noreentry 2023-02-19

(Draft No. 2 by TPK Healy)

I propose a new feature for the C++ core language to prevent the re-entry of functions. The following
code snippet:

int Func(int const arg) noreentry(return -1)
{

return (arg >= 0)? (arg + 7) : Func(-arqg);

behaves the same as:

int Func(int const arqg)

{
static std::atomic flag £ = ATOMIC FLAG INIT;

if (f.test and set()) return -1;
int const retval = (arg >= 0)? (arg + 7) : Func(-arg);
f.clear();

return retval;

When noreentry is applied to a normal function like this, it prevents al/ forms of re-entry — by the same
thread and also by other threads. Within the parentheses after noreentry, the ‘return -1’ means that
the body of the function will be skipped (i.e. the attempted re-entry of the function will result in it
immediately returning -1). If you wish to allow re-entry by the same thread but not by other threads, the
syntax is:

int Func(int const arg) noreentry(prevent others:return -1)
{

return (arg >= 0)? (arg + 7) : Func(-arqg);

and it behaves the same as:

int Func(int const arqg)

{
static std::recursive mutex m;
std::unique lock<std::recursive mutex> mylock(m, std::try to lock);
if (false == mylock.owns lock()) return -1;

return (arg >= 0)? (arg + 7) : Func(-arg);

Page 1 of 10

If you want to allow re-entry by other threads but not by the same thread, the syntax is:

int Func(int const arg) noreentry(prevent same:return -1)

{

return (arg >= 0)? (arg + 7) : Func(-arqg);
which behaves the same as:
int Func(int const arqg)

{
thread local std::atomic flag £ = ATOMIC FLAG INIT;

if (f.test _and set()) return -1;
int const retval = (arg >= 0)? (arg + 7) : Func(-arg);
f.clear();

return retval;

In all the examples given up until now, the re-entry has been prevented by simply skipping the body of
the function and immediately returning a compile-time constant. Alternatively, re-entry can be prevented
by waiting instead of skipping — however this is only possible when preventing re-entry by another
thread. The syntax to allow re-entry by the same thread, but to make other threads wait, is:

int Func(int const arg) noreentry(prevent others:wait)

{

return (arg >= 0)? (arg + 7) : Func(-arqg);

and it behaves the same as:

int Func(int const arqg)
{
static std::recursive mutex m;
std::unique lock<std::recursive mutex> mylock(m);

return (arg >= 0)? (arg + 7) : Func(-arqg);

Page 2 of 10

You can skip for the same thread and wait for other threads with the following syntax:

int Func(int const arg) noreentry(prevent same:return -1,prevent others:wait)
{

return (arg >= 0)? (arg + 7) : Func(-arqg);

and it behaves the same as:

int Func(int const arqg)
{
static std::recursive mutex m;
std::unique lock<std::recursive mutex> mylock(m);
thread local bool already entered by same thread = false;
if (already entered by same thread) return -1;
already entered by same thread = true;
int const retval = (arg >= 0)? (arg + 7) : Func(-arg);
already entered by same thread = false;

return retval;

All of the examples given up until now have dealt with normal functions, however the re-entry of
member functions can also be prevented. The programmer cannot apply the simple keyword noreentry
to a member function, but instead must apply either noreentry this object or

noreentry all objects. Examples follow on the next page.

Page 3 of 10

The re-entry of a member function can be prevented for the same object with the following syntax:

struct MyClass {
int Func (int const

{

return (arg >=

b

and it behaves the same as:

struct MyClass {
std::atomic flag £
int Func (int const

{
if

int const retval =

f.clear();

return retval;

i

(f.test _and set())

arg) noreentry this object (return -1)

0)? (arg + 7) Func (-arqg) ;

= ATOMIC FLAG INIT;

arg)

return -1;

(arg >= 0)? (arg + 7) Func (-arg) ;

Alternatively the re-entry of a member function can be prevented for all objects with the following

syntax:

struct MyClass {
int Func (int const

{

return (arg >=

b

and it behaves the same as:

struct MyClass {
int Func (int const

{

static std::atomic flag f =
(f.test and set())

if

int const retval =

f.clear():;

return retval;

b

arg) noreentry all objects(return -1)
0)? (arg + 7) Func (-arg) ;
arg)

ATOMIC FLAG INIT;
return -1;
(arg + 7)

(arg >= 0)°? Func (-arg) ;

NOTE: Applying noreentry all objects to a member function is identical in effect to applying
noreentry to a normal function — however the simple keyword noreentry cannot be applied to a

member function so that the programmer’s intention is obvious at a glance.

