuvkIHeD5I2elvE3WJ94136gKbbisg1yRoFNcep9EwJRl4O3oKqIjsKm53Qerz5r8cpsODHl
guZcvUrkB2/jcpL8GBaI2dv14S/58LfeKMQnpl/RG2RfirmUlCuikyy746cpBnDT/G730g07B19C
RWhNVkIHUAt7g1vc+ffMtVXm7aCZ5it5Q6GcTf3lLCvwBYcKyqYgX754YKLY9m74as9OptHg1tq5
Bw4Xj/5gjx9afwSsoKNeC38LMnZuRH4LtiDqIoDnerrGAfJ90dPFXzDFMJBz1AmNJwnyC9YylHln
tA+TcHWPhqrC5MwRP7PqGoCm92D03T8r/aMulrl58J5DU/Seruw0145BLWnxgfTFUVaSPxwk9z43
p55hSSoRH8WvUyuyrZVc1alJ8wLxuKEzSfwC0Y1rTXHly+flImKEFa3kzDaxp0vhm4lbafLeNfhU
qNLvT4F7pMywYrnky1/Di5xspkk1LJX5Wa2DScsnwgJVPYdwmjF5puTuzLuE8QeZzw7qJ8mcRj1m
8VG7ylwHXEZauQNLLvOhBs0Q0BKEojtEyaXIA+A5tLOiiVdfiBPlImd34ZVvXLnyoXUswuj1dz/Y
EMns4BTnWjMPfV8NdL8hofPp6DZZ7CPWUCl7qOuM1Qy05qd9Xev9NgHxKjKHs4t4n52zKRn7+RTW
pvQjy8qqH5hPhkwk4ZiEw86zJCVF/oeFcE8KlA8Yn6ej+N+Bexd/fMMvydAC/kiQJ2hc34HVhPtc
H6vHXOyZSYicDCFLeVL7s5Rsb/0Noo+Ib4Bwx2vepNzI/yCK89fE1ZlNeHvcI/+ZSrHrOQZj1fbK
5w3JbiwGerGf11Zdm+naPM5d8rUu6ZvrNJli598zC48I5aZYiMjVYyB/IoG7tPJA2fTlnBudPQ0Q
bDoDwQYMDTNJydgLsSfE9lR/XCU7ykSdKUinae0IW5x7O0X4aAiQih2z1+d4gXMHpnLRR/+onf3K
jOBSGYzcMCT8xInSNxqrxp4sJEYzQ518HDcVEpCW5R11DItv2ILYyZ26+/Sow9Xv821cc9Rxv2Dz
kkvMb5ILjCuw2FL2Yfnrnj/fdO/o21dzPLIYhP1lz2vWnAa12wDvn9j0BAupvfMNiismTfWSigRM
TgM0vVcNp+c9nu+/DmYYR5t5KvTZZaV/uAlg6YZAVMrKpVqwWikeMY9TyoMWTO4M2Cqe/9i90Vau
z30jMANlzWVUwyS7HNOKgr8ul1h4PnQZFC2wdn+0eWzx/rAs+yE/8WUtid6GYBwqYGD9pHiCGsqy
Wh6dv7f017RQM/59IBuLYlsSmzo/MmTIsLEKXIP5yrMeo/EO7lmqy9bt7Hh0FVndwxajKmQ4xzN9
stYC+m7zGMLAXBUsm9n21PuhzVzXB7vzOTWNFj2u6SbM26td55TKZ6YVtGhOZVe6XHJnbZwXRIkn
GfuaLs0aBYqkhayREM0CxHp5Tl7AQxwHlyZlcyoC407l197r9NedylUlwhrRXWILVJ273AAnbMar
FBxrcicf/qFN4Ch8BD7DLK5KMO2azPIyrhLW7nudaRc6jswd3npnIx8PRIaPvpCbMnxJlRiK4sDi
0hkVsWAKKEYMXm6tnvQtUjxXDAj7b7l6Kr8usKNfq9GfmLMNuCLDu5MQqOkwaU5rIe5QLOFTWnAI
YOPDW3LTUeCKtDMSFRMvW32+p6lmqQbTlBL7StbVtjW8F/IgLp61yY0SmBCc4Eglg03W+OUEPcSJ
qG6VPAiThTa68O31xImAMwx9qmptHFBh9atzVY+FNsi9WVLndMRWiZ/GxmQ2TeOz7xM+txO0uas+
sIuTonhrAWajkI66rQ9ewtIfJ/uykYVoLPlbxLIEEY/lof/PAdVJNz2RrAjIh34HoXJOZejrAij3
dyoOfnjs623C2iiAiNG0UgdXDujMLvXWutdAin46DqPeYxJPWo0ObBR60c9He3wVOYJn5LhpALy0
vRz7zPRpKljVOHkCUoYB+Eg9NluMqJzhrkELjKqfTI9rEHZNWHz5CRomrisVsYoXVxO3SoG7crAb
5XGNmpzmOBGPJ8E2PrNaFyRHOFj+Nw2wRU1IS5eD5hrf9IRQGYXH09QWEIsrEI2hEWuuaWlTkAqC
xm3z9aAOY4LAR3+4eszZwIInER84TqwdVnOJGsqw62c7jNVof1jU+hId2ex47XSgQDT4nszSZxgh
rXn9aY0QvOWD1JVUbvn1t/jqOoR0d92utmF2Ro1hpLkDw8UPU4CPLrSP0qmxDIaBJlsr/WREcJfY
upzR3h5GbEjcwUofPH3Q68qIFbxytGVO4Z9zzJEPkiTAHWLgD7g/Pd5cJs6d0f5M01QuikR46ktD
LMhDAxSOkoOJBJkNsHPgZVuXr9+9g3HtCQXMq+7rLFn4xW5sblNpmRP4rJ4pQsSn9on1XfWR25IH
XPHcnA1vMbsQUXsaUHTQWyRIAomg+GWfJD7O4x07btwz1pKJY594rn+2ea3kQx0ayWhF3SOZDZnC
0phL7eUS2BQoWiJRsjJLdUjZFCDlsF96H1vlsB7VKY4kVGlRIDxkPAQn5PNV7g6WRtWpdSB/YTN9
peDgQcdCODZ4QIUyLXTrLJPDIgGHiXU13rawxcRt+rpFhcMO8PRFakL90p2pQwZBuSD3NGYYvyoo
9+d7z/V6fWQsoR/mAb4mkniiHsOs9ssGIkPlzcrIK8lT5SKQw6qTLZKH9w3tyeXezCNOEwgC2z/r
+CNIjo9ghWrDW0aH321JobNhMuFo7zUwj9lH/3oHufqBs3zVP37si0/JpKn0OdmocZ3YseoVRhGD
YxVvZCiJ2qc78dPBQPKyjQxUSOfDsWI04nFKdIyJy5ifrLMScvrl5jLRVYOz9PlRCZ7K9bOqpiMh
F44FD/i+37md1WS49RWp3FLVXfYHb+aXGdgb9qvzNt4d38tvQSOdmMZEOj/+gl2NqhllyG1qP+TZ
SJLJYC1e1XuRwincFAokWjAXn68Ay8qOYVvTID2v13Bah2ON9+lDCTjy1ZuWl4IjN1a4pi2WY852
fEz3g9XLumATb6fCbL51ntMaISH8DoSaxTNgPxFEJAk6CBUAA5b9pHDiheHoIJ+hO7Ks3yLLjZsd
ScNni3YI4Ui3496q/hKXGRmPe3Kx+hSgSrtNBrO/8/ol8oX9nVLncOcyJeeZTSmGLyWXR2vvCU84
bQpbyefvbHxfM2dbeyxpSXe5uMXPz9+JOHCYeWVMrhofx4ofqESjujAT6Eb3fmbMtXFRhupflnri
O8FgPuFgOURIgmqm7vPLZvJgfXmWz8azub5PcNwYTfRjyWXCH52I17cSVVzCZEOjoa05UchO4kls
P+tfR8Hx9SbKKcQUVF9hl6XaThJqgtZN6B/bG5ChE9I586pOFhhap6FqIKtBJQuZvMeUn+DJrpKN
6YHku/oheikRLM9ucanMeHeWUzAqEumch/1O1PCheNwJrSJruCXN7PpubS5MQx0BNiQGmYLvs/nq
S6q9m8tb+bP5N9dZao6rU4UUNQgLSWGh0iWimomvPJyYbdXHkGI/DwB25G2Din2Bx14USurbVu7Z
U1PYnxULMJaSrxM2c1gG2/lqnrOX6Vfe0enrF/qh96txTYVMZtSx4KunNsRw4X7YQT/XLWFMP5N/
BzVfILA3/rxGIF4dwsC3xO/Tsa2NdiPEE1gxPRdsYbzYwRu+SvoFSaed+YlDYq623BecjBeB2wRb
1JGhXQU+ylTWzonRhnDPjrPBB+cz8zfbF5wE9ITPRAQ1/QWuz922GcLRI97tfOo1F/zp4ka5Y5zr
Qw07Dl4B4c5TAS4QP1aySeblO2n5Yq/10r/lri9iGCBXhacFXfh7t0nE14mZAIOhqN9hF1ZJGZoJ
LdrjXizArZ9/Gz1Vg+tcTVfx042XUDCt3OngGkIeFCghiKuQZhPvYqWXPvIdn4kuqsQB3O0nnXta
bOxa/vRY14p9555w6ACrhi7t//SWRwFLcM1CpiKD+VXhV2+sWzukRFzz8m0hmdCNRe1rgGkInDHs
T3dG6Ul7ofuYR0S+S4Nf4CnpPRebCzb4724O1IV1TTizY2Bmm3SoYY+RP359ZyCic1KAGxHcHXKF
RoKFedZFa2RBWMTIjFBKeJEo/Hg98sVthp4bxQRD8iM38N31xc9Py+ZEF+MNbW1EnETymzU3cZa9
tqiWBMFw+fMxj5SR3SQwXBSwlLpH8U/E9tp0fVk/TQr3E1xmw2ttnHkSRG8HX8Uwg4QJIFl4OOk4
fGW3T+Q33fRSrfbB/fmDheZtGLIuf9Hx42NcMI0/CGhQf+9xXvhuqjZMyhE3ZalnWmraXbUz1mut
BWaD7KQASSMJ5ptdUzPJF1g6xiGB8XNakT8ora2SlThyDLu2ZZnq/tyzdnmY+D2EKq0kFyehnj5j
VNHezPP19ttOf1Q4xadIp9Gx/3MxSX7Vb44mjje+Q3BcThUlN7TZPGJZrsLVKkoRbQ8VTWBJD6LS
kEwtFEEx7PlU/aproJeQZ1OTui5eER6kVl1o+15+MtrphSnRpwbu/b3CwnEtOqoyhmYoHkK420Fp
CBL0IbuTbQm5XsDA5xi+8Y3XT4b1kj++5QYmuGhmw2zLXDNUcp7eOrknQSruDiBt2nSi6jbtIHGZ
nsQMpaOhSp7PwL1fLdZMzuAtS/q+FBL5mpPE+22qnqleEqAb1RNx80MvHu5xMSi7064vtpTNWy6c
cDy71JaD4jMTGkyHBmqN6+Ugei42/sTQKhJiWI3ntolt2Rx1xm0hfrsALXA5lGUAmUjGFOOR5TGM
8zGjOHZNypRw0xCcl5db+HOwK0uBk7cKqe+gn2O1a7HHmahX4rpunePMoS4deviAmPGIQqnBDU0K
PH5qAUNyRcV1SrlzrL+PMdrtyY1PeaaLjstYQhdU1K7wRSDSk3bY+Sk7WosdtESHNaVW9HJ2x6/r
YApeFHZl2mkJWueTH7uNQrustJquZYR2kX5BMA7tP3QYQ7wuvX35FcvmcvUscoUode61jjrzzLWp
vqAFSpeEjJChyix1TJMS9xGvtySjcjhV/fqxdTPY1WOGHT0wcWb6BumCK+f4uUnEJ6VCuO0ZJaVu
L4khZCQ6sc0ecK4+MpHg0v0YuJtrfjpEWOp691pCn4VqM2HXL2o/QktmjNd0uM+AFNXh0E1CkP4O
Ju7lo8WMvyM5xXZUR1obZN+o/GWyIBkljanbDZJL6c9na8LhQ3hx1Wtp/vSr3jPFQZLGQjrptFqP
S3Acqr5JZqhQTuWxXwax9LZgTwQdbsinkYGh+f5bFJlqlO+rkdtdAK+f6GAk2PL2OJGeyZdgQ1CA
iNgIaWtNBq8GkXzu/DB4z1HKuINWq0h6GLW+9PbfgopKhAPFudpEXJEoSJVaeZHsVmBKtapyJjU9
PuT84Mn1zGDO5FogwXTtZU6mndCgWtIJMUF2Z5bfVhAxCqV/ogOeiy6Om9LufJ0dz03pfW1xs/Hz
R4CCsG9IC6E3w9pKe+EomXHFVFIjliY3Mx8RV/NM5XMRjC/owjE23rieu61T8v+WqCt/Qq7VW0vX
MSPnsBv5SPzLQVC4+2Bv2rkzOf+NhSO28fDaTe/TBx0TuGL3OOuHAGKvgFNVzVTc8Pmz6AjmO3JP
6kS0Ap6HjyODo0xB+gfDb1IPmy4/Mo7OVXpUzpWswcksZ74LA/mLxOe8JSDdTnUz0DmqMacbBpwH
3PHEfNeFrK9/NI2nLzwWOJykJbLc3VVf20vrx9imzxoTZTMJQ84lEo1ghEh1CON5u0A6n1a9c1FI
u3nnQaA1tekWHDTuYh7mqVhq2TmdUtnbkrrhxhCD+aoQruQjC6NCaFANm07cu5AeE2BCrUs24rjU
OLF/DOejB+kwHpoCCNNqjLUYR2uyk/LIGxbIPDipu0w7B2zjIsIigEc51++9cConjS+WUCgqmsHQ
wyLjqgneeZ6r7TjvlFxO/fiJiuL+ZHH74NF3ezsRpa8U/jAaUiFw6LqWdS9j773Gt/xmyjl7x9b6
6Q5qnc+qH/tarQNt5SBguuLjeoXxEcQs+giuOOGq5qNB7RzbjVF0RwHpBJ7TfgUZoXzSyAqTL/ln
2J4LA5GN+PqMgbqp1kA/pZ2wDi9loSCgjcDYePOhPd7Xs4/UwyNeM76PY3nRy1/Z+5kQ5a0jzS2l
FignZtbkxDc/ZUu6bShbjm9ZD3zOwzNMiIFT/9pC3f1WqiZHgygZYvCemdgKfEPHhg2zVXbCMmIX
DNUCwMULb0FFyL+Sb7oQIrHLCA0x4mf4MqlLUeg2C6+Ed9udAHAZEldJKNlqXoOtB6dJe2Yc/vHm
eehgkxgeAEffNaQu4Acdcr8fToGdt7TIHqmyuG2EnqyI6gt0y/J/0vu2RfJzbtrbIxz+6JTJj1li
+YtCIbJKWKtLInXZ1zrzxrCmdiksNRPxkpAmm37kdo3CL9YhuW2ikAEqRPFYuR/ntLHaSiYJ4awU
B1M+apP9BENQN6GiQaGUlJZEd6wPBff5yPrkKSW3CrN7tFEd4HrkeOhPDeeV3YLttGmc182KRLT/
HTYmGB1mCCDtVhuaoImO53lYlGI7LZ2mw8SULPbzh5i+bKfs1aInP+w1Cho2n/jGKqB7A0mkev+K
rxqN55NgH3vYl2x+suEN4B3MY7p5lWd1aMHKL0LZU9Go5RkklkQ55HLl+G+ss2J5cVyftZ+nV3HA
vqaanejw9VdzDdCklBPmgyU04RziCPdQ00sOG4uWCqXeqQR0e3dqfrz2YtO4DeCg2cvME5irhmjI
VQBsCXr0ykB8Izu/0iX0KIQd7SRYmoa7dzM6UBzSR5/6IsGu/GtNUgHintn9AjFpgKiwqMYT3IbP
TQAKEq0c4uOmE9cCn/m7d5sdfQIPiFkWL1dfvyjkChjCaJZy29fVweKM+L6D0eunsf+O0FGDaX2J
IYRl4xawsIIgvI35hEAieA4dLutDYDV/bJBsXc7NcQgUMTtfMXWtQT/L10KT4qIuu9Yh5187H5yy
IK1qJo0jUFEqD3xKCYc0K0K2HbISSQH4r24qUKMZedoMzZmKpDnns11P6tgiJamFmkE7VMKWddA2
uwuE3uqnKC/bZHuiXKibPeZ2yPT4TVo/bvpN1dGbqX/vJo1SM05EdWVBNdcsX5l0kJWWk1p1oOOc
eMcv09ZmpWm6J/bBW3KWXDrAZ8qCCTdXZsmNfYTSK3SwQKlXrlLmzK9Z0+2hwIGvMtSAF9O74Ioh
kzcT9Q73aP9T6ggqpdyXoGKuyUpgfN3IwbOGZxfekhjND8zqh5l8Pb8shUYEB3uZDAmq1uJcAf+t
/W/z+TBO+MtQ51Wta3AsqP7eTkk7abclvlqz8UkFSm0ZXauzIuFFWoHUIUNfWnL45ErtCO/yy+i0
ehe11M7vsiq/bAv7rHRcvuhh3vN+uiZSxJqCfLiSh30ziF54NEVRsSwV8YeV+jh/LcYRVeznUbYZ
dwYoPcikjsqKPMUW8Yb/5QoEt8ldNXtCAYhLVBIYtFR3mASUydouns2pQYOB2Sp/wEBNrh192udG
SXKn+cUfhMFM2a5IjPdLuOU9tSd/7Rp6hCtJGfMaNS9yoDNEArkrNse7R5ZDVh8GUW9DOl4q4yp+
f5cNLLmjTtM+bQYPsMfQXYYVYrXHsQUOKuBM50yboej8ffELaaXsaT3fEBv1GGbqtaHXLoGhYHyd
oY9QP0Qsi5TjwTyxfdk20gpGo12B9cbBGMWBeoNROt6EVsUG03QK+bBZCnGKHSKkBIp/HhGlzPOt
YxAYx/7sMX4CKpEKHmI0Zv4PvYT3sDDseyvE2OYdbYPlw5eCKOH473rx0OGbVXDCXgbfiRql8ZRQ
aVDWPo3MF1MSLPV5n9GzfMx69KaJrxd1t/xxEczk0PJVGqhYzkXjUoXwk/saT6oR8KGd90589Onb
le8h3q6grYZKroeqQh6lV9JSwlxoX6NITRBY3FI6H75wDDY4u0nJuZKC6JXZI4YfcpovOZrz24wj
pXR/Z8uw8MuVsl4hRIptouihmuvMPTd/DUGEB/IbK37ZwehWL89jk7jUzOPjMJ69fNDXsU/htkSF
qRXakVZnkSWl+WvoouAzlWV73KJZd8Xa/YoNBkY8T7jkMzGzgkOuX6XEaHK7KpTb7lauZFFmPHay
ZkohyQl6XY4r6wlXCu8qTFJfVlASSLYRpmJ2Puop8668MzhI87dXLcKJRztHlgYr8Cw47BoYSCTJ
FrxP4Jmk5mIyaJ68vjDWlRdADfpi6RDKh3q6AE+GIal/iB9nC2ibG9BX3YOMl2uqWFXtvidwCaYA
GuTlanOOTjRLtXrsBN+/kBmcv25kfEUXFXl7xO5TpBUzefWbbG1aFHWVzJKQfkyMrSsTNVrJXsLT
2L9C+w6f99ZBHAsmlBkzTnWU9P/4LHq6jN9CrXJ6xoxZ/yvP25k+6zvinHRD2NKn0ta7jriy7R4+
QTUsu363E+pzg/t2gh/MTcZqA3CczLzd29WM5O9FtqrtIXx33Uaa+2Qguui4wKENC54+1nNsia3T
p3ffhuzwZ+JnFHzHKZ3fHSNWJ/zmR+ttCXc6F5kzJEjtMpnRTFScqoGH4hI1uVW73L2lIH9JoHfz
foONghLX/kWNaE0f1xc57lMnQQi86sqRurWVE+o9h7SZYpTgg1RTinj56Hua2oCrXyFZ7XlmPUkQ
u4FntceKwoPxSx3I9tAbmmYQwF8xlRodTO97hObkZ3CgZsWqArTI+iIJ2KlRSw/BWVD+H3+rWzHn
aR5juyJrYnyqtfcJd3aSPChaA11xjZ1ek4z2inF0pH5ImgLwjfj0mafXkj6elUbuSVY/E5Gp4w0v
xdxMXb/fVas9ob4aJUQnL+VIQ1+gz7k/o5+yTPEqfvuQAc6s2KkBCVDeLheVeoPAVbuBUk8QHDOZ
wHuHRAET2PXDEeeE5WRphOKchcnzE9+X1zXztXTlirAUodPbbSJ7bE478znPflPDh6/f2ETzlxGN
jqFKLvYT7Gvg0Tmp4dVp7qyPPYplO66mYwO2+tz6+iWjyJremn5BI5hQxrYpcaBewjo3ajNyCyrx
wS36fHApn9J8Fgmg/xCWzmKVvKy+oZ+e86IiO7fMpdqDWhQtdNS9R/FeWrH+KyuBg7cqkaULz8Ot
Q46H0EUcqYE1HOR+2lwu9wlpXBa17vyavQUmIo6LdVYJBHiqNtXPGJp2HW+Bskanb8VVYVKPUY+5
zbeXfv0wB0Ea6DILB6FQTJF5N9h7KWf6V16O1obJ2+hFrI3guWEjRrGGMTnd2+RLbmkOKJKbUVOs
mXXFqAqUjqklpqjsevi9H8LChr8Zwufzi8uTf/VMOFDjC0FZ3WYeoPnUDWcVYPV9X+OL47Y4nIFx
Gjx1qO/sOpOnQ4+R5GABU9ahWCs9j+Ajj/d6z2MtLOPli0MULMBHtsuh0sa0Dc4hXlfTLCgmgyWk
BxYrfd6l4+w21QHi2+gKG2DORCJFTj/BpBEX0NcnmQXIct8h0dfl+iH9SQzWRRzRP9sxCfMtDsl4
DLrU5BfjIo3Py3DgqUTo2GqTxqAgjvcofRrKHi8vM4kxeb537pBH9I8XWnrT236l6wFWcuO0ThYe
r8qW+w/PzJCHi1xR8WI03e0sBCo4HPgOCDbG9gypR3WHVI/hXwzQWzVdhlu+PfALz8Vy40Ut17Ws
M9G8I+QKMNTrIYe1hyQv7gr25+C0VtCqLv0AiwQlzrV+WNimRVwukaEj+eBlvFOgrs49vkog19ic
n2XWduSpmiH8MEaHMsg2jWzr8nExuEMa0sZpYpEFFZc75xiKBELaAXVVzWnyXVjCTaTNo3HZ6a/i
DzJ25jue+qSfQj+dQF1uQhmUQPwIUS5sOz0yZrSus8pMOkKkHwBTnpeI7vM4egvwjclL8kpE0U49
rOqWSMqDPRraVUwpXhyLTpl3hPiAeLzrVRtNa3sf6UxkopXIt402t10MFzg+ipzwLmxUhLpJH+Nm
I/tRfmvhKr1cxEb2UXMw3Odd86j3WhRp3KSqPT3MDVFS/LkPW28tBh9HKfjkC2KvAhEJrH6JyONo
cKhrFBXWwXdPVcnVjHMRaI0J7MgFhT1g/gbNB5NPt7IuDf6dZMVg1+WzdYDHBIWORnJ2SfZ1jWoi
KPsjCBgwvCihH6PKkTn3OhpNFsyfl0mf1bw7lC7BKEve4+RCZl3nLMbySBASXl76tC31bZjRPqJf
ihbi0hOqyidqZS5Bz+fWc8RC779SE88DSFoe6sUaUCZG5xb841wcmKCVNQL0kkykiaxk70cVRV/2
uBmr9yN3z21g7WiaMgfySzriIhSeILa3KDeTVXysxL4/dQvhS7A+357QJq7gmviLe8OU9HxoMZMj
Yea/qjbK3n1vMYr9RUvDxYj/KDuWEHwbuUJIa2kHagxpn6IVIYzBOxeaAKVamnSab24pekidr4T3
/bdF3sEJvZPwXt0YptAK1EnavGQ7+QLEe9NGPZm1z2v2ProZ1LCmrtVwVYx0Dn0fS96yINI1aDEc
RtOnE6rMyJ2Esva4am6H5KhbFnnSrGd0Y4A6P2eNSD9sM+ks1wcvJBGj7C5G91nSU8xAvkXXmvb7
nOa/8q58/vKDSFzuQqCdUP4XsIZv5EaNHKA720cRVLTVRR3p/nlnjVxNYYTx4FQmFvGp0Q3Auyto
v2uXc9FAht3V9kHVPkgwuG6kHTyR7P05Lbh3pkK2yIruPF1iDn9K4uRJxwG+pMOPqT4aTbZ35QiW
b6Ltqtf1tOlBa7UImR9/DiXxvcEQYnHei5RiaIGXP0M9b3jJhNrPH9H5nqVozXOWk6xN+TPvUvLE
go2gZ9TAhiv1bVw7kNV9dEs4JPF6lxdm5go5i0ITYa69vT4MNm/lJo87flMUL1V4+QGDMNT14WvE
Ub8sMdMBzS0uzWNo47Vf48qw9pogrtYEwtugT4ohmr+6TcJlvZuZJE7UUfFNaHh8RY1ixquTF5Lb
HaaF2+Ql/3dXKIlboA8gPPukb1LdNMbFZrB1Gj+0Pa1Dwuilp6RbV3u2uF9k3uzkDB/cV+Mt8vpQ
Gm/wmCJH5cMMcyHYVZT0DPtbVSs+pXRoBsQON4P2oxfWtyzaCF4lmZ77ki0E2sGlaDtoCGj/xq1V
FCZ3wagO/NMMpIevr7zyxslkuODU6l+WsPojS/hOJg6MSUiB7OKKYd/498Lwpsbk3TlLSto7B1lM
iQNrPMd3vj1wI2f27TyPfBaXG6xf7jwScpsNh7G3ZRhAyY4Zf41qtQzCKwFyNNEDjpWbraoeylkD
Gd+PkINZymZMvq/Tx5Btjc17xMLW0m6aYRMhkUjraUbRtBHg36YqCpFTt9NVITegQyUVPuI9kS83
fBOmJd6kAdevCEFfPpn91FdjZi5D2hQYuJDWb5vUCvOWeXYXK6706jLOsy+6urm0ZGXCqtj+Y35g
b2Gao/igQt1X6LWm3ICbIj2rKx1N21wPpa9bfEF+5LNVTj+P/SByd/UPeL4p+ZNnkSrv83LCiFHI
Z8J7xoTsODeRnZct6Yyphi2f2+fg5zxtAhT711J3bynVaYIP6T16+opzoh0S7KOXgi552kWhYb0t
sKHBl6u9awrZ6Xwat7h4zukp/fLQ9TYLJJZYJYEMNso8Mtz296E/0DxZ9QYf3I0zz/b3dgQH2Vzw
yS7wI1dUwVAUk6IsMJCJ6HDzFSmUvRgeYRZF/UQWWQkTDBJviiLKuMXCwghvFekpvbD3pik08scX
cQMj3myMyePPrvW/48TQamXMMXEJ90MOo9VCt5s/xvF1vWwBa1snxhQ/GEEA4OKtDNRGx6nUFmfk
V3rFo2e/T28ufmw07NutIOfJ6H3IxdI7Mw2ziobEvCe1OohU8bPZQlDRIUnUC96l4DkDeiY4wbGS