Page 4 of 10

The re-entry of a member function for all objects can be skipped for the same thread, and made to wait
for other threads with the following syntax:

struct MyClass {
int Func(int const arqg)
noreentry all objects(prevent same:return -1,prevent others:wait)
{

return (arg >= 0)? (arg + 7) : Func(-arqg);
i

and it behaves the same as:

struct MyClass {

int Func(int const arqg)

{
static std::recursive mutex m;
std::unique lock<std::recursive mutex> mylock (m);
thread local bool already entered by same thread = false;
if (already entered by same thread) return -1;
already entered by same thread = true;
int const retval = (arg >= 0)? (arg + 7) : Func(-arg);
already entered by same thread = false;

return retval;

i

Page 5 of 10

The re-entry of a member function for the same object can be skipped for the same thread, and made to

wait for other threads with the following syntax:

struct MyClass {

int Func(int const arg)

noreentry this object (prevent same:return -1,prevent others:wait)

{

return (arg >= 0)? (arg + 7) : Func(-arqg);

b

And it behaves the same as:

struct MyClass {
std::recursive mutex m;
std::set<std::thread::id> already entered;
int Func(int const arqg)
{

std::unique lock<std::recursive mutex> mylock(m);

if (already entered.contains(std::this thread::get id())) return

already entered.insert(std::this thread::get id());
int const retval = (arg >= 0)? (arg + 7) : Func(-arg);
already entered.erase(std::this thread::get id());

return retval;

b

In total there are 10 unique schemes possible for preventing the re-entry of a member function:

(1) By the same thread, but only for *this, and always skip

(2) By the same thread, for all objects, and always skip

(3) By other threads, but only for *this, and always skip

(4) By other threads, but only for *this, and always wait

(5) By other threads, for a// objects, and always skip

(6) By other threads, for all objects, and always wait

(7) By any thread, but only for *this, and always skip

(8) By any thread, for all objects, and always skip

(9) By any thread, for all objects, skip for same thread, wait for other threads
(10) By any thread, but only for *this, skip for same thread, wait for other threads

[see page 4]
[see page 5]
[see page 6]

Page 6 of 10

Two two keywords noreentry this object and noreentry all objects can be applied
simultaneously to the same member function to produce a more elaborate scheme for preventing
re-entry. In the following code snippet, the re-entry of a member function for the same object can be
skipped for the same thread, and for all other objects can be made to wait for other threads, with the

following syntax:

struct MyClass {
int Func(int const arqg)
noreentry this object (prevent same:return -1)
noreentry all objects (prevent others:wait)
{

return (arg >= 0)? (arg + 7) : Func(-arg);

b

which behaves the same as:

struct MyClass {

std::recursive mutex mtx for same object;

std::set<std::thread::id> already entered;

int Func(int const arqg)

{
std::lock guard<std::recursive mutex> lock same object (mtx same object);
if (already entered.contains(std::this thread::get id())) return -1;
static std::recursive mutex mtx for all objects;
std::lock guard<std::recursive mutex> lock all objects(mtx all objects);
already entered.insert(std::this thread::get id());
int const retval = (arg >= 0)? (arg + 7) : Func(-arg);
already entered.erase(std::this thread::get id());

return retval;

s

Page 7 of 10

In all of the sample implementations provided so far in this paper for preventing the re-entry of a
member function, the object has been rendered unmovable and uncopyable because the two types,
std::recursive mutex and std::atomic_flag, are both unmovable and uncopyable. This restriction
can be overcome by specifying an allocator when applying noreentry this object. The previous