psLdU+83ZYQzJugMJpgbgavSwDJVFsdFhVzpEa/Py27kPL4enBBiMmZ/QMvX7+g3dIEOPoRXRTpx
Zc+18nZuTiPMCYetjQ4MJNS9+7nX9CDj27TovZWWMFelkGQ11uZH7jhmbOxwAyHpEFbS9lTlmnbo
tGclNbcAixvJi2y69HwKQyKabG4uoZxjvlX8GHfC8Z4d9YH0WHsho6Ta+Gs8F81rTHVKJJmGRfMl
068nFFL4pdETODa8+0N91fIfh3JMzYKjz+7sSd01lEh6vveu657MWwIIAxn7bZwQmHlaKi1C0IHJ
DcM6d+3buZgQo3n9SFm3GspZaZ2YJiYDAKwziSgs6BK49fTEDtglfFzbVGaCrLMpoLWjNPtck2Fb
B497Ym0HjOCsZRhd86zbmhb0SX3ysRRDUuuxdSJGuiCR+9z7H2x7p5awrO4oTqIvFzToZJfuGOY2
ttzFtuGw3lMP4s4pdIHIlSURWSj6t+fUBeU5o4KRQf3iiGWo4/WdGvfv35Hc3fLc7tA/1Xy36Z4g
Sqjpyj26UcSgpaeDbspWS04/lp0vILBVhro1j0u0fs+v9eShWZnRKkB7as8Jwbvsrd1X44EYqX+2
skOGy3WaMChulweVrKSHR49n8L6CSrRyJvLnsf99lKCJlXSonyxLYi0cTSQzt16mR9wzMwIwniHk
MUE5lyUso3b8+7hpI2fj0U1unb1uoyYB2F4Un4eqizRbWa7CUYSI1+d3LeIsEt/3j78Zk2bGPzb4
NzRIUx5TUbgjSYI+EJ9PMcjeV17ENAT2d2Bz5LMYmgwFIxP5ziYlYlEEPib64sL5cnB4ZRljfEaT
OXZnYae5Xk2pIh5U57Qhfra3oSDHpTcZ0fVbltGXv/NPjShAqoya8UE5xNFbLAqDZy95wHlvkzMb
T/dlb3gQfBrnIbNU7ZfcUVrtiCx70QN0YgDRRk0rjly4zYePNK11RatMk8xE5LGspONaUrbxnhY9
v/BqNhhkGKTXBj0HTmA/yxft3iBfos9a6Ehicsm/AoZlmhhj2n9o3m/pc+YfqNwSf3+6GOGcgY2V
4KRo4H14nyyhDasnd5l3JB8DJ4LF2n+Y19s2/WtC1pK1yYf6YqZUyIXI4h4remP+dttLeZgcaTYV
yjBqSPsbVj470yfD8JSoSDROrNm1kSnMj4k2ArlTlY6r5pyYxKP7VLFI2nP6laPVkPhyF6bmcHJE
pSom2xvP2lA2ATFtsdRKKhOC3wp/1dfdyCqcCCgJ/TJ5o/o+ZqOAd4ZvAh4QG6hukSqSAquD/mER
gnoRea3tDIIgZCkSkr6ObaDTSL5EykZzKvIHicQ4ykMCVDR8aIqwRCl1VozMHcn1QPhQvvovg7p9
RsMKaGvKUu9To53NimIsqXJCmTxSL5UTC/MWd0hr277JFDWxMfk5/drkAsgIEX2/xXpmxNhipi8S
J4FnDzCOIz4sRwf+zQEhy7dxk3FNJAxhPR1vpoAwTIWnNkJiG1zn60wWfU3A/Oh1oDVdxYkzEyKn
+d3hy2h6OXmVOUkdbeZI7i4pRHDntwCbspSkMSoPyuTo4P5XByirn+XD23JfkEYqaOr4yRTWL3dS
jZDZz1AlxxCzvIjjT5grKBPAyV2bhhf4k6rmMLmKUA8+yTpi7HVtH7cmKzm8kdx+uGh0Xpyh18Ho
SP0aC+6kJHeJjDE4md3UEj2bEmlViGgQg9Y1n5ysYQZB5YhrVgt2PofE9rU+PjtPW6FllnoNCfPI
XS56BsAPG72c98t7xLhGSLpXum9ZX/8cOb5iqP3t/NtPBKRN2qUc/EiH5vl1H5jR06Q9J4zg2Ocm
A+yxhryCYktoMBl5sZX5fXhjMoEcny5SfP592sCCiIxyva7UJzf5NKFR4YKtB5UXyZfRvZuSI4HI
HHiBNZ2ubnSDzq2PaczybMqz/dB25SeKfAfkvYr0/bvSWgmVXwXc2LA43RLGs6Y/Gq77Cd9yVySU
iJCpNKlId7DAIFdhE3rgWdytfcl5XxAMsAwurGoJ+CJID0hdFU696hRIOJF8OVfm4Pz0nBNNdzmX
7CMLY5b7tjXXr0RUjYJcVGYvPO5Uj6f63Tho8aNmHDvxI0RCMNGjMBpWjUAZrRGMd+otFL9C+W63
x2KLvULFiDViEg6dGx1ajoOwb+oEw1iXG7VRk9Gz31BDzarS/OHlWRipZFhrc3Aqm2KEJdHUD/y5
IjjvaUXrT1bYuxO2UjYzvkfLXZ7oqG08M7zw70MZ9EuFGLrewC/MJJnJ4nmIxY6kVGZFCI3z9avY
FPEm/VmyIg68IuJpESMq5IW38MgeVqDgNsdpw7R6sMkcW7/RjiexsPDJMdGKfhm6PhB19m8UrqN+
nZ6Mcwv71fTdZjiScDgVAmvawKdctC2Vth1h6fXXQ/bYDWtxthzFheP39F+u8Y5c7hZSyPfp3h49
ryo/gbYfozYj+AIxFxOHWlHPp2brKFOS1b+XBBWgQR//Wp6sNk8erjpGMZz2nXVj9O6vg8d8u0ao
ekn52GGjE/krM2GQs3M/r6xwFCIkLX0jOlWu02+6g6Y3PQR+IKUOzUJNjZ9YoWDwm7sO/XTsVwbF
19v7QaOPyZYHVg78yF5FmIBSH/frh9w5v2u2JgjSX0b295umvULkjRjIRaZo+ipeiM5iREJLpcQN
USOSVPUs4dmzq2aeCl+CydzCk6ox2B0xJbc0Frd2jhqAHZQc5o46b7RWNw4NB1xzQWQqX9OTTUZM
qsNiOiXYqmb057kCnCkb2PvMh9oB8/lhO4S0cU5qXjM5s3SfTrJncUk029kmd4tbTD2E8PQTSM0X
5A7iGFSZe2zo8K+4F4X4UJHq9NHg5vOhhrd2DuQ+hmqUQ76AzWB5u1KGb1nfZVFI+8ngk2fLoKBU
suuuzm4i2GFnOOLhhwA5DtR74OPb5jaZ5y08BtNG/Q39rY8olePBv5cgLQS9xn8bCrrL/biLV8K1
r6n7vC1eCff04auC0SJnIEv3wlkwc5HzAG3+TXI+lgXF6ByMC8FOK65ppiTNuERzxCKFuhcHe982
fYSbv6vyOv/ELtVHvAp5VhIakoqvbkOGfuAKENbqj6ML67psJG7O2cHDXSrLOIRLwd5yQ7S7dchs
SeQbPMdae7hXsz3Z/kgdIm45i+psKEZjgrQn1wUsxp4XoVEMC5/Xh7jHFutO+KCySogKU4Iv1IBz
DdpXlHolqezPqldCdfmTEV+elbN3yekrhDajwUbcscQ6OZIHmvK+PwjqG8iv89gPoGHPnI49j8BE
UFQoUD8Q52KiKwnI1QZCvSe59Y05XziSRfuRaR8JpzpdR6E8VMfuLBEYe+stjPF+gfjdtuwpb1s9
cfrKO4GFEY8QvJSyt9AHxJiQBGEynnm3lRA5M6r5PvqWwffnLAnC9vY0HL35kmSbBBZqtQ+blZFG
fqlOb0I8SZR5PRi26gKv7HLf43EeNtK+Xnt8UzvxKBkQnqAtLKDLh40Z72pcxGrGvnNPe9FxdPhF
W7PKDUPaCXC0Y5Lmm8bNiNIgLanz573HuEFBgDX9MQFO4phzZqrADGF3zxAcz5AVMs11ajJ7ube9
/NiVLqE3rqWx5LZ8MMbCGBeWoTU8CNNWr6ZDoQi1GVrSgyGEmlJOLZeGMXWr31WojSjU9bPV27jn
J2dBLRTW/QGUEYkU0Fey5AomHqke3mWzSJNTOKBolwrdUBUx8LwNVxgR3ZxGuJiM+vhlw6KW4YwA
0aPywH7WpzlCey9hZfngracKwaE4UZ4yXUresB4alvckINfdivOW2hL3M34p7HJ06qBFvXV6Z8fn
q2vDT3iUOhqoL1Yk7hwcPowiqMMSEioFoQdvxyl7cIuMpBLMEEOnhu54lSiJQoyl+EiBhBTkDKXx
mwYtG2a9dSlnAs68JgAeGd/rI4B48HL90pa04o1jFferUbnHZn7SbMjiYbnmoBUdLCyEOoZ6OwOr
pgcAP+Ca3h8N221ouAklAu4ckfTj/pNkGASnKwaZNIGG8SbpcS/atLJuFb2Wz8XcOPTV8wtRjcA8
onIVuADiD6Rn+TQmh+8SXp+Tp/q6y6NEhjhNkDcxUkLG4PdpPZf9sMSup72KdrxNHSmvMeihQwYX
OFyKJeHlCih3s+EohliIg1DYc66YGwFniSYjAD4n5ueoyI1+dWmxib6An+e6Fr1gOiHSi80aQ0bf
1ZiP2W8NBhVZWMurl8fuCvVMPmAKTDtCSe1hjq4kSF5yJa+Pt6nMMiaFXPgfq3gLRgM62CooPLSI
A7Y5l5HanRJw39Z9qZ+RurKsK/tj034A7bxajpwez+cqNyOHpeZb2MG1+VW+awjk8I6dmnzB0VhI
Tu2kblRNKm2nYaBHxdVKlojN/czlUh5xwDMuv1xNTGP7Oi99lB+kXhyAgxNjTAdPmRL2bSpZNH1P
63UR6+XOvPnHnQfwSRUzVI9VHC6iUfljk7CQfTfAPhqLraKKR4BLxiLhxAV2khiRV8PJ56sb3Hwx
KvZt4xsfgef1qHuSaGsBwZsR8bgWK3lh6TvdH1ZI5kS7gjY/BojPCVAlQvBnCjkeb0hLY+TBeng0
nhgdGvD5PQeaPRuQkaAbw9ZTulO6xAGfhnt9GeHZ33VuNkgklrDQ87ksJnyep5ZzHl5UCDrpylPr
EhLeit4o5Mi7cmDryKUUg+ySdb+uvjTsZkDV/KbG8qk43nU6/r3XBQNHBJxe734h8bdB9jT+q12q
4LBJ5XFw931H9HMZzJsAP2/YMp0otzCORc0tx53pD80f+KVVNg8rt+aP3VomqorQHgkD+udVWysC
6iAfIrZvMnWdVyXv02qUb6yleSCNsC5J/M7baq2KP8o9mX1UtQwtGxIoQ8BygkpIUDhFCbpXzjmx
tyFlIGXmLdAM2B94rkp1ZnJ+AR9KN8lc6102MB0RCNPG8j5k5bFVQ3TzmIUziz33CY/bm2uXJ646
0Szz1+ZIhVJwG71GHxYkp3dM/ukaPnecA2GmiEbeWUBZktmaTSrfb8v2tJTUnOORsu85zqs36Py+
zfN0uu0WIJN1oUQsyZElQqiFaJa9/LLKjt4GIiYHrMBi+uMEDHcnLqNFc3hMHxuLox73PIuUOFip
qn1CdagmLKXteDAS5rSp1TtciI8LIhobHNJ7R82haH10TeSeG1856lsiv4k7ItkEFh06TX/C40aJ
0Tu0l7yCrJ+NjKPYrMlQXhcUcDUB1NG0lrOKBfA9i7VMcJ9tgN3RVHlt7K7AJVFJn5KTAG9/3tAo
IqgIZ3+P4mdzZspriVcDbydOQficN2ARZVo6CgbOh3HpVaqdy2biEL6o4+JRmlQGPbNxUkjw4C9t
F6ytnPpFi6H0ulufYdc86A3djoY2Nhm3hqZn9bwYQcBdaylq+/2GvR2LbtfIpRPxg9EUhLR4xIi8
SSWBn+/TWJGvdx+nfwoQ36jeOmIOgFSDH5EnndXOn2X5lqoNqOG5+rIoTe3Qopgf8wAuns7ShQLv
ALacfUzFB4fM6gTocZCYJLmrs+uhwLKIlOO9+foalNxsqyxZMILz//qHYLPwXgsw6Qk5IzyqpPuC
S8LPR79hb5R8UXLNxzpBD7v+QkwHn1ZCqlv568gA+bxfRffnuOMbRny76wjq0umCdDPGTekc3SZl
0htbCD3TSUtDpJ8B4+8DqXVcn4lF+hXpr9+Mpt4INZ4k+pODGOXQJHIJ222dhygyz4zc8CJWeyfq
YOJkEXItHo86MrE12+BUhEub9B3WCVaZHgwkYxTLIz/VX1w32eVLYqBFLLBGTMnB91B8d4VV/ckM
xVs1irEQ3gAzXWrRBC6OUmkZ1MnioHhUnYLrGy7AERmUxB/JSKj7oI094N1rk+dbe3RDOlU0PKpA
g3e/rR68KgV3IPnJbxnfXF/8dJxdE5EJYP9ASuHnivjaalmHiS6/0Cz9QAcjgS8tmCxa7/ka8yqP
IaUcYhYITYnwXXSIpCWxZuwUObzNHL2ngHUpT3LcECI6UtdUXzOCb9tT4XGlF4y3IeWRZEqUJqVM
p1Rj0NrNzUnT8DTPxDK+THaSPuE66X7q7YMgWfjdQ7bXuyUFzkZp7MNOHBMiiVwDqTEa4E7BKXs5
kO69M0vwrANtCY5gKz1xe+ile5RmZkuATjOSStdDIVRMkN9m7sKGJDz5AEIoaokFc1q+LfTp/dmv
LrY2LQafj+qGuxjNBOd+e3jEAP1LTXUI012u+FF+4xnDCBu5RI3G/eYeVqu6d1eXGRn4wvDdDON7
luTbRyeduWBSXT2x8LbGb/Wf6ooe9iCTmgjupqTTc8pJH2hurtWCaGRuZvPjv8CyEkKJ2OTBOKeI
N6Ks/hoGYje/9wx5KyncqRA0ghr5pk2Dadg1PIuqvU2/E/GzHkNyu3c0+iikoXQ/EaZmz00Sz/3r
2quHEAW0TyedOKOh0uXQgmTz2TuA/+2HEx03v/gPQlDez7SVjS770DLVqUb3YsIAvO2CPnLlqrGa
76KuIhdCipofoOSUIviNN13oTAp8ACRnjzLUB/IOYKekGEVfSRlV8xH3bbWl7/C0QxmvLTxmnpZe
dHZnmStKhmf3hPvoTeDo2mmHjuEMUetgefrQ29sVT3tt9QmSLoxXfccTD47nyT3LNhrLTSO8N5+v
PdKSUg+dTU7osWV/Wh1NqLTDBuOrc+luOesGXUvdkC/eGoox5hGO1e2y7XqeqisZhuuWLvbijB5J
hefY1S5yrGagI/F+N2XlvpsKRTm4XSIGUmdXvKn5vhqZRKMVJHM9C1drER1C5Zt5O4k/swRhWw+1
WQqhaN91Ge686hKKihDnZoEjoR4tZLr9Ss4iHMS5QjrjaTVbV6XY/xAHdsjdx0WdiK13eWcHH5cj
ONCEjFeRXhwgu5e8HNExrlA9KU41P+fZkXkU2xGCCkbTg4wnSxD4FrIS/SVyP7bcslopJUTJbneL
94Y0NmDyVTtA6nxJPufCVBjP+iyv0BCg04lQGpOMr4/yTNmwem5+j5bE5c1JYaWxhwL0Nk+hd56t
oWK/FqzBaRQYuP/kKjk7iXoWUzww4zCGFAPBPBLBzz/l/6mc8g4T9X6qeNAWi217T9QydzORhVLK
fIzsyWqpipKdD5Cvm4MM3VPmv7li2+ZwDF3JXP1pjZcjui6g9pcQ/Utd6wHdpMRTsJPohUoYWLXY
/IuicXwIFL3Yoo71x3CR1GMECClE+QRFMbcL9hU3aAf8Fpdao/bkdiOh7p9ik8iVcUyTcfRoYp/9
2YStMKgMpbdMGuw8V6EKOkZGzJ8tn6ouyjCjR4Xi4Ba84aeqZDJutA8w7wzdwTEed3bC69sEG3/u
0XGlUcCSHGE3EzEuBreaa3sqwWFyvJVCRi6aOPpdKzYaJuS6H+G4qKWig12MV75JmmJ1YnYOSh5E
zoW7Mb1HcKrvXLr4VdFiaY4JRVFRnCh8TC79mWGs4qKDext6y/8B+tTInF2SjmQcX56Dw/ZVq4F+
myR0j8/++BlCNvxZb1hMMvtJjfQcJvtpJDCKfHhzesnmRwqQWZxYPbg2ldlEae7IAd/pRf7h6p3H
rNV8FDzZhyCHgr3liXX4UnOKNZv/L10votCpMf+fnKAAUimLua8PR7+o4u2d327GsVPZGnAR9yiK
r0pdGyjbj0Ly2w3LHdgseCNPo4WNw8XVhcyQFkTikC7yE6WU+45uWolB0yxEq00Gnga0UQTnbjhG
UVwlxT2/Yfs2FLeI8R+P+YeyB8oMaPPmgGoZKtgDOWV00EpuNNXRop0Ij28GhXt8jOTGXZtjtadU
eEK9kOtBufNvDhcMA2ZPub7gZXLmET3EATBnR25+fREKBzEbwY0MBVmU+Lt92usY7VzF+f8kejzW
iZgghB9YmAb1qVhqd4n/L7R7p5C+cGB9rtJuP9ypBYhawxZWhblRYgpsWukkvlTLKgRv0NINVPW6
sFj3Ir0ZrrojXFitXk/PBiq61sadK4UYEZQZRPpCHAySsg0nZp97a16wfXSKONOZrSUWxL/lEPGA
xjzQOdOZsdnEIIvemXZvYYsn4AkzCrt2JIrzhWd/suFfHWHC5axW7bIxMSY/hEsYaoMjFbNtGdp3
Iv2awssmsjBL6+U65hc9IfQ9LnmBAmPH2JcXg9uVVEIrhy7H4nlAK3CP8r343qmUblRG5SNSOaK/
9zVofoJ+mGDEtsAtayDVnoLxEfF0hNIKI4Fvb4JQVMWu/xZAKS/LzXOp+Toq1V9X14cb5hMEgntW
cqCPd5mzkp2wsTDp8hfs5lisZGPFFD9bqHMCe8CU5SMS4PwXs/j0JR9xz2MAeOovt+YBmImFhi/s
vGbgkoAov0vgpyqv50GZ2o0IgFbx8TI4fEst7bsX1C3aYPONxdOwG1Ybqli34Atbjocri30a9Igh
d3anJ7LPkogzNbQXaDeyJDcvD1l2ZxlqzDIx2e306Go2FNKhxF/Hb2e6yXfvNoB0Z6XzS8EcnhzF
qV2G5maztRI14F+wI6bkSuxmDgKtXA5Dj5ZD3/w91zesg99tTlP5ka8aOcAlE7l5oG/7BfJC4Tm9
9m+agCsbGOzOuLvNjQRawjU4CpRUCOoRM9MDZzTBpdhfZU3/QcHTu+QnI4ZEhwKUTBAyklHaETnm
g4TrufJrOHwJp96+NqhKgY8ZA/ctLphQseBxNytrmzN+V3IbA1TORRlevpIDSc70O3qUjjuxafhr
F0lnpAze77vyls0JgenROt98/uTimpkgsIVKTdn/epxX3SsEoYWNm0vQsTCRqXgn0q9FyDeTZDJd
2Nwa4R3R7pczeVX2QIoPaVH97OFtyX6ZmEAJE4ucnRYWlxSuppckW8a+bDAvBBG1q/di7cRYGrQO
x5n9IrbUX8629PsTSiFTThqcVRJMWOZHH8BKID69UC1sVmsEJVd+vnNzkVVaildeVC7ewtAnRl1Q
ZKbfQ2TgB7HoDrQFuif3f9NXR6dVpTZ9vMFLuBs5BGo03NvQJiGsIKz6tlxUhSrjXdln6BlfyCOb
dSQ7QPlXvVUJG5K8WvFXgTl+m9S6JuK4lgz4jZ6zEhGL+xkPnbs5lK1j1jxDJ4wo/RpPB7iwaA/q
XVF47FiKqOpyIjBR+LM/F3BU4WhPepjtfpB8urX9gC8hLgzB98uOqRC5Zk+/Ervx2IIkyw+yFOYk
BpI1SsEcwX3quKPp+Gl7Qdnjab5SStR4/heIr3aPaUXRcDMY89URtMfs+GUioAHoIAhIlT+9VmPA
ZOou7jJkxTzATShicNx7LYDNEyCASbYXzoJnUdDk12Oq307Q8bdixMb7mJxJnB/hwE8dPuheisW7
XZk3PRMuPAJmnBF+22PHgHoMtT5DKfUl9fh1EYoGG3GTPzTrMLDxzVpVLASR75oBVKVxLJBf7Zdp
ezL8NubOD960VnFIwj0xn53NB923FO7pvytGns7jMt9BXqgzTMLybPIzI+8wEJXG6Z77v3ztTDxd
Ib4Iu3kqnMW3QzGwJ7hpMSVTUNGYpmrSmR8BGoeLyGdTqYmqC1xU2WrgkHOzjo7DAskjxBf1d4I8
AhBFf1XeSdZfRopRUTxsDE58c72OQ6hFrEAh2aQSDOmjaPbfS+559QQrp8G8BzFm01nEnAgy4bOS
LpGXlWlQ0KmhHYtMXzO8Fyp3MFu3cdsmfArG+UDuThKSHOoWtSzYIy4ruNQO4h/sdncrBovgYzFb
K7xMK1Y+DHLN2FrShx/24XGr8yuFOu/DxKx6qLJ8/wXF52gRXBBIJswQvS48wSmt9E5wbeA105+X
/ky+R2ZVSVmcQa0sax24xTn7IPCCV9QPiQ/H416EcuYAlJjbLPyiheOoaDqu1oV4Dz9ZiDSmsb4c
DzP74hY+mqDtn8smapuHA8L88cxMAH23MBXlIzKjaFWJ863lTC8xbFZXdm9zkbmuvef34OBa84Ww
bfNcKklADfmOHhYwE9HuqRaWab6DhgDkdXeChNRFbxf+afD8WNJOSLWlb1RxxwHDuMSkFy05sTwJ
7X8sH4dOWotrkTkGAy60+KzPQ9veKtfqApUSkPQ7pFXe9w17BZFeC531Mc0BeqhguWykHBaFSMRb
QJhBQxPD2mS4tc2l1hnlWQZ7wuv0VRpvIsatW+ue3m0sDAiepJDXrGOA2IbsqzDW0LmpHw+D2tFz
G8UKkCkxVWvMyASk2MQSUKr0mwv1dZfsd1U1EIeniqNor4g31FPaiDkL9cKCVAP6J2oWwSdZVYn4
AW1VWcyMx/B029RitDI/M7QQ3MBrIjlPBLUdiAAz/1z+6xK0cuw6eJncZZYPilLYJ+wFP7ZR1KT/
VZtmAMuurIrkatn6DT4k8v3PVxk8yqo2pLd0KucYuQNFMyzDSZ1p8S/q525m6TQT5d8Cdf0rhCYS
We4bdalG/KSrhJD6yZXqfykvh82rpJkFkb/+ITorS5r31KIDLN2F6p+TaEehVVZxAsZd3vAu30PF
66Aqnesua3qMj8F13G/ZoN1705AWt9P6e1hRwV0wv0JVDtlzkHbrMEd9RVx98iWI7wb/ocFg13BG
ZGlag5vFYP3wB4F4yG7dvlU95A36SvazE6BXiz0MUvbc4oscPA0kAOU8iu+kfLVYKaFLN5obq8b7
E6YfIJDlZx66293IutC4fzufsEydQWPchqpx+bdySXUbQ0jSz7LL9l0hy/aq95kyT0NzB1P9sJ0L
c30JjzxknyhVvVJad5ief33fv9oSYkt29YbVK2amT1JwB0bOUnR0zf3Tsg4RgGQ/Fk+BnDXpUAt7
kKTBPA1dN+w9HsCYwUTWCsH7yzZfb1BxMtFKX5wAUWyEbLlMw8PUklTch6nIHp2o/ruE4FFINwi6
Fpbi/YoOHWDNvmjtUllBlI/gWvyf8FgRqy2QkANvRc5qGkY7oTD4cF093mRFVbn8MOBxylT/AKqP
gwZzUU/NkUaosZw7hz8gUAJd1tlM9coGpSVtscRU/N9V0PlfEa5a7uwy8tlN3/GjxKbpheyknzWe
FfEIejsRG/ubvz9bGH2DIaCiHSJxx/rWRuwX16rcjzp/U9uHkEk9jsFEo8OxWGtQHc72vg3ufnE/
37EO6TUXZlgmoB6fDJtAHNzmzewXV1Q5eMy8dMesI0IbWNelN0L6ASefMZFy44A0HKrHmEv0RKxe
q/70u2REPrfQ9sOIPRlWYco6G7rqe8tOQnG4F3k1NvZ8FYjt0U1ry69NjSIGiKecM7y9Yrvzl2eC
7kuKPOtqguSDDuzMV1X7lML1aecfuhJusmtdZ+VOu5t95A/a/FCtN1U5pFawUGzc6sqXhkc+LCD2
+M0/0OhLTc6AJTlEbMx2MQAS9l4MPn6p9XY2O9+G/BuyNbKtq8Xub9KLOpxpgQgypRNpesZhM3o1
BZ4DO/n4bbiPxsAtZH0GHLqoBZIdTrG3Ksj4Ommlr4HM15aY0r3dlbq2kbspz2rFn7Kz4GZkhTkW
XmjqVEZJwQ0dwR0jFZb/wl73Vio8JkjUE02Yo/FWI9dS0YOgMRQtDcUmMYe/1lLcNlYdJ6kzW7yh
g0mu8ZzmYd31L60KuYFfcOn9FowChR/OUfKjZFWG3h5RcK4IFkSw2f/P9mzopBHC98FqDx6mXpah
FkMLt6kWbo5zNq96+JgJYCFOUs9jnB0Zr4UVj2Xl4Bjp+1UApgaSmRqQJYFDaf5xw5Sla7hNEEe2
18FADD7mwrvZjsRqKK7vf7ltzUtHo04OdJXEeg+YkQyX/HN1NWUfBkdUa3oA1C3IYHSA2tG4KZYJ
wEFPiZvVM/GUijbwfy5kLm/uX9Ody/j/P28CGB7/tvo2KLHrnqpRuGHuyUhYTIozw7ItXALR4C42
A+iFpvTJlJ9NWtT0WUixsSoViJkXcWpUkQ5x+2J4YEpABjaaLlMefbzHc82qb+EEhrU+XHSmTMMg
ahyqwan36H3WCaQMc12kDgaNYfK4izsmNYyVc1JI4GCG0EG/+5UU5bgki3/NBPQOUjYkV+pY5RC6
q0Ghp/NJ4jUdh+DBgGQejCtgjZiic6v5ZSQ4XwOAWTqqzuZR/84TnlikQVJ/bvpZj5L23OYdVNfS
cenmKREPDkGOqlC2ya9tbqlY12TT++woxbgG+yY2/aPvO+TxOiAe36rs5S5LNYTdvQOzRfOr0ol7
ycbgkXJtKJnQfj+M4ZGFSP4Zeg9uVO75s4U/1Rd8AgaZAF9sDRDXhYV0C7eYRJzz8FPUGp5S4z/R
RnDGbwcNjPfnYHtG8tHz1hZpJXwZVWBYa7VnGDEUyYlUZKn1vN7V0iDZzSCM2M2Fyw1Pgk2G4ZNg
vzHc7WoonAGriIdtYmwN30k/h1JBwH8TnFlbdxjHMq/1tls5Un4QDbeDVHsw56v3yjGsQ96CFWol
+icsfNitUJy0XmBZEYr7fj3CuWd4/8B6w56IIU7ENb3vKCCmj0wIDjeZhidyskHWjwumQEDxzSAT
jRGHViIkKK9inaY6DPfNs4+6vAMtE5g2ZNkghXZLcN5t2JfbfEUxJTv60xgNvfjeoxvVuzKCsgcX
GmLcyeB/IorUcHAbDWVgxE3GFvp/PVWiCAxFdgFkb3uGmb5WBwyQS0roTcDNkVFYFvMFABoLRk/D
eWAlc/SrCXXhgX+KCcK5uFEdNU1Iy7u2McJyjsudcNJ32aKaOwPqlrwwRG+jT4ntGDfrtT7JCqBe
W1XgudBC3qBNSAcQ02mjcGHp8VOhi/ApLNJerpoXbJFR+cTsf7L++UKu3m69QGfFtUnoOve5mbuq
MtymSW3bGBSQcAJaEvzeRGZL9b1r+oqA0tMp9yVNTnC2n9GF1dpgqmMFHde+cRzLKrYCY8JqP4Y8
JVtQsgA3uymUnF08XDK2S30acNg6BsEBqzectH1qcoOedPv0ctKWPxqUc932JUxiAT/RAzNRKkX/
4mMoW7bapUQQRoSuCUNh5F9N5y/yWAntXl97WrnGVEJQ2damId1Ye9XwXjLxyxdHnH+tvOyyulhn
37Jgb8r5d21mDKUOS75s9ZXeTcQbocJS2sQxzB70XnJB1PrzlNFPSHKkPQTovDv0ld+Bn6UYGUxt
KBy59veQBRO843J2yLYvgvce4llBFoX182Olk69aE5VzyDdf/Noo6jydA8mphp0mQJKzHlxi4LB8
TvVmSX35SayOpFXckSVaM/k+TWqEcGLhagokCInYcai9ahs9EDB3GisVad7ASgx7g4vyvDN3VV2N
NEnqrccXkY9FPzgk1h/7uF/cAXE54Fy9/tYmJPuMSXtPngypLwbGho25/C+1MyXH3NDDgH75X4nJ
Xuv1YBeLXJ+PXwcZlRL1B/EE31iA81C2rzuSS6TcKSyiqx14IJ4Yuzv0Rsn68O5+5RvhP25XU6B5
VEtswO/RCCd8G2xUfzS0CS4CfNuRQvgA/NPsD4F9BNPUn18xsAUrANdVfmhJJSJil4PjU992TYHX
TPsSbwYvunwbW1Kq3yEPpEdrKfO+hI+lsC8vt3P02pKCOk/WZFh3aCXLJ42+KF5nMo+Wvld8wwts
4PP5940Q1EGr+kAIaWfPPO3jONN2RQ+uP2poKYzSblue80W/o+wpEeK5agtAqlhq+YbV4xo9YL/z
ib6Xt1DNQBfBVDGRfQArX83Bued3XT82XHhFJOC7XsAjdXxZ9Qf3TiMe/L3Ur7WV6MPw6MrkaUBi
8EfEr5RSWe82RjEY4TrXNVAzgSgqxLU8FhATs2cQzh6QL+ZlVwnKnxDd4gno9XANM9gUkB/es8ax
jYMHwh97H0mb53WH7VP3xqWAkwJILCbNmUrWcMOIaiIiWBSvRdEZ21kHYHf0CCND5hTbFDlsAXDo
wbgfpaeO5yqZKbqi+/rWKKkV/kXZn0IVOon7tu6PzC71uLCFEXqK7sGQnyjgkuRxMEic9pyaDaLq
y3yziUHMiTCMqeNeqYvK+d0wh8R2TUboZUJa2VGOqpzPMTJLE2HpoIE0jOJx2PdEES+pUCKO/XC/
sgnhue3PDT3Wyp5NdDfZ0R5Vva1hYzQb4IqevWdPp1Ffa4RG5i42wYtTtcflMCaLTYVQIT4ZpsjB
WLt37DS5i9EJlkTjDOXd5ZHLI8BQ5w8kaRcgl6vZSrRcEK8/P+NN+cjVTlBzMt8lW2SyiJx4S0Z8
3+gSMF/rtY295O1SVLXjiBPyd8tWWVRAFgWSn1fcNJc2rSFE1jivnJ5LmoqZ8T6ODhocdma6M3VZ
gDCg8akcSocIQxewAhqtWxrLLrv+X+Lr8RVfNP3Zu06SVZb+TdqTbMYSJs2FB33bhEE3qzXoYs7L
l2HU/TUUxwYYFIUrdfwyGaN3fn8mw6M9i65GKPe39+iVwdVM/VDpVh3msBQ1Go2r5p8mkNBA2NGr
/drkSf5oGFMnFwsEayf1nvSZqkErGHDp50U8megPvFq/8GYeglW40bEmvBOeWoBcs9n8sp5LTvS0
7hVVPDnQIIy7vXZSS0CE1dvhk0YoUomH7ZkqiRMF905HT7kXGEpAMAatrB6Yz5EFqcTZs34MShF7
vSHmaRBpJypq5FWxODv+KpnPkaJf8C4yi87BZN0OJ2o+vZF1HKgebqPgh0fVcF9E6Tv1PyEUTaep
j8QaWECGQa/Nk/QheJYsKI/Uut/kXP8Z3LLm6iEWNQ4oGP1o3TAlZeYpwDzQA2gOkvDRD1ZrfYfA
HtXm5JsSmTDZLLvt4FnQJqWi2bZSRtk+NqchuGBgxi4bJDe7xClczd2gx1A4q58apX+OFxOItRvp
xLpo+ifbG3wZHHIBd5wBgOA0qQyyYqeMz9x6LtHMbvBee+N2fWgFO5ozzoPFEVFO4iv7g8dxYRRf
wOT8FVcz8QIpKRRT0JGhRMp1gFn6AnfqeLBn4G4rxmk6FSGUGu5tqpBCYX+JlVn0wSmFWYs52V8Q
WJbWdQGWWtsmRg2IXC+fFrZ8dLF1IVpUCmQhL2PZykI8MJshZAkO28fmKYWLjkn732sdhoNsJAzJ
PCcAJFjECQB87liGi44G/638gqurhYHR6CwqkEDqJz+gzYiKl+HD5ZMweujUzrU6wJ/P3kDsCi92
FU78g1bskhb9sX9vnXkzr/Y49jhK+h3u14Svd0/yjt84z2GUrwNuswkEUTEdLgMV5+E84UPO00SL
9FP82aTxlPpkj5/Alxc0vcV6xxLJqAGV1MOoN0BNFym/Bz5QccbHFQ4WKVsXz4zbslr1S9RS0f4r
DBcccUvdKbO0tVHEjPL3Ocsux6w/ZpQ1+O3VLirRln6olsCWkukFeAHyQ7M1tbboxsmgTNsVsWDD
4rKFu8/hTAbEkBhQsT3vxSLPVu2m8xR7OGGQT7+L7m2z0TUj6wSkOdQ2NSVM/zbIJxVfx/XGcDIa
ztE6NzoYoAGBDkK1cHjjb3TQMCiS0e2MJ2N4lMI4lJqo1Dh1CA5RqXMPv4d+x0JYVyfBLxboZ/e2
kslZzbekWplnrb7vfengQiZRnlVvhvkgT3EnRPzGSYS7dOsR5gaVSzo24y59TIdm608rcZ42JdCV
ASkTAxQho9EOnL1dTohp2bpelQPtKgjWS9/DJAUHui6roUPeWZR1LvSpj4/n4tQhJ97lPDZgaRan
Eq3N8LCvLzXnsgFyj7VY4Fw4IF0WA24bo2ARnxQ4NdgWMVmS2V25tFv6dPk2Gg1lvSchKKxwZvXX
pSEM2FmWnLpF+u1C8szzSiXB1Gc+Ho6t0Z4lI5ZpkSajx2mEjcJE3NEXjgCruzj5I5U8OT5FmTuB
w6QUWHrf/0JG3vmrw6uvTrPpdHD4Ez+imSibJzGV7dkzUhWtStob1XDSn9PB0mpDUSWxQdhjBlkF
IVpY5mQkt0wUbhZKdj0bt5z28ieEeecWjy+9sqAdBBob617SLYxkNwDEn7fhTwDSVB9FOyFh6q0r
2Qz0ZB06Gr1Q3MSDelfv3Wuruyt58wA/WYzUBmPVgXFnAgvCIHs8RdM8Wkt12jFjtABv8Yn8JynH
PCnS72OWbNo49SeUax+i0qOwYMLqoc0U/QbIKxp2PGVAlVtsj8DacWU9mmLvdtRCgp9c5/sGGb1Q
cS2vKFZPtlME5OvRhgGJVqCY/tWfom0PlVo40M1G/ezpLTG27q1/UUlon6vPRDk5/sTqtudzOlxx
I80gEssakCiX6XQEw5+sYIh0ITOfbUUaVAzvLW+5xup/zmo4ehVys3nisPn3k53+V58cEFtB+S8S
XjvrDREDmcuOrewJakKophk5POZpb+TPUWXc7vpy3BsygdRjdr1cnMbsCNud7FZwRCw1O/84WJHq
5MbXToWv9WsPljD/SNZWncXBZq3AzaaiYkPazITGd4fuasEeGQKYxTLLD+XrOs1kbBueAROhwJKV
Zn83LyF224+OjyLqZQO1YMSdElRQxAbLU4p4QCTr6GIsXReAQ3H5rrwQDXptFBTDfL0nOrFXHMLt
/Kq+jmvh8rxzlGHUKKwzSUYXasoXPnxSwSpWVsezrHx0dT35Ms7JzVg6QDO3FZtCxnmVXPsUbQeZ
8yoLr8CkpSnL0Wv7uINODoy+PMhJhztDisdtvaKS+MDBd51zP1Mf9mE4HcmD3ihY55H5dulqGdG8
6LJUNBy85E0J3dfA4xJJp6RyPcYMqPi61/URGziGYWdsqkyUbwGy63ugBvHjS1g/61QpQ6cl4hAh
uCuENmzrqDruckNHmAA80R99PndwB4L3mQSXl+2BR+jzTLMzeh6Kr15fRn02Dpsh4tN8LoZxLeNG
ISUae1zzvSzC0Q8ECvKdnbyRAGcYbMoFdsG8mkNobMPEyLGd1r0KhDqEr/KGqwCGACx+0peBauYO
2dA7tP5G7JANk8EkMf8nQNrAyLkdS1N+G9FjlE2xnQaHj9EJEjO8J725Dz749ZQI6wfvVHk2IBfI
roXVGowg80U9KbC2mttbOEBYNlCnIfMw6YR37rFMjUBe8nCoFmB/iJ8mcK8UVVbX4eeTAJrYgRI6
sStqj6/Y8fAqKMTW5932GACuN7yQlKp+KBjsYonztkXybRn83F+rmjuoTNr0VokXo0gFwj9zDOLE
AoJedvFRx1jfdh2kiSGdqfvcTc2RJucxAD/6XLmc4gTgA/V7pfEFybgzfJDc5MdVpMcSaKy2zQa5
nCCaOMlL+er3TaEt/WYAI0skKmdmOjj3NuBZba3Fiyvs7kKwZ6UTu2tLeEg2ub1JXkU2/oAmz63h
rggv68HX4nf3BUSO8z+Eq1+/gQf+pkB5tAal3pGmwnUYs74LQz0+8I6upD0stgI8GTudLr1gr+04
gtLr3RBPqFriVUTZp48BrkXP57A2YuCHV//pfgmF2tkZzNQLfwtc2ghf+G33xWOMt5naNX1e8Y9e
k0XkoVDmAnu4qcT3Rb3Xf8zSu9qt1w8+yeKqsI1Smq1HTHZXgMM0pzziGc1j6Z1bK4eL+5mlSh9U
TbcVDlXlqYR9QzteM65S3kR6vyWuoXziIucdCt0EBrQAARj2yXYNv2+1nZBkYM2GNgj5IQjDd9gE
bjxpM6bj5gD6TqCLYecJxu/sNnXgaEyEkDwANh0+crG603uCfWltQFvCN9TnpK2dD1oSLKHnfqE+
PAUvrNAAdK/8UTRjVPsatp6UMmLy5u+y3/pduHH/cgCcRA67El+wuTPoIN2FC6KZpj8yfMRtYxFf
GktM7RwL7gyVp4f18QEVRax+JhR60/2tir1+LZQt+Dgz6AiQ1ks5E5xpxZ+7x5+oftcu07XnkeO/
D6LOIG0rfKQuYu24ZT605Wb1hmuPAg5U7fFtEEdm6eie6QCm63l8L8DgMv8i4AfzBTzh7hcOJYN8
RH8NUK4uNWbu6EPTOz4+yk83s1BUeouxBtAIBqGrwLc76DwVdlYh3B39G10JrAs4712T2EVPIMbS
nLZG3qjmsLzwEVsi5ROHpI2Rucj56W4tAW3gh0b7ktNj4MjAtxeTbA7dZNSeVmNbiKUrM+Cagzhh
UpzgrAm+9IpjmKtS/vm+FdaVEdPmU1rI8R5kiPnKnowU3+I2q5aBy+BKb6APoxctEGDjDHioKhxr
WPbdPv+FHon/qf79JBNnzPH9LhugGuzpBPU1v5JbUrVnPhz55mul6gnIqVKmh55fetb1nmF82Bjc
nCUnNR1W34plZsuRdw7HBLUZaKn1xPwmvCdHMCo9MMHDJRnaSrdgLVr6tfpa7e7oXKJX598wMXxz
qhs/RLR0Skm8QmLOi6tpJL6yKxn3ZEIUmC+coniHNHGrtMBv4rbQ9m8PPZn6ZsXWasvlCW5PJHX5
M9/vCsc1AP6vkCohv8uvc3XWHsQX8+VLcoeDg1Bmr8fUPTmHwshNDiTRPSdRvVVwGqaDPKsve2dS
AkUXBRtsTaqA8x3HWoi5h46+RCZ9qGA0X05eWSa/IiyuKwQfa8yJ4bAX39AJjbw/mFnUmmWuPrLD
O8Fl+m5AzQ0495QZRzAgbgz5++BD73wuG6gEkqCNs6RZ8vwTi1wqwlOCQGzc6isMF/MJ/w/HhnIh
RjYEc3eR7hl4axGMdfIdwJd4iAw8GK6y0iOPOFsjA0esDRHolmqqq91nGo4LpO1heJyTHv3HbM0z
7aL/Qt/vxpXFC9LpPRrUDypJPEVsmoKVb96NSTamHIHZGOCxgAUOpzpjf0ZxEi+F66KrtkkNLNLx
AFREJ88cS6tu/XPfSca8x836FnpXo40wiXLF0u6OCtSWQAT3BaJmuOkcdtAVkfQ3Q0ueNkN4bsid
S1vN9AbCakUP4V68amlWR7cKExlsvQVqD3DBUifII1WqBnXsrMXBEUNkymEsOLi/c+hdoVXNlhFl
TBtomfcThaHdpYF0cI0xYyHmGCHGlWOtBNQr14tTxm+t1I61CoJ1A70YqXHNPmQGaupJTxFdtiB7
r+JIWcf02i0i5m08pRseNELg8OHwnTAYo1rztpMwLrijTZfWK1Je5wxtB7kpYd2saCd1P4roKTuE
7sjA6FH+Iq89jeUs5P70N35LB1fMMzTJaxbNSRSABOX4++LhsecEyvMV7sHyMN/a/0jyXphD4EJ3
J9U3iJjTOcu7OW8OOW5yMQ2dE32l2Tp5Y62vTrA4lvMs4SvIJIXOkLBch5TOfofpzhfMlpqX/HdG
U0CYqZ/AI//eimMKgEkzapauc7VdD8MyZm5fWpnJD4fqdlgHg3rWSnQ8GFsA82/Uu3yV+KdNVPFn
cRDP3FsF9cQPIqhb+Nn65af7lswi4wMeq9rYwEYnV1Js8BB8f9w8SbRPjeMED4fRyY3PCSjp/yf6
6D4uaVRWOpov5cjzgj9MUeaGIavd9hSey2Bj7CKSmPPjabcrt0HkvswDHwdNYh0NXayW/W/4DSAY
PJ0w6WOgSrAN93327/9Q1kYwqxG/C0PM/fujC6NLuCNadLvqbfRK0MIQ924p06CGJYnhWXqIFwv6
SFGGrhLcGeDLC3M3tWNUsVA21ygi62/Y2aI5WosIgvOqCbtyroXLNnjcudl4orYxLNuJ9oN2t/YM
eei+O3fTCDKiUi+NbLO/tX/cHDm2LBj/X1IrX93ys1qlzrLSvGjVy4SKhIrPY08Az9bhKXD82oca
U1XGfyNHlCs7mrENa/MT1R5KukDu6VARomchUf+vvFQ/NtjOxONvuhFcpCr7Am2hw3Z97o/ht8aI
RBjCevcKfts2QKBidf+nXw+uPCNm7qHRoh+pk5iGDhwl5EwWQC9xixViJKy/ADXPeoVTyEYNQVkU
nNBHh1u2oToth/hCdsLwbcji4kBA44hGuis7XBPvth+uCtdATIUMyuThTKf6FWiqEaN6fLUOuhfR
qKi9sV64YeWM14mRqAVVy8IepXLF2L8xqIbKgCECmgWRSsVkSpl/hlemSwfInVj1m6+zNRII+Pc5
SrRyo80bg8cyESxu1JAyxX805UfcmbQFTJdmLtWHnPXtqxIcvYP9opDoRYAj/+wx1y9nQtrnVx2l
icAXjFD8HoI3gz1sTicsT0gcy8Cuw9kL0Zg9rP7Y7RvwSwzzPxcF1UB7aUnDEbl1/Wd/Ht/7cON6
ili4vp1fe97jwJQIEnq6dYAAubtFWqhygZA+zf3iOLoNH6cWDWhqjezpGdX5zE8aduPU6diFfImK
qEK3UCzJM2dw1h+oZeuz4oc2ZYoJdyuoZEDW1fV92NlRBRbzWOMxrvuA5B2eC95nm9JoC74zfwgJ
5JdVuZM4CUu0THBfGZKeu8R+vH5WZVs+DXWL1ms0TKyifhMV4oXTWs45TJl59an5BBcunbX1cLEv
fKpjai3NtjklTG+LUKbBPuBIq8WTMOk/NuMdiIzeduOEUXoxQzpdIGcTVTegHEMJR3Iu+RyUCThQ
P/Usc629Q7S4lBaAt4tIoa0beqLnB999WYhV9Cy83RXDzmj1+GNpGnfdCD30FVsKKozcW3A7KM/D
5E1Vqrj6hjUPQ9zLEaflNxt+UkMGKTgZJfOZr5YBKDfKQO26VQ3KYAHBhX8ipiPOpvjVL/W8iGmU
YojDZxqgeWsc6yNsANkj3G+w+P8RdHkuFOoNb3+v15wFmc/ZxHf4beXunm2gXmQo7crn+tMCGzvn
y7+t/WX+r3NAiBgAunNhc2OLNtR5WxbEz4uMbnx88uJDKmUUGX7Ars8r83rk0lpqp9LyjmW8F8hQ
/+P3eW33Yw0zBLxkY3+HjLx9fc2XAz0y14lBFcS5dKFB34X2QiZ9Raz52K2FiAheXgKCVWABNWjw
yP8kSdc/zprv0WELEdEnlQP4T/KIlOxColjgmOCQIHm42rHaILNrzjPG+afzoW/iLXFN10ETOMJJ
0S1HUDqq0rexcJ63b8QupENIKAc7DfIQAW2+6hH66kLaPoq1ELIHoDyS4YMX/Xp3yzDGwGWT1XK6
lM7wM0xBzkdfoJUw6KPp3vN2wrj8yYweM3GC/2Qg2iNtjU57SPvs8FpyE8aubx3H04ji9FjhdC0n
3G/0IxcSQpxmDsXusLv4fDEGYgtF91XTnpBhGS3bafSkjL7AkoI+xsYjYjzw4zEnoHHq6i4p1i1d
mM1YWrL46zqT9sxx6l9U+ZKHmLZI7y5afzgMollRlk8CdVSDX8ulcdXZY5OCHlX1kSm9LPndzB/U
Gw+FdHJawM1Zv+wJEhLV+rWS8S0yiNvaTCtUoLTZkmJ9fVqQZYjuDTN9kxzdo/I59viBoMWvZzjq
vYK5kyyTeXYU4qrRazskxggdE6rG9FBbEkGFwDzFHtGSsN3z6OlpbiSacF3Z7+TdpU+1+5/09iB+
pWEHB4amHvDH59nicVlnedqfGjzyEzZeDWsSUVRSfZjVColo+0e3E2aNBfE9uyqkw+AUr9AjzBEG
pm2Z61js/QD1YggiM7V/2Tr/XB0M+rSNsiVVyKQ/cxXNw5lOsVJ6HrmFZc0ZAHgLMXk9w1iK1anV
KIMT0zHX4o5Glo9DrGSk04yO2BKsPHOAUnl6xQJ/bFef9+OC9NNDwYl1OLC+qlgEXlD38xzgsVSV
e0E4ZJEiP1EYW9swWBJzU/PcT4NGxKKZWzQNgjP7Nh5QVJ8I/1DUtKw9DAkaN+mJ4FfmFULkPJjD
sw0v1cRzzbYNe9OzAJFdUFHr8PQfI2fkUT7ScdK/puojQoc5ADdm+xk9fXPZeepLJrxcnXIg/+ii
z/NCalpbVxiSbmlKSalCnbUhO7DZ1URunMecWC4ZRb+NIGqvWQHdqcuLm7rNthFtduDVBI04o9WQ
8RocFUuJ7p6PWtvpa9zQ8j45LfCdUS51fE6eFOxyAQ0NJprBA7GkXhaQn9VyUD4vvXTg4lY8eNC9
hbmoCEW1Y/qSCdg1ekeXbiPoztetf/ca/S5lAJ+oW3M/8nMtDReXt/ZRo7RPYkdByqpgMiPVdMX+
7keK1R3bmIzVKbyIC+Gicv5vVJcv8HykWkBECzWJ4r1elPRAfrOTkV/M2w6pZFuulVoFboB7B24u
/MrHgjVZL8RNyOmGJgDlETmdIksYWq71LWA05oRsq0xIQIgeDOlS755z+vbNgDW09wp+wNLaJvzO
X5JwpuDUOjaRJEhew0OlxC/auAh+xshtmDAPe+ge+PVcbxUjKFkxaecyvLfEnFfe20V5P6QNq86g
VyeOLkDaeQd38gvOq6ztwGOjJq5DujXHhcyzc67KmyuIaIHhUDkmY/lG7Ld6kwD0USGlJlpLMWmv
KtERvUjDxPmjh1rJXrFxnWEAwxURHiYa1iQffdE5yFkGQnCQhn+s0v+D5JHX5k/AqmfCKpWDwQfI
/ZKF8I9szmtdIXc/EzUoe83wKZRJskGsDMfRM6woIIXKtFKvUC8ie/dIEvSG9AQRYS2gbqWWarlS
OH70GVS35WmBpbGTdoOqAFHViHQCO16FURceCZVL6qM6gaXuk+LRqd3ddG1WOV+vESEOr1Q4P7dl
BfHO/ij0/9yIXzhEH1VVBWLZJPLczfzUa0eZT/uB7s4bdAzIyOlUoMUw+WApKx/ry7dadlVVfAU7
zeLAn9+e3GNMVqj1eVwTv5+bpZv8UJR+h5BZnibLFajPNaov+wcVj+PQd/v1mqz9OhaeXASVZoRZ
DFV9fgznEKCIZAKtn7cmEPHedmdgolxu+rJORXOu2pxjFm5Ae9UVqzlvxiyc4aMAb0x1zV7zxUXC
J4u9BcSzaKyq5V5KkZi51AtyqtmUK4aDfKdwaIk0DGLrqvGLiGW+TMcculi9RnLh9d5+YX8CkAbT
KhaTqwbjnFqWqA0rfffQ21AksKBUITC4cvUIqpslGof7p1OOHiDDOjSKf+AgI9Ta+ZipxA4eNfrJ
9nWqcmFBnfUk7l2uDgmSOw/8UHjnytmqk+K30H+6rh/Lx2hbZjvseHl6TR4zXP7Wz41uNA2wZX0M
5mjXDnipuFTa6dNSDHjL0EVcthZ9poQInX28HtlAz20Dcc8EVuwPC7l6i/UMkD8ea/HNwPGcjQKF
y2Zcg6knxTH0zh1bvSua82bB+ZCCbYXUg/QaC0Wj1YsaU9GCFJbq+2ihYmsmkceUk8Q/CZ3Y3O5T
Y6/ZnWidSfHJCm8qR9ky6UTlGnvV2zDlzRHCu5EkVs67sk9d+YjtdA6KEunpxhSjCThMGpyZLtfC
AwIrRWpDUR2S5gxWkNsZBhI9lA5jYTlHgN2Sl/s7zWSbWd+sr3YTbuGbq9Q6JBChwkUzn9Ulh486
mBT1fzwOzdU2gWRjRZ7jlExb+9ZGLOfPHreJJoK33nu4AEZ2a3v6rMvI+0sclZS22e4mm2wCjiC6
M+SvAVz/Q6zdc1s4+gmqibjmrz3uHd05w7930a++U1i4vgzK3eualMb/Z7uqDWmpMNw2C7H3Mjd9
uznsayY9WQ1NqaAWADadFZ1FPcPhkR6n9a9gQbAsgf22qvp/cqSEzMp+HsE7VHlvn3u4Yt6VV3Vl
nhVU22+fjOShOT+8u6VEwHjkG3l6d15S2vCTDu+Bta5RHrrTJxVlBWAN9qj1Qq/hVYMHRDQIJhAA
IcdvqBdpJJiXt0cZYOhsPw3wI/UQVt0dprLwQZnhTjcq6D9gd0Cn/HqD2Ebwl6yGpKKO3e3TkcJ4
u5A/ibWFKa1Ncmgxy2yXscwsvXxKiifCblh4x5UOIdf0n+ZLdVgOsv3U0BUNcVhQvrga/GFNSgMb
WaJPbcYMENNT/nSiJNLwfmvYUV3CtUv53usRjgGtIQXI59UMw1k1rzv3jJaR+Z7tmqunDryw4RnL
At85V/NJP1RkU8sElN8aNxUABDhp2wV1RajTkTHchZjczFqNwQahudqYFyNwg6Fl/VTIl7nxxUKR
/usZjfgtQEP5WDr3mV53uvGR/n5qNPSMWcWYTTwM87QKOEfYW82Esw9DtRSPIsKFtXi9vaLqrkgK
cI+v97+L2mWJhLxltBUKZW5kc3RyZWFtCmVuZG9iagoyMTAgMCBvYmoKPDwKL0xlbmd0aDEgMjQ2