example on Page 7 can be made movable and copyable as follows:

struct MyClass {
int Func(int const arqg)
noreentry this object<std::allocator>(prevent other threads:return -1)
noreentry all objects (prevent other threads:wait)
{
return (arg >= 0)? (arg + 7) : Func2(-arg);

s

and it behaves the same as:

template<template<typename> class Alloc, typename T>
class shared ptr custom alloc {
static void alloc deleter (T *const arg)

noexcept (noexcept (arg->~T()) && noexcept (Alloc<T>().deallocate(arg,lu)))

arg->~T();
Alloc<T>() .deallocate (arg,1lu);

std::shared ptr<T> p;

void create if necessary(void) noexcept

{
if (nullptr != p) return;

try
{
T *const g = Alloc<T>() .allocate(1lu);
ctnew (qg) T();
p.reset (g, &alloc deleter, Alloc<T>());
}

catch(...) { std::abort(); } // This is fatal -- must kill the process
t
public:
T &operator* (void) noexcept { create if necessary(); return *p; }
T *operator->(void) noexcept { create if necessary(); return p.get(); }

Page 8 of 10

struct MyClass {
template<typename T> using Alloc = std::allocator<T>;
shared ptr custom alloc< Alloc, std::recursive mutex > p mtx for same object;
shared ptr custom alloc< Alloc, std::set<std::thread::id> > p already entered ;
int Func(int const arqg)
{
using std::recursive mutex;
std::lock guard<recursive mutex> lock for same object (*p mtx for same object);
if (p_already entered->contains(std::this thread::get id())) return -1;
static recursive mutex mtx for all objects;
std::lock guard<recursive mutex> lock for all objects(mtx for all objects);
p_already entered->insert(std::this thread::get id());
int const retval = (arg >= 0)? (arg + 7) : Func(-arg);
p_already entered->erase(std::this thread::get id());

return retval;
b

When you move a MyClass object, the shared ptr is simply moved, however when you copy a
MyClass object, there are two possibilities:
(1) The shared ptr is copied, meaning that the new Myclass object is sharing the same
recursive mutex and atomic flag as the original Myclass object. This allows us to link a few
different Mmyc1ass objects together in an elaborate scheme.
(2) Anew shared ptr is created holding a nullptr, meaning that the new mMyclass object has its
Very own recursive mutex and atomic flag — so the newly created Myclass object is not
linked to the original object.

The default behaviour when copying an object is No. 2:
MyClass a;
MyClass b(a); // 'b' is not linked to 'a'

If you wish to create a link between a and b, you need to explicitly use a keyword for that:
MyClass a;

MyClass b (noreentry linked to a); // 'b' shares mutexes with 'a'

Alternatively, you can designate an object as implicitly linking, as follows:
MyClass auto propagate noreentry link a;
MyClass b(a); // 'b' shares mutexes with 'a'
MyClass c(b); // 'c' shares mutexes with 'b' and 'a'

The implicit linking can be turned on and off atomically:
MyClass auto propagate noreentry link a;

MyClass b(a); // 'b' shares mutexes with 'a'
unset propagate noreentry link b;

MyClass c(b); // 'c¢' is not linked to 'b'
set propagate noreentry link c;

MyClass d(c); // 'd' shares mutexes with 'c'

Page 9 of 10

Please respond to this paper on the C++ Standard Proposals Mailing List:
https://lists.isocpp.org/mailman/listinfo.cgi/std-proposals
You can view the mailing list archive here:

https://lists.isocpp.org/std-proposals/2023/02/5799.php

Change Log Between Drafts

Draft No. 2: Correction: set propagate noreentry link swapped with unset propagate noreentry link

FIN

Page 10 of 10

https://lists.isocpp.org/mailman/listinfo.cgi/std-proposals
https://lists.isocpp.org/std-proposals/2023/02/5799.php