NAovTGVuZ3RoMiAxODI3NwovTGVuZ3RoMyAwCi9MZW5ndGggMTk3NjcgICAgIAovRmlsdGVyIC9G
bGF0ZURlY29kZQo+PgpzdHJlYW0KeNq0ulVUHcjWNYq7BXc27u4e3N012Mbd3YK7BHd3gru7BwkS
QoDgwd3l3+n+zkmfvs93MGAzl9Saa9aqKh6gJFVWYxQxczABSjrYuzKyMrHwAeQVFBzsHVhZGGVc
jW2tTAFsTCwsHAiUlGLOQGNXKwd7cWNXIB+A29USoGTqCsp0BrCxsPAiUAKkgPZAZ5DTDGDiBVAA
uhqrezkCWQE0xn8BZQcXV0YTYxeQG2hvYWUPpAWliDk4ejlbWVi6/l6DnZHx90q/s0WZALLGpjYO
Hi42VgBjezOALJMCE0DRwQNktALQONgDTICWxrbmAAdzgDpQG6ChJqGqBpBSVdJQVqNlAi2s5ubo
6OD8f1zE1NQ1pBgA4iKK6hIAoCYDQEpDTf33T3WgPYi/BQNAUR3k/10HFPg7XUFCXURdR1mClfl3
DwBWgDvQ2cXqd9l/caMCMQP8oQZKNXd2sPurAIDG0tXVkY+Z2cPDg8nCzcWVycHZgsnR9i9+6pZW
LgAPB2cbAOjTGWgL/EsYN3szkJyulsC/F/i9JwB5K1OgvQvwd5Kkw99OO5CUoCSQ3fW/xEBCuP5e
0/bvcIALEPg/ZSyNXf7KlVdWlgfYGVvZuwLtje1NQYGuxq5uLgCjv2ygb6AZ9d8EgQAxN2fn3zUU
/uNy/m+Z/1AXdQB1pm/r42fs8e8dM7Z3c/H+hzb/27apg72LlYury98rAgHmVrbA3+xdfu+Zlf1f
NgURRRlJCTV1RnnQ4NkzKjiA1LFncvV0/Sv693oi4vKgUeTmAbCxsQFYQEMqYW8m5mBnB2LtgvBb
PnErkE6uDs5ezP8eaxt7Bw97n/+P2dzK3sz8t+5mbo7MGvZWTm5AGfH/CwaZEP7YLICuABYA0AkA
9DS1ZP5d7K9Z+W1m/W0GieDn4+jgCDA3tnUB+lmZA0EfCD4uxu5AgKuzG9DP55+O/0UIrNwAMytT
V9CYg44Kwl+ry9ibOwB4/zaDmPzH9X8DQPPXMaUFnVEzB3tbL4AZ0ByBWdHBFTQONP//nLJ/1ZJ0
s7VVNLYD0vxL0X+HGdtZ2Xr9T+C/IrSAv6nSKDo42xnb/stn5SJp5Qk0U7ZyNbX8S8S/zX9XErG3
sAUCGFk5mFjYudj+9mj8PlG2oNEFXT9Wv28vkJ+L+18+0FSa2tgDXVwAXLx/uYAgLf5FG7QBv0kD
mHXkJdTUtOj/PTd/RUnYmzqYWdlbANg4uQDGzs7GXggsoGFg4+QE+LCCptoM6PnXtACYmewdXEEp
AEc3Vz+AuYMzwu8d5eIEMIv8Nv2NuAHMYn8QD4BZ/L+ImxXALPUHsQOYZf4gUKTifxEPG4BZ9Q8C
Rar9QRwAZvU/CFRP67+IF4SM/4vYQWsa2zmCRu33mPzHygFa2xh0YJ2tXGz+JIJCTf4gXgCz6X8R
J8hn6mAL2oX/LsHx22Jn96cUKwsLgNnsHxDUKvAPEVADIAVtje3+EQGiYf6nxm/k4Ob8Dz8ox+KP
kCC/xe+nDPjPEBANyz+kQPtg6eVoCbT/RwTIZvUPyAVgtv4HBKll8w8I6tP2T0VQQ7a/p+uPH6TK
PxpgBQX8oxQrqGOHP2RAsQ72wH+4QQ04/nGDch2NQde0LdDc9Y+V9f+sfx/7/5pBrEGbaOXwD31Z
Qeo4/dEXJISTmwPoEjax/UcMyPoPtVhBWvzphgPUu4utsYvlPwJAdf5U5QRRdPVw+IcblOH2Z0RA
q/318LmYOjj/s0+QiO7/gCAdPP5ANlCHXn84gGK9gc5/1/jfk6v8+/H662Zm+XOU/+9V/wuruTo7
2AC1rMxAf9H8I0TB2NXZylOPBXStsoLsoK///GbwPwUo/7wI/8gWFXXw9GHk4GUFMLKD1OAB6Qqa
ZC6//0k1/ft9/etGB105/8G/HzcAEOgJNEX4tuRgyh9indYSVuEvUTRbCU3Jy3RcjS2kLZsI9S1z
tosAVzx/iwwoXBzUFphFVewgL81n4J8SZF+qTRmCZfu63v6p5su1mcr7bWN/BX8CFAmRyTxNJo3g
LIWVwMoeMtpfsnmFOmUc81kdiR3EAI3JQzHert6HWLaZt3eXqWT6lR1rBdAeJV9ZWzGdbdE9V9Dw
uwlWZrvBXd8eMONjjAdEvtEtGBWGYU/Kwjj296Lp0qcVqmsfG2TBC2Hy+bpghFfbJRF1TAONj2Ji
sVZCcGJsi1u73em7Enr5xqOLGsR7fkDSJOjlLkYsDkilnuM9ysq2FeEoNeV0D2XIlFZ6T1H1Sdg7
ZcpuvUichsX/OPcO/FVK1Sk2/VKZs++ZFWs5EJtMT4yc6Jxo/1hlX94png1m8TiI9iJxHddl7EHd
53f9ach3Lf/lMLt+kyL+Bx4a5WBkGkFmJuJybHIivm6a5pOFNL46tFgAzVOUzAfp6J97i9x+FAPt
+JRx+p1eSsbfo6mVTtv7rObGEietqLFGKb84sB36NF1XJSiPq/zwwG7ejREb0YblplQ7GhR2Ofw8
veGPtXjvRm1l5XT/eNwY+BqYqQg/Dz7F7oGIpHInkceX6Yb3fbczRTBz4bt8Cq1Cr0O5lf74nFkr
aVQtzLxAUi5L0wyErsTcT1UBXV6z+fzaMiR3UoGi7wWni1dKipvXiC/20uahygTXdePem+7slD56
gYxhwVEj3lgoo2gn4WSAEyT9rp+V+wGPIWhm4NjT7aiqYdFJ3hTtHIt+lekf7iogOqW0t2Gb18tU
kTi6DmErmvIasylgXymYR3W+OrhmQR3IrxTXe1YC2PFUP7qZu+VMio2lKLUavaPTZD3MxkOadIUT
w86MzA9V8kX+KF0BJTq/9Ez95muymZS6HXd4u7nxjIr6SSXmncBEkcx4HzdEd6biQO+kDZKUE7M1
Bu/X9LNovkDKuM9xKXnn8S/SpcFYpuivX2DOu8Z17QIA2Kt9gKz15VLvffv19rHCpL0kCtiUp5Dh
pALPruMO7/3dIQknllfi0rSmHzJxQQeyGFi1ioDZBWVW8c8vGWKysscbXTpmMtkIVLC1mv1sjAgQ
RpDp9Uo/Fd+JzCCn+MjMSW6TZMi9FqV3hvRjIhRVFPzUtM8FGsDXYIaEJ0tm8SX1Wl402K/nYm+g
MKrrMBcrKnJIqyBQKlOvEMonrWwNnMnKwho9gte8KGnDfmCSdSX0sc3mUA42DVEMTBpJWkn6Xvg5
Il0ekyGs2Tmi3wMjaGHVbT991EjpiIpKOLuOrPfGBP5DUK9kyKkCwvSvqbOrj1pjR/TotNGbptqb
nYtqhkH4VDXWNFnolgZ+WILwRvZwn5K3W0eLejIbSV6Qk6gPe4xVE0RoZlCjd6cF0Sl8u9fUB/Qj
RzQ/we0oa1ORhSdMuBCTgzes9ROFR9FZQPJgL3UiNdY3lwzOrjW7jOs0KdeEMIg9bGZgVbr/yjKL
ttR7n+m9kNk50Byb1vuyEs4DDk8KNB7mc7enH0tYKhseQvvcea9zoDFPgOngkxgTY4Uv+UtWrjPY
XqQK7Ffx0LKoQvNZZU3ME0JBX94Rjysr+NN4SiYYzjPsbchmCUzV8MEKuIEPz+idH3qXn8PyqF18
HIPbsiTST86hn7McCeyL7p9Ne/SwN39933NixZbuczU6/oLU2aVxQ3GNyE4UKsigvosuZMgcwgWx
tl31gVZKqjrd6Fum0wHpyoO5VEzazQL9HEvacpewIrD4lX4Albc52ma5713HYnf0SKxKN6Ov58yx
fKnqQyRMrMRJeNNym5bTQnLwO2Iq07j1z6LZT+UOz/ooGcJf0KtHqnS60egrXz+HyhNI13FB0wk6
+0IjJoBnocVuy6jBjKefNpYhE0u4OcVct864H5w/rvTO6VGVPsuFSbzTjvrwDWFIXjVRCQqlJLOz
rPLiZYrqZ+yXXTwyh5lGIe1Sq30odIEB3KKfmN2HuYjRBnvyW1ljhysQkszmVyfXXi8n+TBi27kr
3Zoyn2IHqrA25nZRb8JDEpbvMgcAMGQF/OVsuKZacVijzbk2G1+7VElwhZrzZiFrDRFxDMv9Fj7a
oX9P/bCc81F6RoAk2pRHat0IOs5M+YNUNnTkMuZuF3hPIQkeC/ksY6QLhqPVOQ5PPM5TdkRKkzba
VArL8CPCdvsQRrXUFje9hOqSnapCY0P5Qqfip9ymb5bnzpm6RMRN+J0W7R04nDubGoaJbWX7M769
A9szEpM87oW8v+gdfPlkVWw//WwyXyY1OaLvYspFx6HdgdxNJagW/bZnVPsqzTT5i8G3EDaL+NQD
azA87YZNQBpaUWobWjaPihctoHqWJpJgBpZ+CFwL1VS4XLR9w+yTfaHI48XJDVgSQPDy/kPMkIgf
MkQvhYcGAM3R8CsdXGp1CuLe/iFxUaF368MrvkoaARJrmIS7c/gtC5oFftU5IMsRTWEWgY+ZJ29f
pgoyrzDx6MF0vh3FdrFvru4KI72en/dO+7E7YwH8g13M1IOTa9UXxV4IGm4CrF897yYhx1++rHOD
da/WLhEu0vl1yJp+7rh1aeOLHOuxYdAAQngb2oqO8bpLLRzbSvTYkTT6tNKLpzQwprZgsezF3687
2kCo4kb7pEPAQOfRoNWcI1zB1RjgHN8ZRYlJ5e2/3lDrJYc7CzEWUV4his4r8brdQkZVhjvKy5HG
Z3nR3izv4b9HXJszrOlZ53FTFdh4Q+VtkBbp6s731bPtILJsx/cqldCdWOFk/x7/MQMiz8SrHE3H
LHzfcP5AtYvIs3r9Y9yDHZQQyjFBTjDSg/CHvg6M5LaCB9KO8xPPlTz2C3EoQdRTrs6bsxgq5i5w
+t0dKLmJxoL8g70wt9xyMIUW1gvoZd8N3MKTkkCiPcBYuvdFHPJ6PqZ97geU6zSs7umqr2f53cAB
hdHutQcK3qLa54tFyFt/fRIOfWh4iDTgA3R6yk6iOrRjKux14+taaFEp9IfE+X1t/zw06MvcfFKt
tOCoVOMyjuFeLAgra+aRsajUylB+Bdj2EAEUMm90iZdyKZ4ebF2jPK/J6xyVquiZUorMJaUkSqpB
VXd9OiiCr8MdWMXyvpHwLML9d+fHfrVaREbVkUyk7lZSDbSELfWI3leuJ56VuztSlJy5ByKSGMR3
M9XXMMIEYaOLQ9khEFpdVrgY81mlltEN2l8kPXQrtIkGfA5zXJ5ExiQCpnnAeIJLreXvl+u3AgW+
9I8/udtQThgG0Fn/GvFvvaIvcBYtxnaydRmw2Pzq+VK5xvOyGxOsMjz7eNsiPPz5KiGt9j1iZMa5
ai1CzC1kXON37ym3aVImm4HIlQBiuL3DIGRHeKw84ldYYAgXZzaFcU9JQPYwevcw8aV6Qi5kcfPk
1MbpM3g4hTsaEXAnvCS8o29rGRqYKs6w29AvQUuI+5E5Ar9h/5dmq0GTJ4efFJxA8kHi47Vca6MW
I/jbG//nUtGPGtwxBVBTYcGh5udUWx844YaiohsxPNb5CRKxcTvXcqxI7j7LUvAcmq3Ai7xLlpKx
/kGBvkTZwOBsNmCcGOamNsdQorO9RGqbG65cPY3PQyI8A9tY/dZ2lXR97eVKUtR1+8GXYPUtnrAJ
6QdsND0r7T3liA8TWgvADYVBfHcyZ8bVn9bB33NmNbUykqDr+kTJQMYdiv1S2YgdRlf35b50oUR0
+5IMS0+bNmN364SXyDSgFvMr6zz2t2Efn6iMNWuDBH47fTcmrrwK4XYqjFR3D7GMbcfwLDX/93ck
phBjOiWmTT16vj8ZszijluQaF+fQiEUGIsfU72TsnXKd3QMuqaJPPuK4RjcNJevBjNyT/8COKgt9
ZRd5VQpgMyYTU9h1f3HvqI9DFLy0BS6KQSXUFisQJliuLp19an/pfQ98ti3NUoQt5yHfCdn1/1j4
CJOfL7Fou+TW6OLyDcL5M7yVpbY6hSNXkvgMx9jW1Uc2vm7UoIMWbeFFz9X50wFjkl7oNDjZndEZ
HDA7UuXbBc9HeVzxvliYHSTlWLdewAg/Gwl0yIMJn9O5npW8S/D5fr9w+MxIdi6s253R0ClaUHKE
Jx1Fi9VnLchzrEK0b7hUnp8/pCscqqVinLw9EbWU0SSseiFRJZZJOGhaf9RxqWVEGM0VkXuGgTaE
eanbYNSf05gwGCXyYAPPCusn8sryuuKvy27xIDF1f5vzxjWuRT7qIt2NXeaMijfJaL7zhZREw6Ik
mg0rn68gpKNFjSy13NFc5WA7OdhlmfpGWn3+ebnCmRKVqQSFTiNb0nIHzpLrRjRk6btkR7pmgY3r
fLMC55du8LQcNo65rAzOFIaMR0lPcsmeEnU4kwRnNzFlb678d2D1ju61tg43d25P0JuhprYR06Vu
vM8x1pRaLrd78XEvfmqXI42UAgpwPPRL33Si3b7PcsJgLnFwaCK/9+vYE6+G0M0i3pTLg9JOpH+/
TN+0MV6SlggTWtGzM1luuaBa04+gqeiwdjv/CLsI1ytsitnOkUobMvr6HmlCJ+kc7qvifU+OXmlC
+J2vAzhSEgTTKF6zWg/O10vd9uNugUnFokITNUnIrwSxbHAE9uWk5moduMwBdXovgdPXIp06iqwl
Ii6WcIZhcrSY3mRqR+vXbt3e8Z7iBcjivaZYQnE/opdLRhTMWTM3R4tSkI/mEDPP48hXFV03ZlRQ
lT3OXJHZutisf0WS7iQXWn5SPuLxfqxy/vR5DWPAJZz3O6f4qKLL1qOoz0edKwXoOM/SdK2IrTCn
uVhIK0/4ETsPOQvsAc8gW3dmSd2lrfoYxAvnfnHg/AScXB4mhF1CWxVcpZ5AyEoKL6DxombRs+BB
7/qlNHnDfOl+3hE9fSpv1YvmIbuAsyUd+VPvDzGKkgOrk9dlczMIdb08YySWcNuhTcdoMTjJn9x7
E4jqXEC+1PgthfuFtqNRe4kzddta9QjK/K7S3uS6em6+W3hFMILAUuMA6Y66iyxzhCQqHHTW1IUd
ZXacolI9efmveAN00Jw9HaaEBJ7qu4kOrsk/jEkE9rImVkSQxz29YzTin1ULxi+mR7idBx5pwgNU
HUgEEbppaPJyintHYXdCtDDkvu6g9tL6hw5eiZ0lx9+T0rDw9QKlDLovKX1ne+zBBW1aWkaaBiiP
Z4qwpw9KGbm9r2a8VFvUS3BbuuAfhKnoFZQraK3uTacUGYY609ppB+WniTmyAb/mor8pigJnx9wR
UjU3xW4KSu9o0lG+1P/KuN7cpq3/sEt1PkLHw+/CxNYFa9H+9D3/O5RVNm1E9zmHq5wSy2mYM88S
kdu5mGvG1ywBXMm31PFv9HcXjeQourzjmMQe+iE357EXOB85eo8Cip0EgCbI8Pdnrx7mJ92+m9Zm
AxP3VC6dpLCC3qwCax+66h0utEiuoxsvm3ueiny7RvPXAbdpJt76DfSNYSFJJ4YxjopV5fka94Xb
QjQcst65Y5fTuCYWkLTfbCE9wl5KhCem2j9JmkulYF02PA8Ww/anq3yLIK8Wc2+jhg4/uHImhCme
czXWQhc+2lsmBPIN4H2h1JmwwLCt4red5Rgwm/vZH3ssNcyUmhxw2JWQjJ/3IURBJqLE9Ql9+ocS
hhSpQDK1Rgm9qCbeDSWucqtLe+3+hio1w4JbWLM31d3dmfvG7tesa4xKfHVxZYYvnr3nu5GGwYfn
D58r+sKv+WZ9XjVfiOyneZf3yCdpbHBIG7VWFvHH14kTxJY9kFlM47hTqtljtPL1FQ00i38MWRKI
FKoBEbfAEkj53xhbdGrmfmUIUcLVSCfQRfDs23JvUEgNinU0f7Fz8AmuDaiIvjISf4ZQlCAd1ViQ
kwHKl1WDH0MrwymJTbDsFkxxtkhWzxaGy7RQZux/kDfnmqDE5CMFp7MvQM6OdSWo8XTysLFW/CWM
+cAw11ovgfSAmS3JSBpOSO902DH88smTNzSmhuKteckNDBqIl9WvL0GMjzboROj2ZMyujZVybULV
tBp0nvlKbYCzVXHP1sYRuNLlrMNGA2Eh7QP2zEJaOgvFSK8m9IX4EjsUAyy6cXombh8W3O++5oNC
mSsf/Ofj0rVAV+mmmNAdY1IYb0NjBkweAuHWHaYQAnSBzg5b9r7Ax0clJZylyUZYtzW3emr7qopB
syInqytK/7DKBDYtPZrEV5+6OHr7m2hXEjM9j9PC9+kf8MleA/meSJ3sNsHElq6EREUgviRVpJW5
JUQDf7ISBEkeBe7yWi7+0I+Bi7BRWxks4+CA+Voou4a5f84Gg+Pt9urJMQEZfdhVUq4sDqC6gg1Q
3mnAAydxjc8U+UJoFLJ8r1ZuM0Z2rtPytrCrmZDgJ6EG8VbXAjCWTvGFNlsTM5Ezfv3I2RA58E2U
CRuLeCPiZ8g1XlUxoMcl4wYO49WEswGOtBJeJkuxY0b0HeuvWcgetbtCvWQJ2NBcZZKGKTiCI0dT
Tr9OsVVLH7TTwov5a06+OR9IWjB72WvrkAhmZCv2xPWySaqvxbg7UbSR2D5+M1QTydfJM5WN1g6U
fTKWlYH4kl0Vm7VINyakqaUK6DBVOsMvgu4EntISWB9Qvys5sSJ614FFsIip8NJgSlU70B7iA+Td
YEYQ7F4yaw65CVA4d4iU2RpUoaa65wVSPN6gVJWlDGL26B+4il1pjjHip3Afuxx4gafTNvVD4hor
pHpVGPTJwggcYWSl5sz3CdC50tCoCItFR4Gt+ciLNI2rNjYFHcXpeZdatmuKVr6MeYupxiFMwG2I
dWg6ot6sh30Yqkk832EmS22bPZrLzoJnju9Is/MfDSspap8hw7hKx0TEVM8IuVvv1ZIVRpAovjHU
f1K5U6G+WFHh8jaAWNtHk3TjVdaBVNd1YQqkths6DLArWiH+1JpJC1ziVjvUQ5PBBwjkQAQ2pJtc
idVEp58NMiKQMC0SeEsufdoUbjnUnLrXWG9y2tSC8df7VJBehorDL8WT4FL96RRujfA5F0kyC55H
L+Lbnr2ktkkajGzJwOGaof2ldhUB/4f1wV5WMnSwHvXGcLV07csYAbQYFIdv8gfDvTNAB09tFF8U
83iwjRzPOUrx3Dsod4EE7QcV6O6ZRBbDOlUZjTG6xR0hHzyvnVM0+J3Zz3FOvkMVzv0CQ91bHepe
opumJGyQqA/YjiZWVtfk7xuVMUTfk3zmtVfYIKpb/LAb+BPtplfjI8yK3cRAp4GtLkNFsQJ/bSlq
t6PS7DgTDtb8/AIGwl5ZamJiOlIATGwjrEWPQ7B3py0ALFhJ0coSjsgz2A+HM09lH0e5Cy+fYqyJ
sN5i7nk6UKbuvjjUJGbIP6CgLzLw/ho+t1RtwCoOenPT8cvYzaGsTI+7190SQssPRedmenRojwH+
/CZECzJ+xiys3HbqrVtfXmyxt69ox+suHL3fvIIm4yWs+UiQkBMM+XfI95zkVkhjoUnyKloCnKvc
ud+fw4bNa82LKB74S6xDKVEnPd4aWBTKWRbjpoyZfORq118RxCwuM2w0uG5NMJEm4mWldLAisV73
g79SPLmZwEcJ6qXcT4mLPWXCNyGghLnJWDkrPRyW3IP/rnXGAduKdOY0WL2H0wszN0NtzkVHDiHM
R5BJOb1aSywmNbxEFEV3k/BDOKKTzD9BnQDrxzc4TJsWIXTEE47v5gea4CzMgTmiNxcB1AtDIt1J
cz1mK+9zchb6CKvdtY+8VHpxrOWkTOgITVMctb9TwItuSBKRsXgrLsJRZanPG2YGe7xf3dq4K0Oa
2/9eq8EZUx91Z4DKs6FygAylnmQyw2XN46g7VDjLRd4nqJXo5DnMaoiHYk+s3/epl+ddtQmYx0TR
DM3mCFPUIJg7YXt2+kkth3/oXOlhKflEquVOwyoKqUSXI6n2QSukplS/iCtcEICRxvq5zzezJJLc
qPDmIxMyFV5b/zEYxVki6dQ2xfdFzp61HLlO7e7qGjIGcMD3N/JVCvIlqwbOYsdsnbbi5lH89SiU
lI+t9cUZvL2wnjZA4sX082F//QqYVhZc8uctolv3hz3+0QIApMKwX4LfSixe/hr4F+BRG0vZtORw
FYY1q/GhLTPhB7YHvnWX7vePW9TuVfoUC/mCJjNpuk7WX0OR8macshgxgmYjlO/FMXs7YethwaZI
f13Vyrznd5tmVmAtm7gklIE/uM3hSFI+Ymz95DVdPRZ4BBPc3imiaGcjwjq3aQLeBAULnkkjaIYD
CMnMO1HbyCtPtj21BMw5aUtWTHtHCkvge1i0mZ+VaunzVZlqP6tquHqOOmv0/ni29CzGvpwMSmbC
XmKNWwpfDNLUMP+CHeainzEF70DKsWT5kcnpjGCQwyfVZe8HsL1NkT5zAjecHGVsmB4bnzNgoD1P
mfCTBitTKxnBy4O/d0sHQc/IOx/6kgIL92/O8R3oV4/A7T3M5Euz696XAt30D4TvqmFS2AwIoxO3
fZ5KZx1ZIb3OYzI+v2EB1yX0KuOD0TSrIz8/zjz6BwANJEjaMHtSeUve4O/xjhICdSkwKXNc609z
DeF2yJid4CLM3lQIXJFeXFYYX60KyiheCMV+PP6YZK0F6sr69vPxuD2e9MFuZIl4Wl8d1VFN90eq
8ODGdt5pKPZQvqeE836EKENafB+HxTM+Kl6EciJOk40iIBHb8Ng1jdVRIAY3p8z8A4Fb77N/sfT3
vBpASA0FFex0jabQOfLOpBEV0C2Sev5Sq8Zf4pJR9hJF8ASBFI9OU0O/1mZBwb+IPues1nim7oRV
gvyAUBq5tmzAd7HBh2bUuyFsC3FnhGW11Q6RnfDYnihS/Ex3KAE+k0Py1m3S5qNFjUDs7bpuqpuk
0yNevUZH6YRxWMkwT5sBXj/KtJtiuA1skvbHKUCusx+2AbrA0QaOXeCuK8J7EXZcmIDSWzvOsqn5
EDNoMrt9do93No/WkFUjEXZCxFYZu7lB486eItpbamhaNdMESuK4zWWJypUBAgCy26JBMCHLJuwZ
pgiFH2aj6+edu2sBU2sLC2pBXM42t2f32WmtWB5EfJq9KEXyQ77tVvoU6SGTnPJoHoZDG4raxK6t
m4SEE0Pl78U5wScDkwKwSBPQlefcs+Fj+aiLQ/lq8rig+liocHyQ6dnDxLzZymO22NJpkHUZYgCJ
8hBScn5HN45p5MluPgF88e7U75i4ZV+j1r+uQJ3y2Liqyru/pIoznZXgEWk2jjvnjxm7EeTImh3w
sAw/I/JYd/C1Rn5FbQg4FvlwHMIe+q3Dm3Q73KlOL6ThoLyoa8fyO5gZn37pY27iSmHMG0F2NQRF
q7g6Wb4ej/hc1f5FD0y5DJ+0JOFEiM/h6tAEO+tYYHmjUGgbhebHVaXAmZLJ4ly+nW7NJx7bBfjd
8Ztq6DiuIWJ8peYLMDVL93EPHWSZsrPssK0sj2vSCDL9L3m/Dlh8dAu0ZtiCo4SaoIvIv5VPVo+e
i8zuZ9elF5pVbnxssFjK44maceHnrY023dGF6CbTII4a/Jgc/4aRztZFPra/w5tthM/8ooVmWMnK
eSYDixxzt2/kI3ljFTNkTnSQlur8GDBuPbYlSQDeEebU29WSPDWHBKWKNchRSSrG7BP+ZZA7l7cD
F7zR+df+7jO2/ZQ+Jc/9cwmgUCqDljKYHN5wkdmoq/XsCK52DOyDo/rBcMyYQnaCHUt5n9kTOnKW
Zw3zj1/h5tGbAnvOR7PVKsmkDv7Yhs6tER4Xm0923qbBTv3Pvfz0poVyVx0SSSKXlFxDOSHyUbQS
XlwywjPniKfps8/zQUUJVx8PscmuU6QVXDVxE+AukNktRvSJKkMi3lWeN8z3Pn0qRXtmnUOCwxrd
lqL+zBDOJ9rP9+ZCN5XVxn8ZxuRXRM3rmzUlqL30ZLMEnEBmUE5yHOY3LOWirzT/Jfu59nRUmE4F
5svXk4OqvkIB19tPBJeYzc3VQgqeRFvDBcsZg/5NaVpmbLZ1yovxUQHhgZ9jhicKwxErxh6DKZQ4
xw3Up3NmmTsnpRx/fnZRVdZDnid26fHyl/q6iLU94Wx0xpJ3/vWmAJe0IUml64xKcJLPsObHbHYG
EabgzEVwTrAuXXPs5+APn7lbZ/OYB6EcIjDofcml84NLqXL3XAJyHe1t8dE3yo/qW1iNSBxXAHcP
4V+XMJMIHFcQm68gVNfaRDmp86MZKdUMpMZIzjW2C7l5NrZadJylzbfd8Zl3FYkFkGqpkzq05cRu
WWX3AALRD3s8h5l2nP3l0es1XWDIPhgqiXljwGje9yjCPFMJZdHhqnrX+qKTkyXGnK82myqulROJ
PpumXuR106+sRWupA8nrjBLVbrRENxqRF/hEjRgezQeXrciEG4S+IUdXW0lI70ZocTWSOchRU4jq
S3oILXREoT50CjkujzBVbhzAdHocOMftv/a0Vsig2X/UuCSS7rwY8xyG2VWS9DQzvj8JQEJaNbgu
2NL6+Gs8eab5iA8JOZlJX/CtqwvxZeqSIYyXWWAGqW56FC99FHyb3d5mUpvOcPOYHOIVlrVB5ns+
oo8dP3X0eb+agHGTmgxaKLJRjph1+OJ3Hwxilp8/LBxDi5ZviPqxnwwOoj/+/PbT63taabfd3M89
jLDlnTfoIAY8dC7SJ9udrzO7b3dzpp8Fmigzfh2Sn21Qq/ZID1ra3jGlu72VgFvmj0PF8D+47ix8
VgM3Unfp217t6EtR+mJ9AJwWQrGI/QLP5XrEVT29x2JKXMTD1rbqmDJxh1XMuenPjFc1dz83QEK7
cCB1IUeTx7AHFFx7EBMsPovQ3Px4rn7IzCkbDTQl0xhEedQas1tLKc3IOpDVP44WQOwZzPjZ5ipm
c6f7E2F8arlpqI+HeZXgmzUWo9BYVN052zyu/553RBeVyHfIs44xw20I8fVrjE59DgTSJjVvbAIX
spWTQMOzL7ZcLtb5M8Ffpxkvx5EGCOuaqYrmEvofXLRJ90yzj3YLWV82Y79r+bH96g6KHudNdzNg
4bV+HRv8eOJFeTbzyb6hFUOsYxBr64EQVvhJD5ylaqG5jjIp/nL4AwG+d6g4DI/gmmShR4BrobHL
OtI6HLnUrE8GPz1xk0llBiCR77t5U1BK7yh1DHj+u8pJ+6BSzHZtyy/HrcSLx+uMPxvJwuecxcAN
WDSOHpCDjw5cec8BTP5GlGleSVTWmtLcw6EMSo9x9+vsmODS9NvZShKvElm22eOKtLejDATFJg4M
9DXWuu74AbOv7yKkMqTtCrNqz7+i06fGoJ+FiRg4V3fKoT54hbwHwMYkpnEPvTeKOfEvKB6P4lqq
hkz5QaI40T5yZNPi8dWgbNQ5FHYZ8XTo4GOgMHPrEx/vBiB4dkUBBTGjNdIF+Gn5dtSfIg2YT9f/
DnsMIs5j9lX3xxk86/hZB717a+z92gc2TdvTyR6hNf0WsVoU67eLn+yDZh1Z4T6hfkUJMjcRAbZu
h2Rb/YXCuiyaZgaGS5stR9ZarYoniVpaSSWQUTTFzYnAfrDbGuzmCbVNiXpoIaXPIfYM2EeJ7wuq
MEoTNVf2PoWhSJxelfHG5MjBtpN8F03+Dulo1/4FGzpQnxgLTRVv4lc9Cs03LKa12BF4PUK59VhL
qF53tG7STFm+FTbozPPUbBvW6d2ueHQXxq1wbS1jliCrdSt24gAjNhwL5b6oyXc53R2J5hCbbKrv
IIZimuMXBfrlC28C9zn6Je6LFqlFonXN/ZzqR9V4T/ApK2b8uL524KtTOenT1UMku7USIqA5+KtU
k75xPtEpXVVtKAVfp+1SnPrGJMbDmM5Q7taKztf2p8IFpbfYWCRSHK3WXGUBb6svT7QqIJFFj950
g+qTyeHwDgIPU5plRDP2+a2Ad7XHYGINKm4qh3jxC5HTVMG1W1MYg+3dLbEI9LpdPauH/HeRss4s
MmbveecWJlkIE7Ss+zPtGJtxDl2ETYdXK8wSq7tMVbZDcpaqldj2OnUCxINgeL+MvSiQHz7H8ZZQ
0k1h4YwUwwq33Wm7PHasJsAK2FK/U75km94fBCvXer+FrgGfVbUSyZ+4C7v5yOdCPZZ9/phOAs8w
TzaJ1XkcIWK61yb0Dn6kFZtOO3vTLPCqz58GDCo5SlG+AEw16FwDcHq6iiAc7l4Z403cvrxEhX9a
oSICj2qEiX17Ut2/RI8afvDCnmD/TE7TnutGvOQT2eq9kVQ8xw+BKlp2wG3F639n1dCuIgorXwMv
L/gmuM/ihUT5rS1Q5OZgTItFeNe6cGdmOKu6TjWXJDio36kI5xBj5/kN/QaCFKdi3I6WL5QJbo1D
hSKsIwtpqfPd43uwdw7sc3pZVnPfWbyd+oylh6vEBh8zNO80WM9FjBsGSDgmD5D3RMQsROApkhlU
A44T8t0VE6iXCHeTo9FJlrpbMYM2hQuuryPgcNxv7TQ9p0kQIPGmeryy86S1qavQ2OkfoaGbz4pv
hnOy4CutCXwzb2lbyBFfgraqtcp35cLcx5PIdk07Dm0dbTnY0/xZbntGY1UWu5sE6XvLCiSnmh+q
bysj1ravjp8pnETynW5af0gRSeBs++SwddeZfT9wu0rNf9E9HT0vGnyWzGDAi/ccJsJh0T6kf/1J
PuT9UMMkLYqZi715pMeCgyjqt5maZi3D1aCP55Qfy5+fUc1mNCXXS3Yu15BTjADv/PCwV8sF77S3
aSfPGnSfAuXIqlxzjDsgUE1RsxT1OTCDzCC3+WeU5SAlrVpZXRlKhccavQITEj8j8NQhuEr13qaw
JVmGRWPyO46leHvSHVCC1EObzrm/mPUmESGDWvqYldXhg+GaCP/m9vsN/LGK/JwlocXa8QvhSOWd
Unjdocw1rCBVOUJMLTLvJ8KYEPwHQ+gdlpBd1ImcLdbclsbBAQ87hXXKzhiirvlaaszkEiXix+op
S79WdAy0GwmiZEh9WBou47npp0F57ZhUZLF4cuU0ymj29KduZCngxJxn6YOAKk43pZRrO9PFJvvs
VKyXor5YARx/RwoUizgeu27kSLJk7SdTMwzn0gBuB/lL5f0dmiRmfsE8IAnfmmjze3NjL7IVcHiN
qOduImE2ce6Xho1LQlJ3QFE4Ka3jmOQyeYCIm1zYRaYMklalkbq1RqnjIn8vU9u6NonRQoPLk5/E
255M5uQbb/jHpWSYUHS/xHGDYvMkbVLy04EsNlu8/AN93GGZ3ssg7Bc12dYuGeBbTA3krPfp9Xkl
Cp95j9wp6bpZBN4NorC+7XmhnSchJnbOXIyhmRKhhPbdm6tw9sp2aiXOryJiMu/NLTECGIAmTF2s
d9yprEXWF8S9jaLPQhD+BrT91+IziokJeQVEpHrm3AmO0KuojuvOxjCCFmZZWhF7J1UK56hhzxMw
rcrWbaQhyjAVZCSpswJ4gybPS84Obi8wIX6h6u+c3Epe8qhSqQidyY6nUId8YHYK3GlCMpT1UemL
u2OIaaPsrW/ZN9TwfXKZJVvZxU0wvxjAM+43SbTf0eaklr/vt7JqGEJpEDTMC92xw8Ex0vewfHHj
PyL90HxPlTuVLdDl2RydEdT+zGGtzM2gTepU/Jl05kRAcKgjX3W7Tm0fToaNytYEX5TrevJWppxF
0Z+jPPGypPFkIkrtC372YHkpNNI6RhRdSKyjVhjBzq+FYHSDy+tfvGvRszjkGTuWjQ423UNGYxp8
eC4eSXlNJPLGz6qhY7nfBwyfRjQbVg0LXCOnsLoGo9KohfyhuBXr28zi+F7bqG3DlwIqGm7pDfVC
6o2cTz6vvm91GTUJMIh13pCE/2CagUAb7v/f66Pi0ONlPORsUkKzlvKFMH1AjMuHCm+mUigvcAP5
5XlZOCONeBs7ZJkUjg3u66BeArcCQKUNzCRrM8QD97hkXXbqPi7S6sivTDLwnShyD6SCbosnzirp
BSlLV3l2AclDRFVraouONrmjHz73NFJUNIfkpanSPJiMXNSvSf4zDw/VWHLxTFPHlPEPXl1T5SfT
ujjVGT94MmZ5Tn7dromvpz9TyWLoaVxB8czJEg1DWxX/QJsmShh8iY1fMZrhRjH3daYZskJQcCQj
nBhnlhY/5fYLQixLYPx2JyLnEANzjkBlShQwJUGNlofjmLwv2d687pgSKH3OPWyL+dK1lwgVYtUl
07g53oKHKlhaPW03Ypa0bEP3ZPhr/Lb/W3paoGO8n9IP6sgbb2BoUtYFRCC5zbGLgLyWCLymKmo2
tmNU7ea3Wo4LGFbjEtT2QVnjtmRj69mDrxS3TG0EOuJjUM1iI2T1Rp8+JHc4oGMdMr7trDCF+Phq
Z2McknmWGnI5EYbI5gyT8KHWL7OBISbH6ZF9o4YgspjToxccYblrm7peJ6Qkfi42xqi7UN9DCoAs
rPzsL/7wpvZj/j2hzreKlmj8EWPIpSCZmSk8iEBfRGK2oPGun45GC3tohcjOygszyGN2BWZDpEPU
zJIEKXZVcZf0M0srGfqNrv6V9PuXr/lTkSR0vN6BMfPSZMk/wJmVgu5rzcqhTLeMY/ytbqh/GqW0
VteQbjOlYkDgNXd69pt6ObaOjOOxAPUD6rMGnqlR+EU0ewrVliEeJur18z093WdPvLzd3aa7nYNb
Lg4wLwOl+TQGVOvKRd6ydvbvj4frYFaarNKuvsdMr0vU27uJXnXLw3q+gxVuFeR4fYfYXbn9WrXH
3vH9FyaYhMehQeHksqFcy+x7Js5JR+hRqsiOsMLq1b12FrcnxSODRl6iMklKQsFwoVWK1pEM/a2x
455FZB53qFe7tWCi0qr5HMxFvfMyQRjPdbrzPlKRXfzRqG6aXSVFHWKsS6s+WYTW5A2DsWfhxrnM
vqZ7T2Le4l7P+wRSBPW71xMJdvxVFGM46tX7nIkbKyOwzHdNs/u2Bj17GjuO865xD04GgwnbZcOv
FFDLroFu534v0jO3uHlYwyIeSWaUAY8Ij9ADIQxqsiJYyXMIjqQN1kGU2fJoYkVhSUm7L/0uLRFU
9R8URPuL4DMvDhuBZOl7twdenkMJUdxkEuXD9pLRh7+yjTk76ZC7somfOtPa6SLNyjvpUdpjVixk
m4uE2z/qIRM3tdzCHPSUmjR3nTiW+85+9YpOWyKgbxR02jFHMwxiUOydhTdnJskJEbkXM7HLacPn
iC2WUrbuGhyROSUNE5IXtdvRfvcerU7Bn4/SJPCXuDfGLGrR0p55Uy387Jy+w14ndqFnHpL8fqCV
G2+oy5Leq8wweoCtN5oCB5yLXlvVf/4p0SN3QaTh+4AyZmX6wmwZ3OlTUOHwhXqmYKGRzcc7d88W
0Z8HRQxUsSOvHn3YWxJsq14DkJ8sBHMqKAZjT2cp4aPla+/Wrj2iWdlGZfJ2qOOIuIo5Hkf2A6zh
wCB64t/dXb5rsw/2J1LhPYlCZ2gDejuu8tA5hsQhNAuIFBnr8xCqSB1CIXp2QWHqtk+PLRqofZBl
MFTN+GHiFiVkWETaTuwgy3LxsdRmGvIO3fOJ/nysRMDnJMDtc8zhLjKbpFKR9SkqT2qhej1ZDZ0R
JCCHJU32fTgTjn0fNDk3DGak9wdXd5kMuwZrB+2wYi7KkVIUjyI/g0s9gVD9ViFv73TC7AccMbIp
Mi7GZDHhYP2cIZhxsXopiX5dQFRCL7tkp1+BZsNcZdEnxyTS5ejS0PgeAYFdR5hvMOAK7d+E9Au0
T6B9sx6wUY21JeFOuexZHxoLx/3I6JUWByva5DKpJAstU5wieLVxM0utyuLXYIKQDdVtFzgWVvN+
GRT1duWKsG31Buza3ioLVUccNF2v7amoysuqD1S7u649XEF95kFewvO2LNDu2jW0DmSr4mIEjgZg
ykrY6XrUDfGQnovLAkOhhEdGtbTs83fGzi8kMcnxqbVZQjiljkbQYZnCn87wFS9eXb5GCy2ccnOQ
rmYfVsIu9M5AtxR2gweUV/GKLo3Ei7Y1EYxujcbabd3COON5yumxT39hNnXn8YgxQskLeANrbkuJ
kHvqA0TqUqtA2+dstz2y2cyf7AP1rd45sQrB9OBAyVMkHoh9DTbIKBWwHOribJThpd5+h7iygNwf
v5zfl4f3q48F4LSb/uNgiRQP2UQy0UKuNE6LCQMCVYzziJgtv07ro31a5rC/AOxDlQorgnmvh0jw
DndaHHWG5nYLrHYD+/4L48Vuqr7OtQ7X6CL20Nz6uY+gDT+4NEKkZ3AaEbEIw/nXkAtwCPcEsHIl
g1/pmDWysOm85GaviGdvkSU6mWXR/p8c7hgLViO/OOT1VheVcZ6A4+UbUJ4WSjVgFIbfL+APVeNE
FO/HcX3Qqte2ARPFoV1XaLj0SzJjN1aFoX/ovxt9DWapBnRjH1e2rG6tJLg7UYRaQStJbS/1MwJF
vx2VXqDfaJiKKw0u58nxMX9Y8lnu+kXQxps0pIV2QqQzDCOaP4UTWbji9S5653L+pmlpsQIRNxQa
RzniUhuQeg9uQKUSb6oCFUHJqGHGJMwfc6xr9tTG80CeIsArJEFW47qPKWmUMXW8r0Nv2xyxRwO1
Ksvbf8iBYq8xIDzmdH3D9q45o8aIq0xY6gicu3D/0U2HN2UYr0DCZy+l6Au+PnZ4rHgPD5o/m//I
7qAVo1i2kNBH/VtE9EM6L+STvmcC53jHlZ/BNUEFee8so8Tf2JMBUPhwAiXo2NUCn9K0yIr4iTIt
WvAl0ce4/YLjB+tuLJ6QYDDXgt9SAq88t3uZ9LwhP7fs/gqL3qxuPTOLKB51XvJbW4ZHaUDoEbr0
7XJAP+SnCkzASH4NrybPLUsVkFIzPV1iaWwNyqgxJKDLDWRzdWM9bCS5zlNhOGsBquT6YypvIrbP
Uud6WDl6yD0Gj9YFdkGYNhz55MNcbMvpOyujuKEPNzC6ZCUN1OHNQcc5zn2xFpmuDxczuj+6RDnm
HfR1GIDz8HouY6KiKShY29yptMXjO0xDlZglfn7qxoXXM+q70NXW0YZUyMsR3fzRLOPUVysP+yzC
ZL1cC1GpW8pDpjZJX3o09TRgw9ktN5/4w4XfMY5orXFtJW11yS92hRzePuod3vfwUW6n0plZJ8M3
MSld1KXAH8VVsdYXLAUbpPjcKRXNT8mKUrdDQRpFyKIzC+LR12rP34ovPj2axef1peFwtMd8Q57u
9u0874XsURY1ijx2dMIUVnFv1ioN2vJnkN0ySrZMpi7U1CL8JeHvpWfnAum9NocSDxYUdxA1f5i+
1Hpx6qu/tOqIo/TVrsjmsM/vUhxqU3m6ZXCpY1bJA+LaszEmiJS88WzXd7J8+H3DruFdEdgbjadW
ZubNXfeXhg+8JrhbURVmL0n9d3yxtXXC+knbemsP0PYFdH4vzgwSdLVwIdLqmAEm8fGj9QnqX2Rw
utSBhh2+leXKVEWCMOfHIaozCQfZXEwa8nFsxvq7k5DSeFoeM6/JlT02Q7l1aHDGmNeQdPCeTVA1
NTldmq32oa0tJY4aEDeG8l/cVQ6OcPiZsR1WybajxANc4bpzxl2bqZLh199ijuhv/arVCNQobTlK
SElqkw1tcQvboZGZ+QTrsqkJPfhIOhTm2rXv78s9X62oMhFwKdpop++nwZ0XVUdQB/pUDL6W+G7w
G1r+nCFIuewtLKydY4c5nDmSuUS80eWvUEoUh1+oweGl2Fvjb/dkhYHKsc2rxHh5bxzcfMtINRBm
OVbHb6U7ty6UbEiO36I1CtX0WLM91bk+X7yY/miaeIA/pf4eLDpI1vYOfKMgdMI7Mbze0Z8uFIKg
krdL7RFTmodq5I5mwQoCDoZzoZQT9mC3Z3ktIYlEsFmE72JLtEqzyMR8a1/jLd1mgFeDgUzPQosn
0dS6e4sd79Dvy8pBWKjnANyTh1J3pKVYHx224OFQS4dq2fQPXMSraHyz6W/4abimiVcqt3Oi4e9Q
x8cxfcpFFJo4wI4IDDAKgyFe1tSDfbN2mkaUXrzv4B1iIVU5hjY5eO2XnfCTsMHN8S88RV66DYyd
YneZmi5wyOeW3n9MEEVCKtOsi4KEP+I0jacoVvvVfjiW4yMEc3b+KqrCUwEV4sSYx/ONy2aUInzZ
ok4pp7W3NLShrUiorx8Xy+AKqkT2oHNIJcypbUkcgYZG57sZ8beH969yDvrvDkMm3RqGTzBGIcJR
pqaNNBQP+oM8qlfx4jFu3ShCbqj8bjv7o4qWmX+eGfgEiz3w8zfwts+iAetYwuGcsUwHS4W2eUlX
DYSZxENWYs7ez7AKhKu3ac+zmyry38Ii15TGLtLuUCQo7ytJEH715TgbJvuieVJ6henDY5yg1Bt9
ate46L5kFYerqndoyobwLOh+4hK9yGswrfXO2W5tHYzJtQOysN4QmnaPaGIAtgxTI1sGEa8HxTWr
q8YY7cLth4/WvIY6pin/Dww626KjODplNxaM8HR6KJ0LqjT6+cxfff7GMkVBMvLjFY+HJoqJbdjO
6E+MJNQ3hhbfoyBIuMN5tXKveuFUAx9SUj6HnCvYf50Js0+O4DTWaf2wIAmeQx92RPpMP3IT2kL6
zHtdUZBdkz2RctheAr5zS0QsPEtT20rKqOZjHz7/PpHoPNOHi9G3p26CpmA3/cQ3RQmWW5GjVOHV
/JMXTC7G7qKt4KXXIox1dW52BZ4Alh9F5BlaSmzO+snx1mhALb1NjXeNHGwjeEA3fdNL/BjkfpWs
E+MbNQq8w4/gpAkeHVdUPLykjg3dGCPpkAWmfgwkRbGy5763STJu8G/Q9JQXqWwDFvnaKa222MzW
4ds5vWy2yWeeJTvjnKG2WQVFhxbXdcXr7ekKOvcdzTM8xPBVny4qyGTImkoGOJPv3Q2DyK8j1Hzr
E7YsYKc3fzZk0bcPXTsB8Yr2v+HhQYXRfGnCHvNldf6W0/JQam42wtiVjQBGrr2Y9Mw1Kxi/60VD
5WfYw/txLsSNkvaVgtc9x2L9V6jxLjMj8cBLSahy0qehYoFFbHofWKcOj2rwDsXaoH2En0ZRAmxl
RqyHXV07b7PPV3WNrWV7Pz+nZs440vnq6T8/ikQmB0i6OVEFRvThiZ5O3lk5+MBBZZZIR37lT0ET
xWyzzxPcxO+M2/hwtGBrbwQJRkUkIXTlJXdmWsn4Kwc/xpfOFpgntLe0eCl6cxIKt/2ZDPCKcPsd
kznnk8zH+kx9UWi24J9vZz0QfHChIzpr/InKZ6WlTUN3sxZ2nQgIAGn1ysjcGUn3FdSoSjXoOZNZ
YUCsp8o3/03vw/rL2fHe92qVR0/ZcY7TauwErLgMybSfrBXjKmhq+afsSivzrOzLTzdPCKDgHNv1
anVC0GmDHQ9LlFTibzntoMXm+n2KxmzH2kpVFeW/qF4xgfvnNss2e9lsafNzNsstLFGo4cbSzMfy
fR3FpBf3AnupXwV/rm+xqZVpPkV45TezhLoPSMETONnYZZLrZjyjXPQBC8b0jlps5q8mD6QL5Ffp
gVHkyhtO/OqSwq4iAGDKqSD8gRXicaE2TQU+XDaYs/+sG/kUFsudkDxqQ8/aSxl3HSLAe7KkoPPy
aS99tlQZukCeRMBVolTfIPyADXCIsajzehH9KVfYXRfal9Uc79QLjUDEuguIhg9lTf4VyyDKhZPA
Bl7lsy1q6kdMhdg6YmeWFUIhQcHRbSG21lVYrWQWnuE9dxGM73ZRjFkTSEmf4s5S+nEfJ3xayLbt
FR+UvxrH+qKOWXuEn2keTnhtUcZ6DJjBWqIvrV5rMStn9L1Jf+Lpoao40oqKG/+ox6Cy944tiazv
2phXZZBiVdzaD3nqi/Qh+c2vFw8cIQXb3QQoLQdkrVvx49Ck/HnKYY3mOfXI9tEAQIDqi40d+JIO
i7MON2Y+A4qgIaomi85DCgn9+3Oy62Ob3AZ7ctEvqmNSVnM7OA4DusiHRSSwxi/BmtRevSwTKrvq
JKkPcQ3Wghof2jF+vAsTql/u/6mkqp3Ay7n+yLLZd+QKbt1OlUvyImgWDK5ZAG/bxNEGaMI6CODV
JqlCgCjE93ORjyL32o0V+frTuC0WwyGbG1MtLudeaVmsPNdhOnhYD5a7+H4gvFevj0OGkdsJdlpb
bp8nFi6uH2v+yULpwpowFk4hbecn3/uTtwFo7pvSebrx0GPRbgv6YIlAkuXjWpJ9T7OZotQTYSxm
n9RMsYFQ8mjPx0IDNogOxrTtMvrxPTfKEPBvjFj2LwFXKzq8a2lbZV2HTUc82mGI2s9mhn5m5wyt
7hWkwIOoMshMGI+hK/uTV1+ZXLvFEulNwVusTJES+DdHHPIikyHH5xp/qQYeDZRylgZwYsZKStac
8+wq07HDtGGDATpJkdqpObHFkGB0W74GaRhVE5hT/0fE9VlaJlNnQOq0X0GXjZfzkd1o/pD9NwwW
zRuUUDT9IBYFn9RIGx9Erf4qyhsIjnlLEsIG3GPnzkWUvY4eVKJO9zFegbVmRfFuveQwZ6q3Zh/X
JXMRNpxBYo4r9NEJpAoj+cko1QhPBCK17643g1r4kULBGQ7Cp3Z+96v0tJgDU9k9lWPfSXEhdyfH
HjEQ1vxYNH5QyjhjBqEzG6T0yE3PjhfSu3EQ3YtASI27mTp8xQi6G+4/m/3BYCSDKZHFwV1pkv05
WcvMfaUqQRlttYRfoALQkX14cEgxwJBr5jaRsTmkcH/BoB1pZdKV7BIevF8z7v5DwH57b7XK8WOj
JAfjrlHux7SBVSHUPlKliTOqzP8XgAt/9ElLx3U9mY3KZl1LW4WGCaQcAi+/6IUR9a9PD0fsJ7Ua
e1LVXGlE6YkJnZN32vSDyQST1DBwu59d8E7YgW29NtxDXWwJ0iw3Cl73w+MDaNkAPUtjKj1+HJAj
EhzJB1t1qGuaIAYejGvelcxgSkLGYVbPBSNebRzWwqn7o2W5qY62a9xFnrIbb2zPZEs2FhgEVBXe
P+1euovC9RKMMv0lMwqV+j/PpVtpntIB/SBi+Ql4WaJ2Km4kA0aPmklMhoDPXUsGzjmhRpey44KD
qtZ1GqPFcP6gF0tSGhXWtWyctouP4UdmpOCiW5x8T1xBlW03qeZ1zRF/0ImwkJwgumls6Pp8ao3+
8pRISbDKomQC0NBXNt+BRHgZZh47E1nnoTrcbHMzbuxG4H+pArLvKqLkjDM7065wY4AZtrXq9AIl
An5qFgvTENzF4qSQ+cFzxVmUc4EpApnOgVizqe95oC83Q0pNPDBsBI8mXgdsK9LmF9K6G7sFtDhE
XSkK/PNxqMdir1tkm1XK++2/ZLeZZVVTEGQ8VzTgi2ozRAL3Y4itahBstzRBXSul7rbjeylZ/EZU
hhCNF046jFXmRhgYyWXfqEDxbF4R0zvYWHPCjGjptbL4eQjSg1NVD3kMHpg4CmtvKi20rmSPhhuS
xwAvvVFEpQWdPAx1cbMJ713tx6/GHTqTPdJTtpzayn9/IUZ8OtUYPYuk2vhUjEhMzdwMk7/xyQdy
YURko4GQa/hMmd2Nh4LlSZPnXo42QIv+EgZ89RF0OmCa6f2mqPslAxMe4Gaq+0Mj2GuOIPWvZTuq
1m2a8UBtrKtnIXOdyDBK/8gs1tccBMdTvLCDXpfrZpKPRRFkuqqwLfZQZGvBZaNpsNr/G/wqLwSr
XRZCYYomMWnTd6MxW2QTCFjjCsdjSgAM13+Li+vg0MAQZMGf6nq+JR9JRDHjGBJsF90Wo5E/9qMY
rdQ2EvdLwbBOqozq7IirA/MrcFM4BG6uLpAe0gQ5CiwPWTqAaIvrCLoi1m4LtUKH4J5qJWX2doqs
letrey+lkDYjSZUZciWDaSCQoazuuPqAmxaNeP/1N+e4UN0Ur3r6Sy66XpAtnF47OTMwjknqBoJK
CkFZ52Q3pYO6hlbvk/UzzOhY2LnZRrbIpWUZBzhQNiQkBKgEysR6apJ9YqbmHh9wptInD8J4Crnu
f159PGZRShsFwYwxXNI5DjwPu3Cox0Df3IZXRNsidL2nIUUFJVCUTnOw2snJ2helwL0PBxjYLJMk
/jUXO7NwQJEqT1JBPtYkS8lu+m4w1RlH1Xokt4e+qee7d2s3EHwpCIYs39j77ZVTPTeXSEIefSVL
ioSedxg16mB+FnxB7155cBGP6joUrd9cdnY17Fl4tokENOds16W8B+UmD4ibNYgzG3KX94CMSA+n
SbX+4P1dL/aQ0LPg+Lx3gXzzQ13l+iRTHBJcgz6SXoFDllor4psLFQ902okb5PF6I8TlqnnBqEAJ
QHvkW+iQsRPzNEmeHNaZM5r+NMkVn3yQUgdL4DBwz8gmQU5CEVTwf5774A+4cnpqIS1kQjwC8r/l
24pfVHvejyBOA8uqeQSKY/2/2Re7jfblZhpbjEGAXdMxycvIPRdeeDNVjVdgv2o4klEqqYxW+JXM
6TJzEQe301nfNE35QfNL7FwUKForCGnh1AyacKtWoa8Vjz6ZX+H7gMG9rGUDLcgrP7iZwggfoJsp
deVaeCIlmLiVUX/Pb2tBSnfYc+52w0yMgwLmodwGks8XJAEMJkeqYMmVZYwxUdgbnw77MCUECmGe
qZXa9d7HXysRxH/9OCeSAA4Nd1YOz08R/1Z/1gHt0IaWX28vdc2PuN0i9mdwLns1Q6Di4Qzz37Ot
Yc26IVgHAJplIg706G3OAsvMwLlCdIRJgYYiNZ/uKj98556G6QOVXiFPu25bBprBA7mkeglWsMaF
dAiizr/pmCSSkdmAD7W5M41d2AYuJ+uwrz+cDYfjfPqqG6pSXIThwhPxOQJVJPl48K55Gp+eDWZV
KcdzWLi1yFxZx/1+nrQ9EzdBvHmnua2kqE/1HioEWZhvC1Ppzq/BtyjDHOAeQpGV1ztpPlkPs2yd
oMYlU+xaV0RddDJhSqlIHGZDsA+kseK6NFyY6hreQFzPV3V0CuUSXd/O7GikPyL2/OgfDOnabY+f
B2o7nlik6Hd8Ov3suCIcrNShP/V0MBDBGsEUuhrpvfk0/ibRTYPxAs5mDZc6i6rUsFl3Nj3iHvZz
qf2P45Qz44SYkVygfKVcPuoOiniAenCUSxl0Bk2XXvVsHhBVAlxzHHZC/HUmiVFHT7y4aQ8+RZGW
XZHPHgfN4pdSF4b72VPBUxvpupG8qOS4Bb1V4fOpP2IC2BA2v50XCj0yy/Kz8Px/0sEzGbbmbCTP
1GNCrHLOrVP42QRERi+ZgkLuevMcNF4MlDqwSR+5t0MJ3XqB+RVsnzziPhJA98LDghnpT1Q4oygi
2hw4FAFJR7CfoqwQOYAve9uvA8/Ca6K11JAo7WHFgmCD0lHcHYB+xhq/ZwdhLiwFH95kbySPAmrg
NimEsv9fI/vgBEycE+yM2T2t2WCSsKhruwlPotOaBG93Cpva4JAyaUwzoicsk4qD/gv9W3rMtBR1
rPtkg0ycZay5OqqL4HHF7XNr85Fp5gNh6FW3RkCTC8miQNjqpR0+Io5ya8nm61r2PLKJ1wGkNCPR
Ui7z8R6410dLirWz8NRhQk3MbpBzR2B2hPZ+sZKQDb34ivLvl1GeSOSU02pSInng8quM8Z6jiZhZ
sM5767gXAkr788rbwtZau+LQuhW0/HSh26mtwkhkvt6gmatnREywVjdqv+bAqf1+ZQQ4KIBpKsC/
mGn+ITp7MqhbyQ8U2YdpiwTyA8sdQ5eLGwYDoqhQMPWPgLdjX7an9Rbn6Mno0MH00y6AFG55rvGn
v6efOyFyzwN0Sg120YUbVTdSc/OsDCoMEIVsBqLRVX++r+f17efT/rpcN2T6M5N3H1KfWAOe6TsP
6nuhlKDDPwvCaWvMcwYTCQMuGdvBTkoZ/fDl++za5osKn98EP4Nf34sE4hHK67CKxcWQPIADZo8y
DuHQXEw7kzknnstKtMABAbSNyL9AGJxc+AFrm+o2m0c6N+WbaGMD2qs69SSyjSj3YLxauHEouOW6
Z7t/Xg9ITBjHQHWdOYwgxnq1XueiHtw/VvHUZ1JTixSPiLwf9SHcc+EZW970dHtG+fKtByc8+61S
SE6fbbwPQoCOz4eLMwLxJF8bfwbgAnFHYaKdUzZ0El84B3yYcKiLgpSR8PQ7yPGMm/skt/XvEA6Y
ZigFeYvP/aKlVrI0nuDkqhfRb2iK0l+zdgusQmJ2goR/fMINh1uXJdhj5mdsHtnZF9Oh3+VFLFD7
lzTM4gZiZTXnu1Pr6czF8SJmc52IbIk/AmTxzW/MnHtkREvLRAaSe9piS3sJXMbs1RU94mFOzlQN
MugFeooZOFC1xeAyOZp/YW29/4UnnkYjvT0PxXSOsNJtUnp2hfeavv78iypNBV3rAm7rVyFBE9ZE
KJbnBi3KkXaMLExCDRVI4S40fCaea/Zqr80V6N018TAoCiO6pGNAAQ2/zE39DPXRU95zG7ZuGWum
woOk0TXLH7efcTKnwh2yepFNyygUnCCSV12Cah32pu3OUZ+8Qlkl89Ac6H8LOrDfD6QDU282i+Nl
EaGh2k2nEo95YiJw98FqxnJt/MShzBhubyvhM58o/qs2Tz7G1GN4kyPHXxegEEBehzEuN2f9mukS
lrdgwlT01SQVoZhoHvYG3SZPwEUo8Q73TPSuNOXACf84kJAzclcIexTj5ljInHcEsawBy3EDbl1b
NGUHvY3DGoAXYISYobcI2jWJNlDiFLNwVAvyqO6x76ZhRvz7FpuTTkzzdaX8rXcHE5/lxdGhk0T/
+dGiomL0f2l1CmVuZHN0cmVhbQplbmRvYmoKMTU0IDAgb2JqCjw8Ci9UeXBlIC9PYmpTdG0KL04g
MTAwCi9GaXJzdCA4NTMKL0xlbmd0aCAzMTA3ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+
CnN0cmVhbQp42u1aWXPbRhJ+56+Yx3i3xLkPVLlS5Us5LB+xHdtZlx4oCZK4oUiFpBwnvz5fzwDg
AARoSvZuXvIgcNDT3fP11z0HAEmrmGDSamYskyawgu4ckwVubWAq3hdMa4Nfy7QvmHSSmYB7p5mN
94Y5pUfSCeZcwL1j3mv8BhbifcEKqfBrWWE9k14yKQwMSUkaw+BYygBNj9GUhtQDgtZ+JD2kRisG
DNJAijGlVXDgCSBGkkGQZ7gNiqSKORqiAAZoBSMZaYZAmrAttBxJAl/QEMEyJcgbupUAPhgyJaUg
C6aUhAQMKA0J9WhrGLwoXRQseKYMwMvYCMVIFoopJ8hEMy0VNQzTJg7rmLaBJB6NgiSB6YKgwpUx
ZCoks0JRA7yq2LDMGqVGSnhmncQ4omA2SEcYmROSEoWGkj5mzLnIJNLg4QNjuoBcYkgvYChFACeU
BPxqCcAQeuMNAwTvFJiGlfcEk2gLRBN6fYGGQgKDQDaV1CxIhfiRXSIQnUEZ6gU1QozAa9Dg3kNk
IKcqsDBClQTrCTaqAmkFsuBRcchYgCOUFH5hDEpDYTwzAsUo7EgjAonRUQQFFQhwFgr4FHCDZXCC
X+IYegZyiApLzkAAeIGWAxQl0UB1jCinRSEoIrAnqA4jfYISoWQkAaMrSYRZ0sMAEpF7qgci0VFL
Ec8WKBTVsAIfCoBQzcKM7t8f8cfsg4RrwV4x/v6X/1A1j72jaIuxh5/5zWx2PPr2253KqJ2xQdZa
yoeL+Zrdv8/4oYqpjFaHmqBVLg5lTHrVEZHWNyJWAd3AG3+5XJy+LtfsA+MvHx8y/qb8tGbNQG/+
uC7RMbkoR/wRBi3n6xXmXHQ84q/K1eJmeVqu4roQRc/Ks+nk4eIT+0DjOSTCF+oYw0yWsI1FRXpZ
0KiBLGgVg/bCjoXbJqitW7Hp/dgaOURQFm6brWGCNjTelSCntghy4q4EObk/QW3dRJBRYSyF2quC
crJapLTY+goEbVeQu3MFuVtUkOupIGxwY1om9iCoRcMAWXflxG8Xjd+zaLBCdzjxtyga31M0yqsx
do4vm1X5ekRLtPsyfrZrxts783OLmvE9NWMKPQ7W7qeM88XYFF9WYF/OX5Db/BV35S+I/flr6yZK
nCvGdG7ZS9lKP9aopL2UjddjgX14P2Vt8Gv3U9bOjKXZE7MqkPN9dRUWIF8MTraB7Xuv3f/O1VJs
VUvwd66WcItqCbeplnCbagl9xys5tsNr/37U55NWOTpK327OfnA6jAuWroUNY11dLRY4bQXOxUCZ
yVILR+QxHi5kgT5j/FhVV9LI+3AyHuuqTX37/lXW8Zr85Vdr9FjWEuTH0KMASTSKmY7ziMVbi7ZX
Glect4ENx3lMOgc9C0tEIiQsXSHHdP6OP6QSnCbzQIqpHZyCeqIokEbAzK0GpgfHqFI0WDyW3JDF
XLUinqRRS2rerZQYrGorj7a2hI2sk7TiI0odHsfSfcpFZdfoUj+tRHiWsfEaM7PpSyxRi/7i2Mej
DxZV9c/f//Tv/8MyRvF4Lgn/5PTvynFc89J8r2a9Jkm6WiwgivLDNOZoyKSpFXNXa8S1JV1Jo9UX
tVOb+vb9U5kPv3U1OHurWoLV3wtaYbyK0rgYuhBXD0trnI8LIelpRyuYlXHpjNaOdinpqv5KFm0r
72klrlbp6J/0LG10qhne0iZPrjeBVq1kaEVOQZQZY5rlNrW1iKloNCoCk1Rt6KhSYdvaSUPH/UHH
jaNKSNabAkjtdI0joxiIhkiF9uP6auN+oo0ihLGdy1M7xI2D7k28N5nGpk83rdTzJdfKY7xWW2uz
mVstEV+8N7Tx+KKgHTDpwholgu2Ftj7aamh/JO2C4pPxlSFkAhbO2zG92HK+UQggit7/BXIV20EX
tF+BNB9U3FVN1KOBJb3fSM10dcE3qO2GjTTtTLHpM46KlyYpMht/ZTya4CjhKwZIWrGQpAVdkyRl
Jdo1uqnf2HQIiu2NVuxLDKV2vB5nx1466j0uV6fL6fV6sUxHv+eTK/R89/bF+zcP/n307NXiajKX
4uDhYnYGhdnkYsVM0nwYT8EHJjh2oOh1OW3mEmdLnIYfrE7pNOyKAsfqyfX35fTisrqlAanvQBZw
9MN6MpuePphfzEomRvz1urx6S28RR/x9ZYQ6TuMdTqGjhMjP15+L48WTt68ePW7iULvi8BQHTv7S
+hiHz+IIphUH3e4ThyiG41C3ieOnp69eH/2c5eNVeXEzmywHQsFh/SB+uTD0ZleqLBSRByI2YYiB
GFwegpatEMxtQnj6/OH79z8ihGeL+eJovbumrGEHml7X02cXoYssFaIVQbxtUqGkHwgj6OEw3G3C
ePPw3U/P31RhfDYRViIOPCH5+IAq3SYO254atjU1lFJ3SEe4TRy/HD15/frdJo402kAYRRVGiOm4
exgHNLE/G4jsmeJP5qeLs+n8At6n5+clnrXpqfyD8vz8nJ9P+fkM5xFefjqdTa74bzeLdXl2MuPz
m6uTcrmaXsyxZfLJ1TVuJvOzpLCksfk1PbfPyvOqlYSTFXWvfuXXs5sVP11cXU345R/Xl+Wcw8V0
ccZXs8nqkv9ZLhd8MS/5+vcFX18uy5KfL26WAPSx5KvpJ74qP8ImRsnnUyieLmaLOcRX09SalasV
L3+7mcz4xbKcYFiAK1fr6WKOIw5/wB/yR/wxf8IP+Xf8e/4D/5E/5Uf8GX/OX/CXLCj+ir/mb/jP
/C1/h72S/4IzDz9ZTk5/LdcUFvaN+jbGhkc2fjM/AxGni2WJR3c+4Sf8lJ9xYOcX/JJP+X/5r3zG
r/icL/g1/40v+Yqv+Q3/yH/nn/gf/M/osYysnUyW6S56P94ra1I7fnIzm5VdfaoBFMjNyTrekhCV
8XCyKuNbicFtqVXl8UNifFdzOF2u1o8uJxCFET+aVDeSyvLd9Gx9uWL0zTLq1lDjB8XeebQL2NA+
0wWmPwNMZsCKrwFsx8bRxWa3sPlB0sLXwDa4I3SR+S6ywg+yZr4GsuFFvgut6ELTugXNZtD814A2
uG53kEn5GWQ5afrvLjWsCDk4umvAuS1wdhscvcFd0SvcGzojNK9j6at9tH46PcPCk8Ki79rpN/WC
DFH9mvSro97xXYbAuTH5MLr6TS9E68+39VfK6mPcrjHM4BjVR6v6e0v9Xr16ybvLp3SNE1EDrJ2Z
HuMXN+sZ9q1VlSxWTS9KVd2uHDd2U+w7rH6D/gAPT6lVhVIZvVyWH+k/IvJEJkPbGKqWocstg+ix
lLWlD8OWvoLznF5Ahx4A9Zc2uDE73KjcTQ8arxs3YtiNC5kb77bduIZH53rdJEvVY9kQ6dRwBkQe
RsimZQMtpjq0cn1gO0M1zNswOJTNie/LvG2It2bQi8kBux7ebcO7bfNeWyY3YdvSNFQbt8My5932
8G4a3o3qdRMtewE0NOphGmVOY81pNTfzyVlBqzOm20Pphmvd5rp2H8fSPeHphl8thi1VXte6p65V
Q7ZyO9zkZPehUQ3ZSu1wkzOvephXDfMy9LpJlj1FKxsi5XDRynyxqMsg5ayGFnNWETUwy2TDvBSD
Q+W8yx7eN8tJn4tk1sNzQ7NsmSmZH2hZa8UIrVhC7Y+ePrH7fPN4cXrwej1Zru+xtJ+zb37Ag+FY
3qN/SssF4l78P8VMQjppW6kkioxkJtAkUGk/40fTq+m6M2atdtzFFeUG5jIf0pIgH9GRwGcCT4KQ
CcK9+A+XG0FBAtPFVI9X62wBusb2Taykky2r7okUG3IJkeJ0LiFWXEuHaPEtHYrUhy6oesxGaQAV
0ZK26VqVeClEJomp8ZmAMMg8FoKgcifkVbl+TPZeo9SPiQDoPERKjC4yASXG2ExAibFV9azKU3r2
/hdFr7siIl35XmAYtqW4BW7TSYlSoesbPNUoN0JwZbZQRL62VIk0bbrSyIbtIm5haWnvgA0eje/6
j1yKrhSEbvGJ+LrWivg0rislfowfxuzvtbWHMSsqPqu6A1AF2i6timi1XVoV0eq6tCqi1W3pApgd
5prAtJR34Aat21DAquuijpOpKwOtrsu1Bqt+S5OSsgNxuNdWHkasAcR3EWtQGrYQg9HQRRe578iI
+a5H8K70IF4CkesOw0WmVBcDgtVdgkD5jtnTKsRq5f4LJVuZAgplbmRzdHJlYW0KZW5kb2JqCjIz
MSAwIG9iago8PAovQXV0aG9yKCkvVGl0bGUoKS9TdWJqZWN0KCkvQ3JlYXRvcihMYVRlWCB3aXRo
IGh5cGVycmVmKS9Qcm9kdWNlcihwZGZUZVgtMS40MC4xOSkvS2V5d29yZHMoKQovQ3JlYXRpb25E
YXRlIChEOjIwMTkwMjA1MTg1ODE1LTA4JzAwJykKL01vZERhdGUgKEQ6MjAxOTAyMDUxODU4MTUt
MDgnMDAnKQovVHJhcHBlZCAvRmFsc2UKL1BURVguRnVsbGJhbm5lciAoVGhpcyBpcyBwZGZUZVgs
IFZlcnNpb24gMy4xNDE1OTI2NS0yLjYtMS40MC4xOSAoVGVYIExpdmUgMjAxOS9kZXYvRGViaWFu
KSBrcGF0aHNlYSB2ZXJzaW9uIDYuMy4xL2RldikKPj4KZW5kb2JqCjIyNiAwIG9iago8PAovVHlw
ZSAvT2JqU3RtCi9OIDUKL0ZpcnN0IDM3Ci9MZW5ndGggMjE3ICAgICAgIAovRmlsdGVyIC9GbGF0
ZURlY29kZQo+PgpzdHJlYW0KeNqNkMsKwjAQRff5illaQdNMW9OACKI7n/hYiYugQQLaio0L/95p
m2LRjYtwmMmdO5dBTCAERAkqJaQgUkWkl8SAEX3JhA2HjM/suYADipjkG0CReA48pWfqqUoeGZ/b
m3U02Znmp97W6YcLoFOYk7N51u2LQXBko1F7A4a1AwpP9Iw842/nj5tse6tfax8a5V/hWgZTU5Cu
vA8NNs3d626AT7TT1/zC+FpfDGlElZfx1dNdbVZ1orqz1LeyRFWXpX6Rnw3fF6YR09jdZOMqAKiw
2fYGiIJqrQplbmRzdHJlYW0KZW5kb2JqCjIzMiAwIG9iago8PAovVHlwZSAvWFJlZgovSW5kZXgg
WzAgMjMzXQovU2l6ZSAyMzMKL1cgWzEgMyAxXQovUm9vdCAyMzAgMCBSCi9JbmZvIDIzMSAwIFIK
L0lEIFs8MzI0Q0RCRENCMERBQkMwRUY2MEZBRTREREIyNDVGMzA+IDwzMjRDREJEQ0IwREFCQzBF
RjYwRkFFNEREQjI0NUYzMD5dCi9MZW5ndGggNTYzICAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29k
ZQo+PgpzdHJlYW0KeNollLlSlFEQhbsvmzrqiCOKigugI4uyjaw6IoIgsqiDMgqigEZUEfoOVhFT
RTVPYWxqaGZm+Ac8ACWx8h2Tr87pvv+df7rPjJnZ32SWzG1s11B9x4i3KAcJ9FOrompALRigtoyq
A/VglNobVAM4AcaovUadBKfAA2pLqBw4DcapVVBnwFkwRe0VKg/OgTlqL1GN4DxYpPYCVQAXADZo
pCZwEbyjtoC6BJrBKrV51GVwBcvNwQelq6AFyy3xHHsNXMdyacxib4CbWF3wDNsK2rDcEjPYdnAL
q0unsbdBEavGU+wd0IGlGwwidYIurA5PYrvBXXAPDLlZXmvsAb2cGwHajMZeplEC98EgtUeoh2DY
re5QF+gxLY9GDFPTq5XdckUd0WOPwQR4AvRW+vrTbo3bOqdvrjXOujUdqKZJauzahxaqNFXcWv6/
gQKi5ChS70HVrf1IXUV0hVcjOWkDrLl1r6r7AXwE6xxRijfdSvXqfqKGCvd0MCJFgKPGbWJSlowH
yQ4SGw1uM9/UINRBlIOIRs5tfk4NUhxkN8hk5N0qnWoQ22BMQeqi4Fb9ogY5DVISzW7rG6oRwiBh
oYSRq1CuSES0uX3e0TmCFFqeUkI2QtkYAsQiiEUQi+hx2xrUY71uv0el+tzLv6T63X/sSw14Kn6X
Knna+ypFSoL9BvsN/YQ0dv1wWEqsASYeTDw0cfYRm4BhZ+bpT4H7Mv5VMvaR8V+S1Xo6/HncPVqx
f42VgZUKZW5kc3RyZWFtCmVuZG9iagpzdGFydHhyZWYKMTkzODgyCiUlRU9GCg==
------=_Part_1535_1952112548.1549422374600--
.
Author: Nicol Bolas <jmckesson@gmail.com>
Date: Tue, 5 Feb 2019 21:33:29 -0800 (PST)
Raw View
------=_Part_1419_136892895.1549431209227
Content-Type: multipart/alternative;
boundary="----=_Part_1420_1337234585.1549431209228"
------=_Part_1420_1337234585.1549431209228
Content-Type: text/plain; charset="UTF-8"
A quick word about formatting and presentation. "TL;DR" sections are
intended to be a quick summary of the proposal (typically called an
"Abstract"). Your TL;DR does not actually summarize what the proposal is;
it simply says that `<type>(params)` will be meaningful syntax that
calls... something. And you say that it will fix a lot of problems. But you
never actually say what this syntax *does*, which is the most important
part of the summary.
Your proposal is basically tagged dispatch at the language level, where the
tag becomes the function name (of sorts), you get UFC gymnastics, and you
can apply multiple tags (?) that also have to match the arguments in
question. That would be my summary of it.
I'm unclear about exactly why you need a distinction between `<tag,
object>(object, other_params)` declarations and `<tag>(object,
other_params)` declarations. Yes, I saw where you show what the distinction
would be, but I don't know why it needs to be there. Regular overload
resolution already gives priority to `<tag>(object)` to override
`template<typename T> <tag>(T);`, when using function template deduction
(as in `<tag>(object_instance)`). So it's not clear why you need a
declaration that has even higher priority than `<tag>(object)` when called
as `<tag>(object_instance)`.
I bring this up because, if you can get rid of that distinction, then you
only have a single type in the tag list. And therefore, there is no real
reason to have a list at all, so you can ditch the unpleasant `<>` syntax.
A better syntax for these can be found.
I have to contest your statement that this proposal "solves" many of the
problems that it purports to solve. It's a solution for customization
points, yes, and a pretty decent one. However, most of the problems you
cite are only solved by applying this syntax universally. Overload sets,
composition, and polymorphism: your proposal only solves the problem if
everyone uses it everywhere.
And that's just not practical.
Plus, there are functions where your tagged dispatch idea just doesn't
work: any function that you don't get to freely name. Specifically:
operators, constructors, and destructors. Your smart reference type would
be unable to forward to operators through tagged dispatch; it would have to
use conventional mechanisms.
It's an interesting idea, and I think it gets its best advantages from
being used for customization points (which I personally feel are the only
functions you *genuinely* want to use UFC-style coding with anyway). But it
is not something that scales very well. Attempting to apply this style
universally to a code base creates a lot of problems.
For example, if you have two classes in the same namespace, and they both
have a `get_name` function, they would both be using the same type for
their tagged dispatch. But the use of the same type carries with it the
*implication* that these are conceptually the same function.
Are they? Two functions on two different classes are not necessarily the
same conceptual function just because they have the same name. Names are
chosen based on their functionality, but informing the choice of the
function's name is what that object *represents*. Because you cannot call
that function without having an object which has that representation, so
the name is always in the context of that idea. The name of a file is not
the same thing as the name of an employee, but they might both be accessed
by a function with the same name.
And plus, there's just the annoyance/noise of adding all of these type
declarations to your interfaces.
Overall, I don't feel that this is a mechanism that should be used as
blindly as your proposal suggests. Which is also why I don't think it is a
good idea to make tags be something other than types. It's not worth
creating a new type of entity just for this.
--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/9fc89d04-0e81-4c2a-8d1f-863ae5732f87%40isocpp.org.
------=_Part_1420_1337234585.1549431209228
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr"><div>A quick word about formatting and presentation. "=
;TL;DR" sections are intended to be a quick summary of the proposal (t=
ypically called an "Abstract"). Your TL;DR does not actually summ=
arize what the proposal is; it simply says that `<type>(params)` will=
be meaningful syntax that calls... something. And you say that it will fix=
a lot of problems. But you never actually say what this syntax <i>does</i>=
, which is the most important part of the summary.</div><div><br></div><div=
>Your proposal is basically tagged dispatch at the language level, where th=
e tag becomes the function name (of sorts), you get UFC gymnastics, and you=
can apply multiple tags (?) that also have to match the arguments in quest=
ion. That would be my summary of it.</div><div><br></div><div>I'm uncle=
ar about exactly why you need a distinction between `<tag, object>(ob=
ject, other_params)` declarations and `<tag>(object, other_params)` d=
eclarations. Yes, I saw where you show what the distinction would be, but I=
don't know why it needs to be there. Regular overload resolution alrea=
dy gives priority to `<tag>(object)` to override `template<typenam=
e T> <tag>(T);`, when using function template deduction (as in `&l=
t;tag>(object_instance)`). So it's not clear why you need a declarat=
ion that has even higher priority than `<tag>(object)` when called as=
`<tag>(object_instance)`.<br></div><div><br></div><div>I bring this =
up because, if you can get rid of that distinction, then you only have a si=
ngle type in the tag list. And therefore, there is no real reason to have a=
list at all, so you can ditch the unpleasant `<>` syntax. A better s=
yntax for these can be found.<br></div><div><br></div><div>I have to contes=
t your statement that this proposal "solves" many of the problems=
that it purports to solve. It's a solution for customization points, y=
es, and a pretty decent one. However, most of the problems you cite are onl=
y solved by applying this syntax universally. Overload sets, composition, a=
nd polymorphism: your proposal only solves the problem if everyone uses it =
everywhere.</div><div><br></div><div><div>And that's just not practical=
..</div><div><br></div><div>Plus, there are functions where your tagged disp=
atch idea just doesn't work: any function that you don't get to fre=
ely name. Specifically: operators, constructors, and destructors. Your smar=
t reference type would be unable to forward to operators through tagged dis=
patch; it would have to use conventional mechanisms.<br></div><br></div><di=
v>It's an interesting idea, and I think it gets its best advantages fro=
m being used for customization points (which I personally feel are the only=
functions you <i>genuinely</i> want to use UFC-style coding with anyway). =
But it is not something that scales very well. Attempting to apply this sty=
le universally to a code base creates a lot of problems.<br></div><div><br>=
</div><div>For example, if you have two classes in the same namespace, and =
they both have a `get_name` function, they would both be using the same typ=
e for their tagged dispatch. But the use of the same type carries with it t=
he <i>implication</i> that these are conceptually the same function.</div><=
div><br></div><div>Are they? Two functions on two different classes are not=
necessarily the same conceptual function just because they have the same n=
ame. Names are chosen based on their functionality, but informing the choic=
e of the function's name is what that object <i>represents</i>. Because=
you cannot call that function without having an object which has that repr=
esentation, so the name is always in the context of that idea. The name of =
a file is not the same thing as the name of an employee, but they might bot=
h be accessed by a function with the same name.<br></div><div><br></div><di=
v>And plus, there's just the annoyance/noise of adding all of these typ=
e declarations to your interfaces.</div><div><br></div><div>Overall, I don&=
#39;t feel that this is a mechanism that should be used as blindly as your =
proposal suggests. Which is also why I don't think it is a good idea to=
make tags be something other than types. It's not worth creating a new=
type of entity just for this.<br></div></div>
<p></p>
-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/9fc89d04-0e81-4c2a-8d1f-863ae5732f87%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/9fc89d04-0e81-4c2a-8d1f-863ae5732f87=
%40isocpp.org</a>.<br />
------=_Part_1420_1337234585.1549431209228--
------=_Part_1419_136892895.1549431209227--
.
Author: John Bandela <jbandela@gmail.com>
Date: Fri, 8 Feb 2019 10:59:28 -0800 (PST)
Raw View
------=_Part_521_765264856.1549652368982
Content-Type: multipart/alternative;
boundary="----=_Part_522_1145959607.1549652368982"
------=_Part_522_1145959607.1549652368982
Content-Type: text/plain; charset="UTF-8"
Thank you so much for reading this proposal and for your feedback. My
responses to some of your points are below.
> A quick word about formatting and presentation. "TL;DR" sections are
intended to be a quick summary of the proposal (typically called an
"Abstract"). Your TL;DR does not actually summarize what the proposal is;
it simply says that `<type>(params)` will be meaningful syntax that
calls... something. And you say that it will fix a lot of problems. But you
never actually say what this syntax does, which is the most important part
of the summary.
Thanks for the feedback. I will re-word that in a revision
>I'm unclear about exactly why you need a distinction between `<tag,
object>(object, other_params)` declarations and `<tag>(object,
other_params)` declarations. Yes, I saw where you show what the distinction
would be, but I don't know why it needs to be there. Regular overload
resolution already gives priority to `<tag>(object)` to override
`template<typename T> <tag>(T);`, when using function template deduction
(as in `<tag>(object_instance)`). So it's not clear why you need a
declaration that has even higher priority than `<tag>(object)` when called
as `<tag>(object_instance)`.
There were two main reasons for the distinction.
1) I wanted people to be able to mechanically convert member functions to
this new syntax. The thing about member functions, is that if you define
them, they will be called, and no other overload that may be a better match
in the 2 - N arguments will be called. Overloading resolution does not
favor the 1st argment (which would be the equivalent of `this`), whereas
member functions do favor.
2) It makes defining the deducing this getter work easier. By having
<tag,object> you can write
template<typename T>
decltype(auto) <get_data,object>(T&& t){
return (std::forward<T>(t).data_);
}
Whereas if you did not have that, you would have to write
template<typename T, typename U>
concept SameNoCVRef =
std::is_same_v<std::remove_cvref_t<T>,std::remove_cvref<U>>;
template<typename T>
requires SameNoCVRef<T,object>
decltype(auto) <get_data>(T&& t){
return (std::forward<T>(t).data_);
}
However, now that you mentioned it, normal overload resolution may work
fine. It is something I will explore further to see if there are really
edge cases that would need this.
> I bring this up because, if you can get rid of that distinction, then you
only have a single type in the tag list. And therefore, there is no real
reason to have a list at all, so you can ditch the unpleasant `<>` syntax.
A better syntax for these can be found.
I would love to hear your thoughts on a better syntax that gets rid of the
`<>` syntax.
> However, most of the problems you cite are only solved by applying this
syntax universally. Overload sets, composition, and polymorphism: your
proposal only solves the problem if everyone uses it everywhere.
You are right. However, I see this proposal as part of a long term
evolution with the goal that this syntax be used everywhere. I am also
thinking about how to enable existing calling code to take advantage of
this. While ambitious, I think this proposal let's us address current
limitations in a consistent manner without trying to apply a bunch of
one-off tweaks to existing features (see the separate proposals for UFCS,
overloading operator., deducing this).
>Plus, there are functions where your tagged dispatch idea just doesn't
work: any function that you don't get to freely name. Specifically:
operators, constructors, and destructors. Your smart reference type would
be unable to forward to operators through tagged dispatch; it would have to
use conventional mechanisms.
One of the things about operators, constructions, and destructors is that
they are a closed set, that can be manually handled. That said, I think
there could be ways to incorporate operators etc into this framework. In
regards to constructors, constructors illustrate the usefulness of allowing
types to call functions. Because the constructor for T is T{args} or
T(args), we can write wrappers for them that modify them for example
std::make_unique<T>(args) and std::make_shared<T>(args). We are unable to
do this with other arbitrary functions, and I would like to be able to do
that.
>For example, if you have two classes in the same namespace, and they both
have a `get_name` function, they would both be using the same type for
their tagged dispatch. But the use of the same type carries with it the
implication that these are conceptually the same function.
I would argue that they are fundamentally the same function for say
employee and filename. `get_name` is returning a moniker that can be used
to help identify it. An example of where the same name can hide 2
completely different semantics is `draw`.
Consider `o.draw();`
If o is an artist - it paints my picture
if o is a cowboy - it pulls out its gun and shoots me.
In generic programming, we are basically doing duck typing just looking at
if a function with a certain name is implemented. So we could have
template<typename T>
auto paint_my_picture(T& t){
return t.draw();
}
And someone inadvertently passes in a cowboy and mayhem ensures. With this
proposal we can namespace and make sure equivalent names have equivalent
semantics.
template<typename T>
auto <paint_my_picture(T& t){
t.<artist::draw>();
}
> Which is also why I don't think it is a good idea to make tags be
something other than types. It's not worth creating a new type of entity
just for this.
I agree.
Thanks again for your feedback.
- John
--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/a641d2da-1775-4bbf-9108-4b3a33529935%40isocpp.org.
------=_Part_522_1145959607.1549652368982
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr"><div>Thank you so much for reading this proposal and for y=
our feedback. My responses to some of your points are below.</div><div><br>=
</div><div>> A quick word about formatting and presentation. "TL;DR=
" sections are intended to be a quick summary of the proposal (typical=
ly called an "Abstract"). Your TL;DR does not actually summarize =
what the proposal is; it simply says that `<type>(params)` will be me=
aningful syntax that calls... something. And you say that it will fix a lot=
of problems. But you never actually say what this syntax does, which is th=
e most important part of the summary.</div><div><br></div><div>Thanks for t=
he feedback. I will re-word that in a revision</div><div><br></div><div>>=
;I'm unclear about exactly why you need a distinction between `<tag,=
object>(object, other_params)` declarations and `<tag>(object, ot=
her_params)` declarations. Yes, I saw where you show what the distinction w=
ould be, but I don't know why it needs to be there. Regular overload re=
solution already gives priority to `<tag>(object)` to override `templ=
ate<typename T> <tag>(T);`, when using function template deduct=
ion (as in `<tag>(object_instance)`). So it's not clear why you n=
eed a declaration that has even higher priority than `<tag>(object)` =
when called as `<tag>(object_instance)`.</div><div><br></div><div>The=
re were two main reasons for the distinction.=C2=A0</div><div>1) I wanted p=
eople to be able to mechanically convert member functions to this new synta=
x. The thing about member functions, is that if you define them, they will =
be called, and no other overload that may be a better match in the 2 - N ar=
guments will be called. Overloading resolution does not favor the 1st argme=
nt (which would be the equivalent of `this`), whereas member functions do f=
avor.</div><div>2) It makes defining the deducing this getter work easier. =
By having <tag,object> you can write</div><div><br></div><div>templat=
e<typename T></div><div>decltype(auto) <get_data,object>(T&=
& t){</div><div>=C2=A0 return (std::forward<T>(t).data_);</div><d=
iv>}</div><div><br></div><div>Whereas if you did not have that, you would h=
ave to write</div><div><br></div><div>template<typename T, typename U>=
;</div><div>concept SameNoCVRef =3D std::is_same_v<std::remove_cvref_t&l=
t;T>,std::remove_cvref<U>>;</div><div><br></div><div>template&l=
t;typename T></div><div>requires SameNoCVRef<T,object></div><div>d=
ecltype(auto) <get_data>(T&& t){</div><div>=C2=A0 return (std=
::forward<T>(t).data_);</div><div>}</div><div><br></div><div>However,=
now that you mentioned it, normal overload resolution may work fine. It is=
something I will explore further to see if there are really edge cases tha=
t would need this.</div><div><br></div><div>> I bring this up because, i=
f you can get rid of that distinction, then you only have a single type in =
the tag list. And therefore, there is no real reason to have a list at all,=
so you can ditch the unpleasant `<>` syntax. A better syntax for the=
se can be found.</div><div><br></div><div>I would love to hear your thought=
s on a better syntax that gets rid of the `<>` syntax.</div><div><br>=
</div><div>>=C2=A0 However, most of the problems you cite are only solve=
d by applying this syntax universally. Overload sets, composition, and poly=
morphism: your proposal only solves the problem if everyone uses it everywh=
ere.</div><div><br></div><div>You are right. However, I see this proposal a=
s part of a long term evolution with the goal that this syntax be used ever=
ywhere. I am also thinking about how to enable existing calling code to tak=
e advantage of this. While ambitious, I think this proposal let's us ad=
dress current limitations in a consistent manner without trying to apply a =
bunch of one-off tweaks to existing features (see the separate proposals fo=
r UFCS, overloading operator., deducing this).</div><div><br></div><div>>=
;Plus, there are functions where your tagged dispatch idea just doesn't=
work: any function that you don't get to freely name. Specifically: op=
erators, constructors, and destructors. Your smart reference type would be =
unable to forward to operators through tagged dispatch; it would have to us=
e conventional mechanisms.</div><div><br></div><div>One of the things about=
operators, constructions, and destructors is that they are a closed set, t=
hat can be manually handled. That said, I think there could be ways to inco=
rporate operators etc into this framework.=C2=A0 In regards to constructors=
, constructors illustrate the usefulness of allowing types to call function=
s. Because the constructor for T is T{args} or T(args), we can write wrappe=
rs for them that modify them for example std::make_unique<T>(args) an=
d std::make_shared<T>(args). We are unable to do this with other arbi=
trary functions, and I would like to be able to do that.</div><div><br></di=
v><div>>For example, if you have two classes in the same namespace, and =
they both have a `get_name` function, they would both be using the same typ=
e for their tagged dispatch. But the use of the same type carries with it t=
he implication that these are conceptually the same function.</div><div><br=
></div><div>I would argue that they are fundamentally the same function for=
say employee and filename. `get_name` is returning a moniker that can be u=
sed to help identify it. An example of where the same name can hide 2 compl=
etely different semantics is `draw`.=C2=A0</div><div>Consider `o.draw();`</=
div><div><br></div><div>If o is an artist - it paints my picture</div><div>=
if o is a cowboy - it pulls out its gun and shoots me.</div><div><br></div>=
<div>In generic programming, we are basically doing duck typing just lookin=
g at if a function with a certain name is implemented. So we could have</di=
v><div><br></div><div>template<typename T></div><div>auto paint_my_pi=
cture(T& t){</div><div>=C2=A0 return t.draw();</div><div>}</div><div><b=
r></div><div>And someone inadvertently passes in a cowboy and mayhem ensure=
s. With this proposal we can namespace and make sure equivalent names have =
equivalent semantics.</div><div><br></div><div>template<typename T></=
div><div>auto <paint_my_picture(T& t){</div><div>=C2=A0 t.<artist=
::draw>();</div><div>}</div><div><br></div><div>> Which is also why I=
don't think it is a good idea to make tags be something other than typ=
es. It's not worth creating a new type of entity just for this.</div><d=
iv><br></div><div>I agree.</div><div><br></div><div><br></div><div>Thanks a=
gain for your feedback.</div><div><br></div><div>- John</div></div>
<p></p>
-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/a641d2da-1775-4bbf-9108-4b3a33529935%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/a641d2da-1775-4bbf-9108-4b3a33529935=
%40isocpp.org</a>.<br />
------=_Part_522_1145959607.1549652368982--
------=_Part_521_765264856.1549652368982--
.
Author: Nicol Bolas <jmckesson@gmail.com>
Date: Fri, 8 Feb 2019 14:59:04 -0800 (PST)
Raw View
------=_Part_536_1058807377.1549666745014
Content-Type: multipart/alternative;
boundary="----=_Part_537_887062680.1549666745015"
------=_Part_537_887062680.1549666745015
Content-Type: text/plain; charset="UTF-8"
Oh, one other thing. When declaring an "action tag", it's not clear if it
is OK to make the tag a definition or if they have to be a pure forward
declaration. Having such tags be monostate objects rather than just
incomplete names would be really handy. You could pass a `tuple` around
whose first member is the tag type to invoke, with the other members being
the parameters to call it with.
On Friday, February 8, 2019 at 1:59:29 PM UTC-5, John Bandela wrote:
> Thank you so much for reading this proposal and for your feedback. My
> responses to some of your points are below.
>
> > A quick word about formatting and presentation. "TL;DR" sections are
> intended to be a quick summary of the proposal (typically called an
> "Abstract"). Your TL;DR does not actually summarize what the proposal is;
> it simply says that `<type>(params)` will be meaningful syntax that
> calls... something. And you say that it will fix a lot of problems. But you
> never actually say what this syntax does, which is the most important part
> of the summary.
>
> Thanks for the feedback. I will re-word that in a revision
>
> >I'm unclear about exactly why you need a distinction between `<tag,
> object>(object, other_params)` declarations and `<tag>(object,
> other_params)` declarations. Yes, I saw where you show what the distinction
> would be, but I don't know why it needs to be there. Regular overload
> resolution already gives priority to `<tag>(object)` to override
> `template<typename T> <tag>(T);`, when using function template deduction
> (as in `<tag>(object_instance)`). So it's not clear why you need a
> declaration that has even higher priority than `<tag>(object)` when called
> as `<tag>(object_instance)`.
>
> There were two main reasons for the distinction.
> 1) I wanted people to be able to mechanically convert member functions to
> this new syntax. The thing about member functions, is that if you define
> them, they will be called, and no other overload that may be a better match
> in the 2 - N arguments will be called. Overloading resolution does not
> favor the 1st argment (which would be the equivalent of `this`), whereas
> member functions do favor.
>
2) It makes defining the deducing this getter work easier. By having
> <tag,object> you can write
>
> template<typename T>
> decltype(auto) <get_data,object>(T&& t){
> return (std::forward<T>(t).data_);
> }
>
> Whereas if you did not have that, you would have to write
>
> template<typename T, typename U>
> concept SameNoCVRef =
> std::is_same_v<std::remove_cvref_t<T>,std::remove_cvref<U>>;
>
> template<typename T>
> requires SameNoCVRef<T,object>
> decltype(auto) <get_data>(T&& t){
> return (std::forward<T>(t).data_);
> }
>
> However, now that you mentioned it, normal overload resolution may work
> fine. It is something I will explore further to see if there are really
> edge cases that would need this.
>
You should take a look at P0847, a paper on deducing `this`
<https://groups.google.com/a/isocpp.org/forum/goog_152915288>. I think it
offers a better way of handling the recognition of the first parameter as
being a special construct than what you're getting at. After all, you don't
really care about that at the call site; you care about the first parameter
being special at the *declaration* site.
So just allow the use of "this deduction" on non-member (or static member)
functions when declared as tagged dispatch functions. If you apply "this
deduction" syntax to a tagged dispatch function, then you get the behavior
equivalent to having the second parameter of your <> be the object type of
the this deduction syntax.
Also, `this` deduction is *not* something that needs to be limited to a
particular function declaration style. That is, I shouldn't have to
fundamentally change the nature of my API just to get this feature.
> I bring this up because, if you can get rid of that distinction, then you
> only have a single type in the tag list. And therefore, there is no real
> reason to have a list at all, so you can ditch the unpleasant `<>` syntax.
> A better syntax for these can be found.
>
> I would love to hear your thoughts on a better syntax that gets rid of the
> `<>` syntax.
>
If it can be reduced to just one type, then I would suggest bracketing the
name with colons. As in `obj.:tag_name:(...)` or whatever. The syntax
`identifier:` is already taken for labels, but I think `:identifier:` is
free.
> However, most of the problems you cite are only solved by applying this
> syntax universally. Overload sets, composition, and polymorphism: your
> proposal only solves the problem if everyone uses it everywhere.
>
> You are right. However, I see this proposal as part of a long term
> evolution with the goal that this syntax be used everywhere. I am also
> thinking about how to enable existing calling code to take advantage of
> this. While ambitious, I think this proposal let's us address current
> limitations in a consistent manner without trying to apply a bunch of
> one-off tweaks to existing features (see the separate proposals for UFCS,
> overloading operator., deducing this).
>
The thing is, just because something *could* solve multiple problems,
doesn't mean that this solution is better than the "one-off tweaks" at
their particular domains. I talked about the superiority of "this
deduction" earlier. Your proposal is better at handling UFC syntax, but
that's because I think UFC syntax was flawed, for reasons I'll cover below.
But operator-dot is a non-starter. Your "smart reference" idea only works
on types that expose all of their interfaces through your syntax, while
both of the operator-dot proposals have no such limitations. That makes
them better than yours.
To me, one of the biggest issues of UFC syntax was that it was intended to
be universal. That universality is probably what torpedoed it in the end:
the intent that every function would participate in it *regardless* of
whether it made any kind of sense for that particular function. Basically,
it's the ADL problem: every function gets it, but most functions don't *need
it*. And some functions *suffer* because of it.
I come from the perspective that the primary benefit of UFC syntax is for
template code. Non-template code knows exactly what it's dealing with, so
it does not need to be able to be ignorant of where and how a function is
declared. UFC syntax is most useful for constraint-based frameworks that
define an interface. You can write your template to call the object's
functions in one style, and you would have the ability to adapt the
interface of any type to that constraint without having to directly modify
the type. To me, enabling this in a reasonably natural way is the primary
point of UFC.
But not every class has such interfaces. Most classes do not have
interfaces that are part of some conceptual framework for which UFC syntax
would be of benefit. And even for classes that do, the entire class is not
necessarily so conceptualized.
`vector` for example is a Range; it has `begin/end` which return iterators.
It is a SizedRange; it has a `size` function. It is a ContiguousRange; it
has a `data` member that returns a pointer to its first element and the
rest can be accessed through array access.
But `vector::insert` and `vector::erase` are not part of any formal
concept. At best, they are part of an informal set of features called a
"sequence container". And yes, there are "mini-concepts" that get used in
some ways; `back_inserter` requires that the given object have a
`push_back` function. That could represent a concept. But it would be a
very narrowly used concept; only really being used for a few
functions/functors.
Not every API is meant to be part of a conceptual interface. So what do we
gain by imposing conceptualization for APIs that don't need it?
Because here's the thing: your syntax isn't *free*. Every name you use has
to be declared externally to the function(s) that use them. That's going to
be a lot of extra declarations that have to be created. And it's even worse
when you're writing a class, because you have to put it outside of the
class declaration. I imagine that this overhead can get really annoying to
deal with. Not to mention that, for any one-off function names, you're
violating DRY principles by forcing the user to put the name in two places.
Plus, it requires you to think about things you don't really need to.
Consider your case below, with `draw` having different fundamental meanings
in different classes. Your solution is to put the names in different
namespaces. OK; how does that make the code better? I have to read
`obj.<render::draw>(...)`, even though I *know* that `obj` is a renderable
object I know that it's a rendering operation because I know what `obj` is.
Having that `render::` there isn't really helping anyone understand the
code any better. It is useful only if there is a `gun::draw` that it might
be mistaken for. But I don't want to have to go through and change my APIs
just because of some completely unrelated API in my namespace that just so
happened to use the same function name.
It's an annoyance that doesn't lead to better code; you just have to suffer
through it.
Would it not make more sense to just have `obj.draw(...)` as the principle
interface, and then if you *need* to conceptualize drawing with UFC
support, you add a `render::draw` that just forwards to `obj.draw`? Indeed,
it wouldn't be a bad idea to have a special syntax that says to forward the
call to a specific name. Like `<render::draw> => typename::draw` or
something, which would generate appropriate `render::draw` overloads that
call the `typename::draw` overloads.
And then there's just the practical fact that we are not going to go around
and change everyone's code. That's just not going to happen. Even ignoring
the Herculean task of doing that (and the *massive* ABI break it would
represent), people still have to interface with C. We have to call C
functions, and we have to write functions that C can call.
I remind you of Uniform Initialization, where we attempted to create a new
syntax that could handle all forms of initializing an object in a
consistent way. And while it was consistent, it couldn't actually handle
*all* initialization forms, thus it can only reliably be used to initialize
types that are known to be aggregates and provide lists of values for types
that are known to take lists of values (like containers).
I do not believe that it is realistic for this idea to be as widespread as
you want. And that's probably for the best. The basic idea is good enough
to have around, even when it is limited to the case of developing a
specific, conceptualized framework and handling customization points. But
it's just too cumbersome and too impractical for general use. And without
general use, most of the gains you cite don't exist.
I say that this proposal should be marketed as "this is how we can get
customization points and UFC-based conceptualized interfaces". The rest can
be presented as optional extras if it turns out that everyone *really*
loves the syntax. But I don't think they work very well as a selling point
for the feature.
--
You received this message because you are subscribed to the Google Groups "ISO C++ Standard - Future Proposals" group.
To unsubscribe from this group and stop receiving emails from it, send an email to std-proposals+unsubscribe@isocpp.org.
To post to this group, send email to std-proposals@isocpp.org.
To view this discussion on the web visit https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/9dab92ce-93b9-4592-996f-d5100543df60%40isocpp.org.
------=_Part_537_887062680.1549666745015
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr"><div>Oh, one other thing. When declaring an "action t=
ag", it's not clear if it is OK to make the tag a definition or if=
they have to be a pure forward declaration. Having such tags be monostate =
objects rather than just incomplete names would be really handy. You could =
pass a `tuple` around whose first member is the tag type to invoke, with th=
e other members being the parameters to call it with.<br></div><div><br></d=
iv><div>On Friday, February 8, 2019 at 1:59:29 PM UTC-5, John Bandela wrote=
:</div><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.=
8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><div>T=
hank you so much for reading this proposal and for your feedback. My respon=
ses to some of your points are below.</div><div><br></div><div>> A quick=
word about formatting and presentation. "TL;DR" sections are int=
ended to be a quick summary of the proposal (typically called an "Abst=
ract"). Your TL;DR does not actually summarize what the proposal is; i=
t simply says that `<type>(params)` will be meaningful syntax that ca=
lls... something. And you say that it will fix a lot of problems. But you n=
ever actually say what this syntax does, which is the most important part o=
f the summary.</div><div><br></div><div>Thanks for the feedback. I will re-=
word that in a revision</div><div><br></div><div>>I'm unclear about =
exactly why you need a distinction between `<tag, object>(object, oth=
er_params)` declarations and `<tag>(object, other_params)` declaratio=
ns. Yes, I saw where you show what the distinction would be, but I don'=
t know why it needs to be there. Regular overload resolution already gives =
priority to `<tag>(object)` to override `template<typename T> &=
lt;tag>(T);`, when using function template deduction (as in `<tag>=
(object_instance)`). So it's not clear why you need a declaration that =
has even higher priority than `<tag>(object)` when called as `<tag=
>(object_instance)`.</div><div><br></div><div>There were two main reason=
s for the distinction.=C2=A0</div><div>1) I wanted people to be able to mec=
hanically convert member functions to this new syntax. The thing about memb=
er functions, is that if you define them, they will be called, and no other=
overload that may be a better match in the 2 - N arguments will be called.=
Overloading resolution does not favor the 1st argment (which would be the =
equivalent of `this`), whereas member functions do favor.</div></div></bloc=
kquote><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin-left: 0.=
8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"ltr"><div>2=
) It makes defining the deducing this getter work easier. By having <tag=
,object> you can write</div><div><br></div><div>template<typename T&g=
t;</div><div>decltype(auto) <get_data,object>(T&& t){</div><d=
iv>=C2=A0 return (std::forward<T>(t).data_);</div><div>}</div><div><b=
r></div><div>Whereas if you did not have that, you would have to write</div=
><div><br></div><div>template<typename T, typename U></div><div>conce=
pt SameNoCVRef =3D std::is_same_v<std::remove_<wbr>cvref_t<T>,std:=
:remove_cvref<<wbr>U>>;</div><div><br></div><div>template<typen=
ame T></div><div>requires SameNoCVRef<T,object></div><div>decltype=
(auto) <get_data>(T&& t){</div><div>=C2=A0 return (std::forwa=
rd<T>(t).data_);</div><div>}</div><div><br></div><div>However, now th=
at you mentioned it, normal overload resolution may work fine. It is someth=
ing I will explore further to see if there are really edge cases that would=
need this.</div></div></blockquote><div><br></div><div><div>You should tak=
e a look at <a href=3D"https://groups.google.com/a/isocpp.org/forum/goog_15=
2915288">P0847, a paper on deducing `this`</a>. I think it offers a better =
way of handling the recognition of the first parameter as being a special c=
onstruct than what you're getting at. After all, you don't really c=
are about that at the call site; you care about the first parameter being s=
pecial at the <i>declaration</i> site.</div><div><br></div><div>So just all=
ow the use of "this deduction" on non-member (or static member) f=
unctions when declared as tagged dispatch functions. If you apply "thi=
s deduction" syntax to a tagged dispatch function, then you get the be=
havior equivalent to having the second parameter of your <> be the ob=
ject type of the this deduction syntax.<br></div><div><br></div><div>Also, =
`this` deduction is <i>not</i> something that needs to be limited to a part=
icular function declaration style. That is, I shouldn't have to fundame=
ntally change the nature of my API just to get this feature.<br></div><div>=
<br></div></div><blockquote class=3D"gmail_quote" style=3D"margin: 0;margin=
-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir=3D"lt=
r"><div></div><div>> I bring this up because, if you can get rid of that=
distinction, then you only have a single type in the tag list. And therefo=
re, there is no real reason to have a list at all, so you can ditch the unp=
leasant `<>` syntax. A better syntax for these can be found.</div><di=
v><br></div><div>I would love to hear your thoughts on a better syntax that=
gets rid of the `<>` syntax.</div></div></blockquote><div><br></div>=
<div>If it can be reduced to just one type, then I would suggest bracketing=
the name with colons. As in `obj.:tag_name:(...)` or whatever. The syntax =
`identifier:` is already taken for labels, but I think `:identifier:` is fr=
ee.<br></div><div><br></div><div></div><blockquote class=3D"gmail_quote" st=
yle=3D"margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-lef=
t: 1ex;"><div dir=3D"ltr"><div></div><div>>=C2=A0 However, most of the p=
roblems you cite are only solved by applying this syntax universally. Overl=
oad sets, composition, and polymorphism: your proposal only solves the prob=
lem if everyone uses it everywhere.</div><div><br></div><div>You are right.=
However, I see this proposal as part of a long term evolution with the goa=
l that this syntax be used everywhere. I am also thinking about how to enab=
le existing calling code to take advantage of this. While ambitious, I thin=
k this proposal let's us address current limitations in a consistent ma=
nner without trying to apply a bunch of one-off tweaks to existing features=
(see the separate proposals for UFCS, overloading operator., deducing this=
).</div></div></blockquote><div><br></div><div>The thing is, just because s=
omething <i>could</i> solve multiple problems, doesn't mean that this s=
olution is better than the "one-off tweaks" at their particular d=
omains. I talked about the superiority of "this deduction" earlie=
r. Your proposal is better at handling UFC syntax, but that's because I=
think UFC syntax was flawed, for reasons I'll cover below. But operato=
r-dot is a non-starter. Your "smart reference" idea only works on=
types that expose all of their interfaces through your syntax, while both =
of the operator-dot proposals have no such limitations. That makes them bet=
ter than yours.<br></div><div><br></div><div>To me, one of the biggest issu=
es of UFC syntax was that it was intended to be universal. That universalit=
y is probably what torpedoed it in the end: the intent that every function =
would participate in it <i>regardless</i> of whether it made any kind of se=
nse for that particular function. Basically, it's the ADL problem: ever=
y function gets it, but most functions don't <i>need it</i>. And some f=
unctions <i>suffer</i> because of it.<br></div><div><br></div><div>I come f=
rom the perspective that the primary benefit of UFC syntax is for template =
code. Non-template code knows exactly what it's dealing with, so it doe=
s not need to be able to be ignorant of where and how a function is declare=
d. UFC syntax is most useful for constraint-based frameworks that define an=
interface. You can write your template to call the object's functions =
in one style, and you would have the ability to adapt the interface of any =
type to that constraint without having to directly modify the type. To me, =
enabling this in a reasonably natural way is the primary point of UFC.<br><=
/div><div><br></div><div>But not every class has such interfaces. Most clas=
ses do not have interfaces that are part of some conceptual framework for w=
hich UFC syntax would be of benefit. And even for classes that do, the enti=
re class is not necessarily so conceptualized.</div><div><br></div><div>`ve=
ctor` for example is a Range; it has `begin/end` which return iterators. It=
is a SizedRange; it has a `size` function. It is a ContiguousRange; it has=
a `data` member that returns a pointer to its first element and the rest c=
an be accessed through array access.</div><div><br></div><div>But `vector::=
insert` and `vector::erase` are not part of any formal concept. At best, th=
ey are part of an informal set of features called a "sequence containe=
r". And yes, there are "mini-concepts" that get used in some=
ways; `back_inserter` requires that the given object have a `push_back` fu=
nction. That could represent a concept. But it would be a very narrowly use=
d concept; only really being used for a few functions/functors.<br></div><d=
iv><br></div><div>Not every API is meant to be part of a conceptual interfa=
ce. So what=20
do we gain by imposing conceptualization for APIs that don't need it?</=
div><div><br></div><div>Because here's the thing: your syntax isn't=
<i>free</i>. Every name you use has to be declared externally to the funct=
ion(s) that use them. That's going to be a lot of extra declarations th=
at have to be created. And it's even worse when you're writing a cl=
ass, because you have to put it outside of the class declaration. I imagine=
that this overhead can get really annoying to deal with. Not to mention th=
at, for any one-off function names, you're violating DRY principles by =
forcing the user to put the name in two places.</div><div><br></div><div></=
div><div>Plus, it requires you to think about things you don't really n=
eed to. Consider your case below, with `draw` having different fundamental =
meanings in different classes. Your solution is to put the names in differe=
nt namespaces. OK; how does that make the code better? I have to read `obj.=
<render::draw>(...)`, even though I <i>know</i> that `obj` is a rende=
rable object I know that it's a rendering operation because I know what=
`obj` is. Having that `render::` there isn't really helping anyone und=
erstand the code any better. It is useful only if there is a `gun::draw` th=
at it might be mistaken for. But I don't want to have to go through and=
change my APIs just because of some completely unrelated API in my namespa=
ce that just so happened to use the same function name.<br></div><div><br><=
/div><div>It's an annoyance that doesn't lead to better code; you j=
ust have to suffer through it.</div><div><br></div><div>Would it not make m=
ore sense to just have `obj.draw(...)` as the principle interface, and then=
if you <i>need</i> to conceptualize drawing with UFC support, you add a `r=
ender::draw` that just forwards to `obj.draw`? Indeed, it wouldn't be a=
bad idea to have a special syntax that says to forward the call to a speci=
fic name. Like `<render::draw> =3D> typename::draw` or something, =
which would generate appropriate `render::draw` overloads that call the `ty=
pename::draw` overloads.<br></div><div><br></div><div></div><div></div><div=
>And then there's just the practical fact that we are not going to go a=
round and change everyone's code. That's just not going to happen. =
Even ignoring the Herculean task of doing that (and the <i>massive</i> ABI =
break it would represent), people still have to interface with C. We have t=
o call C functions, and we have to write functions that C can call.<br></di=
v><div><br></div><div>I remind you of Uniform Initialization, where we atte=
mpted to create a new syntax that could handle all forms of initializing an=
object in a consistent way. And while it was consistent, it couldn't a=
ctually handle <i>all</i> initialization forms, thus it can only reliably b=
e used to initialize types that are known to be aggregates and provide list=
s of values for types that are known to take lists of values (like containe=
rs).<br></div><div><br></div><div>I do not believe that it is realistic for=
this idea to be as widespread as you want. And that's probably for the=
best. The basic idea is good enough to have around, even when it is limite=
d to the case of developing a specific, conceptualized framework and handli=
ng customization points. But it's just too cumbersome and too impractic=
al for=20
general use. And without general use, most of the gains you cite don't=
=20
exist.</div><br><div>I say that this proposal should be marketed as "t=
his is how we can get customization points and UFC-based conceptualized int=
erfaces". The rest can be presented as optional extras if it turns out=
that everyone <i>really</i> loves the syntax. But I don't think they w=
ork very well as a selling point for the feature.<br></div><br></div>
<p></p>
-- <br />
You received this message because you are subscribed to the Google Groups &=
quot;ISO C++ Standard - Future Proposals" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an e=
mail to <a href=3D"mailto:std-proposals+unsubscribe@isocpp.org">std-proposa=
ls+unsubscribe@isocpp.org</a>.<br />
To post to this group, send email to <a href=3D"mailto:std-proposals@isocpp=
..org">std-proposals@isocpp.org</a>.<br />
To view this discussion on the web visit <a href=3D"https://groups.google.c=
om/a/isocpp.org/d/msgid/std-proposals/9dab92ce-93b9-4592-996f-d5100543df60%=
40isocpp.org?utm_medium=3Demail&utm_source=3Dfooter">https://groups.google.=
com/a/isocpp.org/d/msgid/std-proposals/9dab92ce-93b9-4592-996f-d5100543df60=
%40isocpp.org</a>.<br />
------=_Part_537_887062680.1549666745015--
------=_Part_536_1058807377.1549666745014--
.